]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Target/X86/X86CmovConversion.cpp
Merge clang 7.0.1 and several follow-up changes
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Target / X86 / X86CmovConversion.cpp
1 //====- X86CmovConversion.cpp - Convert Cmov to Branch --------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// This file implements a pass that converts X86 cmov instructions into
12 /// branches when profitable. This pass is conservative. It transforms if and
13 /// only if it can guarantee a gain with high confidence.
14 ///
15 /// Thus, the optimization applies under the following conditions:
16 ///   1. Consider as candidates only CMOVs in innermost loops (assume that
17 ///      most hotspots are represented by these loops).
18 ///   2. Given a group of CMOV instructions that are using the same EFLAGS def
19 ///      instruction:
20 ///      a. Consider them as candidates only if all have the same code condition
21 ///         or the opposite one to prevent generating more than one conditional
22 ///         jump per EFLAGS def instruction.
23 ///      b. Consider them as candidates only if all are profitable to be
24 ///         converted (assume that one bad conversion may cause a degradation).
25 ///   3. Apply conversion only for loops that are found profitable and only for
26 ///      CMOV candidates that were found profitable.
27 ///      a. A loop is considered profitable only if conversion will reduce its
28 ///         depth cost by some threshold.
29 ///      b. CMOV is considered profitable if the cost of its condition is higher
30 ///         than the average cost of its true-value and false-value by 25% of
31 ///         branch-misprediction-penalty. This assures no degradation even with
32 ///         25% branch misprediction.
33 ///
34 /// Note: This pass is assumed to run on SSA machine code.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 //  External interfaces:
39 //      FunctionPass *llvm::createX86CmovConverterPass();
40 //      bool X86CmovConverterPass::runOnMachineFunction(MachineFunction &MF);
41 //
42 //===----------------------------------------------------------------------===//
43
44 #include "X86.h"
45 #include "X86InstrInfo.h"
46 #include "llvm/ADT/ArrayRef.h"
47 #include "llvm/ADT/DenseMap.h"
48 #include "llvm/ADT/STLExtras.h"
49 #include "llvm/ADT/SmallPtrSet.h"
50 #include "llvm/ADT/SmallVector.h"
51 #include "llvm/ADT/Statistic.h"
52 #include "llvm/CodeGen/MachineBasicBlock.h"
53 #include "llvm/CodeGen/MachineFunction.h"
54 #include "llvm/CodeGen/MachineFunctionPass.h"
55 #include "llvm/CodeGen/MachineInstr.h"
56 #include "llvm/CodeGen/MachineInstrBuilder.h"
57 #include "llvm/CodeGen/MachineLoopInfo.h"
58 #include "llvm/CodeGen/MachineOperand.h"
59 #include "llvm/CodeGen/MachineRegisterInfo.h"
60 #include "llvm/CodeGen/TargetInstrInfo.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/CodeGen/TargetSchedule.h"
63 #include "llvm/CodeGen/TargetSubtargetInfo.h"
64 #include "llvm/IR/DebugLoc.h"
65 #include "llvm/MC/MCSchedule.h"
66 #include "llvm/Pass.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <iterator>
73 #include <utility>
74
75 using namespace llvm;
76
77 #define DEBUG_TYPE "x86-cmov-conversion"
78
79 STATISTIC(NumOfSkippedCmovGroups, "Number of unsupported CMOV-groups");
80 STATISTIC(NumOfCmovGroupCandidate, "Number of CMOV-group candidates");
81 STATISTIC(NumOfLoopCandidate, "Number of CMOV-conversion profitable loops");
82 STATISTIC(NumOfOptimizedCmovGroups, "Number of optimized CMOV-groups");
83
84 namespace llvm {
85
86 void initializeX86CmovConverterPassPass(PassRegistry &);
87
88 } // end namespace llvm
89
90 // This internal switch can be used to turn off the cmov/branch optimization.
91 static cl::opt<bool>
92     EnableCmovConverter("x86-cmov-converter",
93                         cl::desc("Enable the X86 cmov-to-branch optimization."),
94                         cl::init(true), cl::Hidden);
95
96 static cl::opt<unsigned>
97     GainCycleThreshold("x86-cmov-converter-threshold",
98                        cl::desc("Minimum gain per loop (in cycles) threshold."),
99                        cl::init(4), cl::Hidden);
100
101 static cl::opt<bool> ForceMemOperand(
102     "x86-cmov-converter-force-mem-operand",
103     cl::desc("Convert cmovs to branches whenever they have memory operands."),
104     cl::init(true), cl::Hidden);
105
106 namespace {
107
108 /// Converts X86 cmov instructions into branches when profitable.
109 class X86CmovConverterPass : public MachineFunctionPass {
110 public:
111   X86CmovConverterPass() : MachineFunctionPass(ID) {
112     initializeX86CmovConverterPassPass(*PassRegistry::getPassRegistry());
113   }
114
115   StringRef getPassName() const override { return "X86 cmov Conversion"; }
116   bool runOnMachineFunction(MachineFunction &MF) override;
117   void getAnalysisUsage(AnalysisUsage &AU) const override;
118
119   /// Pass identification, replacement for typeid.
