]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Target/X86/X86FlagsCopyLowering.cpp
Merge clang 7.0.1 and several follow-up changes
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Target / X86 / X86FlagsCopyLowering.cpp
1 //====- X86FlagsCopyLowering.cpp - Lowers COPY nodes of EFLAGS ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 ///
11 /// Lowers COPY nodes of EFLAGS by directly extracting and preserving individual
12 /// flag bits.
13 ///
14 /// We have to do this by carefully analyzing and rewriting the usage of the
15 /// copied EFLAGS register because there is no general way to rematerialize the
16 /// entire EFLAGS register safely and efficiently. Using `popf` both forces
17 /// dynamic stack adjustment and can create correctness issues due to IF, TF,
18 /// and other non-status flags being overwritten. Using sequences involving
19 /// SAHF don't work on all x86 processors and are often quite slow compared to
20 /// directly testing a single status preserved in its own GPR.
21 ///
22 //===----------------------------------------------------------------------===//
23
24 #include "X86.h"
25 #include "X86InstrBuilder.h"
26 #include "X86InstrInfo.h"
27 #include "X86Subtarget.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/PostOrderIterator.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/ScopeExit.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallSet.h"
35 #include "llvm/ADT/SmallVector.h"
36 #include "llvm/ADT/SparseBitVector.h"
37 #include "llvm/ADT/Statistic.h"
38 #include "llvm/CodeGen/MachineBasicBlock.h"
39 #include "llvm/CodeGen/MachineConstantPool.h"
40 #include "llvm/CodeGen/MachineDominators.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineFunctionPass.h"
43 #include "llvm/CodeGen/MachineInstr.h"
44 #include "llvm/CodeGen/MachineInstrBuilder.h"
45 #include "llvm/CodeGen/MachineModuleInfo.h"
46 #include "llvm/CodeGen/MachineOperand.h"
47 #include "llvm/CodeGen/MachineRegisterInfo.h"
48 #include "llvm/CodeGen/MachineSSAUpdater.h"
49 #include "llvm/CodeGen/TargetInstrInfo.h"
50 #include "llvm/CodeGen/TargetRegisterInfo.h"
51 #include "llvm/CodeGen/TargetSchedule.h"
52 #include "llvm/CodeGen/TargetSubtargetInfo.h"
53 #include "llvm/IR/DebugLoc.h"
54 #include "llvm/MC/MCSchedule.h"
55 #include "llvm/Pass.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include <algorithm>
60 #include <cassert>
61 #include <iterator>
62 #include <utility>
63
64 using namespace llvm;
65
66 #define PASS_KEY "x86-flags-copy-lowering"
67 #define DEBUG_TYPE PASS_KEY
68
69 STATISTIC(NumCopiesEliminated, "Number of copies of EFLAGS eliminated");
70 STATISTIC(NumSetCCsInserted, "Number of setCC instructions inserted");
71 STATISTIC(NumTestsInserted, "Number of test instructions inserted");
72 STATISTIC(NumAddsInserted, "Number of adds instructions inserted");
73
74 namespace llvm {
75
76 void initializeX86FlagsCopyLoweringPassPass(PassRegistry &);
77
78 } // end namespace llvm
79
80 namespace {
81
82 // Convenient array type for storing registers associated with each condition.
83 using CondRegArray = std::array<unsigned, X86::LAST_VALID_COND + 1>;
84
85 class X86FlagsCopyLoweringPass : public MachineFunctionPass {
86 public:
87   X86FlagsCopyLoweringPass() : MachineFunctionPass(ID) {
88     initializeX86FlagsCopyLoweringPassPass(*PassRegistry::getPassRegistry());
89   }
90
91   StringRef getPassName() const override { return "X86 EFLAGS copy lowering"; }
92   bool runOnMachineFunction(MachineFunction &MF) override;
93   void getAnalysisUsage(AnalysisUsage &AU) const override;
94
95   /// Pass identification, replacement for typeid.
96   static char ID;
97
98 private:
99   MachineRegisterInfo *MRI;
100   const X86Subtarget *Subtarget;
101   const X86InstrInfo *TII;
102   const TargetRegisterInfo *TRI;
103   const TargetRegisterClass *PromoteRC;
104   MachineDominatorTree *MDT;
105
106   CondRegArray collectCondsInRegs(MachineBasicBlock &MBB,
107                                   MachineBasicBlock::iterator CopyDefI);
108
109   unsigned promoteCondToReg(MachineBasicBlock &MBB,
110                             MachineBasicBlock::iterator TestPos,
111                             DebugLoc TestLoc, X86::CondCode Cond);
112   std::pair<unsigned, bool>
113   getCondOrInverseInReg(MachineBasicBlock &TestMBB,
114                         MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
115                         X86::CondCode Cond, CondRegArray &CondRegs);
116   void insertTest(MachineBasicBlock &MBB, MachineBasicBlock::iterator Pos,
117                   DebugLoc Loc, unsigned Reg);
118
119   void rewriteArithmetic(MachineBasicBlock &TestMBB,
120                          MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
121                          MachineInstr &MI, MachineOperand &FlagUse,
122                          CondRegArray &CondRegs);
123   void rewriteCMov(MachineBasicBlock &TestMBB,
124                    MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
125                    MachineInstr &CMovI, MachineOperand &FlagUse,
126                    CondRegArray &CondRegs);
127   void rewriteCondJmp(MachineBasicBlock &TestMBB,
128                       MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
129                       MachineInstr &JmpI, CondRegArray &CondRegs);
130   void rewriteCopy(MachineInstr &MI, MachineOperand &FlagUse,
131                    MachineInstr &CopyDefI);
132   void rewriteSetCarryExtended(MachineBasicBlock &TestMBB,
133                                MachineBasicBlock::iterator TestPos,
134                                DebugLoc TestLoc, MachineInstr &SetBI,
135                                MachineOperand &FlagUse, CondRegArray &CondRegs);
136   void rewriteSetCC(MachineBasicBlock &TestMBB,
137                     MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
138                     MachineInstr &SetCCI, MachineOperand &FlagUse,
139                     CondRegArray &CondRegs);
140 };
141
142 } // end anonymous namespace
143
144 INITIALIZE_PASS_BEGIN(X86FlagsCopyLoweringPass, DEBUG_TYPE,
145                       "X86 EFLAGS copy lowering", false, false)
146 INITIALIZE_PASS_END(X86FlagsCopyLoweringPass, DEBUG_TYPE,
147                     "X86 EFLAGS copy lowering", false, false)
148
149 FunctionPass *llvm::createX86FlagsCopyLoweringPass() {
150   return new X86FlagsCopyLoweringPass();
151 }
152
153 char X86FlagsCopyLoweringPass::ID = 0;
154
155 void X86FlagsCopyLoweringPass::getAnalysisUsage(AnalysisUsage &AU) const {
156   AU.addRequired<MachineDominatorTree>();
157   MachineFunctionPass::getAnalysisUsage(AU);
158 }
159
160 namespace {
161 /// An enumeration of the arithmetic instruction mnemonics which have
162 /// interesting flag semantics.
