]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Target/X86/MCTargetDesc/X86BaseInfo.h
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Target / X86 / MCTargetDesc / X86BaseInfo.h
1 //===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains small standalone helper functions and enum definitions for
10 // the X86 target useful for the compiler back-end and the MC libraries.
11 // As such, it deliberately does not include references to LLVM core
12 // code gen types, passes, etc..
13 //
14 //===----------------------------------------------------------------------===//
15
16 #ifndef LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
17 #define LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
18
19 #include "X86MCTargetDesc.h"
20 #include "llvm/MC/MCInstrDesc.h"
21 #include "llvm/Support/DataTypes.h"
22 #include "llvm/Support/ErrorHandling.h"
23
24 namespace llvm {
25
26 namespace X86 {
27   // Enums for memory operand decoding.  Each memory operand is represented with
28   // a 5 operand sequence in the form:
29   //   [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
30   // These enums help decode this.
31   enum {
32     AddrBaseReg = 0,
33     AddrScaleAmt = 1,
34     AddrIndexReg = 2,
35     AddrDisp = 3,
36
37     /// AddrSegmentReg - The operand # of the segment in the memory operand.
38     AddrSegmentReg = 4,
39
40     /// AddrNumOperands - Total number of operands in a memory reference.
41     AddrNumOperands = 5
42   };
43
44   /// AVX512 static rounding constants.  These need to match the values in
45   /// avx512fintrin.h.
46   enum STATIC_ROUNDING {
47     TO_NEAREST_INT = 0,
48     TO_NEG_INF = 1,
49     TO_POS_INF = 2,
50     TO_ZERO = 3,
51     CUR_DIRECTION = 4,
52     NO_EXC = 8
53   };
54
55   /// The constants to describe instr prefixes if there are
56   enum IPREFIXES {
57     IP_NO_PREFIX = 0,
58     IP_HAS_OP_SIZE = 1,
59     IP_HAS_AD_SIZE = 2,
60     IP_HAS_REPEAT_NE = 4,
61     IP_HAS_REPEAT = 8,
62     IP_HAS_LOCK = 16,
63     IP_HAS_NOTRACK = 32,
64     IP_USE_VEX3 = 64,
65   };
66
67   enum OperandType : unsigned {
68     /// AVX512 embedded rounding control. This should only have values 0-3.
69     OPERAND_ROUNDING_CONTROL = MCOI::OPERAND_FIRST_TARGET,
70     OPERAND_COND_CODE,
71   };
72
73   // X86 specific condition code. These correspond to X86_*_COND in
74   // X86InstrInfo.td. They must be kept in synch.
75   enum CondCode {
76     COND_O = 0,
77     COND_NO = 1,
78     COND_B = 2,
79     COND_AE = 3,
80     COND_E = 4,
81     COND_NE = 5,
82     COND_BE = 6,
83     COND_A = 7,
84     COND_S = 8,
85     COND_NS = 9,
86     COND_P = 10,
87     COND_NP = 11,
88     COND_L = 12,
89     COND_GE = 13,
90     COND_LE = 14,
91     COND_G = 15,
92     LAST_VALID_COND = COND_G,
93
94     // Artificial condition codes. These are used by AnalyzeBranch
95     // to indicate a block terminated with two conditional branches that together
96     // form a compound condition. They occur in code using FCMP_OEQ or FCMP_UNE,
97     // which can't be represented on x86 with a single condition. These
98     // are never used in MachineInstrs and are inverses of one another.
99     COND_NE_OR_P,
100     COND_E_AND_NP,
101
102     COND_INVALID
103   };
104 } // end namespace X86;
105
106 /// X86II - This namespace holds all of the target specific flags that
107 /// instruction info tracks.
108 ///
109 namespace X86II {
110   /// Target Operand Flag enum.
111   enum TOF {
112     //===------------------------------------------------------------------===//
113     // X86 Specific MachineOperand flags.
114
115     MO_NO_FLAG,
116
117     /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
118     /// relocation of:
119     ///    SYMBOL_LABEL + [. - PICBASELABEL]
120     MO_GOT_ABSOLUTE_ADDRESS,
121
122     /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
123     /// immediate should get the value of the symbol minus the PIC base label:
124     ///    SYMBOL_LABEL - PICBASELABEL
125     MO_PIC_BASE_OFFSET,
126
127     /// MO_GOT - On a symbol operand this indicates that the immediate is the
128     /// offset to the GOT entry for the symbol name from the base of the GOT.
129     ///
130     /// See the X86-64 ELF ABI supplement for more details.
131     ///    SYMBOL_LABEL @GOT
132     MO_GOT,
133
134     /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
135     /// the offset to the location of the symbol name from the base of the GOT.
136     ///
137     /// See the X86-64 ELF ABI supplement for more details.
