]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Target/WebAssembly/README.txt
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Target / WebAssembly / README.txt
1 //===-- README.txt - Notes for WebAssembly code gen -----------------------===//
2
3 This WebAssembly backend is presently under development.
4
5 The most notable feature which is not yet stable is the ".o" file format.
6 ".o" file support is needed for many common ways of using LLVM, such as
7 using it through "clang -c", so this backend is not yet considered widely
8 usable. However, this backend is usable within some language toolchain
9 packages:
10
11 Emscripten provides a C/C++ compilation environment that includes standard
12 libraries, tools, and packaging for producing WebAssembly applications that
13 can run in browsers and other environments. For more information, see the
14 Emscripten documentation in general, and this page in particular:
15
16   * https://github.com/kripken/emscripten/wiki/New-WebAssembly-Backend
17  
18 Rust provides WebAssembly support integrated into Cargo. There are two
19 main options:
20  - wasm32-unknown-unknown, which provides a relatively minimal environment
21    that has an emphasis on being "native"
22  - wasm32-unknown-emscripten, which uses Emscripten internally and
23    provides standard C/C++ libraries, filesystem emulation, GL and SDL
24    bindings
25 For more information, see:
26   * https://www.hellorust.com/
27
28
29 This backend does not yet support debug info. Full DWARF support needs a
30 design for how DWARF should be represented in WebAssembly. Sourcemap support
31 has an existing design and some corresponding browser implementations, so it
32 just needs implementing in LLVM.
33
34 Work-in-progress documentation for the ".o" file format is here:
35
36   * https://github.com/WebAssembly/tool-conventions/blob/master/Linking.md
37
38 A corresponding linker implementation is also under development:
39
40   * https://lld.llvm.org/WebAssembly.html
41
42 For more information on WebAssembly itself, see the home page:
43   * https://webassembly.github.io/
44
45 The following documents contain some information on the semantics and binary
46 encoding of WebAssembly itself:
47   * https://github.com/WebAssembly/design/blob/master/Semantics.md
48   * https://github.com/WebAssembly/design/blob/master/BinaryEncoding.md
49
50 The backend is built, tested and archived on the following waterfall:
51   https://wasm-stat.us
52
53 The backend's bringup is done in part by using the GCC torture test suite, since
54 it doesn't require C library support. Current known failures are in
55 known_gcc_test_failures.txt, all other tests should pass. The waterfall will
56 turn red if not. Once most of these pass, further testing will use LLVM's own
57 test suite. The tests can be run locally using:
58   https://github.com/WebAssembly/waterfall/blob/master/src/compile_torture_tests.py
59
60 Some notes on ways that the generated code could be improved follow:
61
62 //===---------------------------------------------------------------------===//
63
64 Br, br_if, and br_table instructions can support having a value on the value
65 stack across the jump (sometimes). We should (a) model this, and (b) extend
66 the stackifier to utilize it.
67
68 //===---------------------------------------------------------------------===//
69
70 The min/max instructions aren't exactly a<b?a:b because of NaN and negative zero
71 behavior. The ARM target has the same kind of min/max instructions and has
72 implemented optimizations for them; we should do similar optimizations for
73 WebAssembly.
74
75 //===---------------------------------------------------------------------===//
76
77 AArch64 runs SeparateConstOffsetFromGEPPass, followed by EarlyCSE and LICM.
78 Would these be useful to run for WebAssembly too? Also, it has an option to
79 run SimplifyCFG after running the AtomicExpand pass. Would this be useful for
80 us too?
81
82 //===---------------------------------------------------------------------===//
83
84 Register stackification uses the VALUE_STACK physical register to impose
85 ordering dependencies on instructions with stack operands. This is pessimistic;
86 we should consider alternate ways to model stack dependencies.
