]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Target/X86/MCTargetDesc/X86BaseInfo.h
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Target / X86 / MCTargetDesc / X86BaseInfo.h
1 //===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains small standalone helper functions and enum definitions for
11 // the X86 target useful for the compiler back-end and the MC libraries.
12 // As such, it deliberately does not include references to LLVM core
13 // code gen types, passes, etc..
14 //
15 //===----------------------------------------------------------------------===//
16
17 #ifndef LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
18 #define LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
19
20 #include "X86MCTargetDesc.h"
21 #include "llvm/MC/MCInstrDesc.h"
22 #include "llvm/Support/DataTypes.h"
23 #include "llvm/Support/ErrorHandling.h"
24
25 namespace llvm {
26
27 namespace X86 {
28   // Enums for memory operand decoding.  Each memory operand is represented with
29   // a 5 operand sequence in the form:
30   //   [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
31   // These enums help decode this.
32   enum {
33     AddrBaseReg = 0,
34     AddrScaleAmt = 1,
35     AddrIndexReg = 2,
36     AddrDisp = 3,
37
38     /// AddrSegmentReg - The operand # of the segment in the memory operand.
39     AddrSegmentReg = 4,
40
41     /// AddrNumOperands - Total number of operands in a memory reference.
42     AddrNumOperands = 5
43   };
44
45   /// AVX512 static rounding constants.  These need to match the values in
46   /// avx512fintrin.h.
47   enum STATIC_ROUNDING {
48     TO_NEAREST_INT = 0,
49     TO_NEG_INF = 1,
50     TO_POS_INF = 2,
51     TO_ZERO = 3,
52     CUR_DIRECTION = 4
53   };
54
55   /// The constants to describe instr prefixes if there are
56   enum IPREFIXES {
57     IP_NO_PREFIX = 0,
58     IP_HAS_OP_SIZE = 1,
59     IP_HAS_AD_SIZE = 2,
60     IP_HAS_REPEAT_NE = 4,
61     IP_HAS_REPEAT = 8,
62     IP_HAS_LOCK = 16,
63     NO_SCHED_INFO = 32, // Don't add sched comment to the current instr because
64                         // it was already added
65     IP_HAS_NOTRACK = 64
66   };
67 } // end namespace X86;
68
69 /// X86II - This namespace holds all of the target specific flags that
70 /// instruction info tracks.
71 ///
72 namespace X86II {
73   /// Target Operand Flag enum.
74   enum TOF {
75     //===------------------------------------------------------------------===//
76     // X86 Specific MachineOperand flags.
77
78     MO_NO_FLAG,
79
80     /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
81     /// relocation of:
82     ///    SYMBOL_LABEL + [. - PICBASELABEL]
83     MO_GOT_ABSOLUTE_ADDRESS,
84
85     /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
86     /// immediate should get the value of the symbol minus the PIC base label:
87     ///    SYMBOL_LABEL - PICBASELABEL
88     MO_PIC_BASE_OFFSET,
89
90     /// MO_GOT - On a symbol operand this indicates that the immediate is the
91     /// offset to the GOT entry for the symbol name from the base of the GOT.
92     ///
93     /// See the X86-64 ELF ABI supplement for more details.
94     ///    SYMBOL_LABEL @GOT
95     MO_GOT,
96
97     /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
98     /// the offset to the location of the symbol name from the base of the GOT.
99     ///
100     /// See the X86-64 ELF ABI supplement for more details.
101     ///    SYMBOL_LABEL @GOTOFF
102     MO_GOTOFF,
103
104     /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
105     /// offset to the GOT entry for the symbol name from the current code
106     /// location.
107     ///
108     /// See the X86-64 ELF ABI supplement for more details.
109     ///    SYMBOL_LABEL @GOTPCREL
110     MO_GOTPCREL,
111
112     /// MO_PLT - On a symbol operand this indicates that the immediate is
113     /// offset to the PLT entry of symbol name from the current code location.
114     ///
115     /// See the X86-64 ELF ABI supplement for more details.
116     ///    SYMBOL_LABEL @PLT
117     MO_PLT,
118
119     /// MO_TLSGD - On a symbol operand this indicates that the immediate is
120     /// the offset of the GOT entry with the TLS index structure that contains
121     /// the module number and variable offset for the symbol. Used in the
122     /// general dynamic TLS access model.
123     ///
124     /// See 'ELF Handling for Thread-Local Storage' for more details.