120   static char ID;
121
122 private:
123   MachineRegisterInfo *MRI;
124   const TargetInstrInfo *TII;
125   const TargetRegisterInfo *TRI;
126   TargetSchedModel TSchedModel;
127
128   /// List of consecutive CMOV instructions.
129   using CmovGroup = SmallVector<MachineInstr *, 2>;
130   using CmovGroups = SmallVector<CmovGroup, 2>;
131
132   /// Collect all CMOV-group-candidates in \p CurrLoop and update \p
133   /// CmovInstGroups accordingly.
134   ///
135   /// \param Blocks List of blocks to process.
136   /// \param CmovInstGroups List of consecutive CMOV instructions in CurrLoop.
137   /// \returns true iff it found any CMOV-group-candidate.
138   bool collectCmovCandidates(ArrayRef<MachineBasicBlock *> Blocks,
139                              CmovGroups &CmovInstGroups,
140                              bool IncludeLoads = false);
141
142   /// Check if it is profitable to transform each CMOV-group-candidates into
143   /// branch. Remove all groups that are not profitable from \p CmovInstGroups.
144   ///
145   /// \param Blocks List of blocks to process.
146   /// \param CmovInstGroups List of consecutive CMOV instructions in CurrLoop.
147   /// \returns true iff any CMOV-group-candidate remain.
148   bool checkForProfitableCmovCandidates(ArrayRef<MachineBasicBlock *> Blocks,
149                                         CmovGroups &CmovInstGroups);
150
151   /// Convert the given list of consecutive CMOV instructions into a branch.
152   ///
153   /// \param Group Consecutive CMOV instructions to be converted into branch.
154   void convertCmovInstsToBranches(SmallVectorImpl<MachineInstr *> &Group) const;
155 };
156
157 } // end anonymous namespace
158
159 char X86CmovConverterPass::ID = 0;
160
161 void X86CmovConverterPass::getAnalysisUsage(AnalysisUsage &AU) const {
162   MachineFunctionPass::getAnalysisUsage(AU);
163   AU.addRequired<MachineLoopInfo>();
164 }
165
166 bool X86CmovConverterPass::runOnMachineFunction(MachineFunction &MF) {
167   if (skipFunction(MF.getFunction()))
168     return false;
169   if (!EnableCmovConverter)
170     return false;
171
172   LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName()
173                     << "**********\n");
174
175   bool Changed = false;
176   MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
177   const TargetSubtargetInfo &STI = MF.getSubtarget();
178   MRI = &MF.getRegInfo();
179   TII = STI.getInstrInfo();
180   TRI = STI.getRegisterInfo();
181   TSchedModel.init(&STI);
182
183   // Before we handle the more subtle cases of register-register CMOVs inside
184   // of potentially hot loops, we want to quickly remove all CMOVs with
185   // a memory operand. The CMOV will risk a stall waiting for the load to
186   // complete that speculative execution behind a branch is better suited to
187   // handle on modern x86 chips.
188   if (ForceMemOperand) {
189     CmovGroups AllCmovGroups;
190     SmallVector<MachineBasicBlock *, 4> Blocks;
191     for (auto &MBB : MF)
192       Blocks.push_back(&MBB);
193     if (collectCmovCandidates(Blocks, AllCmovGroups, /*IncludeLoads*/ true)) {
194       for (auto &Group : AllCmovGroups) {
195         // Skip any group that doesn't do at least one memory operand cmov.
196         if (!llvm::any_of(Group, [&](MachineInstr *I) { return I->mayLoad(); }))
197           continue;
198
199         // For CMOV groups which we can rewrite and which contain a memory load,
200         // always rewrite them. On x86, a CMOV will dramatically amplify any
201         // memory latency by blocking speculative execution.
202         Changed = true;
203         convertCmovInstsToBranches(Group);
204       }
205     }
206   }
207
208   //===--------------------------------------------------------------------===//
209   // Register-operand Conversion Algorithm
210   // ---------
211   //   For each inner most loop
212   //     collectCmovCandidates() {
213   //       Find all CMOV-group-candidates.
214   //     }
215   //
216   //     checkForProfitableCmovCandidates() {
217   //       * Calculate both loop-depth and optimized-loop-depth.
218   //       * Use these depth to check for loop transformation profitability.
219   //       * Check for CMOV-group-candidate transformation profitability.
220   //     }
221   //
222   //     For each profitable CMOV-group-candidate
223   //       convertCmovInstsToBranches() {
224   //           * Create FalseBB, SinkBB, Conditional branch to SinkBB.
225   //           * Replace each CMOV instruction with a PHI instruction in SinkBB.
226   //       }
227   //
228   // Note: For more details, see each function description.
