]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Target/X86/X86FastISel.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Target / X86 / X86FastISel.cpp
1 //===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the X86-specific support for the FastISel class. Much
11 // of the target-specific code is generated by tablegen in the file
12 // X86GenFastISel.inc, which is #included here.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "X86.h"
17 #include "X86CallingConv.h"
18 #include "X86InstrBuilder.h"
19 #include "X86InstrInfo.h"
20 #include "X86MachineFunctionInfo.h"
21 #include "X86RegisterInfo.h"
22 #include "X86Subtarget.h"
23 #include "X86TargetMachine.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/CodeGen/FastISel.h"
26 #include "llvm/CodeGen/FunctionLoweringInfo.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/IR/CallSite.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/DebugInfo.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/GetElementPtrTypeIterator.h"
35 #include "llvm/IR/GlobalAlias.h"
36 #include "llvm/IR/GlobalVariable.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/MC/MCAsmInfo.h"
41 #include "llvm/MC/MCSymbol.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Target/TargetOptions.h"
44 using namespace llvm;
45
46 namespace {
47
48 class X86FastISel final : public FastISel {
49   /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
50   /// make the right decision when generating code for different targets.
51   const X86Subtarget *Subtarget;
52
53   /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
54   /// floating point ops.
55   /// When SSE is available, use it for f32 operations.
56   /// When SSE2 is available, use it for f64 operations.
57   bool X86ScalarSSEf64;
58   bool X86ScalarSSEf32;
59
60 public:
61   explicit X86FastISel(FunctionLoweringInfo &funcInfo,
62                        const TargetLibraryInfo *libInfo)
63       : FastISel(funcInfo, libInfo) {
64     Subtarget = &funcInfo.MF->getSubtarget<X86Subtarget>();
65     X86ScalarSSEf64 = Subtarget->hasSSE2();
66     X86ScalarSSEf32 = Subtarget->hasSSE1();
67   }
68
69   bool fastSelectInstruction(const Instruction *I) override;
70
71   /// The specified machine instr operand is a vreg, and that
72   /// vreg is being provided by the specified load instruction.  If possible,
73   /// try to fold the load as an operand to the instruction, returning true if
74   /// possible.
75   bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
76                            const LoadInst *LI) override;
77
78   bool fastLowerArguments() override;
79   bool fastLowerCall(CallLoweringInfo &CLI) override;
80   bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;
81
82 #include "X86GenFastISel.inc"
83
84 private:
85   bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT,
86                           const DebugLoc &DL);
87
88   bool X86FastEmitLoad(EVT VT, X86AddressMode &AM, MachineMemOperand *MMO,
89                        unsigned &ResultReg, unsigned Alignment = 1);
90
91   bool X86FastEmitStore(EVT VT, const Value *Val, X86AddressMode &AM,
92                         MachineMemOperand *MMO = nullptr, bool Aligned = false);
93   bool X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill,
94                         X86AddressMode &AM,
95                         MachineMemOperand *MMO = nullptr, bool Aligned = false);
96
97   bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
98                          unsigned &ResultReg);
99
100   bool X86SelectAddress(const Value *V, X86AddressMode &AM);
101   bool X86SelectCallAddress(const Value *V, X86AddressMode &AM);
102
103   bool X86SelectLoad(const Instruction *I);
104
105   bool X86SelectStore(const Instruction *I);
106
107   bool X86SelectRet(const Instruction *I);
108
109   bool X86SelectCmp(const Instruction *I);
110
111   bool X86SelectZExt(const Instruction *I);
112
113   bool X86SelectSExt(const Instruction *I);
114
115   bool X86SelectBranch(const Instruction *I);
116
117   bool X86SelectShift(const Instruction *I);
118
119   bool X86SelectDivRem(const Instruction *I);
120
121   bool X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I);
122
123   bool X86FastEmitSSESelect(MVT RetVT, const Instruction *I);
124
125   bool X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I);
126
127   bool X86SelectSelect(const Instruction *I);
128
129   bool X86SelectTrunc(const Instruction *I);
130
131   bool X86SelectFPExtOrFPTrunc(const Instruction *I, unsigned Opc,
132                                const TargetRegisterClass *RC);
133
134   bool X86SelectFPExt(const Instruction *I);
135   bool X86SelectFPTrunc(const Instruction *I);
136   bool X86SelectSIToFP(const Instruction *I);
137   bool X86SelectUIToFP(const Instruction *I);
138   bool X86SelectIntToFP(const Instruction *I, bool IsSigned);
139
140   const X86InstrInfo *getInstrInfo() const {
141     return Subtarget->getInstrInfo();
142   }
143   const X86TargetMachine *getTargetMachine() const {
144     return static_cast<const X86TargetMachine *>(&TM);
145   }
146
147   bool handleConstantAddresses(const Value *V, X86AddressMode &AM);
148
149   unsigned X86MaterializeInt(const ConstantInt *CI, MVT VT);
150   unsigned X86MaterializeFP(const ConstantFP *CFP, MVT VT);
151   unsigned X86MaterializeGV(const GlobalValue *GV, MVT VT);
152   unsigned fastMaterializeConstant(const Constant *C) override;
153
154   unsigned fastMaterializeAlloca(const AllocaInst *C) override;
155
156   unsigned fastMaterializeFloatZero(const ConstantFP *CF) override;
157
158   /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
159   /// computed in an SSE register, not on the X87 floating point stack.
160   bool isScalarFPTypeInSSEReg(EVT VT) const {
161     return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
162       (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
163   }
164
165   bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false);
166
167   bool IsMemcpySmall(uint64_t Len);
168
169   bool TryEmitSmallMemcpy(X86AddressMode DestAM,
170                           X86AddressMode SrcAM, uint64_t Len);
171
172   bool foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
173                             const Value *Cond);
174
175   const MachineInstrBuilder &addFullAddress(const MachineInstrBuilder &MIB,
176                                             X86AddressMode &AM);
177
178   unsigned fastEmitInst_rrrr(unsigned MachineInstOpcode,
179                              const TargetRegisterClass *RC, unsigned Op0,
180                              bool Op0IsKill, unsigned Op1, bool Op1IsKill,
181                              unsigned Op2, bool Op2IsKill, unsigned Op3,
182                              bool Op3IsKill);
183 };
184
185 } // end anonymous namespace.
186
187 static std::pair<unsigned, bool>
188 getX86SSEConditionCode(CmpInst::Predicate Predicate) {
189   unsigned CC;
190   bool NeedSwap = false;
191
192   // SSE Condition code mapping:
193   //  0 - EQ
194   //  1 - LT
195   //  2 - LE
196   //  3 - UNORD
197   //  4 - NEQ
198   //  5 - NLT
199   //  6 - NLE
200   //  7 - ORD
201   switch (Predicate) {
202   default: llvm_unreachable("Unexpected predicate");
203   case CmpInst::FCMP_OEQ: CC = 0;          break;
204   case CmpInst::FCMP_OGT: NeedSwap = true; LLVM_FALLTHROUGH;
205   case CmpInst::FCMP_OLT: CC = 1;          break;
206   case CmpInst::FCMP_OGE: NeedSwap = true; LLVM_FALLTHROUGH;
207   case CmpInst::FCMP_OLE: CC = 2;          break;
208   case CmpInst::FCMP_UNO: CC = 3;          break;
209   case CmpInst::FCMP_UNE: CC = 4;          break;
210   case CmpInst::FCMP_ULE: NeedSwap = true; LLVM_FALLTHROUGH;
211   case CmpInst::FCMP_UGE: CC = 5;          break;
212   case CmpInst::FCMP_ULT: NeedSwap = true; LLVM_FALLTHROUGH;
213   case CmpInst::FCMP_UGT: CC = 6;          break;
214   case CmpInst::FCMP_ORD: CC = 7;          break;
215   case CmpInst::FCMP_UEQ: CC = 8;          break;
216   case CmpInst::FCMP_ONE: CC = 12;         break;
217   }
218
219   return std::make_pair(CC, NeedSwap);
220 }
221
222 /// Adds a complex addressing mode to the given machine instr builder.
223 /// Note, this will constrain the index register.  If its not possible to
224 /// constrain the given index register, then a new one will be created.  The
225 /// IndexReg field of the addressing mode will be updated to match in this case.
226 const MachineInstrBuilder &
227 X86FastISel::addFullAddress(const MachineInstrBuilder &MIB,
228                             X86AddressMode &AM) {
229   // First constrain the index register.  It needs to be a GR64_NOSP.
230   AM.IndexReg = constrainOperandRegClass(MIB->getDesc(), AM.IndexReg,
231                                          MIB->getNumOperands() +
232                                          X86::AddrIndexReg);
233   return ::addFullAddress(MIB, AM);
234 }
235
236 /// Check if it is possible to fold the condition from the XALU intrinsic
237 /// into the user. The condition code will only be updated on success.
238 bool X86FastISel::foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
239                                        const Value *Cond) {
240   if (!isa<ExtractValueInst>(Cond))
241     return false;
242
243   const auto *EV = cast<ExtractValueInst>(Cond);
244   if (!isa<IntrinsicInst>(EV->getAggregateOperand()))
245     return false;
246
247   const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand());
248   MVT RetVT;
249   const Function *Callee = II->getCalledFunction();
250   Type *RetTy =
251     cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U);
252   if (!isTypeLegal(RetTy, RetVT))
253     return false;
254
255   if (RetVT != MVT::i32 && RetVT != MVT::i64)
256     return false;
257
258   X86::CondCode TmpCC;
259   switch (II->getIntrinsicID()) {
260   default: return false;
261   case Intrinsic::sadd_with_overflow:
262   case Intrinsic::ssub_with_overflow:
263   case Intrinsic::smul_with_overflow:
264   case Intrinsic::umul_with_overflow: TmpCC = X86::COND_O; break;
265   case Intrinsic::uadd_with_overflow:
266   case Intrinsic::usub_with_overflow: TmpCC = X86::COND_B; break;
267   }
268
269   // Check if both instructions are in the same basic block.
270   if (II->getParent() != I->getParent())
271     return false;
272
273   // Make sure nothing is in the way
274   BasicBlock::const_iterator Start(I);
275   BasicBlock::const_iterator End(II);
276   for (auto Itr = std::prev(Start); Itr != End; --Itr) {
277     // We only expect extractvalue instructions between the intrinsic and the
278     // instruction to be selected.
279     if (!isa<ExtractValueInst>(Itr))
280       return false;
281
282     // Check that the extractvalue operand comes from the intrinsic.
283     const auto *EVI = cast<ExtractValueInst>(Itr);
284     if (EVI->getAggregateOperand() != II)
285       return false;
286   }
287
288   CC = TmpCC;
289   return true;
290 }
291
292 bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) {
293   EVT evt = TLI.getValueType(DL, Ty, /*HandleUnknown=*/true);
294   if (evt == MVT::Other || !evt.isSimple())
295     // Unhandled type. Halt "fast" selection and bail.
296     return false;
297
298   VT = evt.getSimpleVT();
299   // For now, require SSE/SSE2 for performing floating-point operations,
300   // since x87 requires additional work.
301   if (VT == MVT::f64 && !X86ScalarSSEf64)
302     return false;
303   if (VT == MVT::f32 && !X86ScalarSSEf32)
304     return false;
305   // Similarly, no f80 support yet.
306   if (VT == MVT::f80)
307     return false;
308   // We only handle legal types. For example, on x86-32 the instruction
309   // selector contains all of the 64-bit instructions from x86-64,
310   // under the assumption that i64 won't be used if the target doesn't
311   // support it.
312   return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
313 }
314
315 #include "X86GenCallingConv.inc"
316
317 /// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
318 /// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
319 /// Return true and the result register by reference if it is possible.
320 bool X86FastISel::X86FastEmitLoad(EVT VT, X86AddressMode &AM,
321                                   MachineMemOperand *MMO, unsigned &ResultReg,
322                                   unsigned Alignment) {
323   bool HasSSE41 = Subtarget->hasSSE41();
324   bool HasAVX = Subtarget->hasAVX();
325   bool HasAVX2 = Subtarget->hasAVX2();
326   bool HasAVX512 = Subtarget->hasAVX512();
327   bool HasVLX = Subtarget->hasVLX();
328   bool IsNonTemporal = MMO && MMO->isNonTemporal();
329
330   // Get opcode and regclass of the output for the given load instruction.
331   unsigned Opc = 0;
332   const TargetRegisterClass *RC = nullptr;
333   switch (VT.getSimpleVT().SimpleTy) {
334   default: return false;
335   case MVT::i1:
336   case MVT::i8:
337     Opc = X86::MOV8rm;
338     RC  = &X86::GR8RegClass;
339     break;
340   case MVT::i16:
341     Opc = X86::MOV16rm;
342     RC  = &X86::GR16RegClass;
343     break;
344   case MVT::i32:
345     Opc = X86::MOV32rm;
346     RC  = &X86::GR32RegClass;
347     break;
348   case MVT::i64:
349     // Must be in x86-64 mode.
350     Opc = X86::MOV64rm;
351     RC  = &X86::GR64RegClass;
352     break;
353   case MVT::f32:
354     if (X86ScalarSSEf32) {
355       Opc = HasAVX512 ? X86::VMOVSSZrm : HasAVX ? X86::VMOVSSrm : X86::MOVSSrm;
356       RC  = HasAVX512 ? &X86::FR32XRegClass : &X86::FR32RegClass;
357     } else {
358       Opc = X86::LD_Fp32m;
359       RC  = &X86::RFP32RegClass;
360     }
361     break;
362   case MVT::f64:
363     if (X86ScalarSSEf64) {
364       Opc = HasAVX512 ? X86::VMOVSDZrm : HasAVX ? X86::VMOVSDrm : X86::MOVSDrm;
365       RC  = HasAVX512 ? &X86::FR64XRegClass : &X86::FR64RegClass;
366     } else {
367       Opc = X86::LD_Fp64m;
368       RC  = &X86::RFP64RegClass;
369     }
370     break;
371   case MVT::f80:
372     // No f80 support yet.
373     return false;
374   case MVT::v4f32:
375     if (IsNonTemporal && Alignment >= 16 && HasSSE41)
376       Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
377             HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
378     else if (Alignment >= 16)
379       Opc = HasVLX ? X86::VMOVAPSZ128rm :
380             HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm;
381     else
382       Opc = HasVLX ? X86::VMOVUPSZ128rm :
383             HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm;
384     RC = HasVLX ? &X86::VR128XRegClass : &X86::VR128RegClass;
385     break;
386   case MVT::v2f64:
387     if (IsNonTemporal && Alignment >= 16 && HasSSE41)
388       Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
389             HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
390     else if (Alignment >= 16)
391       Opc = HasVLX ? X86::VMOVAPDZ128rm :
392             HasAVX ? X86::VMOVAPDrm : X86::MOVAPDrm;
393     else
394       Opc = HasVLX ? X86::VMOVUPDZ128rm :
395             HasAVX ? X86::VMOVUPDrm : X86::MOVUPDrm;
396     RC = HasVLX ? &X86::VR128XRegClass : &X86::VR128RegClass;
397     break;
398   case MVT::v4i32:
399   case MVT::v2i64:
400   case MVT::v8i16:
401   case MVT::v16i8:
402     if (IsNonTemporal && Alignment >= 16)
403       Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
404             HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
405     else if (Alignment >= 16)
406       Opc = HasVLX ? X86::VMOVDQA64Z128rm :
407             HasAVX ? X86::VMOVDQArm : X86::MOVDQArm;
408     else
409       Opc = HasVLX ? X86::VMOVDQU64Z128rm :
410             HasAVX ? X86::VMOVDQUrm : X86::MOVDQUrm;
411     RC = HasVLX ? &X86::VR128XRegClass : &X86::VR128RegClass;
412     break;
413   case MVT::v8f32:
414     assert(HasAVX);
415     if (IsNonTemporal && Alignment >= 32 && HasAVX2)
416       Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
417     else if (IsNonTemporal && Alignment >= 16)
418       return false; // Force split for X86::VMOVNTDQArm
419     else if (Alignment >= 32)
420       Opc = HasVLX ? X86::VMOVAPSZ256rm : X86::VMOVAPSYrm;
421     else
422       Opc = HasVLX ? X86::VMOVUPSZ256rm : X86::VMOVUPSYrm;
423     RC = HasVLX ? &X86::VR256XRegClass : &X86::VR256RegClass;
424     break;
425   case MVT::v4f64:
426     assert(HasAVX);
427     if (IsNonTemporal && Alignment >= 32 && HasAVX2)
428       Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
429     else if (IsNonTemporal && Alignment >= 16)
430       return false; // Force split for X86::VMOVNTDQArm
431     else if (Alignment >= 32)
432       Opc = HasVLX ? X86::VMOVAPDZ256rm : X86::VMOVAPDYrm;
433     else
434       Opc = HasVLX ? X86::VMOVUPDZ256rm : X86::VMOVUPDYrm;
435     RC = HasVLX ? &X86::VR256XRegClass : &X86::VR256RegClass;
436     break;
437   case MVT::v8i32:
438   case MVT::v4i64:
439   case MVT::v16i16:
440   case MVT::v32i8:
441     assert(HasAVX);
442     if (IsNonTemporal && Alignment >= 32 && HasAVX2)
443       Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
444     else if (IsNonTemporal && Alignment >= 16)
445       return false; // Force split for X86::VMOVNTDQArm
446     else if (Alignment >= 32)
447       Opc = HasVLX ? X86::VMOVDQA64Z256rm : X86::VMOVDQAYrm;
448     else
449       Opc = HasVLX ? X86::VMOVDQU64Z256rm : X86::VMOVDQUYrm;
450     RC = HasVLX ? &X86::VR256XRegClass : &X86::VR256RegClass;
451     break;
452   case MVT::v16f32:
453     assert(HasAVX512);
454     if (IsNonTemporal && Alignment >= 64)
455       Opc = X86::VMOVNTDQAZrm;
456     else
457       Opc = (Alignment >= 64) ? X86::VMOVAPSZrm : X86::VMOVUPSZrm;
458     RC  = &X86::VR512RegClass;
459     break;
460   case MVT::v8f64:
461     assert(HasAVX512);
462     if (IsNonTemporal && Alignment >= 64)
463       Opc = X86::VMOVNTDQAZrm;
464     else
465       Opc = (Alignment >= 64) ? X86::VMOVAPDZrm : X86::VMOVUPDZrm;
466     RC  = &X86::VR512RegClass;
467     break;
468   case MVT::v8i64:
469   case MVT::v16i32:
470   case MVT::v32i16:
471   case MVT::v64i8:
472     assert(HasAVX512);
473     // Note: There are a lot more choices based on type with AVX-512, but
474     // there's really no advantage when the load isn't masked.
475     if (IsNonTemporal && Alignment >= 64)
476       Opc = X86::VMOVNTDQAZrm;
477     else
478       Opc = (Alignment >= 64) ? X86::VMOVDQA64Zrm : X86::VMOVDQU64Zrm;
479     RC  = &X86::VR512RegClass;
480     break;
481   }
482
483   ResultReg = createResultReg(RC);
484   MachineInstrBuilder MIB =
485     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
486   addFullAddress(MIB, AM);
487   if (MMO)
488     MIB->addMemOperand(*FuncInfo.MF, MMO);
489   return true;
490 }
491
492 /// X86FastEmitStore - Emit a machine instruction to store a value Val of
493 /// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
494 /// and a displacement offset, or a GlobalAddress,
495 /// i.e. V. Return true if it is possible.
496 bool X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill,
497                                    X86AddressMode &AM,
498                                    MachineMemOperand *MMO, bool Aligned) {
499   bool HasSSE1 = Subtarget->hasSSE1();
500   bool HasSSE2 = Subtarget->hasSSE2();
501   bool HasSSE4A = Subtarget->hasSSE4A();
502   bool HasAVX = Subtarget->hasAVX();
503   bool HasAVX512 = Subtarget->hasAVX512();
504   bool HasVLX = Subtarget->hasVLX();
505   bool IsNonTemporal = MMO && MMO->isNonTemporal();
506
507   // Get opcode and regclass of the output for the given store instruction.
508   unsigned Opc = 0;
509   switch (VT.getSimpleVT().SimpleTy) {
510   case MVT::f80: // No f80 support yet.