138     ///    SYMBOL_LABEL @GOTOFF
139     MO_GOTOFF,
140
141     /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
142     /// offset to the GOT entry for the symbol name from the current code
143     /// location.
144     ///
145     /// See the X86-64 ELF ABI supplement for more details.
146     ///    SYMBOL_LABEL @GOTPCREL
147     MO_GOTPCREL,
148
149     /// MO_PLT - On a symbol operand this indicates that the immediate is
150     /// offset to the PLT entry of symbol name from the current code location.
151     ///
152     /// See the X86-64 ELF ABI supplement for more details.
153     ///    SYMBOL_LABEL @PLT
154     MO_PLT,
155
156     /// MO_TLSGD - On a symbol operand this indicates that the immediate is
157     /// the offset of the GOT entry with the TLS index structure that contains
158     /// the module number and variable offset for the symbol. Used in the
159     /// general dynamic TLS access model.
160     ///
161     /// See 'ELF Handling for Thread-Local Storage' for more details.
162     ///    SYMBOL_LABEL @TLSGD
163     MO_TLSGD,
164
165     /// MO_TLSLD - On a symbol operand this indicates that the immediate is
166     /// the offset of the GOT entry with the TLS index for the module that
167     /// contains the symbol. When this index is passed to a call to
168     /// __tls_get_addr, the function will return the base address of the TLS
169     /// block for the symbol. Used in the x86-64 local dynamic TLS access model.
170     ///
171     /// See 'ELF Handling for Thread-Local Storage' for more details.
172     ///    SYMBOL_LABEL @TLSLD
173     MO_TLSLD,
174
175     /// MO_TLSLDM - On a symbol operand this indicates that the immediate is
176     /// the offset of the GOT entry with the TLS index for the module that
177     /// contains the symbol. When this index is passed to a call to
178     /// ___tls_get_addr, the function will return the base address of the TLS
179     /// block for the symbol. Used in the IA32 local dynamic TLS access model.
180     ///
181     /// See 'ELF Handling for Thread-Local Storage' for more details.
182     ///    SYMBOL_LABEL @TLSLDM
183     MO_TLSLDM,
184
185     /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
186     /// the offset of the GOT entry with the thread-pointer offset for the
187     /// symbol. Used in the x86-64 initial exec TLS access model.
188     ///
189     /// See 'ELF Handling for Thread-Local Storage' for more details.
190     ///    SYMBOL_LABEL @GOTTPOFF
191     MO_GOTTPOFF,
192
193     /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
194     /// the absolute address of the GOT entry with the negative thread-pointer
195     /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access
196     /// model.
197     ///
198     /// See 'ELF Handling for Thread-Local Storage' for more details.
199     ///    SYMBOL_LABEL @INDNTPOFF
200     MO_INDNTPOFF,
201
202     /// MO_TPOFF - On a symbol operand this indicates that the immediate is
203     /// the thread-pointer offset for the symbol. Used in the x86-64 local
204     /// exec TLS access model.
205     ///
206     /// See 'ELF Handling for Thread-Local Storage' for more details.
207     ///    SYMBOL_LABEL @TPOFF
208     MO_TPOFF,
209
210     /// MO_DTPOFF - On a symbol operand this indicates that the immediate is
211     /// the offset of the GOT entry with the TLS offset of the symbol. Used
212     /// in the local dynamic TLS access model.
213     ///
214     /// See 'ELF Handling for Thread-Local Storage' for more details.
215     ///    SYMBOL_LABEL @DTPOFF
216     MO_DTPOFF,
217
218     /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
219     /// the negative thread-pointer offset for the symbol. Used in the IA32
220     /// local exec TLS access model.
221     ///
222     /// See 'ELF Handling for Thread-Local Storage' for more details.
223     ///    SYMBOL_LABEL @NTPOFF
224     MO_NTPOFF,
225
226     /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is
227     /// the offset of the GOT entry with the negative thread-pointer offset for
228     /// the symbol. Used in the PIC IA32 initial exec TLS access model.
229     ///
230     /// See 'ELF Handling for Thread-Local Storage' for more details.
231     ///    SYMBOL_LABEL @GOTNTPOFF
232     MO_GOTNTPOFF,
233
234     /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
235     /// reference is actually to the "__imp_FOO" symbol.  This is used for
236     /// dllimport linkage on windows.
237     MO_DLLIMPORT,
238
239     /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
240     /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
241     /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
242     MO_DARWIN_NONLAZY,
243
244     /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
245     /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
246     /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
247     MO_DARWIN_NONLAZY_PIC_BASE,
248
249     /// MO_TLVP - On a symbol operand this indicates that the immediate is
250     /// some TLS offset.
251     ///
252     /// This is the TLS offset for the Darwin TLS mechanism.