229   //===--------------------------------------------------------------------===//
230
231   // Build up the loops in pre-order.
232   SmallVector<MachineLoop *, 4> Loops(MLI.begin(), MLI.end());
233   // Note that we need to check size on each iteration as we accumulate child
234   // loops.
235   for (int i = 0; i < (int)Loops.size(); ++i)
236     for (MachineLoop *Child : Loops[i]->getSubLoops())
237       Loops.push_back(Child);
238
239   for (MachineLoop *CurrLoop : Loops) {
240     // Optimize only inner most loops.
241     if (!CurrLoop->getSubLoops().empty())
242       continue;
243
244     // List of consecutive CMOV instructions to be processed.
245     CmovGroups CmovInstGroups;
246
247     if (!collectCmovCandidates(CurrLoop->getBlocks(), CmovInstGroups))
248       continue;
249
250     if (!checkForProfitableCmovCandidates(CurrLoop->getBlocks(),
251                                           CmovInstGroups))
252       continue;
253
254     Changed = true;
255     for (auto &Group : CmovInstGroups)
256       convertCmovInstsToBranches(Group);
257   }
258
259   return Changed;
260 }
261
262 bool X86CmovConverterPass::collectCmovCandidates(
263     ArrayRef<MachineBasicBlock *> Blocks, CmovGroups &CmovInstGroups,
264     bool IncludeLoads) {
265   //===--------------------------------------------------------------------===//
266   // Collect all CMOV-group-candidates and add them into CmovInstGroups.
267   //
268   // CMOV-group:
269   //   CMOV instructions, in same MBB, that uses same EFLAGS def instruction.
270   //
271   // CMOV-group-candidate:
272   //   CMOV-group where all the CMOV instructions are
273   //     1. consecutive.
274   //     2. have same condition code or opposite one.
275   //     3. have only operand registers (X86::CMOVrr).
276   //===--------------------------------------------------------------------===//
277   // List of possible improvement (TODO's):
278   // --------------------------------------
279   //   TODO: Add support for X86::CMOVrm instructions.
280   //   TODO: Add support for X86::SETcc instructions.
281   //   TODO: Add support for CMOV-groups with non consecutive CMOV instructions.
282   //===--------------------------------------------------------------------===//
283
284   // Current processed CMOV-Group.
285   CmovGroup Group;
286   for (auto *MBB : Blocks) {
287     Group.clear();
288     // Condition code of first CMOV instruction current processed range and its
289     // opposite condition code.
290     X86::CondCode FirstCC, FirstOppCC, MemOpCC;
291     // Indicator of a non CMOVrr instruction in the current processed range.
292     bool FoundNonCMOVInst = false;
293     // Indicator for current processed CMOV-group if it should be skipped.
294     bool SkipGroup = false;
295
296     for (auto &I : *MBB) {
297       // Skip debug instructions.
298       if (I.isDebugInstr())
299         continue;
300       X86::CondCode CC = X86::getCondFromCMovOpc(I.getOpcode());
301       // Check if we found a X86::CMOVrr instruction.
302       if (CC != X86::COND_INVALID && (IncludeLoads || !I.mayLoad())) {
303         if (Group.empty()) {
304           // We found first CMOV in the range, reset flags.
305           FirstCC = CC;
306           FirstOppCC = X86::GetOppositeBranchCondition(CC);
307           // Clear out the prior group's memory operand CC.
308           MemOpCC = X86::COND_INVALID;
309           FoundNonCMOVInst = false;
310           SkipGroup = false;
311         }
312         Group.push_back(&I);
313         // Check if it is a non-consecutive CMOV instruction or it has different
314         // condition code than FirstCC or FirstOppCC.
315         if (FoundNonCMOVInst || (CC != FirstCC && CC != FirstOppCC))
316           // Mark the SKipGroup indicator to skip current processed CMOV-Group.
317           SkipGroup = true;
318         if (I.mayLoad()) {
319           if (MemOpCC == X86::COND_INVALID)
320             // The first memory operand CMOV.
321             MemOpCC = CC;
322           else if (CC != MemOpCC)
323             // Can't handle mixed conditions with memory operands.
324             SkipGroup = true;
325         }
326         // Check if we were relying on zero-extending behavior of the CMOV.
327         if (!SkipGroup &&
328             llvm::any_of(
329                 MRI->use_nodbg_instructions(I.defs().begin()->getReg()),
330                 [&](MachineInstr &UseI) {
331                   return UseI.getOpcode() == X86::SUBREG_TO_REG;
332                 }))
333           // FIXME: We should model the cost of using an explicit MOV to handle
334           // the zero-extension rather than just refusing to handle this.
335           SkipGroup = true;
336         continue;
337       }
338       // If Group is empty, keep looking for first CMOV in the range.
339       if (Group.empty())
340         continue;
341
342       // We found a non X86::CMOVrr instruction.
343       FoundNonCMOVInst = true;
344       // Check if this instruction define EFLAGS, to determine end of processed
345       // range, as there would be no more instructions using current EFLAGS def.