511   default: return false;
512   case MVT::i1: {
513     // Mask out all but lowest bit.
514     unsigned AndResult = createResultReg(&X86::GR8RegClass);
515     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
516             TII.get(X86::AND8ri), AndResult)
517       .addReg(ValReg, getKillRegState(ValIsKill)).addImm(1);
518     ValReg = AndResult;
519     LLVM_FALLTHROUGH; // handle i1 as i8.
520   }
521   case MVT::i8:  Opc = X86::MOV8mr;  break;
522   case MVT::i16: Opc = X86::MOV16mr; break;
523   case MVT::i32:
524     Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTImr : X86::MOV32mr;
525     break;
526   case MVT::i64:
527     // Must be in x86-64 mode.
528     Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTI_64mr : X86::MOV64mr;
529     break;
530   case MVT::f32:
531     if (X86ScalarSSEf32) {
532       if (IsNonTemporal && HasSSE4A)
533         Opc = X86::MOVNTSS;
534       else
535         Opc = HasAVX512 ? X86::VMOVSSZmr :
536               HasAVX ? X86::VMOVSSmr : X86::MOVSSmr;
537     } else
538       Opc = X86::ST_Fp32m;
539     break;
540   case MVT::f64:
541     if (X86ScalarSSEf32) {
542       if (IsNonTemporal && HasSSE4A)
543         Opc = X86::MOVNTSD;
544       else
545         Opc = HasAVX512 ? X86::VMOVSDZmr :
546               HasAVX ? X86::VMOVSDmr : X86::MOVSDmr;
547     } else
548       Opc = X86::ST_Fp64m;
549     break;
550   case MVT::x86mmx:
551     Opc = (IsNonTemporal && HasSSE1) ? X86::MMX_MOVNTQmr : X86::MMX_MOVQ64mr;
552     break;
553   case MVT::v4f32:
554     if (Aligned) {
555       if (IsNonTemporal)
556         Opc = HasVLX ? X86::VMOVNTPSZ128mr :
557               HasAVX ? X86::VMOVNTPSmr : X86::MOVNTPSmr;
558       else
559         Opc = HasVLX ? X86::VMOVAPSZ128mr :
560               HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr;
561     } else
562       Opc = HasVLX ? X86::VMOVUPSZ128mr :
563             HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr;
564     break;
565   case MVT::v2f64:
566     if (Aligned) {
567       if (IsNonTemporal)
568         Opc = HasVLX ? X86::VMOVNTPDZ128mr :
569               HasAVX ? X86::VMOVNTPDmr : X86::MOVNTPDmr;
570       else
571         Opc = HasVLX ? X86::VMOVAPDZ128mr :
572               HasAVX ? X86::VMOVAPDmr : X86::MOVAPDmr;
573     } else
574       Opc = HasVLX ? X86::VMOVUPDZ128mr :
575             HasAVX ? X86::VMOVUPDmr : X86::MOVUPDmr;
576     break;
577   case MVT::v4i32:
578   case MVT::v2i64:
579   case MVT::v8i16:
580   case MVT::v16i8:
581     if (Aligned) {
582       if (IsNonTemporal)
583         Opc = HasVLX ? X86::VMOVNTDQZ128mr :
584               HasAVX ? X86::VMOVNTDQmr : X86::MOVNTDQmr;
585       else
586         Opc = HasVLX ? X86::VMOVDQA64Z128mr :
587               HasAVX ? X86::VMOVDQAmr : X86::MOVDQAmr;
588     } else
589       Opc = HasVLX ? X86::VMOVDQU64Z128mr :
590             HasAVX ? X86::VMOVDQUmr : X86::MOVDQUmr;
591     break;
592   case MVT::v8f32:
593     assert(HasAVX);
594     if (Aligned) {
595       if (IsNonTemporal)
596         Opc = HasVLX ? X86::VMOVNTPSZ256mr : X86::VMOVNTPSYmr;
597       else
598         Opc = HasVLX ? X86::VMOVAPSZ256mr : X86::VMOVAPSYmr;
599     } else
600       Opc = HasVLX ? X86::VMOVUPSZ256mr : X86::VMOVUPSYmr;
601     break;
602   case MVT::v4f64:
603     assert(HasAVX);
604     if (Aligned) {
605       if (IsNonTemporal)
606         Opc = HasVLX ? X86::VMOVNTPDZ256mr : X86::VMOVNTPDYmr;
607       else
608         Opc = HasVLX ? X86::VMOVAPDZ256mr : X86::VMOVAPDYmr;
609     } else
610       Opc = HasVLX ? X86::VMOVUPDZ256mr : X86::VMOVUPDYmr;
611     break;
612   case MVT::v8i32:
613   case MVT::v4i64:
614   case MVT::v16i16:
615   case MVT::v32i8:
616     assert(HasAVX);
617     if (Aligned) {
618       if (IsNonTemporal)
619         Opc = HasVLX ? X86::VMOVNTDQZ256mr : X86::VMOVNTDQYmr;
620       else
621         Opc = HasVLX ? X86::VMOVDQA64Z256mr : X86::VMOVDQAYmr;
622     } else
623       Opc = HasVLX ? X86::VMOVDQU64Z256mr : X86::VMOVDQUYmr;
624     break;
625   case MVT::v16f32:
626     assert(HasAVX512);
627     if (Aligned)
628       Opc = IsNonTemporal ? X86::VMOVNTPSZmr : X86::VMOVAPSZmr;
629     else
630       Opc = X86::VMOVUPSZmr;
631     break;
632   case MVT::v8f64:
633     assert(HasAVX512);
634     if (Aligned) {
635       Opc = IsNonTemporal ? X86::VMOVNTPDZmr : X86::VMOVAPDZmr;
636     } else
637       Opc = X86::VMOVUPDZmr;
638     break;
639   case MVT::v8i64:
640   case MVT::v16i32:
641   case MVT::v32i16:
642   case MVT::v64i8:
643     assert(HasAVX512);
644     // Note: There are a lot more choices based on type with AVX-512, but
645     // there's really no advantage when the store isn't masked.
646     if (Aligned)
647       Opc = IsNonTemporal ? X86::VMOVNTDQZmr : X86::VMOVDQA64Zmr;
648     else
649       Opc = X86::VMOVDQU64Zmr;
650     break;
651   }
652
653   const MCInstrDesc &Desc = TII.get(Opc);
654   // Some of the instructions in the previous switch use FR128 instead
655   // of FR32 for ValReg. Make sure the register we feed the instruction
656   // matches its register class constraints.
657   // Note: This is fine to do a copy from FR32 to FR128, this is the
658   // same registers behind the scene and actually why it did not trigger
659   // any bugs before.
660   ValReg = constrainOperandRegClass(Desc, ValReg, Desc.getNumOperands() - 1);
661   MachineInstrBuilder MIB =
662       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, Desc);
663   addFullAddress(MIB, AM).addReg(ValReg, getKillRegState(ValIsKill));
664   if (MMO)
665     MIB->addMemOperand(*FuncInfo.MF, MMO);
666
667   return true;
668 }
669
670 bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val,
671                                    X86AddressMode &AM,
672                                    MachineMemOperand *MMO, bool Aligned) {
673   // Handle 'null' like i32/i64 0.
674   if (isa<ConstantPointerNull>(Val))
675     Val = Constant::getNullValue(DL.getIntPtrType(Val->getContext()));
676
677   // If this is a store of a simple constant, fold the constant into the store.
678   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
679     unsigned Opc = 0;
680     bool Signed = true;
681     switch (VT.getSimpleVT().SimpleTy) {
682     default: break;
683     case MVT::i1:
684       Signed = false;
685       LLVM_FALLTHROUGH; // Handle as i8.
686     case MVT::i8:  Opc = X86::MOV8mi;  break;
687     case MVT::i16: Opc = X86::MOV16mi; break;
688     case MVT::i32: Opc = X86::MOV32mi; break;
689     case MVT::i64:
690       // Must be a 32-bit sign extended value.
691       if (isInt<32>(CI->getSExtValue()))
692         Opc = X86::MOV64mi32;
693       break;
694     }
695
696     if (Opc) {
697       MachineInstrBuilder MIB =
698         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));
699       addFullAddress(MIB, AM).addImm(Signed ? (uint64_t) CI->getSExtValue()
700                                             : CI->getZExtValue());
701       if (MMO)
702         MIB->addMemOperand(*FuncInfo.MF, MMO);
703       return true;
704     }
705   }
706
707   unsigned ValReg = getRegForValue(Val);
708   if (ValReg == 0)
709     return false;
710
711   bool ValKill = hasTrivialKill(Val);
712   return X86FastEmitStore(VT, ValReg, ValKill, AM, MMO, Aligned);
713 }
714
715 /// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
716 /// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
717 /// ISD::SIGN_EXTEND).
718 bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,
719                                     unsigned Src, EVT SrcVT,
720                                     unsigned &ResultReg) {
721   unsigned RR = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
722                            Src, /*TODO: Kill=*/false);
723   if (RR == 0)
724     return false;
725
726   ResultReg = RR;
727   return true;
728 }
729
730 bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) {
731   // Handle constant address.
732   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
733     // Can't handle alternate code models yet.
734     if (TM.getCodeModel() != CodeModel::Small)
735       return false;
736
737     // Can't handle TLS yet.
738     if (GV->isThreadLocal())
739       return false;
740
741     // Can't handle !absolute_symbol references yet.
742     if (GV->isAbsoluteSymbolRef())
743       return false;
744
745     // RIP-relative addresses can't have additional register operands, so if
746     // we've already folded stuff into the addressing mode, just force the
747     // global value into its own register, which we can use as the basereg.
748     if (!Subtarget->isPICStyleRIPRel() ||
749         (AM.Base.Reg == 0 && AM.IndexReg == 0)) {
750       // Okay, we've committed to selecting this global. Set up the address.
751       AM.GV = GV;
752
753       // Allow the subtarget to classify the global.
754       unsigned char GVFlags = Subtarget->classifyGlobalReference(GV);
755
756       // If this reference is relative to the pic base, set it now.
757       if (isGlobalRelativeToPICBase(GVFlags)) {
758         // FIXME: How do we know Base.Reg is free??
759         AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
760       }
761
762       // Unless the ABI requires an extra load, return a direct reference to
763       // the global.
764       if (!isGlobalStubReference(GVFlags)) {
765         if (Subtarget->isPICStyleRIPRel()) {
766           // Use rip-relative addressing if we can.  Above we verified that the
767           // base and index registers are unused.
768           assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
769           AM.Base.Reg = X86::RIP;
770         }
771         AM.GVOpFlags = GVFlags;
772         return true;
773       }
774
775       // Ok, we need to do a load from a stub.  If we've already loaded from
776       // this stub, reuse the loaded pointer, otherwise emit the load now.
777       DenseMap<const Value *, unsigned>::iterator I = LocalValueMap.find(V);
778       unsigned LoadReg;
779       if (I != LocalValueMap.end() && I->second != 0) {
780         LoadReg = I->second;
781       } else {
782         // Issue load from stub.
783         unsigned Opc = 0;
784         const TargetRegisterClass *RC = nullptr;
785         X86AddressMode StubAM;
786         StubAM.Base.Reg = AM.Base.Reg;
787         StubAM.GV = GV;
788         StubAM.GVOpFlags = GVFlags;
789
790         // Prepare for inserting code in the local-value area.
791         SavePoint SaveInsertPt = enterLocalValueArea();
792
793         if (TLI.getPointerTy(DL) == MVT::i64) {
794           Opc = X86::MOV64rm;
795           RC  = &X86::GR64RegClass;
796
797           if (Subtarget->isPICStyleRIPRel())
798             StubAM.Base.Reg = X86::RIP;
799         } else {
800           Opc = X86::MOV32rm;
801           RC  = &X86::GR32RegClass;
802         }
803
804         LoadReg = createResultReg(RC);
805         MachineInstrBuilder LoadMI =
806           BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), LoadReg);
807         addFullAddress(LoadMI, StubAM);
808
809         // Ok, back to normal mode.
810         leaveLocalValueArea(SaveInsertPt);
811
812         // Prevent loading GV stub multiple times in same MBB.
813         LocalValueMap[V] = LoadReg;
814       }
815
816       // Now construct the final address. Note that the Disp, Scale,
817       // and Index values may already be set here.
818       AM.Base.Reg = LoadReg;
819       AM.GV = nullptr;
820       return true;
821     }
822   }
823
824   // If all else fails, try to materialize the value in a register.
825   if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
826     if (AM.Base.Reg == 0) {
827       AM.Base.Reg = getRegForValue(V);
828       return AM.Base.Reg != 0;
829     }
830     if (AM.IndexReg == 0) {
831       assert(AM.Scale == 1 && "Scale with no index!");
832       AM.IndexReg = getRegForValue(V);
833       return AM.IndexReg != 0;
834     }
835   }
836
837   return false;
838 }
839
840 /// X86SelectAddress - Attempt to fill in an address from the given value.
841 ///
842 bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {
843   SmallVector<const Value *, 32> GEPs;
844 redo_gep:
845   const User *U = nullptr;
846   unsigned Opcode = Instruction::UserOp1;
847   if (const Instruction *I = dyn_cast<Instruction>(V)) {
848     // Don't walk into other basic blocks; it's possible we haven't
849     // visited them yet, so the instructions may not yet be assigned
850     // virtual registers.
851     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) ||
852         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
853       Opcode = I->getOpcode();
854       U = I;
855     }
856   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
857     Opcode = C->getOpcode();
858     U = C;
859   }
860
861   if (PointerType *Ty = dyn_cast<PointerType>(V->getType()))
862     if (Ty->getAddressSpace() > 255)
863       // Fast instruction selection doesn't support the special
864       // address spaces.
865       return false;
866
867   switch (Opcode) {
868   default: break;
869   case Instruction::BitCast:
870     // Look past bitcasts.
871     return X86SelectAddress(U->getOperand(0), AM);
872
873   case Instruction::IntToPtr:
874     // Look past no-op inttoptrs.
875     if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
876         TLI.getPointerTy(DL))
877       return X86SelectAddress(U->getOperand(0), AM);
878     break;
879
880   case Instruction::PtrToInt:
881     // Look past no-op ptrtoints.
882     if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
883       return X86SelectAddress(U->getOperand(0), AM);
884     break;
885
886   case Instruction::Alloca: {
887     // Do static allocas.
888     const AllocaInst *A = cast<AllocaInst>(V);
889     DenseMap<const AllocaInst *, int>::iterator SI =
890       FuncInfo.StaticAllocaMap.find(A);
891     if (SI != FuncInfo.StaticAllocaMap.end()) {
892       AM.BaseType = X86AddressMode::FrameIndexBase;
893       AM.Base.FrameIndex = SI->second;
894       return true;
895     }
896     break;
897   }
898
899   case Instruction::Add: {
900     // Adds of constants are common and easy enough.
901     if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
902       uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
903       // They have to fit in the 32-bit signed displacement field though.
904       if (isInt<32>(Disp)) {
905         AM.Disp = (uint32_t)Disp;
906         return X86SelectAddress(U->getOperand(0), AM);
907       }
908     }
909     break;
910   }
911
912   case Instruction::GetElementPtr: {
913     X86AddressMode SavedAM = AM;
914
915     // Pattern-match simple GEPs.
916     uint64_t Disp = (int32_t)AM.Disp;
917     unsigned IndexReg = AM.IndexReg;
918     unsigned Scale = AM.Scale;
919     gep_type_iterator GTI = gep_type_begin(U);
920     // Iterate through the indices, folding what we can. Constants can be
921     // folded, and one dynamic index can be handled, if the scale is supported.
922     for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
923          i != e; ++i, ++GTI) {
924       const Value *Op = *i;
925       if (StructType *STy = GTI.getStructTypeOrNull()) {
926         const StructLayout *SL = DL.getStructLayout(STy);
927         Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue());
928         continue;
929       }
930
931       // A array/variable index is always of the form i*S where S is the
932       // constant scale size.  See if we can push the scale into immediates.
933       uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
934       for (;;) {
935         if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
936           // Constant-offset addressing.
937           Disp += CI->getSExtValue() * S;
938           break;
939         }
940         if (canFoldAddIntoGEP(U, Op)) {
941           // A compatible add with a constant operand. Fold the constant.
942           ConstantInt *CI =
943             cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
944           Disp += CI->getSExtValue() * S;
945           // Iterate on the other operand.
946           Op = cast<AddOperator>(Op)->getOperand(0);
947           continue;
948         }
949         if (IndexReg == 0 &&
950             (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
951             (S == 1 || S == 2 || S == 4 || S == 8)) {
952           // Scaled-index addressing.
953           Scale = S;
954           IndexReg = getRegForGEPIndex(Op).first;
955           if (IndexReg == 0)
956             return false;
957           break;
958         }
959         // Unsupported.
960         goto unsupported_gep;
961       }
962     }
963
964     // Check for displacement overflow.
965     if (!isInt<32>(Disp))
966       break;
967
968     AM.IndexReg = IndexReg;
969     AM.Scale = Scale;
970     AM.Disp = (uint32_t)Disp;
971     GEPs.push_back(V);
972
973     if (const GetElementPtrInst *GEP =
974           dyn_cast<GetElementPtrInst>(U->getOperand(0))) {
975       // Ok, the GEP indices were covered by constant-offset and scaled-index
976       // addressing. Update the address state and move on to examining the base.
977       V = GEP;
978       goto redo_gep;
979     } else if (X86SelectAddress(U->getOperand(0), AM)) {
980       return true;
981     }
982
983     // If we couldn't merge the gep value into this addr mode, revert back to
984     // our address and just match the value instead of completely failing.
985     AM = SavedAM;
986
987     for (const Value *I : reverse(GEPs))
988       if (handleConstantAddresses(I, AM))
989         return true;
990
991     return false;
992   unsupported_gep:
993     // Ok, the GEP indices weren't all covered.
994     break;
995   }
996   }
997
998   return handleConstantAddresses(V, AM);
999 }
1000
1001 /// X86SelectCallAddress - Attempt to fill in an address from the given value.
1002 ///
1003 bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) {
1004   const User *U = nullptr;
1005   unsigned Opcode = Instruction::UserOp1;
1006   const Instruction *I = dyn_cast<Instruction>(V);
1007   // Record if the value is defined in the same basic block.
1008   //
1009   // This information is crucial to know whether or not folding an
1010   // operand is valid.
1011   // Indeed, FastISel generates or reuses a virtual register for all
1012   // operands of all instructions it selects. Obviously, the definition and
1013   // its uses must use the same virtual register otherwise the produced
1014   // code is incorrect.
1015   // Before instruction selection, FunctionLoweringInfo::set sets the virtual
1016   // registers for values that are alive across basic blocks. This ensures
1017   // that the values are consistently set between across basic block, even
1018   // if different instruction selection mechanisms are used (e.g., a mix of
1019   // SDISel and FastISel).
1020   // For values local to a basic block, the instruction selection process
1021   // generates these virtual registers with whatever method is appropriate
1022   // for its needs. In particular, FastISel and SDISel do not share the way
1023   // local virtual registers are set.
1024   // Therefore, this is impossible (or at least unsafe) to share values
1025   // between basic blocks unless they use the same instruction selection
1026   // method, which is not guarantee for X86.
1027   // Moreover, things like hasOneUse could not be used accurately, if we
1028   // allow to reference values across basic blocks whereas they are not
1029   // alive across basic blocks initially.
1030   bool InMBB = true;
1031   if (I) {
1032     Opcode = I->getOpcode();
1033     U = I;
1034     InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock();
1035   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
1036     Opcode = C->getOpcode();
1037     U = C;
1038   }
1039
1040   switch (Opcode) {
1041   default: break;
1042   case Instruction::BitCast:
1043     // Look past bitcasts if its operand is in the same BB.
1044     if (InMBB)
1045       return X86SelectCallAddress(U->getOperand(0), AM);
1046     break;
1047
1048   case Instruction::IntToPtr:
1049     // Look past no-op inttoptrs if its operand is in the same BB.
1050     if (InMBB &&
1051         TLI.getValueType(DL, U->getOperand(0)->getType()) ==
1052             TLI.getPointerTy(DL))
1053       return X86SelectCallAddress(U->getOperand(0), AM);
1054     break;
1055
1056   case Instruction::PtrToInt:
1057     // Look past no-op ptrtoints if its operand is in the same BB.