253     MO_TLVP,
254
255     /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
256     /// is some TLS offset from the picbase.
257     ///
258     /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
259     MO_TLVP_PIC_BASE,
260
261     /// MO_SECREL - On a symbol operand this indicates that the immediate is
262     /// the offset from beginning of section.
263     ///
264     /// This is the TLS offset for the COFF/Windows TLS mechanism.
265     MO_SECREL,
266
267     /// MO_ABS8 - On a symbol operand this indicates that the symbol is known
268     /// to be an absolute symbol in range [0,128), so we can use the @ABS8
269     /// symbol modifier.
270     MO_ABS8,
271
272     /// MO_COFFSTUB - On a symbol operand "FOO", this indicates that the
273     /// reference is actually to the ".refptr.FOO" symbol.  This is used for
274     /// stub symbols on windows.
275     MO_COFFSTUB,
276   };
277
278   enum : uint64_t {
279     //===------------------------------------------------------------------===//
280     // Instruction encodings.  These are the standard/most common forms for X86
281     // instructions.
282     //
283
284     // PseudoFrm - This represents an instruction that is a pseudo instruction
285     // or one that has not been implemented yet.  It is illegal to code generate
286     // it, but tolerated for intermediate implementation stages.
287     Pseudo         = 0,
288
289     /// Raw - This form is for instructions that don't have any operands, so
290     /// they are just a fixed opcode value, like 'leave'.
291     RawFrm         = 1,
292
293     /// AddRegFrm - This form is used for instructions like 'push r32' that have
294     /// their one register operand added to their opcode.
295     AddRegFrm      = 2,
296
297     /// RawFrmMemOffs - This form is for instructions that store an absolute
298     /// memory offset as an immediate with a possible segment override.
299     RawFrmMemOffs  = 3,
300
301     /// RawFrmSrc - This form is for instructions that use the source index
302     /// register SI/ESI/RSI with a possible segment override.
303     RawFrmSrc      = 4,
304
305     /// RawFrmDst - This form is for instructions that use the destination index
306     /// register DI/EDI/RDI.
307     RawFrmDst      = 5,
308
309     /// RawFrmDstSrc - This form is for instructions that use the source index
310     /// register SI/ESI/RSI with a possible segment override, and also the
311     /// destination index register DI/EDI/RDI.
312     RawFrmDstSrc   = 6,
313
314     /// RawFrmImm8 - This is used for the ENTER instruction, which has two
315     /// immediates, the first of which is a 16-bit immediate (specified by
316     /// the imm encoding) and the second is a 8-bit fixed value.
317     RawFrmImm8 = 7,
318
319     /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
320     /// immediates, the first of which is a 16 or 32-bit immediate (specified by
321     /// the imm encoding) and the second is a 16-bit fixed value.  In the AMD
322     /// manual, this operand is described as pntr16:32 and pntr16:16
323     RawFrmImm16 = 8,
324
325     /// AddCCFrm - This form is used for Jcc that encode the condition code
326     /// in the lower 4 bits of the opcode.
327     AddCCFrm = 9,
328
329     /// MRM[0-7][rm] - These forms are used to represent instructions that use
330     /// a Mod/RM byte, and use the middle field to hold extended opcode
331     /// information.  In the intel manual these are represented as /0, /1, ...
332     ///
333
334     /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
335     /// to specify a destination, which in this case is memory.
336     ///
337     MRMDestMem     = 32,
338
339     /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
340     /// to specify a source, which in this case is memory.
341     ///
342     MRMSrcMem      = 33,
343
344     /// MRMSrcMem4VOp3 - This form is used for instructions that encode
345     /// operand 3 with VEX.VVVV and load from memory.
346     ///
347     MRMSrcMem4VOp3 = 34,
348
349     /// MRMSrcMemOp4 - This form is used for instructions that use the Mod/RM
350     /// byte to specify the fourth source, which in this case is memory.
351     ///
352     MRMSrcMemOp4   = 35,
353
354     /// MRMSrcMemCC - This form is used for instructions that use the Mod/RM
355     /// byte to specify the operands and also encodes a condition code.
356     ///
357     MRMSrcMemCC    = 36,
358
359     /// MRMXm - This form is used for instructions that use the Mod/RM byte
360     /// to specify a memory source, but doesn't use the middle field. And has
361     /// a condition code.
362     ///
363     MRMXmCC = 38,
364
365     /// MRMXm - This form is used for instructions that use the Mod/RM byte
366     /// to specify a memory source, but doesn't use the middle field.
367     ///
368     MRMXm = 39,
369
370     // Next, instructions that operate on a memory r/m operand...