346       if (I.definesRegister(X86::EFLAGS)) {
347         // Check if current processed CMOV-group should not be skipped and add
348         // it as a CMOV-group-candidate.
349         if (!SkipGroup)
350           CmovInstGroups.push_back(Group);
351         else
352           ++NumOfSkippedCmovGroups;
353         Group.clear();
354       }
355     }
356     // End of basic block is considered end of range, check if current processed
357     // CMOV-group should not be skipped and add it as a CMOV-group-candidate.
358     if (Group.empty())
359       continue;
360     if (!SkipGroup)
361       CmovInstGroups.push_back(Group);
362     else
363       ++NumOfSkippedCmovGroups;
364   }
365
366   NumOfCmovGroupCandidate += CmovInstGroups.size();
367   return !CmovInstGroups.empty();
368 }
369
370 /// \returns Depth of CMOV instruction as if it was converted into branch.
371 /// \param TrueOpDepth depth cost of CMOV true value operand.
372 /// \param FalseOpDepth depth cost of CMOV false value operand.
373 static unsigned getDepthOfOptCmov(unsigned TrueOpDepth, unsigned FalseOpDepth) {
374   //===--------------------------------------------------------------------===//
375   // With no info about branch weight, we assume 50% for each value operand.
376   // Thus, depth of optimized CMOV instruction is the rounded up average of
377   // its True-Operand-Value-Depth and False-Operand-Value-Depth.
378   //===--------------------------------------------------------------------===//
379   return (TrueOpDepth + FalseOpDepth + 1) / 2;
380 }
381
382 bool X86CmovConverterPass::checkForProfitableCmovCandidates(
383     ArrayRef<MachineBasicBlock *> Blocks, CmovGroups &CmovInstGroups) {
384   struct DepthInfo {
385     /// Depth of original loop.
386     unsigned Depth;
387     /// Depth of optimized loop.
388     unsigned OptDepth;
389   };
390   /// Number of loop iterations to calculate depth for ?!
391   static const unsigned LoopIterations = 2;
392   DenseMap<MachineInstr *, DepthInfo> DepthMap;
393   DepthInfo LoopDepth[LoopIterations] = {{0, 0}, {0, 0}};
394   enum { PhyRegType = 0, VirRegType = 1, RegTypeNum = 2 };
395   /// For each register type maps the register to its last def instruction.
396   DenseMap<unsigned, MachineInstr *> RegDefMaps[RegTypeNum];
397   /// Maps register operand to its def instruction, which can be nullptr if it
398   /// is unknown (e.g., operand is defined outside the loop).
399   DenseMap<MachineOperand *, MachineInstr *> OperandToDefMap;
400
401   // Set depth of unknown instruction (i.e., nullptr) to zero.
402   DepthMap[nullptr] = {0, 0};
403
404   SmallPtrSet<MachineInstr *, 4> CmovInstructions;
405   for (auto &Group : CmovInstGroups)
406     CmovInstructions.insert(Group.begin(), Group.end());
407
408   //===--------------------------------------------------------------------===//
409   // Step 1: Calculate instruction depth and loop depth.
410   // Optimized-Loop:
411   //   loop with CMOV-group-candidates converted into branches.
412   //
413   // Instruction-Depth:
414   //   instruction latency + max operand depth.
415   //     * For CMOV instruction in optimized loop the depth is calculated as:
416   //       CMOV latency + getDepthOfOptCmov(True-Op-Depth, False-Op-depth)
417   // TODO: Find a better way to estimate the latency of the branch instruction
418   //       rather than using the CMOV latency.
419   //
420   // Loop-Depth:
421   //   max instruction depth of all instructions in the loop.
422   // Note: instruction with max depth represents the critical-path in the loop.
423   //
424   // Loop-Depth[i]:
425   //   Loop-Depth calculated for first `i` iterations.
426   //   Note: it is enough to calculate depth for up to two iterations.
427   //
428   // Depth-Diff[i]:
429   //   Number of cycles saved in first 'i` iterations by optimizing the loop.
430   //===--------------------------------------------------------------------===//
431   for (unsigned I = 0; I < LoopIterations; ++I) {
432     DepthInfo &MaxDepth = LoopDepth[I];
433     for (auto *MBB : Blocks) {
434       // Clear physical registers Def map.
435       RegDefMaps[PhyRegType].clear();
436       for (MachineInstr &MI : *MBB) {
437         // Skip debug instructions.
438         if (MI.isDebugInstr())
439           continue;
440         unsigned MIDepth = 0;
441         unsigned MIDepthOpt = 0;
442         bool IsCMOV = CmovInstructions.count(&MI);
443         for (auto &MO : MI.uses()) {
444           // Checks for "isUse()" as "uses()" returns also implicit definitions.