163 ///
164 /// We can map instruction opcodes into these mnemonics to make it easy to
165 /// dispatch with specific functionality.
166 enum class FlagArithMnemonic {
167   ADC,
168   ADCX,
169   ADOX,
170   RCL,
171   RCR,
172   SBB,
173 };
174 } // namespace
175
176 static FlagArithMnemonic getMnemonicFromOpcode(unsigned Opcode) {
177   switch (Opcode) {
178   default:
179     report_fatal_error("No support for lowering a copy into EFLAGS when used "
180                        "by this instruction!");
181
182 #define LLVM_EXPAND_INSTR_SIZES(MNEMONIC, SUFFIX)                              \
183   case X86::MNEMONIC##8##SUFFIX:                                               \
184   case X86::MNEMONIC##16##SUFFIX:                                              \
185   case X86::MNEMONIC##32##SUFFIX:                                              \
186   case X86::MNEMONIC##64##SUFFIX:
187
188 #define LLVM_EXPAND_ADC_SBB_INSTR(MNEMONIC)                                    \
189   LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rr)                                        \
190   LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rr_REV)                                    \
191   LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rm)                                        \
192   LLVM_EXPAND_INSTR_SIZES(MNEMONIC, mr)                                        \
193   case X86::MNEMONIC##8ri:                                                     \
194   case X86::MNEMONIC##16ri8:                                                   \
195   case X86::MNEMONIC##32ri8:                                                   \
196   case X86::MNEMONIC##64ri8:                                                   \
197   case X86::MNEMONIC##16ri:                                                    \
198   case X86::MNEMONIC##32ri:                                                    \
199   case X86::MNEMONIC##64ri32:                                                  \
200   case X86::MNEMONIC##8mi:                                                     \
201   case X86::MNEMONIC##16mi8:                                                   \
202   case X86::MNEMONIC##32mi8:                                                   \
203   case X86::MNEMONIC##64mi8:                                                   \
204   case X86::MNEMONIC##16mi:                                                    \
205   case X86::MNEMONIC##32mi:                                                    \
206   case X86::MNEMONIC##64mi32:                                                  \
207   case X86::MNEMONIC##8i8:                                                     \
208   case X86::MNEMONIC##16i16:                                                   \
209   case X86::MNEMONIC##32i32:                                                   \
210   case X86::MNEMONIC##64i32:
211
212     LLVM_EXPAND_ADC_SBB_INSTR(ADC)
213     return FlagArithMnemonic::ADC;
214
215     LLVM_EXPAND_ADC_SBB_INSTR(SBB)
216     return FlagArithMnemonic::SBB;
217
218 #undef LLVM_EXPAND_ADC_SBB_INSTR
219
220     LLVM_EXPAND_INSTR_SIZES(RCL, rCL)
221     LLVM_EXPAND_INSTR_SIZES(RCL, r1)
222     LLVM_EXPAND_INSTR_SIZES(RCL, ri)
223     return FlagArithMnemonic::RCL;
224
225     LLVM_EXPAND_INSTR_SIZES(RCR, rCL)
226     LLVM_EXPAND_INSTR_SIZES(RCR, r1)
227     LLVM_EXPAND_INSTR_SIZES(RCR, ri)
228     return FlagArithMnemonic::RCR;
229
230 #undef LLVM_EXPAND_INSTR_SIZES
231
232   case X86::ADCX32rr:
233   case X86::ADCX64rr:
234   case X86::ADCX32rm:
235   case X86::ADCX64rm:
236     return FlagArithMnemonic::ADCX;
237
238   case X86::ADOX32rr:
239   case X86::ADOX64rr:
240   case X86::ADOX32rm:
241   case X86::ADOX64rm:
242     return FlagArithMnemonic::ADOX;
243   }
244 }
245
246 static MachineBasicBlock &splitBlock(MachineBasicBlock &MBB,
247                                      MachineInstr &SplitI,
248                                      const X86InstrInfo &TII) {
249   MachineFunction &MF = *MBB.getParent();
250
251   assert(SplitI.getParent() == &MBB &&
252          "Split instruction must be in the split block!");
253   assert(SplitI.isBranch() &&
254          "Only designed to split a tail of branch instructions!");
255   assert(X86::getCondFromBranchOpc(SplitI.getOpcode()) != X86::COND_INVALID &&
256          "Must split on an actual jCC instruction!");
257
258   // Dig out the previous instruction to the split point.
259   MachineInstr &PrevI = *std::prev(SplitI.getIterator());
260   assert(PrevI.isBranch() && "Must split after a branch!");
261   assert(X86::getCondFromBranchOpc(PrevI.getOpcode()) != X86::COND_INVALID &&
262          "Must split after an actual jCC instruction!");
263   assert(!std::prev(PrevI.getIterator())->isTerminator() &&
264          "Must only have this one terminator prior to the split!");
265
266   // Grab the one successor edge that will stay in `MBB`.