125     ///    SYMBOL_LABEL @TLSGD
126     MO_TLSGD,
127
128     /// MO_TLSLD - On a symbol operand this indicates that the immediate is
129     /// the offset of the GOT entry with the TLS index for the module that
130     /// contains the symbol. When this index is passed to a call to
131     /// __tls_get_addr, the function will return the base address of the TLS
132     /// block for the symbol. Used in the x86-64 local dynamic TLS access model.
133     ///
134     /// See 'ELF Handling for Thread-Local Storage' for more details.
135     ///    SYMBOL_LABEL @TLSLD
136     MO_TLSLD,
137
138     /// MO_TLSLDM - On a symbol operand this indicates that the immediate is
139     /// the offset of the GOT entry with the TLS index for the module that
140     /// contains the symbol. When this index is passed to a call to
141     /// ___tls_get_addr, the function will return the base address of the TLS
142     /// block for the symbol. Used in the IA32 local dynamic TLS access model.
143     ///
144     /// See 'ELF Handling for Thread-Local Storage' for more details.
145     ///    SYMBOL_LABEL @TLSLDM
146     MO_TLSLDM,
147
148     /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
149     /// the offset of the GOT entry with the thread-pointer offset for the
150     /// symbol. Used in the x86-64 initial exec TLS access model.
151     ///
152     /// See 'ELF Handling for Thread-Local Storage' for more details.
153     ///    SYMBOL_LABEL @GOTTPOFF
154     MO_GOTTPOFF,
155
156     /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
157     /// the absolute address of the GOT entry with the negative thread-pointer
158     /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access
159     /// model.
160     ///
161     /// See 'ELF Handling for Thread-Local Storage' for more details.
162     ///    SYMBOL_LABEL @INDNTPOFF
163     MO_INDNTPOFF,
164
165     /// MO_TPOFF - On a symbol operand this indicates that the immediate is
166     /// the thread-pointer offset for the symbol. Used in the x86-64 local
167     /// exec TLS access model.
168     ///
169     /// See 'ELF Handling for Thread-Local Storage' for more details.
170     ///    SYMBOL_LABEL @TPOFF
171     MO_TPOFF,
172
173     /// MO_DTPOFF - On a symbol operand this indicates that the immediate is
174     /// the offset of the GOT entry with the TLS offset of the symbol. Used
175     /// in the local dynamic TLS access model.
176     ///
177     /// See 'ELF Handling for Thread-Local Storage' for more details.
178     ///    SYMBOL_LABEL @DTPOFF
179     MO_DTPOFF,
180
181     /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
182     /// the negative thread-pointer offset for the symbol. Used in the IA32
183     /// local exec TLS access model.
184     ///
185     /// See 'ELF Handling for Thread-Local Storage' for more details.
186     ///    SYMBOL_LABEL @NTPOFF
187     MO_NTPOFF,
188
189     /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is
190     /// the offset of the GOT entry with the negative thread-pointer offset for
191     /// the symbol. Used in the PIC IA32 initial exec TLS access model.
192     ///
193     /// See 'ELF Handling for Thread-Local Storage' for more details.
194     ///    SYMBOL_LABEL @GOTNTPOFF
195     MO_GOTNTPOFF,
196
197     /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
198     /// reference is actually to the "__imp_FOO" symbol.  This is used for
199     /// dllimport linkage on windows.
200     MO_DLLIMPORT,
201
202     /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
203     /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
204     /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
205     MO_DARWIN_NONLAZY,
206
207     /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
208     /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
209     /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
210     MO_DARWIN_NONLAZY_PIC_BASE,
211
212     /// MO_TLVP - On a symbol operand this indicates that the immediate is
213     /// some TLS offset.
214     ///
215     /// This is the TLS offset for the Darwin TLS mechanism.
216     MO_TLVP,
217
218     /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
219     /// is some TLS offset from the picbase.
220     ///
221     /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
222     MO_TLVP_PIC_BASE,
223
224     /// MO_SECREL - On a symbol operand this indicates that the immediate is
225     /// the offset from beginning of section.
226     ///
227     /// This is the TLS offset for the COFF/Windows TLS mechanism.
228     MO_SECREL,
229
230     /// MO_ABS8 - On a symbol operand this indicates that the symbol is known
231     /// to be an absolute symbol in range [0,128), so we can use the @ABS8
232     /// symbol modifier.