371     MRM0m = 40,  MRM1m = 41,  MRM2m = 42,  MRM3m = 43, // Format /0 /1 /2 /3
372     MRM4m = 44,  MRM5m = 45,  MRM6m = 46,  MRM7m = 47, // Format /4 /5 /6 /7
373
374     /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
375     /// to specify a destination, which in this case is a register.
376     ///
377     MRMDestReg     = 48,
378
379     /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
380     /// to specify a source, which in this case is a register.
381     ///
382     MRMSrcReg      = 49,
383
384     /// MRMSrcReg4VOp3 - This form is used for instructions that encode
385     /// operand 3 with VEX.VVVV and do not load from memory.
386     ///
387     MRMSrcReg4VOp3 = 50,
388
389     /// MRMSrcRegOp4 - This form is used for instructions that use the Mod/RM
390     /// byte to specify the fourth source, which in this case is a register.
391     ///
392     MRMSrcRegOp4   = 51,
393
394     /// MRMSrcRegCC - This form is used for instructions that use the Mod/RM
395     /// byte to specify the operands and also encodes a condition code
396     ///
397     MRMSrcRegCC    = 52,
398
399     /// MRMXCCr - This form is used for instructions that use the Mod/RM byte
400     /// to specify a register source, but doesn't use the middle field. And has
401     /// a condition code.
402     ///
403     MRMXrCC = 54,
404
405     /// MRMXr - This form is used for instructions that use the Mod/RM byte
406     /// to specify a register source, but doesn't use the middle field.
407     ///
408     MRMXr = 55,
409
410     // Instructions that operate on a register r/m operand...
411     MRM0r = 56,  MRM1r = 57,  MRM2r = 58,  MRM3r = 59, // Format /0 /1 /2 /3
412     MRM4r = 60,  MRM5r = 61,  MRM6r = 62,  MRM7r = 63, // Format /4 /5 /6 /7
413
414     /// MRM_XX - A mod/rm byte of exactly 0xXX.
415     MRM_C0 = 64,  MRM_C1 = 65,  MRM_C2 = 66,  MRM_C3 = 67,
416     MRM_C4 = 68,  MRM_C5 = 69,  MRM_C6 = 70,  MRM_C7 = 71,
417     MRM_C8 = 72,  MRM_C9 = 73,  MRM_CA = 74,  MRM_CB = 75,
418     MRM_CC = 76,  MRM_CD = 77,  MRM_CE = 78,  MRM_CF = 79,
419     MRM_D0 = 80,  MRM_D1 = 81,  MRM_D2 = 82,  MRM_D3 = 83,
420     MRM_D4 = 84,  MRM_D5 = 85,  MRM_D6 = 86,  MRM_D7 = 87,
421     MRM_D8 = 88,  MRM_D9 = 89,  MRM_DA = 90,  MRM_DB = 91,
422     MRM_DC = 92,  MRM_DD = 93,  MRM_DE = 94,  MRM_DF = 95,
423     MRM_E0 = 96,  MRM_E1 = 97,  MRM_E2 = 98,  MRM_E3 = 99,
424     MRM_E4 = 100, MRM_E5 = 101, MRM_E6 = 102, MRM_E7 = 103,
425     MRM_E8 = 104, MRM_E9 = 105, MRM_EA = 106, MRM_EB = 107,
426     MRM_EC = 108, MRM_ED = 109, MRM_EE = 110, MRM_EF = 111,
427     MRM_F0 = 112, MRM_F1 = 113, MRM_F2 = 114, MRM_F3 = 115,
428     MRM_F4 = 116, MRM_F5 = 117, MRM_F6 = 118, MRM_F7 = 119,
429     MRM_F8 = 120, MRM_F9 = 121, MRM_FA = 122, MRM_FB = 123,
430     MRM_FC = 124, MRM_FD = 125, MRM_FE = 126, MRM_FF = 127,
431
432     FormMask       = 127,
433
434     //===------------------------------------------------------------------===//
435     // Actual flags...
436
437     // OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix.
438     // OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in
439     // 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66
440     // prefix in 16-bit mode.
441     OpSizeShift = 7,
442     OpSizeMask = 0x3 << OpSizeShift,
443
444     OpSizeFixed  = 0 << OpSizeShift,
445     OpSize16     = 1 << OpSizeShift,
446     OpSize32     = 2 << OpSizeShift,
447
448     // AsSize - AdSizeX implies this instruction determines its need of 0x67
449     // prefix from a normal ModRM memory operand. The other types indicate that
450     // an operand is encoded with a specific width and a prefix is needed if
451     // it differs from the current mode.