267   MachineBasicBlock &UnsplitSucc = *PrevI.getOperand(0).getMBB();
268
269   // Analyze the original block to see if we are actually splitting an edge
270   // into two edges. This can happen when we have multiple conditional jumps to
271   // the same successor.
272   bool IsEdgeSplit =
273       std::any_of(SplitI.getIterator(), MBB.instr_end(),
274                   [&](MachineInstr &MI) {
275                     assert(MI.isTerminator() &&
276                            "Should only have spliced terminators!");
277                     return llvm::any_of(
278                         MI.operands(), [&](MachineOperand &MOp) {
279                           return MOp.isMBB() && MOp.getMBB() == &UnsplitSucc;
280                         });
281                   }) ||
282       MBB.getFallThrough() == &UnsplitSucc;
283
284   MachineBasicBlock &NewMBB = *MF.CreateMachineBasicBlock();
285
286   // Insert the new block immediately after the current one. Any existing
287   // fallthrough will be sunk into this new block anyways.
288   MF.insert(std::next(MachineFunction::iterator(&MBB)), &NewMBB);
289
290   // Splice the tail of instructions into the new block.
291   NewMBB.splice(NewMBB.end(), &MBB, SplitI.getIterator(), MBB.end());
292
293   // Copy the necessary succesors (and their probability info) into the new
294   // block.
295   for (auto SI = MBB.succ_begin(), SE = MBB.succ_end(); SI != SE; ++SI)
296     if (IsEdgeSplit || *SI != &UnsplitSucc)
297       NewMBB.copySuccessor(&MBB, SI);
298   // Normalize the probabilities if we didn't end up splitting the edge.
299   if (!IsEdgeSplit)
300     NewMBB.normalizeSuccProbs();
301
302   // Now replace all of the moved successors in the original block with the new
303   // block. This will merge their probabilities.
304   for (MachineBasicBlock *Succ : NewMBB.successors())
305     if (Succ != &UnsplitSucc)
306       MBB.replaceSuccessor(Succ, &NewMBB);
307
308   // We should always end up replacing at least one successor.
309   assert(MBB.isSuccessor(&NewMBB) &&
310          "Failed to make the new block a successor!");
311
312   // Now update all the PHIs.
313   for (MachineBasicBlock *Succ : NewMBB.successors()) {
314     for (MachineInstr &MI : *Succ) {
315       if (!MI.isPHI())
316         break;
317
318       for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps;
319            OpIdx += 2) {
320         MachineOperand &OpV = MI.getOperand(OpIdx);
321         MachineOperand &OpMBB = MI.getOperand(OpIdx + 1);
322         assert(OpMBB.isMBB() && "Block operand to a PHI is not a block!");
323         if (OpMBB.getMBB() != &MBB)
324           continue;
325
326         // Replace the operand for unsplit successors
327         if (!IsEdgeSplit || Succ != &UnsplitSucc) {
328           OpMBB.setMBB(&NewMBB);
329
330           // We have to continue scanning as there may be multiple entries in
331           // the PHI.
332           continue;
333         }
334
335         // When we have split the edge append a new successor.
336         MI.addOperand(MF, OpV);
337         MI.addOperand(MF, MachineOperand::CreateMBB(&NewMBB));
338         break;
339       }
340     }
341   }
342
343   return NewMBB;
344 }
345
346 bool X86FlagsCopyLoweringPass::runOnMachineFunction(MachineFunction &MF) {
347   LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName()
348                     << " **********\n");
349
350   Subtarget = &MF.getSubtarget<X86Subtarget>();
351   MRI = &MF.getRegInfo();
352   TII = Subtarget->getInstrInfo();
353   TRI = Subtarget->getRegisterInfo();
354   MDT = &getAnalysis<MachineDominatorTree>();
355   PromoteRC = &X86::GR8RegClass;
356
357   if (MF.begin() == MF.end())
358     // Nothing to do for a degenerate empty function...
359     return false;
360
361   // Collect the copies in RPO so that when there are chains where a copy is in
362   // turn copied again we visit the first one first. This ensures we can find
363   // viable locations for testing the original EFLAGS that dominate all the
364   // uses across complex CFGs.
365   SmallVector<MachineInstr *, 4> Copies;
366   ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
367   for (MachineBasicBlock *MBB : RPOT)
368     for (MachineInstr &MI : *MBB)
369       if (MI.getOpcode() == TargetOpcode::COPY &&
370           MI.getOperand(0).getReg() == X86::EFLAGS)
371         Copies.push_back(&MI);
372
373   for (MachineInstr *CopyI : Copies) {
374     MachineBasicBlock &MBB = *CopyI->getParent();
375
376     MachineOperand &VOp = CopyI->getOperand(1);
377     assert(VOp.isReg() &&
378            "The input to the copy for EFLAGS should always be a register!");
379     MachineInstr &CopyDefI = *MRI->getVRegDef(VOp.getReg());
380     if (CopyDefI.getOpcode() != TargetOpcode::COPY) {
381       // FIXME: The big likely candidate here are PHI nodes. We could in theory
382       // handle PHI nodes, but it gets really, really hard. Insanely hard. Hard
383       // enough that it is probably better to change every other part of LLVM
384       // to avoid creating them. The issue is that once we have PHIs we won't
385       // know which original EFLAGS value we need to capture with our setCCs
386       // below. The end result will be computing a complete set of setCCs that
387       // we *might* want, computing them in every place where we copy *out* of
388       // EFLAGS and then doing SSA formation on all of them to insert necessary
389       // PHI nodes and consume those here. Then hoping that somehow we DCE the
390       // unnecessary ones. This DCE seems very unlikely to be successful and so
391       // we will almost certainly end up with a glut of dead setCC
392       // instructions. Until we have a motivating test case and fail to avoid
393       // it by changing other parts of LLVM's lowering, we refuse to handle
394       // this complex case here.
395       LLVM_DEBUG(
396           dbgs() << "ERROR: Encountered unexpected def of an eflags copy: ";
397           CopyDefI.dump());
398       report_fatal_error(
399           "Cannot lower EFLAGS copy unless it is defined in turn by a copy!");
400     }
401
402     auto Cleanup = make_scope_exit([&] {
403       // All uses of the EFLAGS copy are now rewritten, kill the copy into
404       // eflags and if dead the copy from.