233     MO_ABS8,
234
235     /// MO_COFFSTUB - On a symbol operand "FOO", this indicates that the
236     /// reference is actually to the ".refptr.FOO" symbol.  This is used for
237     /// stub symbols on windows.
238     MO_COFFSTUB,
239   };
240
241   enum : uint64_t {
242     //===------------------------------------------------------------------===//
243     // Instruction encodings.  These are the standard/most common forms for X86
244     // instructions.
245     //
246
247     // PseudoFrm - This represents an instruction that is a pseudo instruction
248     // or one that has not been implemented yet.  It is illegal to code generate
249     // it, but tolerated for intermediate implementation stages.
250     Pseudo         = 0,
251
252     /// Raw - This form is for instructions that don't have any operands, so
253     /// they are just a fixed opcode value, like 'leave'.
254     RawFrm         = 1,
255
256     /// AddRegFrm - This form is used for instructions like 'push r32' that have
257     /// their one register operand added to their opcode.
258     AddRegFrm      = 2,
259
260     /// RawFrmMemOffs - This form is for instructions that store an absolute
261     /// memory offset as an immediate with a possible segment override.
262     RawFrmMemOffs  = 3,
263
264     /// RawFrmSrc - This form is for instructions that use the source index
265     /// register SI/ESI/RSI with a possible segment override.
266     RawFrmSrc      = 4,
267
268     /// RawFrmDst - This form is for instructions that use the destination index
269     /// register DI/EDI/RDI.
270     RawFrmDst      = 5,
271
272     /// RawFrmDstSrc - This form is for instructions that use the source index
273     /// register SI/ESI/RSI with a possible segment override, and also the
274     /// destination index register DI/EDI/RDI.
275     RawFrmDstSrc   = 6,
276
277     /// RawFrmImm8 - This is used for the ENTER instruction, which has two
278     /// immediates, the first of which is a 16-bit immediate (specified by
279     /// the imm encoding) and the second is a 8-bit fixed value.
280     RawFrmImm8 = 7,
281
282     /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
283     /// immediates, the first of which is a 16 or 32-bit immediate (specified by
284     /// the imm encoding) and the second is a 16-bit fixed value.  In the AMD
285     /// manual, this operand is described as pntr16:32 and pntr16:16
286     RawFrmImm16 = 8,
287
288     /// MRM[0-7][rm] - These forms are used to represent instructions that use
289     /// a Mod/RM byte, and use the middle field to hold extended opcode
290     /// information.  In the intel manual these are represented as /0, /1, ...
291     ///
292
293     /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
294     /// to specify a destination, which in this case is memory.
295     ///
296     MRMDestMem     = 32,
297
298     /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
299     /// to specify a source, which in this case is memory.
300     ///
301     MRMSrcMem      = 33,
302
303     /// MRMSrcMem4VOp3 - This form is used for instructions that encode
304     /// operand 3 with VEX.VVVV and load from memory.
305     ///
306     MRMSrcMem4VOp3 = 34,
307
308     /// MRMSrcMemOp4 - This form is used for instructions that use the Mod/RM
309     /// byte to specify the fourth source, which in this case is memory.
310     ///
311     MRMSrcMemOp4   = 35,
312
313     /// MRMXm - This form is used for instructions that use the Mod/RM byte
314     /// to specify a memory source, but doesn't use the middle field.
315     ///
316     MRMXm = 39, // Instruction that uses Mod/RM but not the middle field.
317
318     // Next, instructions that operate on a memory r/m operand...
319     MRM0m = 40,  MRM1m = 41,  MRM2m = 42,  MRM3m = 43, // Format /0 /1 /2 /3
320     MRM4m = 44,  MRM5m = 45,  MRM6m = 46,  MRM7m = 47, // Format /4 /5 /6 /7
321
322     /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
323     /// to specify a destination, which in this case is a register.
324     ///
325     MRMDestReg     = 48,
326
327     /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
328     /// to specify a source, which in this case is a register.
329     ///
330     MRMSrcReg      = 49,
331
332     /// MRMSrcReg4VOp3 - This form is used for instructions that encode
333     /// operand 3 with VEX.VVVV and do not load from memory.
334     ///
335     MRMSrcReg4VOp3 = 50,
336
337     /// MRMSrcRegOp4 - This form is used for instructions that use the Mod/RM
338     /// byte to specify the fourth source, which in this case is a register.
339     ///
340     MRMSrcRegOp4   = 51,
341
342     /// MRMXr - This form is used for instructions that use the Mod/RM byte
343     /// to specify a register source, but doesn't use the middle field.