452     AdSizeShift = OpSizeShift + 2,
453     AdSizeMask  = 0x3 << AdSizeShift,
454
455     AdSizeX  = 0 << AdSizeShift,
456     AdSize16 = 1 << AdSizeShift,
457     AdSize32 = 2 << AdSizeShift,
458     AdSize64 = 3 << AdSizeShift,
459
460     //===------------------------------------------------------------------===//
461     // OpPrefix - There are several prefix bytes that are used as opcode
462     // extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is
463     // no prefix.
464     //
465     OpPrefixShift = AdSizeShift + 2,
466     OpPrefixMask  = 0x3 << OpPrefixShift,
467
468     // PD - Prefix code for packed double precision vector floating point
469     // operations performed in the SSE registers.
470     PD = 1 << OpPrefixShift,
471
472     // XS, XD - These prefix codes are for single and double precision scalar
473     // floating point operations performed in the SSE registers.
474     XS = 2 << OpPrefixShift,  XD = 3 << OpPrefixShift,
475
476     //===------------------------------------------------------------------===//
477     // OpMap - This field determines which opcode map this instruction
478     // belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc.
479     //
480     OpMapShift = OpPrefixShift + 2,
481     OpMapMask  = 0x7 << OpMapShift,
482
483     // OB - OneByte - Set if this instruction has a one byte opcode.
484     OB = 0 << OpMapShift,
485
486     // TB - TwoByte - Set if this instruction has a two byte opcode, which
487     // starts with a 0x0F byte before the real opcode.
488     TB = 1 << OpMapShift,
489
490     // T8, TA - Prefix after the 0x0F prefix.
491     T8 = 2 << OpMapShift,  TA = 3 << OpMapShift,
492
493     // XOP8 - Prefix to include use of imm byte.
494     XOP8 = 4 << OpMapShift,
495
496     // XOP9 - Prefix to exclude use of imm byte.
497     XOP9 = 5 << OpMapShift,
498
499     // XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions.
500     XOPA = 6 << OpMapShift,
501
502     /// ThreeDNow - This indicates that the instruction uses the
503     /// wacky 0x0F 0x0F prefix for 3DNow! instructions.  The manual documents
504     /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
505     /// storing a classifier in the imm8 field.  To simplify our implementation,
506     /// we handle this by storeing the classifier in the opcode field and using
507     /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
508     ThreeDNow = 7 << OpMapShift,
509
510     //===------------------------------------------------------------------===//
511     // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
512     // They are used to specify GPRs and SSE registers, 64-bit operand size,
513     // etc. We only cares about REX.W and REX.R bits and only the former is
514     // statically determined.
515     //
516     REXShift    = OpMapShift + 3,
517     REX_W       = 1 << REXShift,
518
519     //===------------------------------------------------------------------===//
520     // This three-bit field describes the size of an immediate operand.  Zero is
521     // unused so that we can tell if we forgot to set a value.
522     ImmShift = REXShift + 1,
523     ImmMask    = 15 << ImmShift,
524     Imm8       = 1 << ImmShift,
525     Imm8PCRel  = 2 << ImmShift,
526     Imm8Reg    = 3 << ImmShift,
527     Imm16      = 4 << ImmShift,
528     Imm16PCRel = 5 << ImmShift,
529     Imm32      = 6 << ImmShift,
530     Imm32PCRel = 7 << ImmShift,
531     Imm32S     = 8 << ImmShift,
532     Imm64      = 9 << ImmShift,
533
534     //===------------------------------------------------------------------===//
535     // FP Instruction Classification...  Zero is non-fp instruction.
536
537     // FPTypeMask - Mask for all of the FP types...
538     FPTypeShift = ImmShift + 4,
539     FPTypeMask  = 7 << FPTypeShift,
540
541     // NotFP - The default, set for instructions that do not use FP registers.
542     NotFP      = 0 << FPTypeShift,
543
544     // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
545     ZeroArgFP  = 1 << FPTypeShift,
546
547     // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
548     OneArgFP   = 2 << FPTypeShift,
549
550     // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
551     // result back to ST(0).  For example, fcos, fsqrt, etc.
552     //
553     OneArgFPRW = 3 << FPTypeShift,
554
555     // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
556     // explicit argument, storing the result to either ST(0) or the implicit
557     // argument.  For example: fadd, fsub, fmul, etc...
558     TwoArgFP   = 4 << FPTypeShift,
559
560     // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
561     // explicit argument, but have no destination.  Example: fucom, fucomi, ...
562     CompareFP  = 5 << FPTypeShift,
563
564     // CondMovFP - "2 operand" floating point conditional move instructions.
565     CondMovFP  = 6 << FPTypeShift,
566
567     // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
568     SpecialFP  = 7 << FPTypeShift,
569
570     // Lock prefix
571     LOCKShift = FPTypeShift + 3,
572     LOCK = 1 << LOCKShift,
573
574     // REP prefix
575     REPShift = LOCKShift + 1,
576     REP = 1 << REPShift,
577
578     // Execution domain for SSE instructions.