405       CopyI->eraseFromParent();
406       if (MRI->use_empty(CopyDefI.getOperand(0).getReg()))
407         CopyDefI.eraseFromParent();
408       ++NumCopiesEliminated;
409     });
410
411     MachineOperand &DOp = CopyI->getOperand(0);
412     assert(DOp.isDef() && "Expected register def!");
413     assert(DOp.getReg() == X86::EFLAGS && "Unexpected copy def register!");
414     if (DOp.isDead())
415       continue;
416
417     MachineBasicBlock *TestMBB = CopyDefI.getParent();
418     auto TestPos = CopyDefI.getIterator();
419     DebugLoc TestLoc = CopyDefI.getDebugLoc();
420
421     LLVM_DEBUG(dbgs() << "Rewriting copy: "; CopyI->dump());
422
423     // Walk up across live-in EFLAGS to find where they were actually def'ed.
424     //
425     // This copy's def may just be part of a region of blocks covered by
426     // a single def of EFLAGS and we want to find the top of that region where
427     // possible.
428     //
429     // This is essentially a search for a *candidate* reaching definition
430     // location. We don't need to ever find the actual reaching definition here,
431     // but we want to walk up the dominator tree to find the highest point which
432     // would be viable for such a definition.
433     auto HasEFLAGSClobber = [&](MachineBasicBlock::iterator Begin,
434                                 MachineBasicBlock::iterator End) {
435       // Scan backwards as we expect these to be relatively short and often find
436       // a clobber near the end.
437       return llvm::any_of(
438           llvm::reverse(llvm::make_range(Begin, End)), [&](MachineInstr &MI) {
439             // Flag any instruction (other than the copy we are
440             // currently rewriting) that defs EFLAGS.
441             return &MI != CopyI && MI.findRegisterDefOperand(X86::EFLAGS);
442           });
443     };
444     auto HasEFLAGSClobberPath = [&](MachineBasicBlock *BeginMBB,
445                                     MachineBasicBlock *EndMBB) {
446       assert(MDT->dominates(BeginMBB, EndMBB) &&
447              "Only support paths down the dominator tree!");
448       SmallPtrSet<MachineBasicBlock *, 4> Visited;
449       SmallVector<MachineBasicBlock *, 4> Worklist;
450       // We terminate at the beginning. No need to scan it.
451       Visited.insert(BeginMBB);
452       Worklist.push_back(EndMBB);
453       do {
454         auto *MBB = Worklist.pop_back_val();
455         for (auto *PredMBB : MBB->predecessors()) {
456           if (!Visited.insert(PredMBB).second)
457             continue;
458           if (HasEFLAGSClobber(PredMBB->begin(), PredMBB->end()))
459             return true;
460           // Enqueue this block to walk its predecessors.
461           Worklist.push_back(PredMBB);
462         }
463       } while (!Worklist.empty());
464       // No clobber found along a path from the begin to end.
465       return false;
466     };
467     while (TestMBB->isLiveIn(X86::EFLAGS) && !TestMBB->pred_empty() &&
468            !HasEFLAGSClobber(TestMBB->begin(), TestPos)) {
469       // Find the nearest common dominator of the predecessors, as
470       // that will be the best candidate to hoist into.
471       MachineBasicBlock *HoistMBB =
472           std::accumulate(std::next(TestMBB->pred_begin()), TestMBB->pred_end(),
473                           *TestMBB->pred_begin(),
474                           [&](MachineBasicBlock *LHS, MachineBasicBlock *RHS) {
475                             return MDT->findNearestCommonDominator(LHS, RHS);
476                           });
477
478       // Now we need to scan all predecessors that may be reached along paths to
479       // the hoist block. A clobber anywhere in any of these blocks the hoist.
480       // Note that this even handles loops because we require *no* clobbers.
481       if (HasEFLAGSClobberPath(HoistMBB, TestMBB))
482         break;
483
484       // We also need the terminators to not sneakily clobber flags.
485       if (HasEFLAGSClobber(HoistMBB->getFirstTerminator()->getIterator(),
486                            HoistMBB->instr_end()))
487         break;
488
489       // We found a viable location, hoist our test position to it.
490       TestMBB = HoistMBB;
491       TestPos = TestMBB->getFirstTerminator()->getIterator();
492       // Clear the debug location as it would just be confusing after hoisting.
493       TestLoc = DebugLoc();
494     }
495     LLVM_DEBUG({
496       auto DefIt = llvm::find_if(
497           llvm::reverse(llvm::make_range(TestMBB->instr_begin(), TestPos)),
498           [&](MachineInstr &MI) {
499             return MI.findRegisterDefOperand(X86::EFLAGS);
500           });
501       if (DefIt.base() != TestMBB->instr_begin()) {
502         dbgs() << "  Using EFLAGS defined by: ";
503         DefIt->dump();
504       } else {
505         dbgs() << "  Using live-in flags for BB:\n";
506         TestMBB->dump();
507       }
508     });
509
510     // While rewriting uses, we buffer jumps and rewrite them in a second pass
511     // because doing so will perturb the CFG that we are walking to find the
512     // uses in the first place.
513     SmallVector<MachineInstr *, 4> JmpIs;
514
515     // Gather the condition flags that have already been preserved in
516     // registers. We do this from scratch each time as we expect there to be
517     // very few of them and we expect to not revisit the same copy definition
518     // many times. If either of those change sufficiently we could build a map
519     // of these up front instead.
520     CondRegArray CondRegs = collectCondsInRegs(*TestMBB, TestPos);
521
522     // Collect the basic blocks we need to scan. Typically this will just be
523     // a single basic block but we may have to scan multiple blocks if the
524     // EFLAGS copy lives into successors.
525     SmallVector<MachineBasicBlock *, 2> Blocks;
526     SmallPtrSet<MachineBasicBlock *, 2> VisitedBlocks;
527     Blocks.push_back(&MBB);
528
529     do {
530       MachineBasicBlock &UseMBB = *Blocks.pop_back_val();
531
532       // Track when if/when we find a kill of the flags in this block.