344     ///
345     MRMXr = 55, // Instruction that uses Mod/RM but not the middle field.
346
347     // Instructions that operate on a register r/m operand...
348     MRM0r = 56,  MRM1r = 57,  MRM2r = 58,  MRM3r = 59, // Format /0 /1 /2 /3
349     MRM4r = 60,  MRM5r = 61,  MRM6r = 62,  MRM7r = 63, // Format /4 /5 /6 /7
350
351     /// MRM_XX - A mod/rm byte of exactly 0xXX.
352     MRM_C0 = 64,  MRM_C1 = 65,  MRM_C2 = 66,  MRM_C3 = 67,
353     MRM_C4 = 68,  MRM_C5 = 69,  MRM_C6 = 70,  MRM_C7 = 71,
354     MRM_C8 = 72,  MRM_C9 = 73,  MRM_CA = 74,  MRM_CB = 75,
355     MRM_CC = 76,  MRM_CD = 77,  MRM_CE = 78,  MRM_CF = 79,
356     MRM_D0 = 80,  MRM_D1 = 81,  MRM_D2 = 82,  MRM_D3 = 83,
357     MRM_D4 = 84,  MRM_D5 = 85,  MRM_D6 = 86,  MRM_D7 = 87,
358     MRM_D8 = 88,  MRM_D9 = 89,  MRM_DA = 90,  MRM_DB = 91,
359     MRM_DC = 92,  MRM_DD = 93,  MRM_DE = 94,  MRM_DF = 95,
360     MRM_E0 = 96,  MRM_E1 = 97,  MRM_E2 = 98,  MRM_E3 = 99,
361     MRM_E4 = 100, MRM_E5 = 101, MRM_E6 = 102, MRM_E7 = 103,
362     MRM_E8 = 104, MRM_E9 = 105, MRM_EA = 106, MRM_EB = 107,
363     MRM_EC = 108, MRM_ED = 109, MRM_EE = 110, MRM_EF = 111,
364     MRM_F0 = 112, MRM_F1 = 113, MRM_F2 = 114, MRM_F3 = 115,
365     MRM_F4 = 116, MRM_F5 = 117, MRM_F6 = 118, MRM_F7 = 119,
366     MRM_F8 = 120, MRM_F9 = 121, MRM_FA = 122, MRM_FB = 123,
367     MRM_FC = 124, MRM_FD = 125, MRM_FE = 126, MRM_FF = 127,
368
369     FormMask       = 127,
370
371     //===------------------------------------------------------------------===//
372     // Actual flags...
373
374     // OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix.
375     // OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in
376     // 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66
377     // prefix in 16-bit mode.
378     OpSizeShift = 7,
379     OpSizeMask = 0x3 << OpSizeShift,
380
381     OpSizeFixed  = 0 << OpSizeShift,
382     OpSize16     = 1 << OpSizeShift,
383     OpSize32     = 2 << OpSizeShift,
384
385     // AsSize - AdSizeX implies this instruction determines its need of 0x67
386     // prefix from a normal ModRM memory operand. The other types indicate that
387     // an operand is encoded with a specific width and a prefix is needed if
388     // it differs from the current mode.
389     AdSizeShift = OpSizeShift + 2,
390     AdSizeMask  = 0x3 << AdSizeShift,
391
392     AdSizeX  = 0 << AdSizeShift,
393     AdSize16 = 1 << AdSizeShift,
394     AdSize32 = 2 << AdSizeShift,
395     AdSize64 = 3 << AdSizeShift,
396
397     //===------------------------------------------------------------------===//
398     // OpPrefix - There are several prefix bytes that are used as opcode
399     // extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is
400     // no prefix.
401     //
402     OpPrefixShift = AdSizeShift + 2,
403     OpPrefixMask  = 0x3 << OpPrefixShift,
404
405     // PD - Prefix code for packed double precision vector floating point
406     // operations performed in the SSE registers.
407     PD = 1 << OpPrefixShift,
408
409     // XS, XD - These prefix codes are for single and double precision scalar
410     // floating point operations performed in the SSE registers.
411     XS = 2 << OpPrefixShift,  XD = 3 << OpPrefixShift,
412
413     //===------------------------------------------------------------------===//
414     // OpMap - This field determines which opcode map this instruction
415     // belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc.
416     //
417     OpMapShift = OpPrefixShift + 2,
418     OpMapMask  = 0x7 << OpMapShift,
419
420     // OB - OneByte - Set if this instruction has a one byte opcode.