445           if (!MO.isReg() || !MO.isUse())
446             continue;
447           unsigned Reg = MO.getReg();
448           auto &RDM = RegDefMaps[TargetRegisterInfo::isVirtualRegister(Reg)];
449           if (MachineInstr *DefMI = RDM.lookup(Reg)) {
450             OperandToDefMap[&MO] = DefMI;
451             DepthInfo Info = DepthMap.lookup(DefMI);
452             MIDepth = std::max(MIDepth, Info.Depth);
453             if (!IsCMOV)
454               MIDepthOpt = std::max(MIDepthOpt, Info.OptDepth);
455           }
456         }
457
458         if (IsCMOV)
459           MIDepthOpt = getDepthOfOptCmov(
460               DepthMap[OperandToDefMap.lookup(&MI.getOperand(1))].OptDepth,
461               DepthMap[OperandToDefMap.lookup(&MI.getOperand(2))].OptDepth);
462
463         // Iterates over all operands to handle implicit definitions as well.
464         for (auto &MO : MI.operands()) {
465           if (!MO.isReg() || !MO.isDef())
466             continue;
467           unsigned Reg = MO.getReg();
468           RegDefMaps[TargetRegisterInfo::isVirtualRegister(Reg)][Reg] = &MI;
469         }
470
471         unsigned Latency = TSchedModel.computeInstrLatency(&MI);
472         DepthMap[&MI] = {MIDepth += Latency, MIDepthOpt += Latency};
473         MaxDepth.Depth = std::max(MaxDepth.Depth, MIDepth);
474         MaxDepth.OptDepth = std::max(MaxDepth.OptDepth, MIDepthOpt);
475       }
476     }
477   }
478
479   unsigned Diff[LoopIterations] = {LoopDepth[0].Depth - LoopDepth[0].OptDepth,
480                                    LoopDepth[1].Depth - LoopDepth[1].OptDepth};
481
482   //===--------------------------------------------------------------------===//
483   // Step 2: Check if Loop worth to be optimized.
484   // Worth-Optimize-Loop:
485   //   case 1: Diff[1] == Diff[0]
486   //           Critical-path is iteration independent - there is no dependency
487   //           of critical-path instructions on critical-path instructions of
488   //           previous iteration.
489   //           Thus, it is enough to check gain percent of 1st iteration -
490   //           To be conservative, the optimized loop need to have a depth of
491   //           12.5% cycles less than original loop, per iteration.
492   //
493   //   case 2: Diff[1] > Diff[0]
494   //           Critical-path is iteration dependent - there is dependency of
495   //           critical-path instructions on critical-path instructions of
496   //           previous iteration.
497   //           Thus, check the gain percent of the 2nd iteration (similar to the
498   //           previous case), but it is also required to check the gradient of
499   //           the gain - the change in Depth-Diff compared to the change in
500   //           Loop-Depth between 1st and 2nd iterations.
501   //           To be conservative, the gradient need to be at least 50%.
502   //
503   //   In addition, In order not to optimize loops with very small gain, the
504   //   gain (in cycles) after 2nd iteration should not be less than a given
505   //   threshold. Thus, the check (Diff[1] >= GainCycleThreshold) must apply.
506   //
507   // If loop is not worth optimizing, remove all CMOV-group-candidates.
508   //===--------------------------------------------------------------------===//
509   if (Diff[1] < GainCycleThreshold)
510     return false;
511
512   bool WorthOptLoop = false;
513   if (Diff[1] == Diff[0])
514     WorthOptLoop = Diff[0] * 8 >= LoopDepth[0].Depth;
515   else if (Diff[1] > Diff[0])
516     WorthOptLoop =
517         (Diff[1] - Diff[0]) * 2 >= (LoopDepth[1].Depth - LoopDepth[0].Depth) &&
518         (Diff[1] * 8 >= LoopDepth[1].Depth);
519
520   if (!WorthOptLoop)
521     return false;
522
523   ++NumOfLoopCandidate;
524
525   //===--------------------------------------------------------------------===//
526   // Step 3: Check for each CMOV-group-candidate if it worth to be optimized.
527   // Worth-Optimize-Group:
528   //   Iff it worths to optimize all CMOV instructions in the group.
529   //
530   // Worth-Optimize-CMOV:
531   //   Predicted branch is faster than CMOV by the difference between depth of
532   //   condition operand and depth of taken (predicted) value operand.
533   //   To be conservative, the gain of such CMOV transformation should cover at
534   //   at least 25% of branch-misprediction-penalty.
535   //===--------------------------------------------------------------------===//
536   unsigned MispredictPenalty = TSchedModel.getMCSchedModel()->MispredictPenalty;
537   CmovGroups TempGroups;
538   std::swap(TempGroups, CmovInstGroups);
539   for (auto &Group : TempGroups) {
540     bool WorthOpGroup = true;
541     for (auto *MI : Group) {
542       // Avoid CMOV instruction which value is used as a pointer to load from.
543       // This is another conservative check to avoid converting CMOV instruction
544       // used with tree-search like algorithm, where the branch is unpredicted.