533       bool FlagsKilled = false;
534
535       // In most cases, we walk from the beginning to the end of the block. But
536       // when the block is the same block as the copy is from, we will visit it
537       // twice. The first time we start from the copy and go to the end. The
538       // second time we start from the beginning and go to the copy. This lets
539       // us handle copies inside of cycles.
540       // FIXME: This loop is *super* confusing. This is at least in part
541       // a symptom of all of this routine needing to be refactored into
542       // documentable components. Once done, there may be a better way to write
543       // this loop.
544       for (auto MII = (&UseMBB == &MBB && !VisitedBlocks.count(&UseMBB))
545                           ? std::next(CopyI->getIterator())
546                           : UseMBB.instr_begin(),
547                 MIE = UseMBB.instr_end();
548            MII != MIE;) {
549         MachineInstr &MI = *MII++;
550         // If we are in the original copy block and encounter either the copy
551         // def or the copy itself, break so that we don't re-process any part of
552         // the block or process the instructions in the range that was copied
553         // over.
554         if (&MI == CopyI || &MI == &CopyDefI) {
555           assert(&UseMBB == &MBB && VisitedBlocks.count(&MBB) &&
556                  "Should only encounter these on the second pass over the "
557                  "original block.");
558           break;
559         }
560
561         MachineOperand *FlagUse = MI.findRegisterUseOperand(X86::EFLAGS);
562         if (!FlagUse) {
563           if (MI.findRegisterDefOperand(X86::EFLAGS)) {
564             // If EFLAGS are defined, it's as-if they were killed. We can stop
565             // scanning here.
566             //
567             // NB!!! Many instructions only modify some flags. LLVM currently
568             // models this as clobbering all flags, but if that ever changes
569             // this will need to be carefully updated to handle that more
570             // complex logic.
571             FlagsKilled = true;
572             break;
573           }
574           continue;
575         }
576
577         LLVM_DEBUG(dbgs() << "  Rewriting use: "; MI.dump());
578
579         // Check the kill flag before we rewrite as that may change it.
580         if (FlagUse->isKill())
581           FlagsKilled = true;
582
583         // Once we encounter a branch, the rest of the instructions must also be
584         // branches. We can't rewrite in place here, so we handle them below.
585         //
586         // Note that we don't have to handle tail calls here, even conditional
587         // tail calls, as those are not introduced into the X86 MI until post-RA
588         // branch folding or black placement. As a consequence, we get to deal
589         // with the simpler formulation of conditional branches followed by tail
590         // calls.
591         if (X86::getCondFromBranchOpc(MI.getOpcode()) != X86::COND_INVALID) {
592           auto JmpIt = MI.getIterator();
593           do {
594             JmpIs.push_back(&*JmpIt);
595             ++JmpIt;
596           } while (JmpIt != UseMBB.instr_end() &&
597                    X86::getCondFromBranchOpc(JmpIt->getOpcode()) !=
598                        X86::COND_INVALID);
599           break;
600         }
601
602         // Otherwise we can just rewrite in-place.
603         if (X86::getCondFromCMovOpc(MI.getOpcode()) != X86::COND_INVALID) {
604           rewriteCMov(*TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs);
605         } else if (X86::getCondFromSETOpc(MI.getOpcode()) !=
606                    X86::COND_INVALID) {
607           rewriteSetCC(*TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs);
608         } else if (MI.getOpcode() == TargetOpcode::COPY) {
609           rewriteCopy(MI, *FlagUse, CopyDefI);
610         } else {
611           // We assume all other instructions that use flags also def them.
612           assert(MI.findRegisterDefOperand(X86::EFLAGS) &&
613                  "Expected a def of EFLAGS for this instruction!");
614
615           // NB!!! Several arithmetic instructions only *partially* update
616           // flags. Theoretically, we could generate MI code sequences that
617           // would rely on this fact and observe different flags independently.
618           // But currently LLVM models all of these instructions as clobbering
619           // all the flags in an undef way. We rely on that to simplify the
620           // logic.
621           FlagsKilled = true;
622
623           switch (MI.getOpcode()) {
624           case X86::SETB_C8r:
625           case X86::SETB_C16r:
626           case X86::SETB_C32r:
627           case X86::SETB_C64r:
628             // Use custom lowering for arithmetic that is merely extending the
629             // carry flag. We model this as the SETB_C* pseudo instructions.
630             rewriteSetCarryExtended(*TestMBB, TestPos, TestLoc, MI, *FlagUse,
631                                     CondRegs);
632             break;
633
634           default:
635             // Generically handle remaining uses as arithmetic instructions.
636             rewriteArithmetic(*TestMBB, TestPos, TestLoc, MI, *FlagUse,
637                               CondRegs);
638             break;
639           }
640           break;
641         }
642
643         // If this was the last use of the flags, we're done.
644         if (FlagsKilled)
645           break;
646       }
647
648       // If the flags were killed, we're done with this block.
649       if (FlagsKilled)
650         continue;
651
652       // Otherwise we need to scan successors for ones where the flags live-in
653       // and queue those up for processing.
654       for (MachineBasicBlock *SuccMBB : UseMBB.successors())
655         if (SuccMBB->isLiveIn(X86::EFLAGS) &&
656             VisitedBlocks.insert(SuccMBB).second) {
657           // We currently don't do any PHI insertion and so we require that the
658           // test basic block dominates all of the use basic blocks. Further, we
659           // can't have a cycle from the test block back to itself as that would
660           // create a cycle requiring a PHI to break it.
661           //
662           // We could in theory do PHI insertion here if it becomes useful by
663           // just taking undef values in along every edge that we don't trace
664           // this EFLAGS copy along. This isn't as bad as fully general PHI
665           // insertion, but still seems like a great deal of complexity.
666           //
667           // Because it is theoretically possible that some earlier MI pass or
668           // other lowering transformation could induce this to happen, we do
669           // a hard check even in non-debug builds here.