1058     if (InMBB && TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
1059       return X86SelectCallAddress(U->getOperand(0), AM);
1060     break;
1061   }
1062
1063   // Handle constant address.
1064   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1065     // Can't handle alternate code models yet.
1066     if (TM.getCodeModel() != CodeModel::Small)
1067       return false;
1068
1069     // RIP-relative addresses can't have additional register operands.
1070     if (Subtarget->isPICStyleRIPRel() &&
1071         (AM.Base.Reg != 0 || AM.IndexReg != 0))
1072       return false;
1073
1074     // Can't handle TLS.
1075     if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
1076       if (GVar->isThreadLocal())
1077         return false;
1078
1079     // Okay, we've committed to selecting this global. Set up the basic address.
1080     AM.GV = GV;
1081
1082     // Return a direct reference to the global. Fastisel can handle calls to
1083     // functions that require loads, such as dllimport and nonlazybind
1084     // functions.
1085     if (Subtarget->isPICStyleRIPRel()) {
1086       // Use rip-relative addressing if we can.  Above we verified that the
1087       // base and index registers are unused.
1088       assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
1089       AM.Base.Reg = X86::RIP;
1090     } else {
1091       AM.GVOpFlags = Subtarget->classifyLocalReference(nullptr);
1092     }
1093
1094     return true;
1095   }
1096
1097   // If all else fails, try to materialize the value in a register.
1098   if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
1099     if (AM.Base.Reg == 0) {
1100       AM.Base.Reg = getRegForValue(V);
1101       return AM.Base.Reg != 0;
1102     }
1103     if (AM.IndexReg == 0) {
1104       assert(AM.Scale == 1 && "Scale with no index!");
1105       AM.IndexReg = getRegForValue(V);
1106       return AM.IndexReg != 0;
1107     }
1108   }
1109
1110   return false;
1111 }
1112
1113
1114 /// X86SelectStore - Select and emit code to implement store instructions.
1115 bool X86FastISel::X86SelectStore(const Instruction *I) {
1116   // Atomic stores need special handling.
1117   const StoreInst *S = cast<StoreInst>(I);
1118
1119   if (S->isAtomic())
1120     return false;
1121
1122   const Value *PtrV = I->getOperand(1);
1123   if (TLI.supportSwiftError()) {
1124     // Swifterror values can come from either a function parameter with
1125     // swifterror attribute or an alloca with swifterror attribute.
1126     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
1127       if (Arg->hasSwiftErrorAttr())
1128         return false;
1129     }
1130
1131     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
1132       if (Alloca->isSwiftError())
1133         return false;
1134     }
1135   }
1136
1137   const Value *Val = S->getValueOperand();
1138   const Value *Ptr = S->getPointerOperand();
1139
1140   MVT VT;
1141   if (!isTypeLegal(Val->getType(), VT, /*AllowI1=*/true))
1142     return false;
1143
1144   unsigned Alignment = S->getAlignment();
1145   unsigned ABIAlignment = DL.getABITypeAlignment(Val->getType());
1146   if (Alignment == 0) // Ensure that codegen never sees alignment 0
1147     Alignment = ABIAlignment;
1148   bool Aligned = Alignment >= ABIAlignment;
1149
1150   X86AddressMode AM;
1151   if (!X86SelectAddress(Ptr, AM))
1152     return false;
1153
1154   return X86FastEmitStore(VT, Val, AM, createMachineMemOperandFor(I), Aligned);
1155 }
1156
1157 /// X86SelectRet - Select and emit code to implement ret instructions.
1158 bool X86FastISel::X86SelectRet(const Instruction *I) {
1159   const ReturnInst *Ret = cast<ReturnInst>(I);
1160   const Function &F = *I->getParent()->getParent();
1161   const X86MachineFunctionInfo *X86MFInfo =
1162       FuncInfo.MF->getInfo<X86MachineFunctionInfo>();
1163
1164   if (!FuncInfo.CanLowerReturn)
1165     return false;
1166
1167   if (TLI.supportSwiftError() &&
1168       F.getAttributes().hasAttrSomewhere(Attribute::SwiftError))
1169     return false;
1170
1171   if (TLI.supportSplitCSR(FuncInfo.MF))
1172     return false;
1173
1174   CallingConv::ID CC = F.getCallingConv();
1175   if (CC != CallingConv::C &&
1176       CC != CallingConv::Fast &&
1177       CC != CallingConv::X86_FastCall &&
1178       CC != CallingConv::X86_StdCall &&
1179       CC != CallingConv::X86_ThisCall &&
1180       CC != CallingConv::X86_64_SysV &&
1181       CC != CallingConv::Win64)
1182     return false;
1183
1184   // Don't handle popping bytes if they don't fit the ret's immediate.
1185   if (!isUInt<16>(X86MFInfo->getBytesToPopOnReturn()))
1186     return false;
1187
1188   // fastcc with -tailcallopt is intended to provide a guaranteed
1189   // tail call optimization. Fastisel doesn't know how to do that.
1190   if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
1191     return false;
1192
1193   // Let SDISel handle vararg functions.
1194   if (F.isVarArg())
1195     return false;
1196
1197   // Build a list of return value registers.
1198   SmallVector<unsigned, 4> RetRegs;
1199
1200   if (Ret->getNumOperands() > 0) {
1201     SmallVector<ISD::OutputArg, 4> Outs;
1202     GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
1203
1204     // Analyze operands of the call, assigning locations to each operand.
1205     SmallVector<CCValAssign, 16> ValLocs;
1206     CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
1207     CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1208
1209     const Value *RV = Ret->getOperand(0);
1210     unsigned Reg = getRegForValue(RV);
1211     if (Reg == 0)
1212       return false;
1213
1214     // Only handle a single return value for now.
1215     if (ValLocs.size() != 1)
1216       return false;
1217
1218     CCValAssign &VA = ValLocs[0];
1219
1220     // Don't bother handling odd stuff for now.
1221     if (VA.getLocInfo() != CCValAssign::Full)
1222       return false;
1223     // Only handle register returns for now.
1224     if (!VA.isRegLoc())
1225       return false;
1226
1227     // The calling-convention tables for x87 returns don't tell
1228     // the whole story.
1229     if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1)
1230       return false;
1231
1232     unsigned SrcReg = Reg + VA.getValNo();
1233     EVT SrcVT = TLI.getValueType(DL, RV->getType());
1234     EVT DstVT = VA.getValVT();
1235     // Special handling for extended integers.
1236     if (SrcVT != DstVT) {
1237       if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16)
1238         return false;
1239
1240       if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
1241         return false;
1242
1243       assert(DstVT == MVT::i32 && "X86 should always ext to i32");
1244
1245       if (SrcVT == MVT::i1) {
1246         if (Outs[0].Flags.isSExt())
1247           return false;
1248         SrcReg = fastEmitZExtFromI1(MVT::i8, SrcReg, /*TODO: Kill=*/false);
1249         SrcVT = MVT::i8;
1250       }
1251       unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND :
1252                                              ISD::SIGN_EXTEND;
1253       SrcReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op,
1254                           SrcReg, /*TODO: Kill=*/false);
1255     }
1256
1257     // Make the copy.
1258     unsigned DstReg = VA.getLocReg();
1259     const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg);
1260     // Avoid a cross-class copy. This is very unlikely.
1261     if (!SrcRC->contains(DstReg))
1262       return false;
1263     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1264             TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
1265
1266     // Add register to return instruction.
1267     RetRegs.push_back(VA.getLocReg());
1268   }
1269
1270   // Swift calling convention does not require we copy the sret argument
1271   // into %rax/%eax for the return, and SRetReturnReg is not set for Swift.
1272
1273   // All x86 ABIs require that for returning structs by value we copy
1274   // the sret argument into %rax/%eax (depending on ABI) for the return.
1275   // We saved the argument into a virtual register in the entry block,
1276   // so now we copy the value out and into %rax/%eax.
1277   if (F.hasStructRetAttr() && CC != CallingConv::Swift) {
1278     unsigned Reg = X86MFInfo->getSRetReturnReg();
1279     assert(Reg &&
1280            "SRetReturnReg should have been set in LowerFormalArguments()!");
1281     unsigned RetReg = Subtarget->isTarget64BitLP64() ? X86::RAX : X86::EAX;
1282     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1283             TII.get(TargetOpcode::COPY), RetReg).addReg(Reg);
1284     RetRegs.push_back(RetReg);
1285   }
1286
1287   // Now emit the RET.
1288   MachineInstrBuilder MIB;
1289   if (X86MFInfo->getBytesToPopOnReturn()) {
1290     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1291                   TII.get(Subtarget->is64Bit() ? X86::RETIQ : X86::RETIL))
1292               .addImm(X86MFInfo->getBytesToPopOnReturn());
1293   } else {
1294     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1295                   TII.get(Subtarget->is64Bit() ? X86::RETQ : X86::RETL));
1296   }
1297   for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1298     MIB.addReg(RetRegs[i], RegState::Implicit);
1299   return true;
1300 }
1301
1302 /// X86SelectLoad - Select and emit code to implement load instructions.
1303 ///
1304 bool X86FastISel::X86SelectLoad(const Instruction *I) {
1305   const LoadInst *LI = cast<LoadInst>(I);
1306
1307   // Atomic loads need special handling.
1308   if (LI->isAtomic())
1309     return false;
1310
1311   const Value *SV = I->getOperand(0);
1312   if (TLI.supportSwiftError()) {
1313     // Swifterror values can come from either a function parameter with
1314     // swifterror attribute or an alloca with swifterror attribute.
1315     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
1316       if (Arg->hasSwiftErrorAttr())
1317         return false;
1318     }
1319
1320     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
1321       if (Alloca->isSwiftError())
1322         return false;
1323     }
1324   }
1325
1326   MVT VT;
1327   if (!isTypeLegal(LI->getType(), VT, /*AllowI1=*/true))
1328     return false;
1329
1330   const Value *Ptr = LI->getPointerOperand();
1331
1332   X86AddressMode AM;
1333   if (!X86SelectAddress(Ptr, AM))
1334     return false;
1335
1336   unsigned Alignment = LI->getAlignment();
1337   unsigned ABIAlignment = DL.getABITypeAlignment(LI->getType());
1338   if (Alignment == 0) // Ensure that codegen never sees alignment 0
1339     Alignment = ABIAlignment;
1340
1341   unsigned ResultReg = 0;
1342   if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg,
1343                        Alignment))
1344     return false;
1345
1346   updateValueMap(I, ResultReg);
1347   return true;
1348 }
1349
1350 static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) {
1351   bool HasAVX512 = Subtarget->hasAVX512();
1352   bool HasAVX = Subtarget->hasAVX();
1353   bool X86ScalarSSEf32 = Subtarget->hasSSE1();
1354   bool X86ScalarSSEf64 = Subtarget->hasSSE2();
1355
1356   switch (VT.getSimpleVT().SimpleTy) {
1357   default:       return 0;
1358   case MVT::i8:  return X86::CMP8rr;
1359   case MVT::i16: return X86::CMP16rr;
1360   case MVT::i32: return X86::CMP32rr;
1361   case MVT::i64: return X86::CMP64rr;
1362   case MVT::f32:
1363     return X86ScalarSSEf32
1364                ? (HasAVX512 ? X86::VUCOMISSZrr
1365                             : HasAVX ? X86::VUCOMISSrr : X86::UCOMISSrr)
1366                : 0;
1367   case MVT::f64:
1368     return X86ScalarSSEf64
1369                ? (HasAVX512 ? X86::VUCOMISDZrr
1370                             : HasAVX ? X86::VUCOMISDrr : X86::UCOMISDrr)
1371                : 0;
1372   }
1373 }
1374
1375 /// If we have a comparison with RHS as the RHS  of the comparison, return an
1376 /// opcode that works for the compare (e.g. CMP32ri) otherwise return 0.
1377 static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) {
1378   int64_t Val = RHSC->getSExtValue();
1379   switch (VT.getSimpleVT().SimpleTy) {
1380   // Otherwise, we can't fold the immediate into this comparison.
1381   default:
1382     return 0;
1383   case MVT::i8:
1384     return X86::CMP8ri;
1385   case MVT::i16:
1386     if (isInt<8>(Val))
1387       return X86::CMP16ri8;
1388     return X86::CMP16ri;
1389   case MVT::i32:
1390     if (isInt<8>(Val))
1391       return X86::CMP32ri8;
1392     return X86::CMP32ri;
1393   case MVT::i64:
1394     if (isInt<8>(Val))
1395       return X86::CMP64ri8;
1396     // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
1397     // field.
1398     if (isInt<32>(Val))
1399       return X86::CMP64ri32;
1400     return 0;
1401   }
1402 }
1403
1404 bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1, EVT VT,
1405                                      const DebugLoc &CurDbgLoc) {
1406   unsigned Op0Reg = getRegForValue(Op0);
1407   if (Op0Reg == 0) return false;
1408
1409   // Handle 'null' like i32/i64 0.
1410   if (isa<ConstantPointerNull>(Op1))
1411     Op1 = Constant::getNullValue(DL.getIntPtrType(Op0->getContext()));
1412
1413   // We have two options: compare with register or immediate.  If the RHS of
1414   // the compare is an immediate that we can fold into this compare, use
1415   // CMPri, otherwise use CMPrr.
1416   if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1417     if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
1418       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareImmOpc))
1419         .addReg(Op0Reg)
1420         .addImm(Op1C->getSExtValue());
1421       return true;
1422     }
1423   }
1424
1425   unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget);
1426   if (CompareOpc == 0) return false;
1427
1428   unsigned Op1Reg = getRegForValue(Op1);
1429   if (Op1Reg == 0) return false;
1430   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareOpc))
1431     .addReg(Op0Reg)
1432     .addReg(Op1Reg);
1433
1434   return true;
1435 }
1436
1437 bool X86FastISel::X86SelectCmp(const Instruction *I) {
1438   const CmpInst *CI = cast<CmpInst>(I);
1439
1440   MVT VT;
1441   if (!isTypeLegal(I->getOperand(0)->getType(), VT))
1442     return false;
1443
1444   // Try to optimize or fold the cmp.
1445   CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1446   unsigned ResultReg = 0;
1447   switch (Predicate) {
1448   default: break;
1449   case CmpInst::FCMP_FALSE: {
1450     ResultReg = createResultReg(&X86::GR32RegClass);
1451     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV32r0),
1452             ResultReg);
1453     ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultReg, /*Kill=*/true,
1454                                            X86::sub_8bit);
1455     if (!ResultReg)
1456       return false;
1457     break;
1458   }
1459   case CmpInst::FCMP_TRUE: {
1460     ResultReg = createResultReg(&X86::GR8RegClass);
1461     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
1462             ResultReg).addImm(1);
1463     break;
1464   }
1465   }
1466
1467   if (ResultReg) {
1468     updateValueMap(I, ResultReg);
1469     return true;
1470   }
1471
1472   const Value *LHS = CI->getOperand(0);
1473   const Value *RHS = CI->getOperand(1);
1474
1475   // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
1476   // We don't have to materialize a zero constant for this case and can just use
1477   // %x again on the RHS.
1478   if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1479     const auto *RHSC = dyn_cast<ConstantFP>(RHS);
1480     if (RHSC && RHSC->isNullValue())
1481       RHS = LHS;
1482   }
1483
1484   // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
1485   static const uint16_t SETFOpcTable[2][3] = {
1486     { X86::SETEr,  X86::SETNPr, X86::AND8rr },
1487     { X86::SETNEr, X86::SETPr,  X86::OR8rr  }
1488   };
1489   const uint16_t *SETFOpc = nullptr;
1490   switch (Predicate) {
1491   default: break;
1492   case CmpInst::FCMP_OEQ: SETFOpc = &SETFOpcTable[0][0]; break;
1493   case CmpInst::FCMP_UNE: SETFOpc = &SETFOpcTable[1][0]; break;
1494   }
1495
1496   ResultReg = createResultReg(&X86::GR8RegClass);
1497   if (SETFOpc) {
1498     if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
1499       return false;
1500
1501     unsigned FlagReg1 = createResultReg(&X86::GR8RegClass);
1502     unsigned FlagReg2 = createResultReg(&X86::GR8RegClass);
1503     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[0]),
1504             FlagReg1);
1505     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[1]),
1506             FlagReg2);
1507     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[2]),
1508             ResultReg).addReg(FlagReg1).addReg(FlagReg2);
1509     updateValueMap(I, ResultReg);
1510     return true;
1511   }
1512
1513   X86::CondCode CC;
1514   bool SwapArgs;
1515   std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate);
1516   assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1517   unsigned Opc = X86::getSETFromCond(CC);
1518
1519   if (SwapArgs)
1520     std::swap(LHS, RHS);
1521
1522   // Emit a compare of LHS/RHS.
1523   if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
1524     return false;
1525
1526   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
1527   updateValueMap(I, ResultReg);
1528   return true;
1529 }
1530
1531 bool X86FastISel::X86SelectZExt(const Instruction *I) {
1532   EVT DstVT = TLI.getValueType(DL, I->getType());
1533   if (!TLI.isTypeLegal(DstVT))
1534     return false;
1535
1536   unsigned ResultReg = getRegForValue(I->getOperand(0));
1537   if (ResultReg == 0)
1538     return false;
1539
1540   // Handle zero-extension from i1 to i8, which is common.
1541   MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
1542   if (SrcVT == MVT::i1) {
1543     // Set the high bits to zero.
1544     ResultReg = fastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false);
1545     SrcVT = MVT::i8;
1546
1547     if (ResultReg == 0)
1548       return false;
1549   }
1550
1551   if (DstVT == MVT::i64) {
1552     // Handle extension to 64-bits via sub-register shenanigans.
1553     unsigned MovInst;
1554
1555     switch (SrcVT.SimpleTy) {
1556     case MVT::i8:  MovInst = X86::MOVZX32rr8;  break;
1557     case MVT::i16: MovInst = X86::MOVZX32rr16; break;
1558     case MVT::i32: MovInst = X86::MOV32rr;     break;
1559     default: llvm_unreachable("Unexpected zext to i64 source type");
1560     }
1561
1562     unsigned Result32 = createResultReg(&X86::GR32RegClass);
1563     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovInst), Result32)
1564       .addReg(ResultReg);
1565
1566     ResultReg = createResultReg(&X86::GR64RegClass);
1567     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::SUBREG_TO_REG),
1568             ResultReg)
1569       .addImm(0).addReg(Result32).addImm(X86::sub_32bit);
1570   } else if (DstVT == MVT::i16) {
1571     // i8->i16 doesn't exist in the autogenerated isel table. Need to zero
1572     // extend to 32-bits and then extract down to 16-bits.
1573     unsigned Result32 = createResultReg(&X86::GR32RegClass);
1574     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOVZX32rr8),
1575             Result32).addReg(ResultReg);
1576
1577     ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, /*Kill=*/true,
1578                                            X86::sub_16bit);
1579   } else if (DstVT != MVT::i8) {
1580     ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND,
1581                            ResultReg, /*Kill=*/true);
1582     if (ResultReg == 0)
1583       return false;
1584   }
1585
1586   updateValueMap(I, ResultReg);
1587   return true;
1588 }
1589
1590 bool X86FastISel::X86SelectSExt(const Instruction *I) {
1591   EVT DstVT = TLI.getValueType(DL, I->getType());
1592   if (!TLI.isTypeLegal(DstVT))
1593     return false;
1594
1595   unsigned ResultReg = getRegForValue(I->getOperand(0));
1596   if (ResultReg == 0)
1597     return false;
1598
1599   // Handle sign-extension from i1 to i8.
1600   MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
1601   if (SrcVT == MVT::i1) {
1602     // Set the high bits to zero.
1603     unsigned ZExtReg = fastEmitZExtFromI1(MVT::i8, ResultReg,
1604                                           /*TODO: Kill=*/false);
1605     if (ZExtReg == 0)
1606       return false;
1607
1608     // Negate the result to make an 8-bit sign extended value.