579     // 0 means normal, non-SSE instruction.
580     SSEDomainShift = REPShift + 1,
581
582     // Encoding
583     EncodingShift = SSEDomainShift + 2,
584     EncodingMask = 0x3 << EncodingShift,
585
586     // VEX - encoding using 0xC4/0xC5
587     VEX = 1 << EncodingShift,
588
589     /// XOP - Opcode prefix used by XOP instructions.
590     XOP = 2 << EncodingShift,
591
592     // VEX_EVEX - Specifies that this instruction use EVEX form which provides
593     // syntax support up to 32 512-bit register operands and up to 7 16-bit
594     // mask operands as well as source operand data swizzling/memory operand
595     // conversion, eviction hint, and rounding mode.
596     EVEX = 3 << EncodingShift,
597
598     // Opcode
599     OpcodeShift   = EncodingShift + 2,
600
601     /// VEX_W - Has a opcode specific functionality, but is used in the same
602     /// way as REX_W is for regular SSE instructions.
603     VEX_WShift  = OpcodeShift + 8,
604     VEX_W       = 1ULL << VEX_WShift,
605
606     /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
607     /// address instructions in SSE are represented as 3 address ones in AVX
608     /// and the additional register is encoded in VEX_VVVV prefix.
609     VEX_4VShift = VEX_WShift + 1,
610     VEX_4V      = 1ULL << VEX_4VShift,
611
612     /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
613     /// instruction uses 256-bit wide registers. This is usually auto detected
614     /// if a VR256 register is used, but some AVX instructions also have this
615     /// field marked when using a f256 memory references.
616     VEX_LShift = VEX_4VShift + 1,
617     VEX_L       = 1ULL << VEX_LShift,
618
619     // EVEX_K - Set if this instruction requires masking
620     EVEX_KShift = VEX_LShift + 1,
621     EVEX_K      = 1ULL << EVEX_KShift,
622
623     // EVEX_Z - Set if this instruction has EVEX.Z field set.
624     EVEX_ZShift = EVEX_KShift + 1,
625     EVEX_Z      = 1ULL << EVEX_ZShift,
626
627     // EVEX_L2 - Set if this instruction has EVEX.L' field set.
628     EVEX_L2Shift = EVEX_ZShift + 1,
629     EVEX_L2     = 1ULL << EVEX_L2Shift,
630
631     // EVEX_B - Set if this instruction has EVEX.B field set.
632     EVEX_BShift = EVEX_L2Shift + 1,
633     EVEX_B      = 1ULL << EVEX_BShift,
634
635     // The scaling factor for the AVX512's 8-bit compressed displacement.
636     CD8_Scale_Shift = EVEX_BShift + 1,
637     CD8_Scale_Mask = 127ULL << CD8_Scale_Shift,
638
639     /// Explicitly specified rounding control
640     EVEX_RCShift = CD8_Scale_Shift + 7,
641     EVEX_RC = 1ULL << EVEX_RCShift,
642
643     // NOTRACK prefix
644     NoTrackShift = EVEX_RCShift + 1,
645     NOTRACK = 1ULL << NoTrackShift
646   };
647
648   // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
649   // specified machine instruction.
650   //
651   inline uint8_t getBaseOpcodeFor(uint64_t TSFlags) {
652     return TSFlags >> X86II::OpcodeShift;
653   }
654
655   inline bool hasImm(uint64_t TSFlags) {
656     return (TSFlags & X86II::ImmMask) != 0;
657   }
658
659   /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field
660   /// of the specified instruction.
661   inline unsigned getSizeOfImm(uint64_t TSFlags) {
662     switch (TSFlags & X86II::ImmMask) {
663     default: llvm_unreachable("Unknown immediate size");
664     case X86II::Imm8:
665     case X86II::Imm8PCRel:
666     case X86II::Imm8Reg:    return 1;
667     case X86II::Imm16:
668     case X86II::Imm16PCRel: return 2;
669     case X86II::Imm32:
670     case X86II::Imm32S:
671     case X86II::Imm32PCRel: return 4;
672     case X86II::Imm64:      return 8;
673     }
674   }
675
676   /// isImmPCRel - Return true if the immediate of the specified instruction's
677   /// TSFlags indicates that it is pc relative.
678   inline unsigned isImmPCRel(uint64_t TSFlags) {
679     switch (TSFlags & X86II::ImmMask) {
680     default: llvm_unreachable("Unknown immediate size");
681     case X86II::Imm8PCRel:
682     case X86II::Imm16PCRel:
683     case X86II::Imm32PCRel:
684       return true;
685     case X86II::Imm8:
686     case X86II::Imm8Reg:
687     case X86II::Imm16:
688     case X86II::Imm32:
689     case X86II::Imm32S:
690     case X86II::Imm64:
691       return false;
692     }
693   }
694
695   /// isImmSigned - Return true if the immediate of the specified instruction's
696   /// TSFlags indicates that it is signed.