670           if (SuccMBB == TestMBB || !MDT->dominates(TestMBB, SuccMBB)) {
671             LLVM_DEBUG({
672               dbgs()
673                   << "ERROR: Encountered use that is not dominated by our test "
674                      "basic block! Rewriting this would require inserting PHI "
675                      "nodes to track the flag state across the CFG.\n\nTest "
676                      "block:\n";
677               TestMBB->dump();
678               dbgs() << "Use block:\n";
679               SuccMBB->dump();
680             });
681             report_fatal_error(
682                 "Cannot lower EFLAGS copy when original copy def "
683                 "does not dominate all uses.");
684           }
685
686           Blocks.push_back(SuccMBB);
687         }
688     } while (!Blocks.empty());
689
690     // Now rewrite the jumps that use the flags. These we handle specially
691     // because if there are multiple jumps in a single basic block we'll have
692     // to do surgery on the CFG.
693     MachineBasicBlock *LastJmpMBB = nullptr;
694     for (MachineInstr *JmpI : JmpIs) {
695       // Past the first jump within a basic block we need to split the blocks
696       // apart.
697       if (JmpI->getParent() == LastJmpMBB)
698         splitBlock(*JmpI->getParent(), *JmpI, *TII);
699       else
700         LastJmpMBB = JmpI->getParent();
701
702       rewriteCondJmp(*TestMBB, TestPos, TestLoc, *JmpI, CondRegs);
703     }
704
705     // FIXME: Mark the last use of EFLAGS before the copy's def as a kill if
706     // the copy's def operand is itself a kill.
707   }
708
709 #ifndef NDEBUG
710   for (MachineBasicBlock &MBB : MF)
711     for (MachineInstr &MI : MBB)
712       if (MI.getOpcode() == TargetOpcode::COPY &&
713           (MI.getOperand(0).getReg() == X86::EFLAGS ||
714            MI.getOperand(1).getReg() == X86::EFLAGS)) {
715         LLVM_DEBUG(dbgs() << "ERROR: Found a COPY involving EFLAGS: ";
716                    MI.dump());
717         llvm_unreachable("Unlowered EFLAGS copy!");
718       }
719 #endif
720
721   return true;
722 }
723
724 /// Collect any conditions that have already been set in registers so that we
725 /// can re-use them rather than adding duplicates.
726 CondRegArray X86FlagsCopyLoweringPass::collectCondsInRegs(
727     MachineBasicBlock &MBB, MachineBasicBlock::iterator TestPos) {
728   CondRegArray CondRegs = {};
729
730   // Scan backwards across the range of instructions with live EFLAGS.
731   for (MachineInstr &MI :
732        llvm::reverse(llvm::make_range(MBB.begin(), TestPos))) {
733     X86::CondCode Cond = X86::getCondFromSETOpc(MI.getOpcode());
734     if (Cond != X86::COND_INVALID && !MI.mayStore() && MI.getOperand(0).isReg() &&
735         TRI->isVirtualRegister(MI.getOperand(0).getReg())) {
736       assert(MI.getOperand(0).isDef() &&
737              "A non-storing SETcc should always define a register!");
738       CondRegs[Cond] = MI.getOperand(0).getReg();
739     }
740
741     // Stop scanning when we see the first definition of the EFLAGS as prior to
742     // this we would potentially capture the wrong flag state.
743     if (MI.findRegisterDefOperand(X86::EFLAGS))
744       break;
745   }
746   return CondRegs;
747 }
748
749 unsigned X86FlagsCopyLoweringPass::promoteCondToReg(
750     MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
751     DebugLoc TestLoc, X86::CondCode Cond) {
752   unsigned Reg = MRI->createVirtualRegister(PromoteRC);
753   auto SetI = BuildMI(TestMBB, TestPos, TestLoc,
754                       TII->get(X86::getSETFromCond(Cond)), Reg);
755   (void)SetI;
756   LLVM_DEBUG(dbgs() << "    save cond: "; SetI->dump());
757   ++NumSetCCsInserted;
758   return Reg;
759 }
760
761 std::pair<unsigned, bool> X86FlagsCopyLoweringPass::getCondOrInverseInReg(
762     MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
763     DebugLoc TestLoc, X86::CondCode Cond, CondRegArray &CondRegs) {
764   unsigned &CondReg = CondRegs[Cond];
765   unsigned &InvCondReg = CondRegs[X86::GetOppositeBranchCondition(Cond)];
766   if (!CondReg && !InvCondReg)
767     CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);
768
769   if (CondReg)
770     return {CondReg, false};
771   else
772     return {InvCondReg, true};
773 }
774
775 void X86FlagsCopyLoweringPass::insertTest(MachineBasicBlock &MBB,
776                                           MachineBasicBlock::iterator Pos,
777                                           DebugLoc Loc, unsigned Reg) {
778   auto TestI =
779       BuildMI(MBB, Pos, Loc, TII->get(X86::TEST8rr)).addReg(Reg).addReg(Reg);
780   (void)TestI;
781   LLVM_DEBUG(dbgs() << "    test cond: "; TestI->dump());
782   ++NumTestsInserted;
783 }
784
785 void X86FlagsCopyLoweringPass::rewriteArithmetic(
786     MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
787     DebugLoc TestLoc, MachineInstr &MI, MachineOperand &FlagUse,
788     CondRegArray &CondRegs) {
789   // Arithmetic is either reading CF or OF. Figure out which condition we need
790   // to preserve in a register.
791   X86::CondCode Cond;
792
793   // The addend to use to reset CF or OF when added to the flag value.
794   int Addend;
795
796   switch (getMnemonicFromOpcode(MI.getOpcode())) {
797   case FlagArithMnemonic::ADC:
798   case FlagArithMnemonic::ADCX:
799   case FlagArithMnemonic::RCL:
800   case FlagArithMnemonic::RCR:
801   case FlagArithMnemonic::SBB:
802     Cond = X86::COND_B; // CF == 1
803     // Set up an addend that when one is added will need a carry due to not
804     // having a higher bit available.