87
88 //===---------------------------------------------------------------------===//
89
90 Lots of things could be done in WebAssemblyTargetTransformInfo.cpp. Similarly,
91 there are numerous optimization-related hooks that can be overridden in
92 WebAssemblyTargetLowering.
93
94 //===---------------------------------------------------------------------===//
95
96 Instead of the OptimizeReturned pass, which should consider preserving the
97 "returned" attribute through to MachineInstrs and extending the
98 MemIntrinsicResults pass to do this optimization on calls too. That would also
99 let the WebAssemblyPeephole pass clean up dead defs for such calls, as it does
100 for stores.
101
102 //===---------------------------------------------------------------------===//
103
104 Consider implementing optimizeSelect, optimizeCompareInstr, optimizeCondBranch,
105 optimizeLoadInstr, and/or getMachineCombinerPatterns.
106
107 //===---------------------------------------------------------------------===//
108
109 Find a clean way to fix the problem which leads to the Shrink Wrapping pass
110 being run after the WebAssembly PEI pass.
111
112 //===---------------------------------------------------------------------===//
113
114 When setting multiple local variables to the same constant, we currently get
115 code like this:
116
117     i32.const   $4=, 0
118     i32.const   $3=, 0
119
120 It could be done with a smaller encoding like this:
121
122     i32.const   $push5=, 0
123     local.tee   $push6=, $4=, $pop5
124     local.copy  $3=, $pop6
125
126 //===---------------------------------------------------------------------===//
127
128 WebAssembly registers are implicitly initialized to zero. Explicit zeroing is
129 therefore often redundant and could be optimized away.
130
131 //===---------------------------------------------------------------------===//
132
133 Small indices may use smaller encodings than large indices.
134 WebAssemblyRegColoring and/or WebAssemblyRegRenumbering should sort registers
135 according to their usage frequency to maximize the usage of smaller encodings.
136
137 //===---------------------------------------------------------------------===//
138
139 Many cases of irreducible control flow could be transformed more optimally
140 than via the transform in WebAssemblyFixIrreducibleControlFlow.cpp.
141
142 It may also be worthwhile to do transforms before register coloring,
143 particularly when duplicating code, to allow register coloring to be aware of
144 the duplication.
145
146 //===---------------------------------------------------------------------===//
147
148 WebAssemblyRegStackify could use AliasAnalysis to reorder loads and stores more
149 aggressively.
150
151 //===---------------------------------------------------------------------===//
152
153 WebAssemblyRegStackify is currently a greedy algorithm. This means that, for
154 example, a binary operator will stackify with its user before its operands.
155 However, if moving the binary operator to its user moves it to a place where
156 its operands can't be moved to, it would be better to leave it in place, or
157 perhaps move it up, so that it can stackify its operands. A binary operator
158 has two operands and one result, so in such cases there could be a net win by
159 preferring the operands.
160
161 //===---------------------------------------------------------------------===//
162
163 Instruction ordering has a significant influence on register stackification and
164 coloring. Consider experimenting with the MachineScheduler (enable via
165 enableMachineScheduler) and determine if it can be configured to schedule
166 instructions advantageously for this purpose.
167
168 //===---------------------------------------------------------------------===//
169
170 WebAssemblyRegStackify currently assumes that the stack must be empty after
171 an instruction with no return values, however wasm doesn't actually require
172 this. WebAssemblyRegStackify could be extended, or possibly rewritten, to take
173 full advantage of what WebAssembly permits.
174
175 //===---------------------------------------------------------------------===//
176
177 Add support for mergeable sections in the Wasm writer, such as for strings and
178 floating-point constants.
179
180 //===---------------------------------------------------------------------===//
181
182 The function @dynamic_alloca_redzone in test/CodeGen/WebAssembly/userstack.ll
183 ends up with a local.tee in its prolog which has an unused result, requiring
184 an extra drop:
185
186     global.get  $push8=, 0
187     local.tee   $push9=, 1, $pop8
188     drop        $pop9
189     [...]
190
191 The prologue code initially thinks it needs an FP register, but later it
192 turns out to be unneeded, so one could either approach this by being more
193 clever about not inserting code for an FP in the first place, or optimizing
194 away the copy later.
195
196 //===---------------------------------------------------------------------===//