1609     ResultReg = createResultReg(&X86::GR8RegClass);
1610     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::NEG8r),
1611             ResultReg).addReg(ZExtReg);
1612
1613     SrcVT = MVT::i8;
1614   }
1615
1616   if (DstVT == MVT::i16) {
1617     // i8->i16 doesn't exist in the autogenerated isel table. Need to sign
1618     // extend to 32-bits and then extract down to 16-bits.
1619     unsigned Result32 = createResultReg(&X86::GR32RegClass);
1620     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOVSX32rr8),
1621             Result32).addReg(ResultReg);
1622
1623     ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, /*Kill=*/true,
1624                                            X86::sub_16bit);
1625   } else if (DstVT != MVT::i8) {
1626     ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::SIGN_EXTEND,
1627                            ResultReg, /*Kill=*/true);
1628     if (ResultReg == 0)
1629       return false;
1630   }
1631
1632   updateValueMap(I, ResultReg);
1633   return true;
1634 }
1635
1636 bool X86FastISel::X86SelectBranch(const Instruction *I) {
1637   // Unconditional branches are selected by tablegen-generated code.
1638   // Handle a conditional branch.
1639   const BranchInst *BI = cast<BranchInst>(I);
1640   MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1641   MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1642
1643   // Fold the common case of a conditional branch with a comparison
1644   // in the same block (values defined on other blocks may not have
1645   // initialized registers).
1646   X86::CondCode CC;
1647   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1648     if (CI->hasOneUse() && CI->getParent() == I->getParent()) {
1649       EVT VT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1650
1651       // Try to optimize or fold the cmp.
1652       CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1653       switch (Predicate) {
1654       default: break;
1655       case CmpInst::FCMP_FALSE: fastEmitBranch(FalseMBB, DbgLoc); return true;
1656       case CmpInst::FCMP_TRUE:  fastEmitBranch(TrueMBB, DbgLoc); return true;
1657       }
1658
1659       const Value *CmpLHS = CI->getOperand(0);
1660       const Value *CmpRHS = CI->getOperand(1);
1661
1662       // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x,
1663       // 0.0.
1664       // We don't have to materialize a zero constant for this case and can just
1665       // use %x again on the RHS.
1666       if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1667         const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
1668         if (CmpRHSC && CmpRHSC->isNullValue())
1669           CmpRHS = CmpLHS;
1670       }
1671
1672       // Try to take advantage of fallthrough opportunities.
1673       if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1674         std::swap(TrueMBB, FalseMBB);
1675         Predicate = CmpInst::getInversePredicate(Predicate);
1676       }
1677
1678       // FCMP_OEQ and FCMP_UNE cannot be expressed with a single flag/condition
1679       // code check. Instead two branch instructions are required to check all
1680       // the flags. First we change the predicate to a supported condition code,
1681       // which will be the first branch. Later one we will emit the second
1682       // branch.
1683       bool NeedExtraBranch = false;
1684       switch (Predicate) {
1685       default: break;
1686       case CmpInst::FCMP_OEQ:
1687         std::swap(TrueMBB, FalseMBB);
1688         LLVM_FALLTHROUGH;
1689       case CmpInst::FCMP_UNE:
1690         NeedExtraBranch = true;
1691         Predicate = CmpInst::FCMP_ONE;
1692         break;
1693       }
1694
1695       bool SwapArgs;
1696       unsigned BranchOpc;
1697       std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate);
1698       assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1699
1700       BranchOpc = X86::GetCondBranchFromCond(CC);
1701       if (SwapArgs)
1702         std::swap(CmpLHS, CmpRHS);
1703
1704       // Emit a compare of the LHS and RHS, setting the flags.
1705       if (!X86FastEmitCompare(CmpLHS, CmpRHS, VT, CI->getDebugLoc()))
1706         return false;
1707
1708       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BranchOpc))
1709         .addMBB(TrueMBB);
1710
1711       // X86 requires a second branch to handle UNE (and OEQ, which is mapped
1712       // to UNE above).
1713       if (NeedExtraBranch) {
1714         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JP_1))
1715           .addMBB(TrueMBB);
1716       }
1717
1718       finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1719       return true;
1720     }
1721   } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1722     // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which
1723     // typically happen for _Bool and C++ bools.
1724     MVT SourceVT;
1725     if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1726         isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) {
1727       unsigned TestOpc = 0;
1728       switch (SourceVT.SimpleTy) {
1729       default: break;
1730       case MVT::i8:  TestOpc = X86::TEST8ri; break;
1731       case MVT::i16: TestOpc = X86::TEST16ri; break;
1732       case MVT::i32: TestOpc = X86::TEST32ri; break;
1733       case MVT::i64: TestOpc = X86::TEST64ri32; break;
1734       }
1735       if (TestOpc) {
1736         unsigned OpReg = getRegForValue(TI->getOperand(0));
1737         if (OpReg == 0) return false;
1738
1739         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TestOpc))
1740           .addReg(OpReg).addImm(1);
1741
1742         unsigned JmpOpc = X86::JNE_1;
1743         if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1744           std::swap(TrueMBB, FalseMBB);
1745           JmpOpc = X86::JE_1;
1746         }
1747
1748         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(JmpOpc))
1749           .addMBB(TrueMBB);
1750
1751         finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1752         return true;
1753       }
1754     }
1755   } else if (foldX86XALUIntrinsic(CC, BI, BI->getCondition())) {
1756     // Fake request the condition, otherwise the intrinsic might be completely
1757     // optimized away.
1758     unsigned TmpReg = getRegForValue(BI->getCondition());
1759     if (TmpReg == 0)
1760       return false;
1761
1762     unsigned BranchOpc = X86::GetCondBranchFromCond(CC);
1763
1764     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BranchOpc))
1765       .addMBB(TrueMBB);
1766     finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1767     return true;
1768   }
1769
1770   // Otherwise do a clumsy setcc and re-test it.
1771   // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used
1772   // in an explicit cast, so make sure to handle that correctly.
1773   unsigned OpReg = getRegForValue(BI->getCondition());
1774   if (OpReg == 0) return false;
1775
1776   // In case OpReg is a K register, COPY to a GPR
1777   if (MRI.getRegClass(OpReg) == &X86::VK1RegClass) {
1778     unsigned KOpReg = OpReg;
1779     OpReg = createResultReg(&X86::GR32RegClass);
1780     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1781             TII.get(TargetOpcode::COPY), OpReg)
1782         .addReg(KOpReg);
1783     OpReg = fastEmitInst_extractsubreg(MVT::i8, OpReg, /*Kill=*/true,
1784                                        X86::sub_8bit);
1785   }
1786   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
1787       .addReg(OpReg)
1788       .addImm(1);
1789   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JNE_1))
1790     .addMBB(TrueMBB);
1791   finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1792   return true;
1793 }
1794
1795 bool X86FastISel::X86SelectShift(const Instruction *I) {
1796   unsigned CReg = 0, OpReg = 0;
1797   const TargetRegisterClass *RC = nullptr;
1798   if (I->getType()->isIntegerTy(8)) {
1799     CReg = X86::CL;
1800     RC = &X86::GR8RegClass;
1801     switch (I->getOpcode()) {
1802     case Instruction::LShr: OpReg = X86::SHR8rCL; break;
1803     case Instruction::AShr: OpReg = X86::SAR8rCL; break;
1804     case Instruction::Shl:  OpReg = X86::SHL8rCL; break;
1805     default: return false;
1806     }
1807   } else if (I->getType()->isIntegerTy(16)) {
1808     CReg = X86::CX;
1809     RC = &X86::GR16RegClass;
1810     switch (I->getOpcode()) {
1811     default: llvm_unreachable("Unexpected shift opcode");
1812     case Instruction::LShr: OpReg = X86::SHR16rCL; break;
1813     case Instruction::AShr: OpReg = X86::SAR16rCL; break;
1814     case Instruction::Shl:  OpReg = X86::SHL16rCL; break;
1815     }
1816   } else if (I->getType()->isIntegerTy(32)) {
1817     CReg = X86::ECX;
1818     RC = &X86::GR32RegClass;
1819     switch (I->getOpcode()) {
1820     default: llvm_unreachable("Unexpected shift opcode");
1821     case Instruction::LShr: OpReg = X86::SHR32rCL; break;
1822     case Instruction::AShr: OpReg = X86::SAR32rCL; break;
1823     case Instruction::Shl:  OpReg = X86::SHL32rCL; break;
1824     }
1825   } else if (I->getType()->isIntegerTy(64)) {
1826     CReg = X86::RCX;
1827     RC = &X86::GR64RegClass;
1828     switch (I->getOpcode()) {
1829     default: llvm_unreachable("Unexpected shift opcode");
1830     case Instruction::LShr: OpReg = X86::SHR64rCL; break;
1831     case Instruction::AShr: OpReg = X86::SAR64rCL; break;
1832     case Instruction::Shl:  OpReg = X86::SHL64rCL; break;
1833     }
1834   } else {
1835     return false;
1836   }
1837
1838   MVT VT;
1839   if (!isTypeLegal(I->getType(), VT))
1840     return false;
1841
1842   unsigned Op0Reg = getRegForValue(I->getOperand(0));
1843   if (Op0Reg == 0) return false;
1844
1845   unsigned Op1Reg = getRegForValue(I->getOperand(1));
1846   if (Op1Reg == 0) return false;
1847   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
1848           CReg).addReg(Op1Reg);
1849
1850   // The shift instruction uses X86::CL. If we defined a super-register
1851   // of X86::CL, emit a subreg KILL to precisely describe what we're doing here.
1852   if (CReg != X86::CL)
1853     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1854             TII.get(TargetOpcode::KILL), X86::CL)
1855       .addReg(CReg, RegState::Kill);
1856
1857   unsigned ResultReg = createResultReg(RC);
1858   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(OpReg), ResultReg)
1859     .addReg(Op0Reg);
1860   updateValueMap(I, ResultReg);
1861   return true;
1862 }
1863
1864 bool X86FastISel::X86SelectDivRem(const Instruction *I) {
1865   const static unsigned NumTypes = 4; // i8, i16, i32, i64
1866   const static unsigned NumOps   = 4; // SDiv, SRem, UDiv, URem
1867   const static bool S = true;  // IsSigned
1868   const static bool U = false; // !IsSigned
1869   const static unsigned Copy = TargetOpcode::COPY;
1870   // For the X86 DIV/IDIV instruction, in most cases the dividend
1871   // (numerator) must be in a specific register pair highreg:lowreg,
1872   // producing the quotient in lowreg and the remainder in highreg.
1873   // For most data types, to set up the instruction, the dividend is
1874   // copied into lowreg, and lowreg is sign-extended or zero-extended
1875   // into highreg.  The exception is i8, where the dividend is defined
1876   // as a single register rather than a register pair, and we
1877   // therefore directly sign-extend or zero-extend the dividend into
1878   // lowreg, instead of copying, and ignore the highreg.
1879   const static struct DivRemEntry {
1880     // The following portion depends only on the data type.
1881     const TargetRegisterClass *RC;
1882     unsigned LowInReg;  // low part of the register pair
1883     unsigned HighInReg; // high part of the register pair
1884     // The following portion depends on both the data type and the operation.
1885     struct DivRemResult {
1886     unsigned OpDivRem;        // The specific DIV/IDIV opcode to use.
1887     unsigned OpSignExtend;    // Opcode for sign-extending lowreg into
1888                               // highreg, or copying a zero into highreg.
1889     unsigned OpCopy;          // Opcode for copying dividend into lowreg, or
1890                               // zero/sign-extending into lowreg for i8.
1891     unsigned DivRemResultReg; // Register containing the desired result.
1892     bool IsOpSigned;          // Whether to use signed or unsigned form.
1893     } ResultTable[NumOps];
1894   } OpTable[NumTypes] = {
1895     { &X86::GR8RegClass,  X86::AX,  0, {
1896         { X86::IDIV8r,  0,            X86::MOVSX16rr8, X86::AL,  S }, // SDiv
1897         { X86::IDIV8r,  0,            X86::MOVSX16rr8, X86::AH,  S }, // SRem
1898         { X86::DIV8r,   0,            X86::MOVZX16rr8, X86::AL,  U }, // UDiv
1899         { X86::DIV8r,   0,            X86::MOVZX16rr8, X86::AH,  U }, // URem
1900       }
1901     }, // i8
1902     { &X86::GR16RegClass, X86::AX,  X86::DX, {
1903         { X86::IDIV16r, X86::CWD,     Copy,            X86::AX,  S }, // SDiv
1904         { X86::IDIV16r, X86::CWD,     Copy,            X86::DX,  S }, // SRem
1905         { X86::DIV16r,  X86::MOV32r0, Copy,            X86::AX,  U }, // UDiv
1906         { X86::DIV16r,  X86::MOV32r0, Copy,            X86::DX,  U }, // URem
1907       }
1908     }, // i16
1909     { &X86::GR32RegClass, X86::EAX, X86::EDX, {
1910         { X86::IDIV32r, X86::CDQ,     Copy,            X86::EAX, S }, // SDiv
1911         { X86::IDIV32r, X86::CDQ,     Copy,            X86::EDX, S }, // SRem
1912         { X86::DIV32r,  X86::MOV32r0, Copy,            X86::EAX, U }, // UDiv
1913         { X86::DIV32r,  X86::MOV32r0, Copy,            X86::EDX, U }, // URem
1914       }
1915     }, // i32
1916     { &X86::GR64RegClass, X86::RAX, X86::RDX, {
1917         { X86::IDIV64r, X86::CQO,     Copy,            X86::RAX, S }, // SDiv
1918         { X86::IDIV64r, X86::CQO,     Copy,            X86::RDX, S }, // SRem
1919         { X86::DIV64r,  X86::MOV32r0, Copy,            X86::RAX, U }, // UDiv
1920         { X86::DIV64r,  X86::MOV32r0, Copy,            X86::RDX, U }, // URem
1921       }
1922     }, // i64
1923   };
1924
1925   MVT VT;
1926   if (!isTypeLegal(I->getType(), VT))
1927     return false;
1928
1929   unsigned TypeIndex, OpIndex;
1930   switch (VT.SimpleTy) {
1931   default: return false;
1932   case MVT::i8:  TypeIndex = 0; break;
1933   case MVT::i16: TypeIndex = 1; break;
1934   case MVT::i32: TypeIndex = 2; break;
1935   case MVT::i64: TypeIndex = 3;
1936     if (!Subtarget->is64Bit())
1937       return false;
1938     break;
1939   }
1940
1941   switch (I->getOpcode()) {
1942   default: llvm_unreachable("Unexpected div/rem opcode");
1943   case Instruction::SDiv: OpIndex = 0; break;
1944   case Instruction::SRem: OpIndex = 1; break;
1945   case Instruction::UDiv: OpIndex = 2; break;
1946   case Instruction::URem: OpIndex = 3; break;
1947   }
1948
1949   const DivRemEntry &TypeEntry = OpTable[TypeIndex];
1950   const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex];
1951   unsigned Op0Reg = getRegForValue(I->getOperand(0));
1952   if (Op0Reg == 0)
1953     return false;
1954   unsigned Op1Reg = getRegForValue(I->getOperand(1));
1955   if (Op1Reg == 0)
1956     return false;
1957
1958   // Move op0 into low-order input register.
1959   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1960           TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg);
1961   // Zero-extend or sign-extend into high-order input register.
1962   if (OpEntry.OpSignExtend) {
1963     if (OpEntry.IsOpSigned)
1964       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1965               TII.get(OpEntry.OpSignExtend));
1966     else {
1967       unsigned Zero32 = createResultReg(&X86::GR32RegClass);
1968       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1969               TII.get(X86::MOV32r0), Zero32);
1970
1971       // Copy the zero into the appropriate sub/super/identical physical
1972       // register. Unfortunately the operations needed are not uniform enough
1973       // to fit neatly into the table above.
1974       if (VT == MVT::i16) {
1975         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1976                 TII.get(Copy), TypeEntry.HighInReg)
1977           .addReg(Zero32, 0, X86::sub_16bit);
1978       } else if (VT == MVT::i32) {
1979         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1980                 TII.get(Copy), TypeEntry.HighInReg)
1981             .addReg(Zero32);
1982       } else if (VT == MVT::i64) {
1983         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1984                 TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg)
1985             .addImm(0).addReg(Zero32).addImm(X86::sub_32bit);
1986       }
1987     }
1988   }
1989   // Generate the DIV/IDIV instruction.
1990   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1991           TII.get(OpEntry.OpDivRem)).addReg(Op1Reg);
1992   // For i8 remainder, we can't reference ah directly, as we'll end
1993   // up with bogus copies like %r9b = COPY %ah. Reference ax
1994   // instead to prevent ah references in a rex instruction.
1995   //
1996   // The current assumption of the fast register allocator is that isel
1997   // won't generate explicit references to the GR8_NOREX registers. If
1998   // the allocator and/or the backend get enhanced to be more robust in
1999   // that regard, this can be, and should be, removed.
2000   unsigned ResultReg = 0;
2001   if ((I->getOpcode() == Instruction::SRem ||
2002        I->getOpcode() == Instruction::URem) &&
2003       OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) {
2004     unsigned SourceSuperReg = createResultReg(&X86::GR16RegClass);
2005     unsigned ResultSuperReg = createResultReg(&X86::GR16RegClass);
2006     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2007             TII.get(Copy), SourceSuperReg).addReg(X86::AX);
2008
2009     // Shift AX right by 8 bits instead of using AH.
2010     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SHR16ri),
2011             ResultSuperReg).addReg(SourceSuperReg).addImm(8);
2012
2013     // Now reference the 8-bit subreg of the result.
2014     ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultSuperReg,
2015                                            /*Kill=*/true, X86::sub_8bit);
2016   }
2017   // Copy the result out of the physreg if we haven't already.
2018   if (!ResultReg) {
2019     ResultReg = createResultReg(TypeEntry.RC);
2020     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Copy), ResultReg)
2021         .addReg(OpEntry.DivRemResultReg);
2022   }
2023   updateValueMap(I, ResultReg);
2024
2025   return true;
2026 }
2027
2028 /// Emit a conditional move instruction (if the are supported) to lower
2029 /// the select.
2030 bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) {
2031   // Check if the subtarget supports these instructions.
2032   if (!Subtarget->hasCMov())
2033     return false;
2034
2035   // FIXME: Add support for i8.
2036   if (RetVT < MVT::i16 || RetVT > MVT::i64)
2037     return false;
2038
2039   const Value *Cond = I->getOperand(0);
2040   const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2041   bool NeedTest = true;
2042   X86::CondCode CC = X86::COND_NE;
2043
2044   // Optimize conditions coming from a compare if both instructions are in the
2045   // same basic block (values defined in other basic blocks may not have
2046   // initialized registers).
2047   const auto *CI = dyn_cast<CmpInst>(Cond);
2048   if (CI && (CI->getParent() == I->getParent())) {
2049     CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2050
2051     // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
2052     static const uint16_t SETFOpcTable[2][3] = {
2053       { X86::SETNPr, X86::SETEr , X86::TEST8rr },
2054       { X86::SETPr,  X86::SETNEr, X86::OR8rr   }
2055     };
2056     const uint16_t *SETFOpc = nullptr;
2057     switch (Predicate) {
2058     default: break;
2059     case CmpInst::FCMP_OEQ:
2060       SETFOpc = &SETFOpcTable[0][0];
2061       Predicate = CmpInst::ICMP_NE;
2062       break;
2063     case CmpInst::FCMP_UNE:
2064       SETFOpc = &SETFOpcTable[1][0];
2065       Predicate = CmpInst::ICMP_NE;
2066       break;
2067     }
2068
2069     bool NeedSwap;
2070     std::tie(CC, NeedSwap) = X86::getX86ConditionCode(Predicate);
2071     assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
2072
2073     const Value *CmpLHS = CI->getOperand(0);
2074     const Value *CmpRHS = CI->getOperand(1);
2075     if (NeedSwap)
2076       std::swap(CmpLHS, CmpRHS);
2077
2078     EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
2079     // Emit a compare of the LHS and RHS, setting the flags.