545       auto UIs = MRI->use_instructions(MI->defs().begin()->getReg());
546       if (UIs.begin() != UIs.end() && ++UIs.begin() == UIs.end()) {
547         unsigned Op = UIs.begin()->getOpcode();
548         if (Op == X86::MOV64rm || Op == X86::MOV32rm) {
549           WorthOpGroup = false;
550           break;
551         }
552       }
553
554       unsigned CondCost =
555           DepthMap[OperandToDefMap.lookup(&MI->getOperand(3))].Depth;
556       unsigned ValCost = getDepthOfOptCmov(
557           DepthMap[OperandToDefMap.lookup(&MI->getOperand(1))].Depth,
558           DepthMap[OperandToDefMap.lookup(&MI->getOperand(2))].Depth);
559       if (ValCost > CondCost || (CondCost - ValCost) * 4 < MispredictPenalty) {
560         WorthOpGroup = false;
561         break;
562       }
563     }
564
565     if (WorthOpGroup)
566       CmovInstGroups.push_back(Group);
567   }
568
569   return !CmovInstGroups.empty();
570 }
571
572 static bool checkEFLAGSLive(MachineInstr *MI) {
573   if (MI->killsRegister(X86::EFLAGS))
574     return false;
575
576   // The EFLAGS operand of MI might be missing a kill marker.
577   // Figure out whether EFLAGS operand should LIVE after MI instruction.
578   MachineBasicBlock *BB = MI->getParent();
579   MachineBasicBlock::iterator ItrMI = MI;
580
581   // Scan forward through BB for a use/def of EFLAGS.
582   for (auto I = std::next(ItrMI), E = BB->end(); I != E; ++I) {
583     if (I->readsRegister(X86::EFLAGS))
584       return true;
585     if (I->definesRegister(X86::EFLAGS))
586       return false;
587   }
588
589   // We hit the end of the block, check whether EFLAGS is live into a successor.
590   for (auto I = BB->succ_begin(), E = BB->succ_end(); I != E; ++I) {
591     if ((*I)->isLiveIn(X86::EFLAGS))
592       return true;
593   }
594
595   return false;
596 }
597
598 /// Given /p First CMOV instruction and /p Last CMOV instruction representing a
599 /// group of CMOV instructions, which may contain debug instructions in between,
600 /// move all debug instructions to after the last CMOV instruction, making the
601 /// CMOV group consecutive.
602 static void packCmovGroup(MachineInstr *First, MachineInstr *Last) {
603   assert(X86::getCondFromCMovOpc(Last->getOpcode()) != X86::COND_INVALID &&
604          "Last instruction in a CMOV group must be a CMOV instruction");
605
606   SmallVector<MachineInstr *, 2> DBGInstructions;
607   for (auto I = First->getIterator(), E = Last->getIterator(); I != E; I++) {
608     if (I->isDebugInstr())
609       DBGInstructions.push_back(&*I);
610   }
611
612   // Splice the debug instruction after the cmov group.
613   MachineBasicBlock *MBB = First->getParent();
614   for (auto *MI : DBGInstructions)
615     MBB->insertAfter(Last, MI->removeFromParent());
616 }
617
618 void X86CmovConverterPass::convertCmovInstsToBranches(
619     SmallVectorImpl<MachineInstr *> &Group) const {
620   assert(!Group.empty() && "No CMOV instructions to convert");
621   ++NumOfOptimizedCmovGroups;
622
623   // If the CMOV group is not packed, e.g., there are debug instructions between
624   // first CMOV and last CMOV, then pack the group and make the CMOV instruction
625   // consecutive by moving the debug instructions to after the last CMOV.
626   packCmovGroup(Group.front(), Group.back());
627
628   // To convert a CMOVcc instruction, we actually have to insert the diamond
629   // control-flow pattern.  The incoming instruction knows the destination vreg
630   // to set, the condition code register to branch on, the true/false values to
631   // select between, and a branch opcode to use.
632
633   // Before
634   // -----
635   // MBB:
636   //   cond = cmp ...
637   //   v1 = CMOVge t1, f1, cond
638   //   v2 = CMOVlt t2, f2, cond
639   //   v3 = CMOVge v1, f3, cond
640   //
641   // After
642   // -----
643   // MBB:
644   //   cond = cmp ...
645   //   jge %SinkMBB
646   //
647   // FalseMBB:
648   //   jmp %SinkMBB
649   //
650   // SinkMBB:
651   //   %v1 = phi[%f1, %FalseMBB], [%t1, %MBB]
652   //   %v2 = phi[%t2, %FalseMBB], [%f2, %MBB] ; For CMOV with OppCC switch
653   //                                          ; true-value with false-value
654   //   %v3 = phi[%f3, %FalseMBB], [%t1, %MBB] ; Phi instruction cannot use
655   //                                          ; previous Phi instruction result
656
657   MachineInstr &MI = *Group.front();
658   MachineInstr *LastCMOV = Group.back();
659   DebugLoc DL = MI.getDebugLoc();
660
661   X86::CondCode CC = X86::CondCode(X86::getCondFromCMovOpc(MI.getOpcode()));
662   X86::CondCode OppCC = X86::GetOppositeBranchCondition(CC);
663   // Potentially swap the condition codes so that any memory operand to a CMOV
664   // is in the *false* position instead of the *true* position. We can invert
665   // any non-memory operand CMOV instructions to cope with this and we ensure
666   // memory operand CMOVs are only included with a single condition code.