697   inline unsigned isImmSigned(uint64_t TSFlags) {
698     switch (TSFlags & X86II::ImmMask) {
699     default: llvm_unreachable("Unknown immediate signedness");
700     case X86II::Imm32S:
701       return true;
702     case X86II::Imm8:
703     case X86II::Imm8PCRel:
704     case X86II::Imm8Reg:
705     case X86II::Imm16:
706     case X86II::Imm16PCRel:
707     case X86II::Imm32:
708     case X86II::Imm32PCRel:
709     case X86II::Imm64:
710       return false;
711     }
712   }
713
714   /// getOperandBias - compute whether all of the def operands are repeated
715   ///                  in the uses and therefore should be skipped.
716   /// This determines the start of the unique operand list. We need to determine
717   /// if all of the defs have a corresponding tied operand in the uses.
718   /// Unfortunately, the tied operand information is encoded in the uses not
719   /// the defs so we have to use some heuristics to find which operands to
720   /// query.
721   inline unsigned getOperandBias(const MCInstrDesc& Desc) {
722     unsigned NumDefs = Desc.getNumDefs();
723     unsigned NumOps = Desc.getNumOperands();
724     switch (NumDefs) {
725     default: llvm_unreachable("Unexpected number of defs");
726     case 0:
727       return 0;
728     case 1:
729       // Common two addr case.
730       if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
731         return 1;
732       // Check for AVX-512 scatter which has a TIED_TO in the second to last
733       // operand.
734       if (NumOps == 8 &&
735           Desc.getOperandConstraint(6, MCOI::TIED_TO) == 0)
736         return 1;
737       return 0;
738     case 2:
739       // XCHG/XADD have two destinations and two sources.
740       if (NumOps >= 4 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
741           Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1)
742         return 2;
743       // Check for gather. AVX-512 has the second tied operand early. AVX2
744       // has it as the last op.
745       if (NumOps == 9 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
746           (Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1 ||
747            Desc.getOperandConstraint(8, MCOI::TIED_TO) == 1))
748         return 2;
749       return 0;
750     }
751   }
752
753   /// getMemoryOperandNo - The function returns the MCInst operand # for the
754   /// first field of the memory operand.  If the instruction doesn't have a
755   /// memory operand, this returns -1.
756   ///
757   /// Note that this ignores tied operands.  If there is a tied register which
758   /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
759   /// counted as one operand.
760   ///
761   inline int getMemoryOperandNo(uint64_t TSFlags) {
762     bool HasVEX_4V = TSFlags & X86II::VEX_4V;
763     bool HasEVEX_K = TSFlags & X86II::EVEX_K;
764
765     switch (TSFlags & X86II::FormMask) {
766     default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!");
767     case X86II::Pseudo:
768     case X86II::RawFrm:
769     case X86II::AddRegFrm:
770     case X86II::RawFrmImm8:
771     case X86II::RawFrmImm16:
772     case X86II::RawFrmMemOffs:
773     case X86II::RawFrmSrc:
774     case X86II::RawFrmDst:
775     case X86II::RawFrmDstSrc:
776     case X86II::AddCCFrm:
777       return -1;
778     case X86II::MRMDestMem:
779       return 0;
780     case X86II::MRMSrcMem:
781       // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
782       // mask register.
783       return 1 + HasVEX_4V + HasEVEX_K;
784     case X86II::MRMSrcMem4VOp3:
785       // Skip registers encoded in reg.
786       return 1 + HasEVEX_K;
787     case X86II::MRMSrcMemOp4:
788       // Skip registers encoded in reg, VEX_VVVV, and I8IMM.
789       return 3;
790     case X86II::MRMSrcMemCC:
791       // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
792       // mask register.
793       return 1;
794     case X86II::MRMDestReg:
795     case X86II::MRMSrcReg:
796     case X86II::MRMSrcReg4VOp3:
797     case X86II::MRMSrcRegOp4:
798     case X86II::MRMSrcRegCC:
799     case X86II::MRMXrCC:
800     case X86II::MRMXr:
801     case X86II::MRM0r: case X86II::MRM1r:
802     case X86II::MRM2r: case X86II::MRM3r:
803     case X86II::MRM4r: case X86II::MRM5r:
804     case X86II::MRM6r: case X86II::MRM7r:
805       return -1;
806     case X86II::MRMXmCC:
807     case X86II::MRMXm:
808     case X86II::MRM0m: case X86II::MRM1m:
809     case X86II::MRM2m: case X86II::MRM3m:
810     case X86II::MRM4m: case X86II::MRM5m:
811     case X86II::MRM6m: case X86II::MRM7m:
812       // Start from 0, skip registers encoded in VEX_VVVV or a mask register.