2080     if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
2081       return false;
2082
2083     if (SETFOpc) {
2084       unsigned FlagReg1 = createResultReg(&X86::GR8RegClass);
2085       unsigned FlagReg2 = createResultReg(&X86::GR8RegClass);
2086       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[0]),
2087               FlagReg1);
2088       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[1]),
2089               FlagReg2);
2090       auto const &II = TII.get(SETFOpc[2]);
2091       if (II.getNumDefs()) {
2092         unsigned TmpReg = createResultReg(&X86::GR8RegClass);
2093         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, TmpReg)
2094           .addReg(FlagReg2).addReg(FlagReg1);
2095       } else {
2096         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2097           .addReg(FlagReg2).addReg(FlagReg1);
2098       }
2099     }
2100     NeedTest = false;
2101   } else if (foldX86XALUIntrinsic(CC, I, Cond)) {
2102     // Fake request the condition, otherwise the intrinsic might be completely
2103     // optimized away.
2104     unsigned TmpReg = getRegForValue(Cond);
2105     if (TmpReg == 0)
2106       return false;
2107
2108     NeedTest = false;
2109   }
2110
2111   if (NeedTest) {
2112     // Selects operate on i1, however, CondReg is 8 bits width and may contain
2113     // garbage. Indeed, only the less significant bit is supposed to be
2114     // accurate. If we read more than the lsb, we may see non-zero values
2115     // whereas lsb is zero. Therefore, we have to truncate Op0Reg to i1 for
2116     // the select. This is achieved by performing TEST against 1.
2117     unsigned CondReg = getRegForValue(Cond);
2118     if (CondReg == 0)
2119       return false;
2120     bool CondIsKill = hasTrivialKill(Cond);
2121
2122     // In case OpReg is a K register, COPY to a GPR
2123     if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) {
2124       unsigned KCondReg = CondReg;
2125       CondReg = createResultReg(&X86::GR32RegClass);
2126       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2127               TII.get(TargetOpcode::COPY), CondReg)
2128           .addReg(KCondReg, getKillRegState(CondIsKill));
2129       CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, /*Kill=*/true,
2130                                            X86::sub_8bit);
2131     }
2132     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
2133         .addReg(CondReg, getKillRegState(CondIsKill))
2134         .addImm(1);
2135   }
2136
2137   const Value *LHS = I->getOperand(1);
2138   const Value *RHS = I->getOperand(2);
2139
2140   unsigned RHSReg = getRegForValue(RHS);
2141   bool RHSIsKill = hasTrivialKill(RHS);
2142
2143   unsigned LHSReg = getRegForValue(LHS);
2144   bool LHSIsKill = hasTrivialKill(LHS);
2145
2146   if (!LHSReg || !RHSReg)
2147     return false;
2148
2149   const TargetRegisterInfo &TRI = *Subtarget->getRegisterInfo();
2150   unsigned Opc = X86::getCMovFromCond(CC, TRI.getRegSizeInBits(*RC)/8);
2151   unsigned ResultReg = fastEmitInst_rr(Opc, RC, RHSReg, RHSIsKill,
2152                                        LHSReg, LHSIsKill);
2153   updateValueMap(I, ResultReg);
2154   return true;
2155 }
2156
2157 /// Emit SSE or AVX instructions to lower the select.
2158 ///
2159 /// Try to use SSE1/SSE2 instructions to simulate a select without branches.
2160 /// This lowers fp selects into a CMP/AND/ANDN/OR sequence when the necessary
2161 /// SSE instructions are available. If AVX is available, try to use a VBLENDV.
2162 bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) {
2163   // Optimize conditions coming from a compare if both instructions are in the
2164   // same basic block (values defined in other basic blocks may not have
2165   // initialized registers).
2166   const auto *CI = dyn_cast<FCmpInst>(I->getOperand(0));
2167   if (!CI || (CI->getParent() != I->getParent()))
2168     return false;
2169
2170   if (I->getType() != CI->getOperand(0)->getType() ||
2171       !((Subtarget->hasSSE1() && RetVT == MVT::f32) ||
2172         (Subtarget->hasSSE2() && RetVT == MVT::f64)))
2173     return false;
2174
2175   const Value *CmpLHS = CI->getOperand(0);
2176   const Value *CmpRHS = CI->getOperand(1);
2177   CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2178
2179   // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
2180   // We don't have to materialize a zero constant for this case and can just use
2181   // %x again on the RHS.
2182   if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
2183     const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
2184     if (CmpRHSC && CmpRHSC->isNullValue())
2185       CmpRHS = CmpLHS;
2186   }
2187
2188   unsigned CC;
2189   bool NeedSwap;
2190   std::tie(CC, NeedSwap) = getX86SSEConditionCode(Predicate);
2191   if (CC > 7 && !Subtarget->hasAVX())
2192     return false;
2193
2194   if (NeedSwap)
2195     std::swap(CmpLHS, CmpRHS);
2196
2197   // Choose the SSE instruction sequence based on data type (float or double).
2198   static const uint16_t OpcTable[2][4] = {
2199     { X86::CMPSSrr,  X86::ANDPSrr,  X86::ANDNPSrr,  X86::ORPSrr  },
2200     { X86::CMPSDrr,  X86::ANDPDrr,  X86::ANDNPDrr,  X86::ORPDrr  }
2201   };
2202
2203   const uint16_t *Opc = nullptr;
2204   switch (RetVT.SimpleTy) {
2205   default: return false;
2206   case MVT::f32: Opc = &OpcTable[0][0]; break;
2207   case MVT::f64: Opc = &OpcTable[1][0]; break;
2208   }
2209
2210   const Value *LHS = I->getOperand(1);
2211   const Value *RHS = I->getOperand(2);
2212
2213   unsigned LHSReg = getRegForValue(LHS);
2214   bool LHSIsKill = hasTrivialKill(LHS);
2215
2216   unsigned RHSReg = getRegForValue(RHS);
2217   bool RHSIsKill = hasTrivialKill(RHS);
2218
2219   unsigned CmpLHSReg = getRegForValue(CmpLHS);
2220   bool CmpLHSIsKill = hasTrivialKill(CmpLHS);
2221
2222   unsigned CmpRHSReg = getRegForValue(CmpRHS);
2223   bool CmpRHSIsKill = hasTrivialKill(CmpRHS);
2224
2225   if (!LHSReg || !RHSReg || !CmpLHS || !CmpRHS)
2226     return false;
2227
2228   const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2229   unsigned ResultReg;
2230
2231   if (Subtarget->hasAVX512()) {
2232     // If we have AVX512 we can use a mask compare and masked movss/sd.
2233     const TargetRegisterClass *VR128X = &X86::VR128XRegClass;
2234     const TargetRegisterClass *VK1 = &X86::VK1RegClass;
2235
2236     unsigned CmpOpcode =
2237       (RetVT == MVT::f32) ? X86::VCMPSSZrr : X86::VCMPSDZrr;
2238     unsigned CmpReg = fastEmitInst_rri(CmpOpcode, VK1, CmpLHSReg, CmpLHSIsKill,
2239                                        CmpRHSReg, CmpRHSIsKill, CC);
2240
2241     // Need an IMPLICIT_DEF for the input that is used to generate the upper
2242     // bits of the result register since its not based on any of the inputs.
2243     unsigned ImplicitDefReg = createResultReg(VR128X);
2244     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2245             TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2246
2247     // Place RHSReg is the passthru of the masked movss/sd operation and put
2248     // LHS in the input. The mask input comes from the compare.
2249     unsigned MovOpcode =
2250       (RetVT == MVT::f32) ? X86::VMOVSSZrrk : X86::VMOVSDZrrk;
2251     unsigned MovReg = fastEmitInst_rrrr(MovOpcode, VR128X, RHSReg, RHSIsKill,
2252                                         CmpReg, true, ImplicitDefReg, true,
2253                                         LHSReg, LHSIsKill);
2254
2255     ResultReg = createResultReg(RC);
2256     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2257             TII.get(TargetOpcode::COPY), ResultReg).addReg(MovReg);
2258
2259   } else if (Subtarget->hasAVX()) {
2260     const TargetRegisterClass *VR128 = &X86::VR128RegClass;
2261
2262     // If we have AVX, create 1 blendv instead of 3 logic instructions.
2263     // Blendv was introduced with SSE 4.1, but the 2 register form implicitly
2264     // uses XMM0 as the selection register. That may need just as many
2265     // instructions as the AND/ANDN/OR sequence due to register moves, so
2266     // don't bother.
2267     unsigned CmpOpcode =
2268       (RetVT == MVT::f32) ? X86::VCMPSSrr : X86::VCMPSDrr;
2269     unsigned BlendOpcode =
2270       (RetVT == MVT::f32) ? X86::VBLENDVPSrr : X86::VBLENDVPDrr;
2271
2272     unsigned CmpReg = fastEmitInst_rri(CmpOpcode, RC, CmpLHSReg, CmpLHSIsKill,
2273                                        CmpRHSReg, CmpRHSIsKill, CC);
2274     unsigned VBlendReg = fastEmitInst_rrr(BlendOpcode, VR128, RHSReg, RHSIsKill,
2275                                           LHSReg, LHSIsKill, CmpReg, true);
2276     ResultReg = createResultReg(RC);
2277     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2278             TII.get(TargetOpcode::COPY), ResultReg).addReg(VBlendReg);
2279   } else {
2280     const TargetRegisterClass *VR128 = &X86::VR128RegClass;
2281     unsigned CmpReg = fastEmitInst_rri(Opc[0], RC, CmpLHSReg, CmpLHSIsKill,
2282                                        CmpRHSReg, CmpRHSIsKill, CC);
2283     unsigned AndReg = fastEmitInst_rr(Opc[1], VR128, CmpReg, /*IsKill=*/false,
2284                                       LHSReg, LHSIsKill);
2285     unsigned AndNReg = fastEmitInst_rr(Opc[2], VR128, CmpReg, /*IsKill=*/true,
2286                                        RHSReg, RHSIsKill);
2287     unsigned OrReg = fastEmitInst_rr(Opc[3], VR128, AndNReg, /*IsKill=*/true,
2288                                      AndReg, /*IsKill=*/true);
2289     ResultReg = createResultReg(RC);
2290     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2291             TII.get(TargetOpcode::COPY), ResultReg).addReg(OrReg);
2292   }
2293   updateValueMap(I, ResultReg);
2294   return true;
2295 }
2296
2297 bool X86FastISel::X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I) {
2298   // These are pseudo CMOV instructions and will be later expanded into control-
2299   // flow.
2300   unsigned Opc;
2301   switch (RetVT.SimpleTy) {
2302   default: return false;
2303   case MVT::i8:  Opc = X86::CMOV_GR8;  break;
2304   case MVT::i16: Opc = X86::CMOV_GR16; break;
2305   case MVT::i32: Opc = X86::CMOV_GR32; break;
2306   case MVT::f32: Opc = X86::CMOV_FR32; break;
2307   case MVT::f64: Opc = X86::CMOV_FR64; break;
2308   }
2309
2310   const Value *Cond = I->getOperand(0);
2311   X86::CondCode CC = X86::COND_NE;
2312
2313   // Optimize conditions coming from a compare if both instructions are in the
2314   // same basic block (values defined in other basic blocks may not have
2315   // initialized registers).
2316   const auto *CI = dyn_cast<CmpInst>(Cond);
2317   if (CI && (CI->getParent() == I->getParent())) {
2318     bool NeedSwap;
2319     std::tie(CC, NeedSwap) = X86::getX86ConditionCode(CI->getPredicate());
2320     if (CC > X86::LAST_VALID_COND)
2321       return false;
2322
2323     const Value *CmpLHS = CI->getOperand(0);
2324     const Value *CmpRHS = CI->getOperand(1);
2325
2326     if (NeedSwap)
2327       std::swap(CmpLHS, CmpRHS);
2328
2329     EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
2330     if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
2331       return false;
2332   } else {
2333     unsigned CondReg = getRegForValue(Cond);
2334     if (CondReg == 0)
2335       return false;
2336     bool CondIsKill = hasTrivialKill(Cond);
2337
2338     // In case OpReg is a K register, COPY to a GPR
2339     if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) {
2340       unsigned KCondReg = CondReg;
2341       CondReg = createResultReg(&X86::GR32RegClass);
2342       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2343               TII.get(TargetOpcode::COPY), CondReg)
2344           .addReg(KCondReg, getKillRegState(CondIsKill));
2345       CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, /*Kill=*/true,
2346                                            X86::sub_8bit);
2347     }
2348     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
2349         .addReg(CondReg, getKillRegState(CondIsKill))
2350         .addImm(1);
2351   }
2352
2353   const Value *LHS = I->getOperand(1);
2354   const Value *RHS = I->getOperand(2);
2355
2356   unsigned LHSReg = getRegForValue(LHS);
2357   bool LHSIsKill = hasTrivialKill(LHS);
2358
2359   unsigned RHSReg = getRegForValue(RHS);
2360   bool RHSIsKill = hasTrivialKill(RHS);
2361
2362   if (!LHSReg || !RHSReg)
2363     return false;
2364
2365   const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2366
2367   unsigned ResultReg =
2368     fastEmitInst_rri(Opc, RC, RHSReg, RHSIsKill, LHSReg, LHSIsKill, CC);
2369   updateValueMap(I, ResultReg);
2370   return true;
2371 }
2372
2373 bool X86FastISel::X86SelectSelect(const Instruction *I) {
2374   MVT RetVT;
2375   if (!isTypeLegal(I->getType(), RetVT))
2376     return false;
2377
2378   // Check if we can fold the select.
2379   if (const auto *CI = dyn_cast<CmpInst>(I->getOperand(0))) {
2380     CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2381     const Value *Opnd = nullptr;
2382     switch (Predicate) {
2383     default:                              break;
2384     case CmpInst::FCMP_FALSE: Opnd = I->getOperand(2); break;
2385     case CmpInst::FCMP_TRUE:  Opnd = I->getOperand(1); break;
2386     }
2387     // No need for a select anymore - this is an unconditional move.
2388     if (Opnd) {
2389       unsigned OpReg = getRegForValue(Opnd);
2390       if (OpReg == 0)
2391         return false;
2392       bool OpIsKill = hasTrivialKill(Opnd);
2393       const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2394       unsigned ResultReg = createResultReg(RC);
2395       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2396               TII.get(TargetOpcode::COPY), ResultReg)
2397         .addReg(OpReg, getKillRegState(OpIsKill));
2398       updateValueMap(I, ResultReg);
2399       return true;
2400     }
2401   }
2402
2403   // First try to use real conditional move instructions.
2404   if (X86FastEmitCMoveSelect(RetVT, I))
2405     return true;
2406
2407   // Try to use a sequence of SSE instructions to simulate a conditional move.
2408   if (X86FastEmitSSESelect(RetVT, I))
2409     return true;
2410
2411   // Fall-back to pseudo conditional move instructions, which will be later
2412   // converted to control-flow.
2413   if (X86FastEmitPseudoSelect(RetVT, I))
2414     return true;
2415
2416   return false;
2417 }
2418
2419 // Common code for X86SelectSIToFP and X86SelectUIToFP.
2420 bool X86FastISel::X86SelectIntToFP(const Instruction *I, bool IsSigned) {
2421   // The target-independent selection algorithm in FastISel already knows how
2422   // to select a SINT_TO_FP if the target is SSE but not AVX.
2423   // Early exit if the subtarget doesn't have AVX.
2424   // Unsigned conversion requires avx512.
2425   bool HasAVX512 = Subtarget->hasAVX512();
2426   if (!Subtarget->hasAVX() || (!IsSigned && !HasAVX512))
2427     return false;
2428
2429   // TODO: We could sign extend narrower types.
2430   MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
2431   if (SrcVT != MVT::i32 && SrcVT != MVT::i64)
2432     return false;
2433
2434   // Select integer to float/double conversion.
2435   unsigned OpReg = getRegForValue(I->getOperand(0));
2436   if (OpReg == 0)
2437     return false;
2438
2439   unsigned Opcode;
2440
2441   static const uint16_t SCvtOpc[2][2][2] = {
2442     { { X86::VCVTSI2SSrr,  X86::VCVTSI642SSrr },
2443       { X86::VCVTSI2SDrr,  X86::VCVTSI642SDrr } },
2444     { { X86::VCVTSI2SSZrr, X86::VCVTSI642SSZrr },
2445       { X86::VCVTSI2SDZrr, X86::VCVTSI642SDZrr } },
2446   };
2447   static const uint16_t UCvtOpc[2][2] = {
2448     { X86::VCVTUSI2SSZrr, X86::VCVTUSI642SSZrr },
2449     { X86::VCVTUSI2SDZrr, X86::VCVTUSI642SDZrr },
2450   };
2451   bool Is64Bit = SrcVT == MVT::i64;
2452
2453   if (I->getType()->isDoubleTy()) {
2454     // s/uitofp int -> double
2455     Opcode = IsSigned ? SCvtOpc[HasAVX512][1][Is64Bit] : UCvtOpc[1][Is64Bit];
2456   } else if (I->getType()->isFloatTy()) {
2457     // s/uitofp int -> float
2458     Opcode = IsSigned ? SCvtOpc[HasAVX512][0][Is64Bit] : UCvtOpc[0][Is64Bit];
2459   } else
2460     return false;
2461
2462   MVT DstVT = TLI.getValueType(DL, I->getType()).getSimpleVT();
2463   const TargetRegisterClass *RC = TLI.getRegClassFor(DstVT);
2464   unsigned ImplicitDefReg = createResultReg(RC);
2465   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2466           TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2467   unsigned ResultReg =
2468       fastEmitInst_rr(Opcode, RC, ImplicitDefReg, true, OpReg, false);
2469   updateValueMap(I, ResultReg);
2470   return true;
2471 }
2472
2473 bool X86FastISel::X86SelectSIToFP(const Instruction *I) {
2474   return X86SelectIntToFP(I, /*IsSigned*/true);
2475 }
2476
2477 bool X86FastISel::X86SelectUIToFP(const Instruction *I) {
2478   return X86SelectIntToFP(I, /*IsSigned*/false);
2479 }
2480
2481 // Helper method used by X86SelectFPExt and X86SelectFPTrunc.
2482 bool X86FastISel::X86SelectFPExtOrFPTrunc(const Instruction *I,
2483                                           unsigned TargetOpc,
2484                                           const TargetRegisterClass *RC) {
2485   assert((I->getOpcode() == Instruction::FPExt ||
2486           I->getOpcode() == Instruction::FPTrunc) &&
2487          "Instruction must be an FPExt or FPTrunc!");
2488
2489   unsigned OpReg = getRegForValue(I->getOperand(0));
2490   if (OpReg == 0)
2491     return false;
2492
2493   unsigned ImplicitDefReg;
2494   if (Subtarget->hasAVX()) {
2495     ImplicitDefReg = createResultReg(RC);
2496     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2497             TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2498
2499   }
2500
2501   unsigned ResultReg = createResultReg(RC);
2502   MachineInstrBuilder MIB;
2503   MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpc),
2504                 ResultReg);
2505
2506   if (Subtarget->hasAVX())
2507     MIB.addReg(ImplicitDefReg);
2508
2509   MIB.addReg(OpReg);
2510   updateValueMap(I, ResultReg);
2511   return true;
2512 }
2513
2514 bool X86FastISel::X86SelectFPExt(const Instruction *I) {
2515   if (X86ScalarSSEf64 && I->getType()->isDoubleTy() &&
2516       I->getOperand(0)->getType()->isFloatTy()) {
2517     bool HasAVX512 = Subtarget->hasAVX512();
2518     // fpext from float to double.
2519     unsigned Opc =
2520         HasAVX512 ? X86::VCVTSS2SDZrr
2521                   : Subtarget->hasAVX() ? X86::VCVTSS2SDrr : X86::CVTSS2SDrr;
2522     return X86SelectFPExtOrFPTrunc(
2523         I, Opc, HasAVX512 ? &X86::FR64XRegClass : &X86::FR64RegClass);
2524   }
2525
2526   return false;
2527 }
2528
2529 bool X86FastISel::X86SelectFPTrunc(const Instruction *I) {
2530   if (X86ScalarSSEf64 && I->getType()->isFloatTy() &&
2531       I->getOperand(0)->getType()->isDoubleTy()) {
2532     bool HasAVX512 = Subtarget->hasAVX512();
2533     // fptrunc from double to float.