667   if (llvm::any_of(Group, [&](MachineInstr *I) {
668         return I->mayLoad() && X86::getCondFromCMovOpc(I->getOpcode()) == CC;
669       }))
670     std::swap(CC, OppCC);
671
672   MachineBasicBlock *MBB = MI.getParent();
673   MachineFunction::iterator It = ++MBB->getIterator();
674   MachineFunction *F = MBB->getParent();
675   const BasicBlock *BB = MBB->getBasicBlock();
676
677   MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(BB);
678   MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(BB);
679   F->insert(It, FalseMBB);
680   F->insert(It, SinkMBB);
681
682   // If the EFLAGS register isn't dead in the terminator, then claim that it's
683   // live into the sink and copy blocks.
684   if (checkEFLAGSLive(LastCMOV)) {
685     FalseMBB->addLiveIn(X86::EFLAGS);
686     SinkMBB->addLiveIn(X86::EFLAGS);
687   }
688
689   // Transfer the remainder of BB and its successor edges to SinkMBB.
690   SinkMBB->splice(SinkMBB->begin(), MBB,
691                   std::next(MachineBasicBlock::iterator(LastCMOV)), MBB->end());
692   SinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
693
694   // Add the false and sink blocks as its successors.
695   MBB->addSuccessor(FalseMBB);
696   MBB->addSuccessor(SinkMBB);
697
698   // Create the conditional branch instruction.
699   BuildMI(MBB, DL, TII->get(X86::GetCondBranchFromCond(CC))).addMBB(SinkMBB);
700
701   // Add the sink block to the false block successors.
702   FalseMBB->addSuccessor(SinkMBB);
703
704   MachineInstrBuilder MIB;
705   MachineBasicBlock::iterator MIItBegin = MachineBasicBlock::iterator(MI);
706   MachineBasicBlock::iterator MIItEnd =
707       std::next(MachineBasicBlock::iterator(LastCMOV));
708   MachineBasicBlock::iterator FalseInsertionPoint = FalseMBB->begin();
709   MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
710
711   // First we need to insert an explicit load on the false path for any memory
712   // operand. We also need to potentially do register rewriting here, but it is
713   // simpler as the memory operands are always on the false path so we can
714   // simply take that input, whatever it is.
715   DenseMap<unsigned, unsigned> FalseBBRegRewriteTable;
716   for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd;) {
717     auto &MI = *MIIt++;
718     // Skip any CMOVs in this group which don't load from memory.
719     if (!MI.mayLoad()) {
720       // Remember the false-side register input.
721       unsigned FalseReg =
722           MI.getOperand(X86::getCondFromCMovOpc(MI.getOpcode()) == CC ? 1 : 2)
723               .getReg();
724       // Walk back through any intermediate cmovs referenced.
725       while (true) {
726         auto FRIt = FalseBBRegRewriteTable.find(FalseReg);
727         if (FRIt == FalseBBRegRewriteTable.end())
728           break;
729         FalseReg = FRIt->second;
730       }
731       FalseBBRegRewriteTable[MI.getOperand(0).getReg()] = FalseReg;
732       continue;
733     }
734
735     // The condition must be the *opposite* of the one we've decided to branch
736     // on as the branch will go *around* the load and the load should happen
737     // when the CMOV condition is false.
738     assert(X86::getCondFromCMovOpc(MI.getOpcode()) == OppCC &&
739            "Can only handle memory-operand cmov instructions with a condition "
740            "opposite to the selected branch direction.");
741
742     // The goal is to rewrite the cmov from:
743     //
744     //   MBB:
745     //     %A = CMOVcc %B (tied), (mem)
746     //
747     // to
748     //
749     //   MBB:
750     //     %A = CMOVcc %B (tied), %C
751     //   FalseMBB:
752     //     %C = MOV (mem)
753     //
754     // Which will allow the next loop to rewrite the CMOV in terms of a PHI:
755     //
756     //   MBB:
757     //     JMP!cc SinkMBB
758     //   FalseMBB:
759     //     %C = MOV (mem)
760     //   SinkMBB:
761     //     %A = PHI [ %C, FalseMBB ], [ %B, MBB]
762
763     // Get a fresh register to use as the destination of the MOV.