421     OB = 0 << OpMapShift,
422
423     // TB - TwoByte - Set if this instruction has a two byte opcode, which
424     // starts with a 0x0F byte before the real opcode.
425     TB = 1 << OpMapShift,
426
427     // T8, TA - Prefix after the 0x0F prefix.
428     T8 = 2 << OpMapShift,  TA = 3 << OpMapShift,
429
430     // XOP8 - Prefix to include use of imm byte.
431     XOP8 = 4 << OpMapShift,
432
433     // XOP9 - Prefix to exclude use of imm byte.
434     XOP9 = 5 << OpMapShift,
435
436     // XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions.
437     XOPA = 6 << OpMapShift,
438
439     /// ThreeDNow - This indicates that the instruction uses the
440     /// wacky 0x0F 0x0F prefix for 3DNow! instructions.  The manual documents
441     /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
442     /// storing a classifier in the imm8 field.  To simplify our implementation,
443     /// we handle this by storeing the classifier in the opcode field and using
444     /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
445     ThreeDNow = 7 << OpMapShift,
446
447     //===------------------------------------------------------------------===//
448     // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
449     // They are used to specify GPRs and SSE registers, 64-bit operand size,
450     // etc. We only cares about REX.W and REX.R bits and only the former is
451     // statically determined.
452     //
453     REXShift    = OpMapShift + 3,
454     REX_W       = 1 << REXShift,
455
456     //===------------------------------------------------------------------===//
457     // This three-bit field describes the size of an immediate operand.  Zero is
458     // unused so that we can tell if we forgot to set a value.
459     ImmShift = REXShift + 1,
460     ImmMask    = 15 << ImmShift,
461     Imm8       = 1 << ImmShift,
462     Imm8PCRel  = 2 << ImmShift,
463     Imm8Reg    = 3 << ImmShift,
464     Imm16      = 4 << ImmShift,
465     Imm16PCRel = 5 << ImmShift,
466     Imm32      = 6 << ImmShift,
467     Imm32PCRel = 7 << ImmShift,
468     Imm32S     = 8 << ImmShift,
469     Imm64      = 9 << ImmShift,
470
471     //===------------------------------------------------------------------===//
472     // FP Instruction Classification...  Zero is non-fp instruction.
473
474     // FPTypeMask - Mask for all of the FP types...
475     FPTypeShift = ImmShift + 4,
476     FPTypeMask  = 7 << FPTypeShift,
477
478     // NotFP - The default, set for instructions that do not use FP registers.
479     NotFP      = 0 << FPTypeShift,
480
481     // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
482     ZeroArgFP  = 1 << FPTypeShift,
483
484     // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
485     OneArgFP   = 2 << FPTypeShift,
486
487     // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
488     // result back to ST(0).  For example, fcos, fsqrt, etc.
489     //
490     OneArgFPRW = 3 << FPTypeShift,
491
492     // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
493     // explicit argument, storing the result to either ST(0) or the implicit
494     // argument.  For example: fadd, fsub, fmul, etc...
495     TwoArgFP   = 4 << FPTypeShift,
496
497     // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
498     // explicit argument, but have no destination.  Example: fucom, fucomi, ...
499     CompareFP  = 5 << FPTypeShift,
500
501     // CondMovFP - "2 operand" floating point conditional move instructions.
502     CondMovFP  = 6 << FPTypeShift,
503
504     // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
505     SpecialFP  = 7 << FPTypeShift,
506
507     // Lock prefix
508     LOCKShift = FPTypeShift + 3,
509     LOCK = 1 << LOCKShift,
510
511     // REP prefix
512     REPShift = LOCKShift + 1,
513     REP = 1 << REPShift,
514
515     // Execution domain for SSE instructions.
516     // 0 means normal, non-SSE instruction.
517     SSEDomainShift = REPShift + 1,
518
519     // Encoding
520     EncodingShift = SSEDomainShift + 2,
521     EncodingMask = 0x3 << EncodingShift,
522
523     // VEX - encoding using 0xC4/0xC5
524     VEX = 1 << EncodingShift,
525
526     /// XOP - Opcode prefix used by XOP instructions.
527     XOP = 2 << EncodingShift,
528
529     // VEX_EVEX - Specifies that this instruction use EVEX form which provides
530     // syntax support up to 32 512-bit register operands and up to 7 16-bit
531     // mask operands as well as source operand data swizzling/memory operand
532     // conversion, eviction hint, and rounding mode.