2534     unsigned Opc =
2535         HasAVX512 ? X86::VCVTSD2SSZrr
2536                   : Subtarget->hasAVX() ? X86::VCVTSD2SSrr : X86::CVTSD2SSrr;
2537     return X86SelectFPExtOrFPTrunc(
2538         I, Opc, HasAVX512 ? &X86::FR32XRegClass : &X86::FR32RegClass);
2539   }
2540
2541   return false;
2542 }
2543
2544 bool X86FastISel::X86SelectTrunc(const Instruction *I) {
2545   EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
2546   EVT DstVT = TLI.getValueType(DL, I->getType());
2547
2548   // This code only handles truncation to byte.
2549   if (DstVT != MVT::i8 && DstVT != MVT::i1)
2550     return false;
2551   if (!TLI.isTypeLegal(SrcVT))
2552     return false;
2553
2554   unsigned InputReg = getRegForValue(I->getOperand(0));
2555   if (!InputReg)
2556     // Unhandled operand.  Halt "fast" selection and bail.
2557     return false;
2558
2559   if (SrcVT == MVT::i8) {
2560     // Truncate from i8 to i1; no code needed.
2561     updateValueMap(I, InputReg);
2562     return true;
2563   }
2564
2565   // Issue an extract_subreg.
2566   unsigned ResultReg = fastEmitInst_extractsubreg(MVT::i8,
2567                                                   InputReg, false,
2568                                                   X86::sub_8bit);
2569   if (!ResultReg)
2570     return false;
2571
2572   updateValueMap(I, ResultReg);
2573   return true;
2574 }
2575
2576 bool X86FastISel::IsMemcpySmall(uint64_t Len) {
2577   return Len <= (Subtarget->is64Bit() ? 32 : 16);
2578 }
2579
2580 bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM,
2581                                      X86AddressMode SrcAM, uint64_t Len) {
2582
2583   // Make sure we don't bloat code by inlining very large memcpy's.
2584   if (!IsMemcpySmall(Len))
2585     return false;
2586
2587   bool i64Legal = Subtarget->is64Bit();
2588
2589   // We don't care about alignment here since we just emit integer accesses.
2590   while (Len) {
2591     MVT VT;
2592     if (Len >= 8 && i64Legal)
2593       VT = MVT::i64;
2594     else if (Len >= 4)
2595       VT = MVT::i32;
2596     else if (Len >= 2)
2597       VT = MVT::i16;
2598     else
2599       VT = MVT::i8;
2600
2601     unsigned Reg;
2602     bool RV = X86FastEmitLoad(VT, SrcAM, nullptr, Reg);
2603     RV &= X86FastEmitStore(VT, Reg, /*Kill=*/true, DestAM);
2604     assert(RV && "Failed to emit load or store??");
2605
2606     unsigned Size = VT.getSizeInBits()/8;
2607     Len -= Size;
2608     DestAM.Disp += Size;
2609     SrcAM.Disp += Size;
2610   }
2611
2612   return true;
2613 }
2614
2615 bool X86FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
2616   // FIXME: Handle more intrinsics.
2617   switch (II->getIntrinsicID()) {
2618   default: return false;
2619   case Intrinsic::convert_from_fp16:
2620   case Intrinsic::convert_to_fp16: {
2621     if (Subtarget->useSoftFloat() || !Subtarget->hasF16C())
2622       return false;
2623
2624     const Value *Op = II->getArgOperand(0);
2625     unsigned InputReg = getRegForValue(Op);
2626     if (InputReg == 0)
2627       return false;
2628
2629     // F16C only allows converting from float to half and from half to float.
2630     bool IsFloatToHalf = II->getIntrinsicID() == Intrinsic::convert_to_fp16;
2631     if (IsFloatToHalf) {
2632       if (!Op->getType()->isFloatTy())
2633         return false;
2634     } else {
2635       if (!II->getType()->isFloatTy())
2636         return false;
2637     }
2638
2639     unsigned ResultReg = 0;
2640     const TargetRegisterClass *RC = TLI.getRegClassFor(MVT::v8i16);
2641     if (IsFloatToHalf) {
2642       // 'InputReg' is implicitly promoted from register class FR32 to
2643       // register class VR128 by method 'constrainOperandRegClass' which is
2644       // directly called by 'fastEmitInst_ri'.
2645       // Instruction VCVTPS2PHrr takes an extra immediate operand which is
2646       // used to provide rounding control: use MXCSR.RC, encoded as 0b100.
2647       // It's consistent with the other FP instructions, which are usually
2648       // controlled by MXCSR.
2649       InputReg = fastEmitInst_ri(X86::VCVTPS2PHrr, RC, InputReg, false, 4);
2650
2651       // Move the lower 32-bits of ResultReg to another register of class GR32.
2652       ResultReg = createResultReg(&X86::GR32RegClass);
2653       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2654               TII.get(X86::VMOVPDI2DIrr), ResultReg)
2655           .addReg(InputReg, RegState::Kill);
2656
2657       // The result value is in the lower 16-bits of ResultReg.
2658       unsigned RegIdx = X86::sub_16bit;
2659       ResultReg = fastEmitInst_extractsubreg(MVT::i16, ResultReg, true, RegIdx);
2660     } else {
2661       assert(Op->getType()->isIntegerTy(16) && "Expected a 16-bit integer!");
2662       // Explicitly sign-extend the input to 32-bit.
2663       InputReg = fastEmit_r(MVT::i16, MVT::i32, ISD::SIGN_EXTEND, InputReg,
2664                             /*Kill=*/false);
2665
2666       // The following SCALAR_TO_VECTOR will be expanded into a VMOVDI2PDIrr.
2667       InputReg = fastEmit_r(MVT::i32, MVT::v4i32, ISD::SCALAR_TO_VECTOR,
2668                             InputReg, /*Kill=*/true);
2669
2670       InputReg = fastEmitInst_r(X86::VCVTPH2PSrr, RC, InputReg, /*Kill=*/true);
2671
2672       // The result value is in the lower 32-bits of ResultReg.
2673       // Emit an explicit copy from register class VR128 to register class FR32.
2674       ResultReg = createResultReg(&X86::FR32RegClass);
2675       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2676               TII.get(TargetOpcode::COPY), ResultReg)
2677           .addReg(InputReg, RegState::Kill);
2678     }
2679
2680     updateValueMap(II, ResultReg);
2681     return true;
2682   }
2683   case Intrinsic::frameaddress: {
2684     MachineFunction *MF = FuncInfo.MF;
2685     if (MF->getTarget().getMCAsmInfo()->usesWindowsCFI())
2686       return false;
2687
2688     Type *RetTy = II->getCalledFunction()->getReturnType();
2689
2690     MVT VT;
2691     if (!isTypeLegal(RetTy, VT))
2692       return false;
2693
2694     unsigned Opc;
2695     const TargetRegisterClass *RC = nullptr;
2696
2697     switch (VT.SimpleTy) {
2698     default: llvm_unreachable("Invalid result type for frameaddress.");
2699     case MVT::i32: Opc = X86::MOV32rm; RC = &X86::GR32RegClass; break;
2700     case MVT::i64: Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break;
2701     }
2702
2703     // This needs to be set before we call getPtrSizedFrameRegister, otherwise
2704     // we get the wrong frame register.
2705     MachineFrameInfo &MFI = MF->getFrameInfo();
2706     MFI.setFrameAddressIsTaken(true);
2707
2708     const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
2709     unsigned FrameReg = RegInfo->getPtrSizedFrameRegister(*MF);
2710     assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
2711             (FrameReg == X86::EBP && VT == MVT::i32)) &&
2712            "Invalid Frame Register!");
2713
2714     // Always make a copy of the frame register to a vreg first, so that we
2715     // never directly reference the frame register (the TwoAddressInstruction-
2716     // Pass doesn't like that).
2717     unsigned SrcReg = createResultReg(RC);
2718     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2719             TII.get(TargetOpcode::COPY), SrcReg).addReg(FrameReg);
2720
2721     // Now recursively load from the frame address.
2722     // movq (%rbp), %rax
2723     // movq (%rax), %rax
2724     // movq (%rax), %rax
2725     // ...
2726     unsigned DestReg;
2727     unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue();
2728     while (Depth--) {
2729       DestReg = createResultReg(RC);
2730       addDirectMem(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2731                            TII.get(Opc), DestReg), SrcReg);
2732       SrcReg = DestReg;
2733     }
2734
2735     updateValueMap(II, SrcReg);
2736     return true;
2737   }
2738   case Intrinsic::memcpy: {
2739     const MemCpyInst *MCI = cast<MemCpyInst>(II);
2740     // Don't handle volatile or variable length memcpys.
2741     if (MCI->isVolatile())
2742       return false;
2743
2744     if (isa<ConstantInt>(MCI->getLength())) {
2745       // Small memcpy's are common enough that we want to do them
2746       // without a call if possible.
2747       uint64_t Len = cast<ConstantInt>(MCI->getLength())->getZExtValue();
2748       if (IsMemcpySmall(Len)) {
2749         X86AddressMode DestAM, SrcAM;
2750         if (!X86SelectAddress(MCI->getRawDest(), DestAM) ||
2751             !X86SelectAddress(MCI->getRawSource(), SrcAM))
2752           return false;
2753         TryEmitSmallMemcpy(DestAM, SrcAM, Len);
2754         return true;
2755       }
2756     }
2757
2758     unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
2759     if (!MCI->getLength()->getType()->isIntegerTy(SizeWidth))
2760       return false;
2761
2762     if (MCI->getSourceAddressSpace() > 255 || MCI->getDestAddressSpace() > 255)
2763       return false;
2764
2765     return lowerCallTo(II, "memcpy", II->getNumArgOperands() - 1);
2766   }
2767   case Intrinsic::memset: {
2768     const MemSetInst *MSI = cast<MemSetInst>(II);
2769
2770     if (MSI->isVolatile())
2771       return false;
2772
2773     unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
2774     if (!MSI->getLength()->getType()->isIntegerTy(SizeWidth))
2775       return false;
2776
2777     if (MSI->getDestAddressSpace() > 255)
2778       return false;
2779
2780     return lowerCallTo(II, "memset", II->getNumArgOperands() - 1);
2781   }
2782   case Intrinsic::stackprotector: {
2783     // Emit code to store the stack guard onto the stack.
2784     EVT PtrTy = TLI.getPointerTy(DL);
2785
2786     const Value *Op1 = II->getArgOperand(0); // The guard's value.
2787     const AllocaInst *Slot = cast<AllocaInst>(II->getArgOperand(1));
2788
2789     MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]);
2790
2791     // Grab the frame index.
2792     X86AddressMode AM;
2793     if (!X86SelectAddress(Slot, AM)) return false;
2794     if (!X86FastEmitStore(PtrTy, Op1, AM)) return false;
2795     return true;
2796   }
2797   case Intrinsic::dbg_declare: {
2798     const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
2799     X86AddressMode AM;
2800     assert(DI->getAddress() && "Null address should be checked earlier!");
2801     if (!X86SelectAddress(DI->getAddress(), AM))
2802       return false;
2803     const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
2804     // FIXME may need to add RegState::Debug to any registers produced,
2805     // although ESP/EBP should be the only ones at the moment.
2806     assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
2807            "Expected inlined-at fields to agree");
2808     addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II), AM)
2809         .addImm(0)
2810         .addMetadata(DI->getVariable())
2811         .addMetadata(DI->getExpression());
2812     return true;
2813   }
2814   case Intrinsic::trap: {
2815     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TRAP));
2816     return true;
2817   }
2818   case Intrinsic::sqrt: {
2819     if (!Subtarget->hasSSE1())
2820       return false;
2821
2822     Type *RetTy = II->getCalledFunction()->getReturnType();
2823
2824     MVT VT;
2825     if (!isTypeLegal(RetTy, VT))
2826       return false;
2827
2828     // Unfortunately we can't use fastEmit_r, because the AVX version of FSQRT
2829     // is not generated by FastISel yet.
2830     // FIXME: Update this code once tablegen can handle it.
2831     static const uint16_t SqrtOpc[3][2] = {
2832       { X86::SQRTSSr,   X86::SQRTSDr },
2833       { X86::VSQRTSSr,  X86::VSQRTSDr },
2834       { X86::VSQRTSSZr, X86::VSQRTSDZr },
2835     };
2836     unsigned AVXLevel = Subtarget->hasAVX512() ? 2 :
2837                         Subtarget->hasAVX()    ? 1 :
2838                                                  0;
2839     unsigned Opc;
2840     switch (VT.SimpleTy) {
2841     default: return false;
2842     case MVT::f32: Opc = SqrtOpc[AVXLevel][0]; break;
2843     case MVT::f64: Opc = SqrtOpc[AVXLevel][1]; break;
2844     }
2845
2846     const Value *SrcVal = II->getArgOperand(0);
2847     unsigned SrcReg = getRegForValue(SrcVal);
2848
2849     if (SrcReg == 0)
2850       return false;
2851
2852     const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
2853     unsigned ImplicitDefReg = 0;
2854     if (AVXLevel > 0) {
2855       ImplicitDefReg = createResultReg(RC);
2856       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2857               TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2858     }
2859
2860     unsigned ResultReg = createResultReg(RC);
2861     MachineInstrBuilder MIB;
2862     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
2863                   ResultReg);
2864
2865     if (ImplicitDefReg)
2866       MIB.addReg(ImplicitDefReg);
2867
2868     MIB.addReg(SrcReg);
2869
2870     updateValueMap(II, ResultReg);
2871     return true;
2872   }
2873   case Intrinsic::sadd_with_overflow:
2874   case Intrinsic::uadd_with_overflow:
2875   case Intrinsic::ssub_with_overflow:
2876   case Intrinsic::usub_with_overflow:
2877   case Intrinsic::smul_with_overflow:
2878   case Intrinsic::umul_with_overflow: {
2879     // This implements the basic lowering of the xalu with overflow intrinsics
2880     // into add/sub/mul followed by either seto or setb.
2881     const Function *Callee = II->getCalledFunction();
2882     auto *Ty = cast<StructType>(Callee->getReturnType());
2883     Type *RetTy = Ty->getTypeAtIndex(0U);
2884     assert(Ty->getTypeAtIndex(1)->isIntegerTy() &&
2885            Ty->getTypeAtIndex(1)->getScalarSizeInBits() == 1 &&
2886            "Overflow value expected to be an i1");
2887
2888     MVT VT;
2889     if (!isTypeLegal(RetTy, VT))
2890       return false;
2891
2892     if (VT < MVT::i8 || VT > MVT::i64)
2893       return false;
2894
2895     const Value *LHS = II->getArgOperand(0);
2896     const Value *RHS = II->getArgOperand(1);
2897
2898     // Canonicalize immediate to the RHS.
2899     if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) &&
2900         isCommutativeIntrinsic(II))
2901       std::swap(LHS, RHS);
2902
2903     unsigned BaseOpc, CondOpc;
2904     switch (II->getIntrinsicID()) {
2905     default: llvm_unreachable("Unexpected intrinsic!");
2906     case Intrinsic::sadd_with_overflow:
2907       BaseOpc = ISD::ADD; CondOpc = X86::SETOr; break;
2908     case Intrinsic::uadd_with_overflow:
2909       BaseOpc = ISD::ADD; CondOpc = X86::SETBr; break;
2910     case Intrinsic::ssub_with_overflow:
2911       BaseOpc = ISD::SUB; CondOpc = X86::SETOr; break;
2912     case Intrinsic::usub_with_overflow:
2913       BaseOpc = ISD::SUB; CondOpc = X86::SETBr; break;
2914     case Intrinsic::smul_with_overflow:
2915       BaseOpc = X86ISD::SMUL; CondOpc = X86::SETOr; break;
2916     case Intrinsic::umul_with_overflow:
2917       BaseOpc = X86ISD::UMUL; CondOpc = X86::SETOr; break;
2918     }
2919
2920     unsigned LHSReg = getRegForValue(LHS);
2921     if (LHSReg == 0)
2922       return false;
2923     bool LHSIsKill = hasTrivialKill(LHS);
2924
2925     unsigned ResultReg = 0;
2926     // Check if we have an immediate version.
2927     if (const auto *CI = dyn_cast<ConstantInt>(RHS)) {
2928       static const uint16_t Opc[2][4] = {
2929         { X86::INC8r, X86::INC16r, X86::INC32r, X86::INC64r },
2930         { X86::DEC8r, X86::DEC16r, X86::DEC32r, X86::DEC64r }
2931       };
2932
2933       if (CI->isOne() && (BaseOpc == ISD::ADD || BaseOpc == ISD::SUB) &&
2934           CondOpc == X86::SETOr) {
2935         // We can use INC/DEC.
2936         ResultReg = createResultReg(TLI.getRegClassFor(VT));
2937         bool IsDec = BaseOpc == ISD::SUB;
2938         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2939                 TII.get(Opc[IsDec][VT.SimpleTy-MVT::i8]), ResultReg)
2940           .addReg(LHSReg, getKillRegState(LHSIsKill));
2941       } else
2942         ResultReg = fastEmit_ri(VT, VT, BaseOpc, LHSReg, LHSIsKill,
2943                                 CI->getZExtValue());
2944     }
2945
2946     unsigned RHSReg;
2947     bool RHSIsKill;
2948     if (!ResultReg) {
2949       RHSReg = getRegForValue(RHS);
2950       if (RHSReg == 0)
2951         return false;
2952       RHSIsKill = hasTrivialKill(RHS);
2953       ResultReg = fastEmit_rr(VT, VT, BaseOpc, LHSReg, LHSIsKill, RHSReg,
2954                               RHSIsKill);
2955     }
2956
2957     // FastISel doesn't have a pattern for all X86::MUL*r and X86::IMUL*r. Emit
2958     // it manually.
2959     if (BaseOpc == X86ISD::UMUL && !ResultReg) {
2960       static const uint16_t MULOpc[] =
2961         { X86::MUL8r, X86::MUL16r, X86::MUL32r, X86::MUL64r };
2962       static const MCPhysReg Reg[] = { X86::AL, X86::AX, X86::EAX, X86::RAX };
2963       // First copy the first operand into RAX, which is an implicit input to
2964       // the X86::MUL*r instruction.
2965       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2966               TII.get(TargetOpcode::COPY), Reg[VT.SimpleTy-MVT::i8])
2967         .addReg(LHSReg, getKillRegState(LHSIsKill));
2968       ResultReg = fastEmitInst_r(MULOpc[VT.SimpleTy-MVT::i8],
2969                                  TLI.getRegClassFor(VT), RHSReg, RHSIsKill);
2970     } else if (BaseOpc == X86ISD::SMUL && !ResultReg) {
2971       static const uint16_t MULOpc[] =
2972         { X86::IMUL8r, X86::IMUL16rr, X86::IMUL32rr, X86::IMUL64rr };
2973       if (VT == MVT::i8) {
2974         // Copy the first operand into AL, which is an implicit input to the
2975         // X86::IMUL8r instruction.
2976         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2977                TII.get(TargetOpcode::COPY), X86::AL)
2978           .addReg(LHSReg, getKillRegState(LHSIsKill));
2979         ResultReg = fastEmitInst_r(MULOpc[0], TLI.getRegClassFor(VT), RHSReg,
2980                                    RHSIsKill);
2981       } else
2982         ResultReg = fastEmitInst_rr(MULOpc[VT.SimpleTy-MVT::i8],
2983                                     TLI.getRegClassFor(VT), LHSReg, LHSIsKill,
2984                                     RHSReg, RHSIsKill);
2985     }
2986
2987     if (!ResultReg)
2988       return false;
2989
2990     // Assign to a GPR since the overflow return value is lowered to a SETcc.