805     Addend = 255;
806     break;
807
808   case FlagArithMnemonic::ADOX:
809     Cond = X86::COND_O; // OF == 1
810     // Set up an addend that when one is added will turn from positive to
811     // negative and thus overflow in the signed domain.
812     Addend = 127;
813     break;
814   }
815
816   // Now get a register that contains the value of the flag input to the
817   // arithmetic. We require exactly this flag to simplify the arithmetic
818   // required to materialize it back into the flag.
819   unsigned &CondReg = CondRegs[Cond];
820   if (!CondReg)
821     CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);
822
823   MachineBasicBlock &MBB = *MI.getParent();
824
825   // Insert an instruction that will set the flag back to the desired value.
826   unsigned TmpReg = MRI->createVirtualRegister(PromoteRC);
827   auto AddI =
828       BuildMI(MBB, MI.getIterator(), MI.getDebugLoc(), TII->get(X86::ADD8ri))
829           .addDef(TmpReg, RegState::Dead)
830           .addReg(CondReg)
831           .addImm(Addend);
832   (void)AddI;
833   LLVM_DEBUG(dbgs() << "    add cond: "; AddI->dump());
834   ++NumAddsInserted;
835   FlagUse.setIsKill(true);
836 }
837
838 void X86FlagsCopyLoweringPass::rewriteCMov(MachineBasicBlock &TestMBB,
839                                            MachineBasicBlock::iterator TestPos,
840                                            DebugLoc TestLoc,
841                                            MachineInstr &CMovI,
842                                            MachineOperand &FlagUse,
843                                            CondRegArray &CondRegs) {
844   // First get the register containing this specific condition.
845   X86::CondCode Cond = X86::getCondFromCMovOpc(CMovI.getOpcode());
846   unsigned CondReg;
847   bool Inverted;
848   std::tie(CondReg, Inverted) =
849       getCondOrInverseInReg(TestMBB, TestPos, TestLoc, Cond, CondRegs);
850
851   MachineBasicBlock &MBB = *CMovI.getParent();
852
853   // Insert a direct test of the saved register.
854   insertTest(MBB, CMovI.getIterator(), CMovI.getDebugLoc(), CondReg);
855
856   // Rewrite the CMov to use the !ZF flag from the test (but match register
857   // size and memory operand), and then kill its use of the flags afterward.
858   auto &CMovRC = *MRI->getRegClass(CMovI.getOperand(0).getReg());
859   CMovI.setDesc(TII->get(X86::getCMovFromCond(
860       Inverted ? X86::COND_E : X86::COND_NE, TRI->getRegSizeInBits(CMovRC) / 8,
861       !CMovI.memoperands_empty())));
862   FlagUse.setIsKill(true);
863   LLVM_DEBUG(dbgs() << "    fixed cmov: "; CMovI.dump());
864 }
865
866 void X86FlagsCopyLoweringPass::rewriteCondJmp(
867     MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
868     DebugLoc TestLoc, MachineInstr &JmpI, CondRegArray &CondRegs) {
869   // First get the register containing this specific condition.
870   X86::CondCode Cond = X86::getCondFromBranchOpc(JmpI.getOpcode());
871   unsigned CondReg;
872   bool Inverted;
873   std::tie(CondReg, Inverted) =
874       getCondOrInverseInReg(TestMBB, TestPos, TestLoc, Cond, CondRegs);
875
876   MachineBasicBlock &JmpMBB = *JmpI.getParent();
877
878   // Insert a direct test of the saved register.
879   insertTest(JmpMBB, JmpI.getIterator(), JmpI.getDebugLoc(), CondReg);
880
881   // Rewrite the jump to use the !ZF flag from the test, and kill its use of
882   // flags afterward.
883   JmpI.setDesc(TII->get(
884       X86::GetCondBranchFromCond(Inverted ? X86::COND_E : X86::COND_NE)));
885   const int ImplicitEFLAGSOpIdx = 1;
886   JmpI.getOperand(ImplicitEFLAGSOpIdx).setIsKill(true);
887   LLVM_DEBUG(dbgs() << "    fixed jCC: "; JmpI.dump());
888 }
889
890 void X86FlagsCopyLoweringPass::rewriteCopy(MachineInstr &MI,
891                                            MachineOperand &FlagUse,
892                                            MachineInstr &CopyDefI) {
893   // Just replace this copy with the original copy def.
894   MRI->replaceRegWith(MI.getOperand(0).getReg(),
895                       CopyDefI.getOperand(0).getReg());
896   MI.eraseFromParent();
897 }
898
899 void X86FlagsCopyLoweringPass::rewriteSetCarryExtended(
900     MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
901     DebugLoc TestLoc, MachineInstr &SetBI, MachineOperand &FlagUse,
902     CondRegArray &CondRegs) {
903   // This routine is only used to handle pseudos for setting a register to zero
904   // or all ones based on CF. This is essentially the sign extended from 1-bit
905   // form of SETB and modeled with the SETB_C* pseudos. They require special
906   // handling as they aren't normal SETcc instructions and are lowered to an
907   // EFLAGS clobbering operation (SBB typically). One simplifying aspect is that
908   // they are only provided in reg-defining forms. A complicating factor is that
909   // they can define many different register widths.
910   assert(SetBI.getOperand(0).isReg() &&
911          "Cannot have a non-register defined operand to this variant of SETB!");
912
913   // Little helper to do the common final step of replacing the register def'ed
914   // by this SETB instruction with a new register and removing the SETB
915   // instruction.
916   auto RewriteToReg = [&](unsigned Reg) {
917     MRI->replaceRegWith(SetBI.getOperand(0).getReg(), Reg);
918     SetBI.eraseFromParent();
919   };
920
921   // Grab the register class used for this particular instruction.