533     EVEX = 3 << EncodingShift,
534
535     // Opcode
536     OpcodeShift   = EncodingShift + 2,
537
538     /// VEX_W - Has a opcode specific functionality, but is used in the same
539     /// way as REX_W is for regular SSE instructions.
540     VEX_WShift  = OpcodeShift + 8,
541     VEX_W       = 1ULL << VEX_WShift,
542
543     /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
544     /// address instructions in SSE are represented as 3 address ones in AVX
545     /// and the additional register is encoded in VEX_VVVV prefix.
546     VEX_4VShift = VEX_WShift + 1,
547     VEX_4V      = 1ULL << VEX_4VShift,
548
549     /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
550     /// instruction uses 256-bit wide registers. This is usually auto detected
551     /// if a VR256 register is used, but some AVX instructions also have this
552     /// field marked when using a f256 memory references.
553     VEX_LShift = VEX_4VShift + 1,
554     VEX_L       = 1ULL << VEX_LShift,
555
556     // EVEX_K - Set if this instruction requires masking
557     EVEX_KShift = VEX_LShift + 1,
558     EVEX_K      = 1ULL << EVEX_KShift,
559
560     // EVEX_Z - Set if this instruction has EVEX.Z field set.
561     EVEX_ZShift = EVEX_KShift + 1,
562     EVEX_Z      = 1ULL << EVEX_ZShift,
563
564     // EVEX_L2 - Set if this instruction has EVEX.L' field set.
565     EVEX_L2Shift = EVEX_ZShift + 1,
566     EVEX_L2     = 1ULL << EVEX_L2Shift,
567
568     // EVEX_B - Set if this instruction has EVEX.B field set.
569     EVEX_BShift = EVEX_L2Shift + 1,
570     EVEX_B      = 1ULL << EVEX_BShift,
571
572     // The scaling factor for the AVX512's 8-bit compressed displacement.
573     CD8_Scale_Shift = EVEX_BShift + 1,
574     CD8_Scale_Mask = 127ULL << CD8_Scale_Shift,
575
576     /// Explicitly specified rounding control
577     EVEX_RCShift = CD8_Scale_Shift + 7,
578     EVEX_RC = 1ULL << EVEX_RCShift,
579
580     // NOTRACK prefix
581     NoTrackShift = EVEX_RCShift + 1,
582     NOTRACK = 1ULL << NoTrackShift
583   };
584
585   // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
586   // specified machine instruction.
587   //
588   inline uint8_t getBaseOpcodeFor(uint64_t TSFlags) {
589     return TSFlags >> X86II::OpcodeShift;
590   }
591
592   inline bool hasImm(uint64_t TSFlags) {
593     return (TSFlags & X86II::ImmMask) != 0;
594   }
595
596   /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field
597   /// of the specified instruction.
598   inline unsigned getSizeOfImm(uint64_t TSFlags) {
599     switch (TSFlags & X86II::ImmMask) {
600     default: llvm_unreachable("Unknown immediate size");
601     case X86II::Imm8:
602     case X86II::Imm8PCRel:
603     case X86II::Imm8Reg:    return 1;
604     case X86II::Imm16:
605     case X86II::Imm16PCRel: return 2;
606     case X86II::Imm32:
607     case X86II::Imm32S:
608     case X86II::Imm32PCRel: return 4;
609     case X86II::Imm64:      return 8;
610     }
611   }
612
613   /// isImmPCRel - Return true if the immediate of the specified instruction's
614   /// TSFlags indicates that it is pc relative.
615   inline unsigned isImmPCRel(uint64_t TSFlags) {
616     switch (TSFlags & X86II::ImmMask) {
617     default: llvm_unreachable("Unknown immediate size");
618     case X86II::Imm8PCRel:
619     case X86II::Imm16PCRel:
620     case X86II::Imm32PCRel:
621       return true;
622     case X86II::Imm8:
623     case X86II::Imm8Reg:
624     case X86II::Imm16:
625     case X86II::Imm32:
626     case X86II::Imm32S:
627     case X86II::Imm64:
628       return false;
629     }
630   }
631
632   /// isImmSigned - Return true if the immediate of the specified instruction's
633   /// TSFlags indicates that it is signed.