764     const TargetRegisterClass *RC = MRI->getRegClass(MI.getOperand(0).getReg());
765     unsigned TmpReg = MRI->createVirtualRegister(RC);
766
767     SmallVector<MachineInstr *, 4> NewMIs;
768     bool Unfolded = TII->unfoldMemoryOperand(*MBB->getParent(), MI, TmpReg,
769                                              /*UnfoldLoad*/ true,
770                                              /*UnfoldStore*/ false, NewMIs);
771     (void)Unfolded;
772     assert(Unfolded && "Should never fail to unfold a loading cmov!");
773
774     // Move the new CMOV to just before the old one and reset any impacted
775     // iterator.
776     auto *NewCMOV = NewMIs.pop_back_val();
777     assert(X86::getCondFromCMovOpc(NewCMOV->getOpcode()) == OppCC &&
778            "Last new instruction isn't the expected CMOV!");
779     LLVM_DEBUG(dbgs() << "\tRewritten cmov: "; NewCMOV->dump());
780     MBB->insert(MachineBasicBlock::iterator(MI), NewCMOV);
781     if (&*MIItBegin == &MI)
782       MIItBegin = MachineBasicBlock::iterator(NewCMOV);
783
784     // Sink whatever instructions were needed to produce the unfolded operand
785     // into the false block.
786     for (auto *NewMI : NewMIs) {
787       LLVM_DEBUG(dbgs() << "\tRewritten load instr: "; NewMI->dump());
788       FalseMBB->insert(FalseInsertionPoint, NewMI);
789       // Re-map any operands that are from other cmovs to the inputs for this block.
790       for (auto &MOp : NewMI->uses()) {
791         if (!MOp.isReg())
792           continue;
793         auto It = FalseBBRegRewriteTable.find(MOp.getReg());
794         if (It == FalseBBRegRewriteTable.end())
795           continue;
796
797         MOp.setReg(It->second);
798         // This might have been a kill when it referenced the cmov result, but
799         // it won't necessarily be once rewritten.
800         // FIXME: We could potentially improve this by tracking whether the
801         // operand to the cmov was also a kill, and then skipping the PHI node
802         // construction below.
803         MOp.setIsKill(false);
804       }
805     }
806     MBB->erase(MachineBasicBlock::iterator(MI),
807                std::next(MachineBasicBlock::iterator(MI)));
808
809     // Add this PHI to the rewrite table.
810     FalseBBRegRewriteTable[NewCMOV->getOperand(0).getReg()] = TmpReg;
811   }
812
813   // As we are creating the PHIs, we have to be careful if there is more than
814   // one.  Later CMOVs may reference the results of earlier CMOVs, but later
815   // PHIs have to reference the individual true/false inputs from earlier PHIs.
816   // That also means that PHI construction must work forward from earlier to
817   // later, and that the code must maintain a mapping from earlier PHI's
818   // destination registers, and the registers that went into the PHI.
819   DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
820
821   for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd; ++MIIt) {
822     unsigned DestReg = MIIt->getOperand(0).getReg();
823     unsigned Op1Reg = MIIt->getOperand(1).getReg();
824     unsigned Op2Reg = MIIt->getOperand(2).getReg();
825
826     // If this CMOV we are processing is the opposite condition from the jump we
827     // generated, then we have to swap the operands for the PHI that is going to
828     // be generated.
829     if (X86::getCondFromCMovOpc(MIIt->getOpcode()) == OppCC)
830       std::swap(Op1Reg, Op2Reg);
831
832     auto Op1Itr = RegRewriteTable.find(Op1Reg);
833     if (Op1Itr != RegRewriteTable.end())
834       Op1Reg = Op1Itr->second.first;
835
836     auto Op2Itr = RegRewriteTable.find(Op2Reg);
837     if (Op2Itr != RegRewriteTable.end())
838       Op2Reg = Op2Itr->second.second;
839
840     //  SinkMBB:
841     //   %Result = phi [ %FalseValue, FalseMBB ], [ %TrueValue, MBB ]
842     //  ...
843     MIB = BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(X86::PHI), DestReg)
844               .addReg(Op1Reg)
845               .addMBB(FalseMBB)
846               .addReg(Op2Reg)
847               .addMBB(MBB);
848     (void)MIB;
849     LLVM_DEBUG(dbgs() << "\tFrom: "; MIIt->dump());
850     LLVM_DEBUG(dbgs() << "\tTo: "; MIB->dump());
851
852     // Add this PHI to the rewrite table.
853     RegRewriteTable[DestReg] = std::make_pair(Op1Reg, Op2Reg);
854   }
855
856   // Now remove the CMOV(s).
857   MBB->erase(MIItBegin, MIItEnd);
858 }
859
860 INITIALIZE_PASS_BEGIN(X86CmovConverterPass, DEBUG_TYPE, "X86 cmov Conversion",
861                       false, false)
862 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
863 INITIALIZE_PASS_END(X86CmovConverterPass, DEBUG_TYPE, "X86 cmov Conversion",
864                     false, false)
865
866 FunctionPass *llvm::createX86CmovConverterPass() {
867   return new X86CmovConverterPass();
868 }