2991     unsigned ResultReg2 = createResultReg(&X86::GR8RegClass);
2992     assert((ResultReg+1) == ResultReg2 && "Nonconsecutive result registers.");
2993     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CondOpc),
2994             ResultReg2);
2995
2996     updateValueMap(II, ResultReg, 2);
2997     return true;
2998   }
2999   case Intrinsic::x86_sse_cvttss2si:
3000   case Intrinsic::x86_sse_cvttss2si64:
3001   case Intrinsic::x86_sse2_cvttsd2si:
3002   case Intrinsic::x86_sse2_cvttsd2si64: {
3003     bool IsInputDouble;
3004     switch (II->getIntrinsicID()) {
3005     default: llvm_unreachable("Unexpected intrinsic.");
3006     case Intrinsic::x86_sse_cvttss2si:
3007     case Intrinsic::x86_sse_cvttss2si64:
3008       if (!Subtarget->hasSSE1())
3009         return false;
3010       IsInputDouble = false;
3011       break;
3012     case Intrinsic::x86_sse2_cvttsd2si:
3013     case Intrinsic::x86_sse2_cvttsd2si64:
3014       if (!Subtarget->hasSSE2())
3015         return false;
3016       IsInputDouble = true;
3017       break;
3018     }
3019
3020     Type *RetTy = II->getCalledFunction()->getReturnType();
3021     MVT VT;
3022     if (!isTypeLegal(RetTy, VT))
3023       return false;
3024
3025     static const uint16_t CvtOpc[3][2][2] = {
3026       { { X86::CVTTSS2SIrr,   X86::CVTTSS2SI64rr },
3027         { X86::CVTTSD2SIrr,   X86::CVTTSD2SI64rr } },
3028       { { X86::VCVTTSS2SIrr,  X86::VCVTTSS2SI64rr },
3029         { X86::VCVTTSD2SIrr,  X86::VCVTTSD2SI64rr } },
3030       { { X86::VCVTTSS2SIZrr, X86::VCVTTSS2SI64Zrr },
3031         { X86::VCVTTSD2SIZrr, X86::VCVTTSD2SI64Zrr } },
3032     };
3033     unsigned AVXLevel = Subtarget->hasAVX512() ? 2 :
3034                         Subtarget->hasAVX()    ? 1 :
3035                                                  0;
3036     unsigned Opc;
3037     switch (VT.SimpleTy) {
3038     default: llvm_unreachable("Unexpected result type.");
3039     case MVT::i32: Opc = CvtOpc[AVXLevel][IsInputDouble][0]; break;
3040     case MVT::i64: Opc = CvtOpc[AVXLevel][IsInputDouble][1]; break;
3041     }
3042
3043     // Check if we can fold insertelement instructions into the convert.
3044     const Value *Op = II->getArgOperand(0);
3045     while (auto *IE = dyn_cast<InsertElementInst>(Op)) {
3046       const Value *Index = IE->getOperand(2);
3047       if (!isa<ConstantInt>(Index))
3048         break;
3049       unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
3050
3051       if (Idx == 0) {
3052         Op = IE->getOperand(1);
3053         break;
3054       }
3055       Op = IE->getOperand(0);
3056     }
3057
3058     unsigned Reg = getRegForValue(Op);
3059     if (Reg == 0)
3060       return false;
3061
3062     unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
3063     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
3064       .addReg(Reg);
3065
3066     updateValueMap(II, ResultReg);
3067     return true;
3068   }
3069   }
3070 }
3071
3072 bool X86FastISel::fastLowerArguments() {
3073   if (!FuncInfo.CanLowerReturn)
3074     return false;
3075
3076   const Function *F = FuncInfo.Fn;
3077   if (F->isVarArg())
3078     return false;
3079
3080   CallingConv::ID CC = F->getCallingConv();
3081   if (CC != CallingConv::C)
3082     return false;
3083
3084   if (Subtarget->isCallingConvWin64(CC))
3085     return false;
3086
3087   if (!Subtarget->is64Bit())
3088     return false;
3089
3090   if (Subtarget->useSoftFloat())
3091     return false;
3092
3093   // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments.
3094   unsigned GPRCnt = 0;
3095   unsigned FPRCnt = 0;
3096   for (auto const &Arg : F->args()) {
3097     if (Arg.hasAttribute(Attribute::ByVal) ||
3098         Arg.hasAttribute(Attribute::InReg) ||
3099         Arg.hasAttribute(Attribute::StructRet) ||
3100         Arg.hasAttribute(Attribute::SwiftSelf) ||
3101         Arg.hasAttribute(Attribute::SwiftError) ||
3102         Arg.hasAttribute(Attribute::Nest))
3103       return false;
3104
3105     Type *ArgTy = Arg.getType();
3106     if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
3107       return false;
3108
3109     EVT ArgVT = TLI.getValueType(DL, ArgTy);
3110     if (!ArgVT.isSimple()) return false;
3111     switch (ArgVT.getSimpleVT().SimpleTy) {
3112     default: return false;
3113     case MVT::i32:
3114     case MVT::i64:
3115       ++GPRCnt;
3116       break;
3117     case MVT::f32:
3118     case MVT::f64:
3119       if (!Subtarget->hasSSE1())
3120         return false;
3121       ++FPRCnt;
3122       break;
3123     }
3124
3125     if (GPRCnt > 6)
3126       return false;
3127
3128     if (FPRCnt > 8)
3129       return false;
3130   }
3131
3132   static const MCPhysReg GPR32ArgRegs[] = {
3133     X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D
3134   };
3135   static const MCPhysReg GPR64ArgRegs[] = {
3136     X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9
3137   };
3138   static const MCPhysReg XMMArgRegs[] = {
3139     X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
3140     X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
3141   };
3142
3143   unsigned GPRIdx = 0;
3144   unsigned FPRIdx = 0;
3145   for (auto const &Arg : F->args()) {
3146     MVT VT = TLI.getSimpleValueType(DL, Arg.getType());
3147     const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
3148     unsigned SrcReg;
3149     switch (VT.SimpleTy) {
3150     default: llvm_unreachable("Unexpected value type.");
3151     case MVT::i32: SrcReg = GPR32ArgRegs[GPRIdx++]; break;
3152     case MVT::i64: SrcReg = GPR64ArgRegs[GPRIdx++]; break;
3153     case MVT::f32: LLVM_FALLTHROUGH;
3154     case MVT::f64: SrcReg = XMMArgRegs[FPRIdx++]; break;
3155     }
3156     unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
3157     // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
3158     // Without this, EmitLiveInCopies may eliminate the livein if its only
3159     // use is a bitcast (which isn't turned into an instruction).
3160     unsigned ResultReg = createResultReg(RC);
3161     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3162             TII.get(TargetOpcode::COPY), ResultReg)
3163       .addReg(DstReg, getKillRegState(true));
3164     updateValueMap(&Arg, ResultReg);
3165   }
3166   return true;
3167 }
3168
3169 static unsigned computeBytesPoppedByCalleeForSRet(const X86Subtarget *Subtarget,
3170                                                   CallingConv::ID CC,
3171                                                   ImmutableCallSite *CS) {
3172   if (Subtarget->is64Bit())
3173     return 0;
3174   if (Subtarget->getTargetTriple().isOSMSVCRT())
3175     return 0;
3176   if (CC == CallingConv::Fast || CC == CallingConv::GHC ||
3177       CC == CallingConv::HiPE)
3178     return 0;
3179
3180   if (CS)
3181     if (CS->arg_empty() || !CS->paramHasAttr(0, Attribute::StructRet) ||
3182         CS->paramHasAttr(0, Attribute::InReg) || Subtarget->isTargetMCU())
3183       return 0;
3184
3185   return 4;
3186 }
3187
3188 bool X86FastISel::fastLowerCall(CallLoweringInfo &CLI) {
3189   auto &OutVals       = CLI.OutVals;
3190   auto &OutFlags      = CLI.OutFlags;
3191   auto &OutRegs       = CLI.OutRegs;
3192   auto &Ins           = CLI.Ins;
3193   auto &InRegs        = CLI.InRegs;
3194   CallingConv::ID CC  = CLI.CallConv;
3195   bool &IsTailCall    = CLI.IsTailCall;
3196   bool IsVarArg       = CLI.IsVarArg;
3197   const Value *Callee = CLI.Callee;
3198   MCSymbol *Symbol = CLI.Symbol;
3199
3200   bool Is64Bit        = Subtarget->is64Bit();
3201   bool IsWin64        = Subtarget->isCallingConvWin64(CC);
3202
3203   const CallInst *CI =
3204       CLI.CS ? dyn_cast<CallInst>(CLI.CS->getInstruction()) : nullptr;
3205   const Function *CalledFn = CI ? CI->getCalledFunction() : nullptr;
3206
3207   // Call / invoke instructions with NoCfCheck attribute require special
3208   // handling.
3209   const auto *II =
3210       CLI.CS ? dyn_cast<InvokeInst>(CLI.CS->getInstruction()) : nullptr;
3211   if ((CI && CI->doesNoCfCheck()) || (II && II->doesNoCfCheck()))
3212     return false;
3213
3214   // Functions with no_caller_saved_registers that need special handling.
3215   if ((CI && CI->hasFnAttr("no_caller_saved_registers")) ||
3216       (CalledFn && CalledFn->hasFnAttribute("no_caller_saved_registers")))
3217     return false;
3218
3219   // Functions using retpoline for indirect calls need to use SDISel.
3220   if (Subtarget->useRetpolineIndirectCalls())
3221     return false;
3222
3223   // Handle only C, fastcc, and webkit_js calling conventions for now.
3224   switch (CC) {
3225   default: return false;
3226   case CallingConv::C:
3227   case CallingConv::Fast:
3228   case CallingConv::WebKit_JS:
3229   case CallingConv::Swift:
3230   case CallingConv::X86_FastCall:
3231   case CallingConv::X86_StdCall:
3232   case CallingConv::X86_ThisCall:
3233   case CallingConv::Win64:
3234   case CallingConv::X86_64_SysV:
3235     break;
3236   }
3237
3238   // Allow SelectionDAG isel to handle tail calls.
3239   if (IsTailCall)
3240     return false;
3241
3242   // fastcc with -tailcallopt is intended to provide a guaranteed
3243   // tail call optimization. Fastisel doesn't know how to do that.
3244   if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
3245     return false;
3246
3247   // Don't know how to handle Win64 varargs yet.  Nothing special needed for
3248   // x86-32. Special handling for x86-64 is implemented.
3249   if (IsVarArg && IsWin64)
3250     return false;
3251
3252   // Don't know about inalloca yet.
3253   if (CLI.CS && CLI.CS->hasInAllocaArgument())
3254     return false;
3255
3256   for (auto Flag : CLI.OutFlags)
3257     if (Flag.isSwiftError())
3258       return false;
3259
3260   SmallVector<MVT, 16> OutVTs;
3261   SmallVector<unsigned, 16> ArgRegs;
3262
3263   // If this is a constant i1/i8/i16 argument, promote to i32 to avoid an extra
3264   // instruction. This is safe because it is common to all FastISel supported
3265   // calling conventions on x86.
3266   for (int i = 0, e = OutVals.size(); i != e; ++i) {
3267     Value *&Val = OutVals[i];
3268     ISD::ArgFlagsTy Flags = OutFlags[i];
3269     if (auto *CI = dyn_cast<ConstantInt>(Val)) {
3270       if (CI->getBitWidth() < 32) {
3271         if (Flags.isSExt())
3272           Val = ConstantExpr::getSExt(CI, Type::getInt32Ty(CI->getContext()));
3273         else
3274           Val = ConstantExpr::getZExt(CI, Type::getInt32Ty(CI->getContext()));
3275       }
3276     }
3277
3278     // Passing bools around ends up doing a trunc to i1 and passing it.
3279     // Codegen this as an argument + "and 1".
3280     MVT VT;
3281     auto *TI = dyn_cast<TruncInst>(Val);
3282     unsigned ResultReg;
3283     if (TI && TI->getType()->isIntegerTy(1) && CLI.CS &&
3284               (TI->getParent() == CLI.CS->getInstruction()->getParent()) &&
3285               TI->hasOneUse()) {
3286       Value *PrevVal = TI->getOperand(0);
3287       ResultReg = getRegForValue(PrevVal);
3288
3289       if (!ResultReg)
3290         return false;
3291
3292       if (!isTypeLegal(PrevVal->getType(), VT))
3293         return false;
3294
3295       ResultReg =
3296         fastEmit_ri(VT, VT, ISD::AND, ResultReg, hasTrivialKill(PrevVal), 1);
3297     } else {
3298       if (!isTypeLegal(Val->getType(), VT))
3299         return false;
3300       ResultReg = getRegForValue(Val);
3301     }
3302
3303     if (!ResultReg)
3304       return false;
3305
3306     ArgRegs.push_back(ResultReg);
3307     OutVTs.push_back(VT);
3308   }
3309
3310   // Analyze operands of the call, assigning locations to each operand.
3311   SmallVector<CCValAssign, 16> ArgLocs;
3312   CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, CLI.RetTy->getContext());
3313
3314   // Allocate shadow area for Win64
3315   if (IsWin64)
3316     CCInfo.AllocateStack(32, 8);
3317
3318   CCInfo.AnalyzeCallOperands(OutVTs, OutFlags, CC_X86);
3319
3320   // Get a count of how many bytes are to be pushed on the stack.
3321   unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
3322
3323   // Issue CALLSEQ_START
3324   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
3325   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown))
3326     .addImm(NumBytes).addImm(0).addImm(0);
3327
3328   // Walk the register/memloc assignments, inserting copies/loads.
3329   const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
3330   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3331     CCValAssign const &VA = ArgLocs[i];
3332     const Value *ArgVal = OutVals[VA.getValNo()];
3333     MVT ArgVT = OutVTs[VA.getValNo()];
3334
3335     if (ArgVT == MVT::x86mmx)
3336       return false;
3337
3338     unsigned ArgReg = ArgRegs[VA.getValNo()];
3339
3340     // Promote the value if needed.
3341     switch (VA.getLocInfo()) {
3342     case CCValAssign::Full: break;
3343     case CCValAssign::SExt: {
3344       assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3345              "Unexpected extend");
3346
3347       if (ArgVT == MVT::i1)
3348         return false;
3349
3350       bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
3351                                        ArgVT, ArgReg);
3352       assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
3353       ArgVT = VA.getLocVT();
3354       break;
3355     }
3356     case CCValAssign::ZExt: {
3357       assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3358              "Unexpected extend");
3359
3360       // Handle zero-extension from i1 to i8, which is common.
3361       if (ArgVT == MVT::i1) {
3362         // Set the high bits to zero.
3363         ArgReg = fastEmitZExtFromI1(MVT::i8, ArgReg, /*TODO: Kill=*/false);
3364         ArgVT = MVT::i8;
3365
3366         if (ArgReg == 0)
3367           return false;
3368       }
3369
3370       bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
3371                                        ArgVT, ArgReg);
3372       assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
3373       ArgVT = VA.getLocVT();
3374       break;
3375     }
3376     case CCValAssign::AExt: {
3377       assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3378              "Unexpected extend");
3379       bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), ArgReg,
3380                                        ArgVT, ArgReg);
3381       if (!Emitted)
3382         Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
3383                                     ArgVT, ArgReg);
3384       if (!Emitted)
3385         Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
3386                                     ArgVT, ArgReg);
3387
3388       assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
3389       ArgVT = VA.getLocVT();
3390       break;
3391     }
3392     case CCValAssign::BCvt: {
3393       ArgReg = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, ArgReg,
3394                           /*TODO: Kill=*/false);
3395       assert(ArgReg && "Failed to emit a bitcast!");
3396       ArgVT = VA.getLocVT();
3397       break;
3398     }
3399     case CCValAssign::VExt:
3400       // VExt has not been implemented, so this should be impossible to reach
3401       // for now.  However, fallback to Selection DAG isel once implemented.
3402       return false;
3403     case CCValAssign::AExtUpper:
3404     case CCValAssign::SExtUpper:
3405     case CCValAssign::ZExtUpper:
3406     case CCValAssign::FPExt:
3407       llvm_unreachable("Unexpected loc info!");
3408     case CCValAssign::Indirect:
3409       // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully
3410       // support this.
3411       return false;
3412     }
3413
3414     if (VA.isRegLoc()) {
3415       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3416               TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
3417       OutRegs.push_back(VA.getLocReg());
3418     } else {
3419       assert(VA.isMemLoc());
3420
3421       // Don't emit stores for undef values.
3422       if (isa<UndefValue>(ArgVal))
3423         continue;
3424
3425       unsigned LocMemOffset = VA.getLocMemOffset();
3426       X86AddressMode AM;
3427       AM.Base.Reg = RegInfo->getStackRegister();
3428       AM.Disp = LocMemOffset;
3429       ISD::ArgFlagsTy Flags = OutFlags[VA.getValNo()];
3430       unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType());
3431       MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
3432           MachinePointerInfo::getStack(*FuncInfo.MF, LocMemOffset),
3433           MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment);
3434       if (Flags.isByVal()) {
3435         X86AddressMode SrcAM;
3436         SrcAM.Base.Reg = ArgReg;
3437         if (!TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize()))
3438           return false;
3439       } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) {
3440         // If this is a really simple value, emit this with the Value* version
3441         // of X86FastEmitStore.  If it isn't simple, we don't want to do this,
3442         // as it can cause us to reevaluate the argument.
3443         if (!X86FastEmitStore(ArgVT, ArgVal, AM, MMO))
3444           return false;
3445       } else {
3446         bool ValIsKill = hasTrivialKill(ArgVal);
3447         if (!X86FastEmitStore(ArgVT, ArgReg, ValIsKill, AM, MMO))
3448           return false;
3449       }
3450     }
3451   }
3452
3453   // ELF / PIC requires GOT in the EBX register before function calls via PLT
3454   // GOT pointer.
3455   if (Subtarget->isPICStyleGOT()) {
3456     unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3457     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3458             TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base);
3459   }
3460
3461   if (Is64Bit && IsVarArg && !IsWin64) {
3462     // From AMD64 ABI document:
3463     // For calls that may call functions that use varargs or stdargs
3464     // (prototype-less calls or calls to functions containing ellipsis (...) in
3465     // the declaration) %al is used as hidden argument to specify the number
3466     // of SSE registers used. The contents of %al do not need to match exactly
3467     // the number of registers, but must be an ubound on the number of SSE
3468     // registers used and is in the range 0 - 8 inclusive.
3469
3470     // Count the number of XMM registers allocated.
3471     static const MCPhysReg XMMArgRegs[] = {
3472       X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
3473       X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
3474     };
3475     unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs);
3476     assert((Subtarget->hasSSE1() || !NumXMMRegs)
3477            && "SSE registers cannot be used when SSE is disabled");
3478     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
3479             X86::AL).addImm(NumXMMRegs);
3480   }
3481
3482   // Materialize callee address in a register. FIXME: GV address can be
3483   // handled with a CALLpcrel32 instead.
3484   X86AddressMode CalleeAM;
3485   if (!X86SelectCallAddress(Callee, CalleeAM))
3486     return false;
3487
3488   unsigned CalleeOp = 0;
3489   const GlobalValue *GV = nullptr;
3490   if (CalleeAM.GV != nullptr) {
3491     GV = CalleeAM.GV;
3492   } else if (CalleeAM.Base.Reg != 0) {
3493     CalleeOp = CalleeAM.Base.Reg;
3494   } else
3495     return false;
3496
3497   // Issue the call.
3498   MachineInstrBuilder MIB;
3499   if (CalleeOp) {
3500     // Register-indirect call.
3501     unsigned CallOpc = Is64Bit ? X86::CALL64r : X86::CALL32r;
3502     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc))
3503       .addReg(CalleeOp);
3504   } else {
3505     // Direct call.
3506     assert(GV && "Not a direct call");
3507     // See if we need any target-specific flags on the GV operand.
3508     unsigned char OpFlags = Subtarget->classifyGlobalFunctionReference(GV);
3509
3510     // This will be a direct call, or an indirect call through memory for
3511     // NonLazyBind calls or dllimport calls.
3512     bool NeedLoad =
3513         OpFlags == X86II::MO_DLLIMPORT || OpFlags == X86II::MO_GOTPCREL;
3514     unsigned CallOpc = NeedLoad
3515                            ? (Is64Bit ? X86::CALL64m : X86::CALL32m)
3516                            : (Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32);
3517
3518     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc));
3519     if (NeedLoad)
3520       MIB.addReg(Is64Bit ? X86::RIP : 0).addImm(1).addReg(0);
3521     if (Symbol)
3522       MIB.addSym(Symbol, OpFlags);
3523     else
3524       MIB.addGlobalAddress(GV, 0, OpFlags);
3525     if (NeedLoad)
3526       MIB.addReg(0);
3527   }
3528
3529   // Add a register mask operand representing the call-preserved registers.
3530   // Proper defs for return values will be added by setPhysRegsDeadExcept().