634   inline unsigned isImmSigned(uint64_t TSFlags) {
635     switch (TSFlags & X86II::ImmMask) {
636     default: llvm_unreachable("Unknown immediate signedness");
637     case X86II::Imm32S:
638       return true;
639     case X86II::Imm8:
640     case X86II::Imm8PCRel:
641     case X86II::Imm8Reg:
642     case X86II::Imm16:
643     case X86II::Imm16PCRel:
644     case X86II::Imm32:
645     case X86II::Imm32PCRel:
646     case X86II::Imm64:
647       return false;
648     }
649   }
650
651   /// getOperandBias - compute whether all of the def operands are repeated
652   ///                  in the uses and therefore should be skipped.
653   /// This determines the start of the unique operand list. We need to determine
654   /// if all of the defs have a corresponding tied operand in the uses.
655   /// Unfortunately, the tied operand information is encoded in the uses not
656   /// the defs so we have to use some heuristics to find which operands to
657   /// query.
658   inline unsigned getOperandBias(const MCInstrDesc& Desc) {
659     unsigned NumDefs = Desc.getNumDefs();
660     unsigned NumOps = Desc.getNumOperands();
661     switch (NumDefs) {
662     default: llvm_unreachable("Unexpected number of defs");
663     case 0:
664       return 0;
665     case 1:
666       // Common two addr case.
667       if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
668         return 1;
669       // Check for AVX-512 scatter which has a TIED_TO in the second to last
670       // operand.
671       if (NumOps == 8 &&
672           Desc.getOperandConstraint(6, MCOI::TIED_TO) == 0)
673         return 1;
674       return 0;
675     case 2:
676       // XCHG/XADD have two destinations and two sources.
677       if (NumOps >= 4 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
678           Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1)
679         return 2;
680       // Check for gather. AVX-512 has the second tied operand early. AVX2
681       // has it as the last op.
682       if (NumOps == 9 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
683           (Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1 ||
684            Desc.getOperandConstraint(8, MCOI::TIED_TO) == 1) &&
685           "Instruction with 2 defs isn't gather?")
686         return 2;
687       return 0;
688     }
689   }
690
691   /// getMemoryOperandNo - The function returns the MCInst operand # for the
692   /// first field of the memory operand.  If the instruction doesn't have a
693   /// memory operand, this returns -1.
694   ///
695   /// Note that this ignores tied operands.  If there is a tied register which
696   /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
697   /// counted as one operand.
698   ///
699   inline int getMemoryOperandNo(uint64_t TSFlags) {
700     bool HasVEX_4V = TSFlags & X86II::VEX_4V;
701     bool HasEVEX_K = TSFlags & X86II::EVEX_K;
702
703     switch (TSFlags & X86II::FormMask) {
704     default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!");
705     case X86II::Pseudo:
706     case X86II::RawFrm:
707     case X86II::AddRegFrm:
708     case X86II::RawFrmImm8:
709     case X86II::RawFrmImm16:
710     case X86II::RawFrmMemOffs:
711     case X86II::RawFrmSrc:
712     case X86II::RawFrmDst:
713     case X86II::RawFrmDstSrc:
714       return -1;
715     case X86II::MRMDestMem:
716       return 0;
717     case X86II::MRMSrcMem:
718       // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
719       // mask register.
720       return 1 + HasVEX_4V + HasEVEX_K;
721     case X86II::MRMSrcMem4VOp3:
722       // Skip registers encoded in reg.
723       return 1 + HasEVEX_K;
724     case X86II::MRMSrcMemOp4:
725       // Skip registers encoded in reg, VEX_VVVV, and I8IMM.
726       return 3;
727     case X86II::MRMDestReg:
728     case X86II::MRMSrcReg:
729     case X86II::MRMSrcReg4VOp3:
730     case X86II::MRMSrcRegOp4:
731     case X86II::MRMXr:
732     case X86II::MRM0r: case X86II::MRM1r:
733     case X86II::MRM2r: case X86II::MRM3r:
734     case X86II::MRM4r: case X86II::MRM5r:
735     case X86II::MRM6r: case X86II::MRM7r:
736       return -1;
737     case X86II::MRMXm:
738     case X86II::MRM0m: case X86II::MRM1m:
739     case X86II::MRM2m: case X86II::MRM3m:
740     case X86II::MRM4m: case X86II::MRM5m:
741     case X86II::MRM6m: case X86II::MRM7m:
742       // Start from 0, skip registers encoded in VEX_VVVV or a mask register.