813       return 0 + HasVEX_4V + HasEVEX_K;
814     case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
815     case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C5:
816     case X86II::MRM_C6: case X86II::MRM_C7: case X86II::MRM_C8:
817     case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
818     case X86II::MRM_CC: case X86II::MRM_CD: case X86II::MRM_CE:
819     case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1:
820     case X86II::MRM_D2: case X86II::MRM_D3: case X86II::MRM_D4:
821     case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D7:
822     case X86II::MRM_D8: case X86II::MRM_D9: case X86II::MRM_DA:
823     case X86II::MRM_DB: case X86II::MRM_DC: case X86II::MRM_DD:
824     case X86II::MRM_DE: case X86II::MRM_DF: case X86II::MRM_E0:
825     case X86II::MRM_E1: case X86II::MRM_E2: case X86II::MRM_E3:
826     case X86II::MRM_E4: case X86II::MRM_E5: case X86II::MRM_E6:
827     case X86II::MRM_E7: case X86II::MRM_E8: case X86II::MRM_E9:
828     case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC:
829     case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_EF:
830     case X86II::MRM_F0: case X86II::MRM_F1: case X86II::MRM_F2:
831     case X86II::MRM_F3: case X86II::MRM_F4: case X86II::MRM_F5:
832     case X86II::MRM_F6: case X86II::MRM_F7: case X86II::MRM_F8:
833     case X86II::MRM_F9: case X86II::MRM_FA: case X86II::MRM_FB:
834     case X86II::MRM_FC: case X86II::MRM_FD: case X86II::MRM_FE:
835     case X86II::MRM_FF:
836       return -1;
837     }
838   }
839
840   /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or
841   /// higher) register?  e.g. r8, xmm8, xmm13, etc.
842   inline bool isX86_64ExtendedReg(unsigned RegNo) {
843     if ((RegNo >= X86::XMM8 && RegNo <= X86::XMM31) ||
844         (RegNo >= X86::YMM8 && RegNo <= X86::YMM31) ||
845         (RegNo >= X86::ZMM8 && RegNo <= X86::ZMM31))
846       return true;
847
848     switch (RegNo) {
849     default: break;
850     case X86::R8:    case X86::R9:    case X86::R10:   case X86::R11:
851     case X86::R12:   case X86::R13:   case X86::R14:   case X86::R15:
852     case X86::R8D:   case X86::R9D:   case X86::R10D:  case X86::R11D:
853     case X86::R12D:  case X86::R13D:  case X86::R14D:  case X86::R15D:
854     case X86::R8W:   case X86::R9W:   case X86::R10W:  case X86::R11W:
855     case X86::R12W:  case X86::R13W:  case X86::R14W:  case X86::R15W:
856     case X86::R8B:   case X86::R9B:   case X86::R10B:  case X86::R11B:
857     case X86::R12B:  case X86::R13B:  case X86::R14B:  case X86::R15B:
858     case X86::CR8:   case X86::CR9:   case X86::CR10:  case X86::CR11:
859     case X86::CR12:  case X86::CR13:  case X86::CR14:  case X86::CR15:
860     case X86::DR8:   case X86::DR9:   case X86::DR10:  case X86::DR11:
861     case X86::DR12:  case X86::DR13:  case X86::DR14:  case X86::DR15:
862       return true;
863     }
864     return false;
865   }
866
867   /// is32ExtendedReg - Is the MemoryOperand a 32 extended (zmm16 or higher)
868   /// registers? e.g. zmm21, etc.
869   static inline bool is32ExtendedReg(unsigned RegNo) {
870     return ((RegNo >= X86::XMM16 && RegNo <= X86::XMM31) ||
871             (RegNo >= X86::YMM16 && RegNo <= X86::YMM31) ||
872             (RegNo >= X86::ZMM16 && RegNo <= X86::ZMM31));
873   }
874
875
876   inline bool isX86_64NonExtLowByteReg(unsigned reg) {
877     return (reg == X86::SPL || reg == X86::BPL ||
878             reg == X86::SIL || reg == X86::DIL);
879   }
880
881   /// isKMasked - Is this a masked instruction.
882   inline bool isKMasked(uint64_t TSFlags) {
883     return (TSFlags & X86II::EVEX_K) != 0;
884   }
885
886   /// isKMergedMasked - Is this a merge masked instruction.
887   inline bool isKMergeMasked(uint64_t TSFlags) {
888     return isKMasked(TSFlags) && (TSFlags & X86II::EVEX_Z) == 0;
889   }
890 }
891
892 } // end namespace llvm;
893
894 #endif