3531   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
3532
3533   // Add an implicit use GOT pointer in EBX.
3534   if (Subtarget->isPICStyleGOT())
3535     MIB.addReg(X86::EBX, RegState::Implicit);
3536
3537   if (Is64Bit && IsVarArg && !IsWin64)
3538     MIB.addReg(X86::AL, RegState::Implicit);
3539
3540   // Add implicit physical register uses to the call.
3541   for (auto Reg : OutRegs)
3542     MIB.addReg(Reg, RegState::Implicit);
3543
3544   // Issue CALLSEQ_END
3545   unsigned NumBytesForCalleeToPop =
3546       X86::isCalleePop(CC, Subtarget->is64Bit(), IsVarArg,
3547                        TM.Options.GuaranteedTailCallOpt)
3548           ? NumBytes // Callee pops everything.
3549           : computeBytesPoppedByCalleeForSRet(Subtarget, CC, CLI.CS);
3550   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
3551   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
3552     .addImm(NumBytes).addImm(NumBytesForCalleeToPop);
3553
3554   // Now handle call return values.
3555   SmallVector<CCValAssign, 16> RVLocs;
3556   CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs,
3557                     CLI.RetTy->getContext());
3558   CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86);
3559
3560   // Copy all of the result registers out of their specified physreg.
3561   unsigned ResultReg = FuncInfo.CreateRegs(CLI.RetTy);
3562   for (unsigned i = 0; i != RVLocs.size(); ++i) {
3563     CCValAssign &VA = RVLocs[i];
3564     EVT CopyVT = VA.getValVT();
3565     unsigned CopyReg = ResultReg + i;
3566     unsigned SrcReg = VA.getLocReg();
3567
3568     // If this is x86-64, and we disabled SSE, we can't return FP values
3569     if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
3570         ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
3571       report_fatal_error("SSE register return with SSE disabled");
3572     }
3573
3574     // If we prefer to use the value in xmm registers, copy it out as f80 and
3575     // use a truncate to move it from fp stack reg to xmm reg.
3576     if ((SrcReg == X86::FP0 || SrcReg == X86::FP1) &&
3577         isScalarFPTypeInSSEReg(VA.getValVT())) {
3578       CopyVT = MVT::f80;
3579       CopyReg = createResultReg(&X86::RFP80RegClass);
3580     }
3581
3582     // Copy out the result.
3583     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3584             TII.get(TargetOpcode::COPY), CopyReg).addReg(SrcReg);
3585     InRegs.push_back(VA.getLocReg());
3586
3587     // Round the f80 to the right size, which also moves it to the appropriate
3588     // xmm register. This is accomplished by storing the f80 value in memory
3589     // and then loading it back.
3590     if (CopyVT != VA.getValVT()) {
3591       EVT ResVT = VA.getValVT();
3592       unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
3593       unsigned MemSize = ResVT.getSizeInBits()/8;
3594       int FI = MFI.CreateStackObject(MemSize, MemSize, false);
3595       addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3596                                 TII.get(Opc)), FI)
3597         .addReg(CopyReg);
3598       Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
3599       addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3600                                 TII.get(Opc), ResultReg + i), FI);
3601     }
3602   }
3603
3604   CLI.ResultReg = ResultReg;
3605   CLI.NumResultRegs = RVLocs.size();
3606   CLI.Call = MIB;
3607
3608   return true;
3609 }
3610
3611 bool
3612 X86FastISel::fastSelectInstruction(const Instruction *I)  {
3613   switch (I->getOpcode()) {
3614   default: break;
3615   case Instruction::Load:
3616     return X86SelectLoad(I);
3617   case Instruction::Store:
3618     return X86SelectStore(I);
3619   case Instruction::Ret:
3620     return X86SelectRet(I);
3621   case Instruction::ICmp:
3622   case Instruction::FCmp:
3623     return X86SelectCmp(I);
3624   case Instruction::ZExt:
3625     return X86SelectZExt(I);
3626   case Instruction::SExt:
3627     return X86SelectSExt(I);
3628   case Instruction::Br:
3629     return X86SelectBranch(I);
3630   case Instruction::LShr:
3631   case Instruction::AShr:
3632   case Instruction::Shl:
3633     return X86SelectShift(I);
3634   case Instruction::SDiv:
3635   case Instruction::UDiv:
3636   case Instruction::SRem:
3637   case Instruction::URem:
3638     return X86SelectDivRem(I);
3639   case Instruction::Select:
3640     return X86SelectSelect(I);
3641   case Instruction::Trunc:
3642     return X86SelectTrunc(I);
3643   case Instruction::FPExt:
3644     return X86SelectFPExt(I);
3645   case Instruction::FPTrunc:
3646     return X86SelectFPTrunc(I);
3647   case Instruction::SIToFP:
3648     return X86SelectSIToFP(I);
3649   case Instruction::UIToFP:
3650     return X86SelectUIToFP(I);
3651   case Instruction::IntToPtr: // Deliberate fall-through.
3652   case Instruction::PtrToInt: {
3653     EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
3654     EVT DstVT = TLI.getValueType(DL, I->getType());
3655     if (DstVT.bitsGT(SrcVT))
3656       return X86SelectZExt(I);
3657     if (DstVT.bitsLT(SrcVT))
3658       return X86SelectTrunc(I);
3659     unsigned Reg = getRegForValue(I->getOperand(0));
3660     if (Reg == 0) return false;
3661     updateValueMap(I, Reg);
3662     return true;
3663   }
3664   case Instruction::BitCast: {
3665     // Select SSE2/AVX bitcasts between 128/256 bit vector types.
3666     if (!Subtarget->hasSSE2())
3667       return false;
3668
3669     EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
3670     EVT DstVT = TLI.getValueType(DL, I->getType());
3671
3672     if (!SrcVT.isSimple() || !DstVT.isSimple())
3673       return false;
3674
3675     MVT SVT = SrcVT.getSimpleVT();
3676     MVT DVT = DstVT.getSimpleVT();
3677
3678     if (!SVT.is128BitVector() &&
3679         !(Subtarget->hasAVX() && SVT.is256BitVector()) &&
3680         !(Subtarget->hasAVX512() && SVT.is512BitVector() &&
3681           (Subtarget->hasBWI() || (SVT.getScalarSizeInBits() >= 32 &&
3682                                    DVT.getScalarSizeInBits() >= 32))))
3683       return false;
3684
3685     unsigned Reg = getRegForValue(I->getOperand(0));
3686     if (Reg == 0)
3687       return false;
3688
3689     // No instruction is needed for conversion. Reuse the register used by
3690     // the fist operand.
3691     updateValueMap(I, Reg);
3692     return true;
3693   }
3694   }
3695
3696   return false;
3697 }
3698
3699 unsigned X86FastISel::X86MaterializeInt(const ConstantInt *CI, MVT VT) {
3700   if (VT > MVT::i64)
3701     return 0;
3702
3703   uint64_t Imm = CI->getZExtValue();
3704   if (Imm == 0) {
3705     unsigned SrcReg = fastEmitInst_(X86::MOV32r0, &X86::GR32RegClass);
3706     switch (VT.SimpleTy) {
3707     default: llvm_unreachable("Unexpected value type");
3708     case MVT::i1:
3709     case MVT::i8:
3710       return fastEmitInst_extractsubreg(MVT::i8, SrcReg, /*Kill=*/true,
3711                                         X86::sub_8bit);
3712     case MVT::i16:
3713       return fastEmitInst_extractsubreg(MVT::i16, SrcReg, /*Kill=*/true,
3714                                         X86::sub_16bit);
3715     case MVT::i32:
3716       return SrcReg;
3717     case MVT::i64: {
3718       unsigned ResultReg = createResultReg(&X86::GR64RegClass);
3719       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3720               TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg)
3721         .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit);
3722       return ResultReg;
3723     }
3724     }
3725   }
3726
3727   unsigned Opc = 0;
3728   switch (VT.SimpleTy) {
3729   default: llvm_unreachable("Unexpected value type");
3730   case MVT::i1:
3731     VT = MVT::i8;
3732     LLVM_FALLTHROUGH;
3733   case MVT::i8:  Opc = X86::MOV8ri;  break;
3734   case MVT::i16: Opc = X86::MOV16ri; break;
3735   case MVT::i32: Opc = X86::MOV32ri; break;
3736   case MVT::i64: {
3737     if (isUInt<32>(Imm))
3738       Opc = X86::MOV32ri64;
3739     else if (isInt<32>(Imm))
3740       Opc = X86::MOV64ri32;
3741     else
3742       Opc = X86::MOV64ri;
3743     break;
3744   }
3745   }
3746   return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm);
3747 }
3748
3749 unsigned X86FastISel::X86MaterializeFP(const ConstantFP *CFP, MVT VT) {
3750   if (CFP->isNullValue())
3751     return fastMaterializeFloatZero(CFP);
3752
3753   // Can't handle alternate code models yet.
3754   CodeModel::Model CM = TM.getCodeModel();
3755   if (CM != CodeModel::Small && CM != CodeModel::Large)
3756     return 0;
3757
3758   // Get opcode and regclass of the output for the given load instruction.
3759   unsigned Opc = 0;
3760   const TargetRegisterClass *RC = nullptr;
3761   switch (VT.SimpleTy) {
3762   default: return 0;
3763   case MVT::f32:
3764     if (X86ScalarSSEf32) {
3765       Opc = Subtarget->hasAVX512()
3766                 ? X86::VMOVSSZrm
3767                 : Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm;
3768       RC  = Subtarget->hasAVX512() ? &X86::FR32XRegClass : &X86::FR32RegClass;
3769     } else {
3770       Opc = X86::LD_Fp32m;
3771       RC  = &X86::RFP32RegClass;
3772     }
3773     break;
3774   case MVT::f64:
3775     if (X86ScalarSSEf64) {
3776       Opc = Subtarget->hasAVX512()
3777                 ? X86::VMOVSDZrm
3778                 : Subtarget->hasAVX() ? X86::VMOVSDrm : X86::MOVSDrm;
3779       RC  = Subtarget->hasAVX512() ? &X86::FR64XRegClass : &X86::FR64RegClass;
3780     } else {
3781       Opc = X86::LD_Fp64m;
3782       RC  = &X86::RFP64RegClass;
3783     }
3784     break;
3785   case MVT::f80:
3786     // No f80 support yet.
3787     return 0;
3788   }
3789
3790   // MachineConstantPool wants an explicit alignment.
3791   unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
3792   if (Align == 0) {
3793     // Alignment of vector types. FIXME!
3794     Align = DL.getTypeAllocSize(CFP->getType());
3795   }
3796
3797   // x86-32 PIC requires a PIC base register for constant pools.
3798   unsigned PICBase = 0;
3799   unsigned char OpFlag = Subtarget->classifyLocalReference(nullptr);
3800   if (OpFlag == X86II::MO_PIC_BASE_OFFSET)
3801     PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3802   else if (OpFlag == X86II::MO_GOTOFF)
3803     PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3804   else if (Subtarget->is64Bit() && TM.getCodeModel() == CodeModel::Small)
3805     PICBase = X86::RIP;
3806
3807   // Create the load from the constant pool.
3808   unsigned CPI = MCP.getConstantPoolIndex(CFP, Align);
3809   unsigned ResultReg = createResultReg(RC);
3810
3811   if (CM == CodeModel::Large) {
3812     unsigned AddrReg = createResultReg(&X86::GR64RegClass);
3813     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri),
3814             AddrReg)
3815       .addConstantPoolIndex(CPI, 0, OpFlag);
3816     MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3817                                       TII.get(Opc), ResultReg);
3818     addDirectMem(MIB, AddrReg);
3819     MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
3820         MachinePointerInfo::getConstantPool(*FuncInfo.MF),
3821         MachineMemOperand::MOLoad, DL.getPointerSize(), Align);
3822     MIB->addMemOperand(*FuncInfo.MF, MMO);
3823     return ResultReg;
3824   }
3825
3826   addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3827                                    TII.get(Opc), ResultReg),
3828                            CPI, PICBase, OpFlag);
3829   return ResultReg;
3830 }
3831
3832 unsigned X86FastISel::X86MaterializeGV(const GlobalValue *GV, MVT VT) {
3833   // Can't handle alternate code models yet.
3834   if (TM.getCodeModel() != CodeModel::Small)
3835     return 0;
3836
3837   // Materialize addresses with LEA/MOV instructions.
3838   X86AddressMode AM;
3839   if (X86SelectAddress(GV, AM)) {
3840     // If the expression is just a basereg, then we're done, otherwise we need
3841     // to emit an LEA.
3842     if (AM.BaseType == X86AddressMode::RegBase &&
3843         AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr)
3844       return AM.Base.Reg;
3845
3846     unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
3847     if (TM.getRelocationModel() == Reloc::Static &&
3848         TLI.getPointerTy(DL) == MVT::i64) {
3849       // The displacement code could be more than 32 bits away so we need to use
3850       // an instruction with a 64 bit immediate
3851       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri),
3852               ResultReg)
3853         .addGlobalAddress(GV);
3854     } else {
3855       unsigned Opc =
3856           TLI.getPointerTy(DL) == MVT::i32
3857               ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
3858               : X86::LEA64r;
3859       addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3860                              TII.get(Opc), ResultReg), AM);
3861     }
3862     return ResultReg;
3863   }
3864   return 0;
3865 }
3866
3867 unsigned X86FastISel::fastMaterializeConstant(const Constant *C) {
3868   EVT CEVT = TLI.getValueType(DL, C->getType(), true);
3869
3870   // Only handle simple types.
3871   if (!CEVT.isSimple())
3872     return 0;
3873   MVT VT = CEVT.getSimpleVT();
3874
3875   if (const auto *CI = dyn_cast<ConstantInt>(C))
3876     return X86MaterializeInt(CI, VT);
3877   else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
3878     return X86MaterializeFP(CFP, VT);
3879   else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
3880     return X86MaterializeGV(GV, VT);
3881
3882   return 0;
3883 }
3884
3885 unsigned X86FastISel::fastMaterializeAlloca(const AllocaInst *C) {
3886   // Fail on dynamic allocas. At this point, getRegForValue has already
3887   // checked its CSE maps, so if we're here trying to handle a dynamic
3888   // alloca, we're not going to succeed. X86SelectAddress has a
3889   // check for dynamic allocas, because it's called directly from
3890   // various places, but targetMaterializeAlloca also needs a check
3891   // in order to avoid recursion between getRegForValue,
3892   // X86SelectAddrss, and targetMaterializeAlloca.
3893   if (!FuncInfo.StaticAllocaMap.count(C))
3894     return 0;
3895   assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?");
3896
3897   X86AddressMode AM;
3898   if (!X86SelectAddress(C, AM))
3899     return 0;
3900   unsigned Opc =
3901       TLI.getPointerTy(DL) == MVT::i32
3902           ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
3903           : X86::LEA64r;
3904   const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
3905   unsigned ResultReg = createResultReg(RC);
3906   addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3907                          TII.get(Opc), ResultReg), AM);
3908   return ResultReg;
3909 }
3910
3911 unsigned X86FastISel::fastMaterializeFloatZero(const ConstantFP *CF) {
3912   MVT VT;
3913   if (!isTypeLegal(CF->getType(), VT))
3914     return 0;
3915
3916   // Get opcode and regclass for the given zero.
3917   bool HasAVX512 = Subtarget->hasAVX512();
3918   unsigned Opc = 0;
3919   const TargetRegisterClass *RC = nullptr;
3920   switch (VT.SimpleTy) {
3921   default: return 0;
3922   case MVT::f32:
3923     if (X86ScalarSSEf32) {
3924       Opc = HasAVX512 ? X86::AVX512_FsFLD0SS : X86::FsFLD0SS;
3925       RC  = HasAVX512 ? &X86::FR32XRegClass : &X86::FR32RegClass;
3926     } else {
3927       Opc = X86::LD_Fp032;
3928       RC  = &X86::RFP32RegClass;
3929     }
3930     break;
3931   case MVT::f64:
3932     if (X86ScalarSSEf64) {
3933       Opc = HasAVX512 ? X86::AVX512_FsFLD0SD : X86::FsFLD0SD;
3934       RC  = HasAVX512 ? &X86::FR64XRegClass : &X86::FR64RegClass;
3935     } else {
3936       Opc = X86::LD_Fp064;
3937       RC  = &X86::RFP64RegClass;
3938     }
3939     break;
3940   case MVT::f80:
3941     // No f80 support yet.
3942     return 0;
3943   }
3944
3945   unsigned ResultReg = createResultReg(RC);
3946   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
3947   return ResultReg;
3948 }
3949
3950
3951 bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
3952                                       const LoadInst *LI) {
3953   const Value *Ptr = LI->getPointerOperand();
3954   X86AddressMode AM;
3955   if (!X86SelectAddress(Ptr, AM))
3956     return false;
3957
3958   const X86InstrInfo &XII = (const X86InstrInfo &)TII;
3959
3960   unsigned Size = DL.getTypeAllocSize(LI->getType());
3961   unsigned Alignment = LI->getAlignment();
3962
3963   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3964     Alignment = DL.getABITypeAlignment(LI->getType());
3965
3966   SmallVector<MachineOperand, 8> AddrOps;
3967   AM.getFullAddress(AddrOps);
3968
3969   MachineInstr *Result = XII.foldMemoryOperandImpl(
3970       *FuncInfo.MF, *MI, OpNo, AddrOps, FuncInfo.InsertPt, Size, Alignment,
3971       /*AllowCommute=*/true);
3972   if (!Result)
3973     return false;
3974
3975   // The index register could be in the wrong register class.  Unfortunately,
3976   // foldMemoryOperandImpl could have commuted the instruction so its not enough
3977   // to just look at OpNo + the offset to the index reg.  We actually need to
3978   // scan the instruction to find the index reg and see if its the correct reg
3979   // class.
3980   unsigned OperandNo = 0;
3981   for (MachineInstr::mop_iterator I = Result->operands_begin(),
3982        E = Result->operands_end(); I != E; ++I, ++OperandNo) {
3983     MachineOperand &MO = *I;
3984     if (!MO.isReg() || MO.isDef() || MO.getReg() != AM.IndexReg)
3985       continue;
3986     // Found the index reg, now try to rewrite it.
3987     unsigned IndexReg = constrainOperandRegClass(Result->getDesc(),
3988                                                  MO.getReg(), OperandNo);
3989     if (IndexReg == MO.getReg())
3990       continue;
3991     MO.setReg(IndexReg);
3992   }
3993
3994   Result->addMemOperand(*FuncInfo.MF, createMachineMemOperandFor(LI));
3995   MachineBasicBlock::iterator I(MI);
3996   removeDeadCode(I, std::next(I));
3997   return true;
3998 }
3999
4000 unsigned X86FastISel::fastEmitInst_rrrr(unsigned MachineInstOpcode,
4001                                         const TargetRegisterClass *RC,
4002                                         unsigned Op0, bool Op0IsKill,
4003                                         unsigned Op1, bool Op1IsKill,
4004                                         unsigned Op2, bool Op2IsKill,
4005                                         unsigned Op3, bool Op3IsKill) {
4006   const MCInstrDesc &II = TII.get(MachineInstOpcode);
4007
4008   unsigned ResultReg = createResultReg(RC);
4009   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
4010   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
4011   Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);
4012   Op3 = constrainOperandRegClass(II, Op3, II.getNumDefs() + 3);
4013
4014   if (II.getNumDefs() >= 1)
4015     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
4016         .addReg(Op0, getKillRegState(Op0IsKill))
4017         .addReg(Op1, getKillRegState(Op1IsKill))
4018         .addReg(Op2, getKillRegState(Op2IsKill))
4019         .addReg(Op3, getKillRegState(Op3IsKill));
4020   else {
4021     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
4022         .addReg(Op0, getKillRegState(Op0IsKill))
4023         .addReg(Op1, getKillRegState(Op1IsKill))
4024         .addReg(Op2, getKillRegState(Op2IsKill))
4025         .addReg(Op3, getKillRegState(Op3IsKill));
4026     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
4027             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
4028   }
4029   return ResultReg;
4030 }
4031
4032
4033 namespace llvm {
4034   FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo,
4035                                 const TargetLibraryInfo *libInfo) {
4036     return new X86FastISel(funcInfo, libInfo);
4037   }
4038 }