743       return 0 + HasVEX_4V + HasEVEX_K;
744     case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
745     case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C5:
746     case X86II::MRM_C6: case X86II::MRM_C7: case X86II::MRM_C8:
747     case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
748     case X86II::MRM_CC: case X86II::MRM_CD: case X86II::MRM_CE:
749     case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1:
750     case X86II::MRM_D2: case X86II::MRM_D3: case X86II::MRM_D4:
751     case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D7:
752     case X86II::MRM_D8: case X86II::MRM_D9: case X86II::MRM_DA:
753     case X86II::MRM_DB: case X86II::MRM_DC: case X86II::MRM_DD:
754     case X86II::MRM_DE: case X86II::MRM_DF: case X86II::MRM_E0:
755     case X86II::MRM_E1: case X86II::MRM_E2: case X86II::MRM_E3:
756     case X86II::MRM_E4: case X86II::MRM_E5: case X86II::MRM_E6:
757     case X86II::MRM_E7: case X86II::MRM_E8: case X86II::MRM_E9:
758     case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC:
759     case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_EF:
760     case X86II::MRM_F0: case X86II::MRM_F1: case X86II::MRM_F2:
761     case X86II::MRM_F3: case X86II::MRM_F4: case X86II::MRM_F5:
762     case X86II::MRM_F6: case X86II::MRM_F7: case X86II::MRM_F8:
763     case X86II::MRM_F9: case X86II::MRM_FA: case X86II::MRM_FB:
764     case X86II::MRM_FC: case X86II::MRM_FD: case X86II::MRM_FE:
765     case X86II::MRM_FF:
766       return -1;
767     }
768   }
769
770   /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or
771   /// higher) register?  e.g. r8, xmm8, xmm13, etc.
772   inline bool isX86_64ExtendedReg(unsigned RegNo) {
773     if ((RegNo >= X86::XMM8 && RegNo <= X86::XMM31) ||
774         (RegNo >= X86::YMM8 && RegNo <= X86::YMM31) ||
775         (RegNo >= X86::ZMM8 && RegNo <= X86::ZMM31))
776       return true;
777
778     switch (RegNo) {
779     default: break;
780     case X86::R8:    case X86::R9:    case X86::R10:   case X86::R11:
781     case X86::R12:   case X86::R13:   case X86::R14:   case X86::R15:
782     case X86::R8D:   case X86::R9D:   case X86::R10D:  case X86::R11D:
783     case X86::R12D:  case X86::R13D:  case X86::R14D:  case X86::R15D:
784     case X86::R8W:   case X86::R9W:   case X86::R10W:  case X86::R11W:
785     case X86::R12W:  case X86::R13W:  case X86::R14W:  case X86::R15W:
786     case X86::R8B:   case X86::R9B:   case X86::R10B:  case X86::R11B:
787     case X86::R12B:  case X86::R13B:  case X86::R14B:  case X86::R15B:
788     case X86::CR8:   case X86::CR9:   case X86::CR10:  case X86::CR11:
789     case X86::CR12:  case X86::CR13:  case X86::CR14:  case X86::CR15:
790     case X86::DR8:   case X86::DR9:   case X86::DR10:  case X86::DR11:
791     case X86::DR12:  case X86::DR13:  case X86::DR14:  case X86::DR15:
792       return true;
793     }
794     return false;
795   }
796
797   /// is32ExtendedReg - Is the MemoryOperand a 32 extended (zmm16 or higher)
798   /// registers? e.g. zmm21, etc.
799   static inline bool is32ExtendedReg(unsigned RegNo) {
800     return ((RegNo >= X86::XMM16 && RegNo <= X86::XMM31) ||
801             (RegNo >= X86::YMM16 && RegNo <= X86::YMM31) ||
802             (RegNo >= X86::ZMM16 && RegNo <= X86::ZMM31));
803   }
804
805
806   inline bool isX86_64NonExtLowByteReg(unsigned reg) {
807     return (reg == X86::SPL || reg == X86::BPL ||
808             reg == X86::SIL || reg == X86::DIL);
809   }
810
811   /// isKMasked - Is this a masked instruction.
812   inline bool isKMasked(uint64_t TSFlags) {
813     return (TSFlags & X86II::EVEX_K) != 0;
814   }
815
816   /// isKMergedMasked - Is this a merge masked instruction.
817   inline bool isKMergeMasked(uint64_t TSFlags) {
818     return isKMasked(TSFlags) && (TSFlags & X86II::EVEX_Z) == 0;
819   }
820 }
821
822 } // end namespace llvm;
823
824 #endif