922   auto &SetBRC = *MRI->getRegClass(SetBI.getOperand(0).getReg());
923
924   MachineBasicBlock &MBB = *SetBI.getParent();
925   auto SetPos = SetBI.getIterator();
926   auto SetLoc = SetBI.getDebugLoc();
927
928   auto AdjustReg = [&](unsigned Reg) {
929     auto &OrigRC = *MRI->getRegClass(Reg);
930     if (&OrigRC == &SetBRC)
931       return Reg;
932
933     unsigned NewReg;
934
935     int OrigRegSize = TRI->getRegSizeInBits(OrigRC) / 8;
936     int TargetRegSize = TRI->getRegSizeInBits(SetBRC) / 8;
937     assert(OrigRegSize <= 8 && "No GPRs larger than 64-bits!");
938     assert(TargetRegSize <= 8 && "No GPRs larger than 64-bits!");
939     int SubRegIdx[] = {X86::NoSubRegister, X86::sub_8bit, X86::sub_16bit,
940                        X86::NoSubRegister, X86::sub_32bit};
941
942     // If the original size is smaller than the target *and* is smaller than 4
943     // bytes, we need to explicitly zero extend it. We always extend to 4-bytes
944     // to maximize the chance of being able to CSE that operation and to avoid
945     // partial dependency stalls extending to 2-bytes.
946     if (OrigRegSize < TargetRegSize && OrigRegSize < 4) {
947       NewReg = MRI->createVirtualRegister(&X86::GR32RegClass);
948       BuildMI(MBB, SetPos, SetLoc, TII->get(X86::MOVZX32rr8), NewReg)
949           .addReg(Reg);
950       if (&SetBRC == &X86::GR32RegClass)
951         return NewReg;
952       Reg = NewReg;
953       OrigRegSize = 4;
954     }
955
956     NewReg = MRI->createVirtualRegister(&SetBRC);
957     if (OrigRegSize < TargetRegSize) {
958       BuildMI(MBB, SetPos, SetLoc, TII->get(TargetOpcode::SUBREG_TO_REG),
959               NewReg)
960           .addImm(0)
961           .addReg(Reg)
962           .addImm(SubRegIdx[OrigRegSize]);
963     } else if (OrigRegSize > TargetRegSize) {
964       if (TargetRegSize == 1 && !Subtarget->is64Bit()) {
965         // Need to constrain the register class.
966         MRI->constrainRegClass(Reg, &X86::GR32_ABCDRegClass);
967       }
968
969       BuildMI(MBB, SetPos, SetLoc, TII->get(TargetOpcode::COPY),
970               NewReg)
971           .addReg(Reg, 0, SubRegIdx[TargetRegSize]);
972     } else {
973       BuildMI(MBB, SetPos, SetLoc, TII->get(TargetOpcode::COPY), NewReg)
974           .addReg(Reg);
975     }
976     return NewReg;
977   };
978
979   unsigned &CondReg = CondRegs[X86::COND_B];
980   if (!CondReg)
981     CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, X86::COND_B);
982
983   // Adjust the condition to have the desired register width by zero-extending
984   // as needed.
985   // FIXME: We should use a better API to avoid the local reference and using a
986   // different variable here.
987   unsigned ExtCondReg = AdjustReg(CondReg);
988
989   // Now we need to turn this into a bitmask. We do this by subtracting it from
990   // zero.
991   unsigned ZeroReg = MRI->createVirtualRegister(&X86::GR32RegClass);
992   BuildMI(MBB, SetPos, SetLoc, TII->get(X86::MOV32r0), ZeroReg);
993   ZeroReg = AdjustReg(ZeroReg);
994
995   unsigned Sub;
996   switch (SetBI.getOpcode()) {
997   case X86::SETB_C8r:
998     Sub = X86::SUB8rr;
999     break;
1000
1001   case X86::SETB_C16r:
1002     Sub = X86::SUB16rr;
1003     break;
1004
1005   case X86::SETB_C32r:
1006     Sub = X86::SUB32rr;
1007     break;
1008
1009   case X86::SETB_C64r:
1010     Sub = X86::SUB64rr;
1011     break;
1012
1013   default:
1014     llvm_unreachable("Invalid SETB_C* opcode!");
1015   }
1016   unsigned ResultReg = MRI->createVirtualRegister(&SetBRC);
1017   BuildMI(MBB, SetPos, SetLoc, TII->get(Sub), ResultReg)
1018       .addReg(ZeroReg)
1019       .addReg(ExtCondReg);
1020   return RewriteToReg(ResultReg);
1021 }
1022
1023 void X86FlagsCopyLoweringPass::rewriteSetCC(MachineBasicBlock &TestMBB,
1024                                             MachineBasicBlock::iterator TestPos,
1025                                             DebugLoc TestLoc,
1026                                             MachineInstr &SetCCI,
1027                                             MachineOperand &FlagUse,
1028                                             CondRegArray &CondRegs) {
1029   X86::CondCode Cond = X86::getCondFromSETOpc(SetCCI.getOpcode());
1030   // Note that we can't usefully rewrite this to the inverse without complex
1031   // analysis of the users of the setCC. Largely we rely on duplicates which
1032   // could have been avoided already being avoided here.
1033   unsigned &CondReg = CondRegs[Cond];
1034   if (!CondReg)
1035     CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);
1036
1037   // Rewriting a register def is trivial: we just replace the register and
1038   // remove the setcc.
1039   if (!SetCCI.mayStore()) {
1040     assert(SetCCI.getOperand(0).isReg() &&
1041            "Cannot have a non-register defined operand to SETcc!");
1042     MRI->replaceRegWith(SetCCI.getOperand(0).getReg(), CondReg);
1043     SetCCI.eraseFromParent();
1044     return;
1045   }
1046
1047   // Otherwise, we need to emit a store.
1048   auto MIB = BuildMI(*SetCCI.getParent(), SetCCI.getIterator(),
1049                      SetCCI.getDebugLoc(), TII->get(X86::MOV8mr));
1050   // Copy the address operands.
1051   for (int i = 0; i < X86::AddrNumOperands; ++i)
1052     MIB.add(SetCCI.getOperand(i));
1053
1054   MIB.addReg(CondReg);
1055
1056   MIB->setMemRefs(SetCCI.memoperands_begin(), SetCCI.memoperands_end());
1057
1058   SetCCI.eraseFromParent();
1059   return;
1060 }