]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Target/X86/X86FloatingPoint.cpp
MFV r310622:
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Target / X86 / X86FloatingPoint.cpp
1 //===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the pass which converts floating point instructions from
11 // pseudo registers into register stack instructions.  This pass uses live
12 // variable information to indicate where the FPn registers are used and their
13 // lifetimes.
14 //
15 // The x87 hardware tracks liveness of the stack registers, so it is necessary
16 // to implement exact liveness tracking between basic blocks. The CFG edges are
17 // partitioned into bundles where the same FP registers must be live in
18 // identical stack positions. Instructions are inserted at the end of each basic
19 // block to rearrange the live registers to match the outgoing bundle.
20 //
21 // This approach avoids splitting critical edges at the potential cost of more
22 // live register shuffling instructions when critical edges are present.
23 //
24 //===----------------------------------------------------------------------===//
25
26 #include "X86.h"
27 #include "X86InstrInfo.h"
28 #include "llvm/ADT/DepthFirstIterator.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/CodeGen/EdgeBundles.h"
35 #include "llvm/CodeGen/LivePhysRegs.h"
36 #include "llvm/CodeGen/MachineFunctionPass.h"
37 #include "llvm/CodeGen/MachineInstrBuilder.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/CodeGen/Passes.h"
40 #include "llvm/IR/InlineAsm.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include "llvm/Target/TargetInstrInfo.h"
45 #include "llvm/Target/TargetMachine.h"
46 #include "llvm/Target/TargetSubtargetInfo.h"
47 #include <algorithm>
48 #include <bitset>
49 using namespace llvm;
50
51 #define DEBUG_TYPE "x86-codegen"
52
53 STATISTIC(NumFXCH, "Number of fxch instructions inserted");
54 STATISTIC(NumFP  , "Number of floating point instructions");
55
56 namespace {
57   const unsigned ScratchFPReg = 7;
58
59   struct FPS : public MachineFunctionPass {
60     static char ID;
61     FPS() : MachineFunctionPass(ID) {
62       initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
63       // This is really only to keep valgrind quiet.
64       // The logic in isLive() is too much for it.
65       memset(Stack, 0, sizeof(Stack));
66       memset(RegMap, 0, sizeof(RegMap));
67     }
68
69     void getAnalysisUsage(AnalysisUsage &AU) const override {
70       AU.setPreservesCFG();
71       AU.addRequired<EdgeBundles>();
72       AU.addPreservedID(MachineLoopInfoID);
73       AU.addPreservedID(MachineDominatorsID);
74       MachineFunctionPass::getAnalysisUsage(AU);
75     }
76
77     bool runOnMachineFunction(MachineFunction &MF) override;
78
79     MachineFunctionProperties getRequiredProperties() const override {
80       return MachineFunctionProperties().set(
81           MachineFunctionProperties::Property::AllVRegsAllocated);
82     }
83
84     const char *getPassName() const override { return "X86 FP Stackifier"; }
85
86   private:
87     const TargetInstrInfo *TII; // Machine instruction info.
88
89     // Two CFG edges are related if they leave the same block, or enter the same
90     // block. The transitive closure of an edge under this relation is a
91     // LiveBundle. It represents a set of CFG edges where the live FP stack
92     // registers must be allocated identically in the x87 stack.
93     //
94     // A LiveBundle is usually all the edges leaving a block, or all the edges
95     // entering a block, but it can contain more edges if critical edges are
96     // present.
97     //
98     // The set of live FP registers in a LiveBundle is calculated by bundleCFG,
99     // but the exact mapping of FP registers to stack slots is fixed later.
100     struct LiveBundle {
101       // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c.
102       unsigned Mask;
103
104       // Number of pre-assigned live registers in FixStack. This is 0 when the
105       // stack order has not yet been fixed.
106       unsigned FixCount;
107
108       // Assigned stack order for live-in registers.
109       // FixStack[i] == getStackEntry(i) for all i < FixCount.
110       unsigned char FixStack[8];
111
112       LiveBundle() : Mask(0), FixCount(0) {}
113
114       // Have the live registers been assigned a stack order yet?
115       bool isFixed() const { return !Mask || FixCount; }
116     };
117
118     // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges
119     // with no live FP registers.
120     SmallVector<LiveBundle, 8> LiveBundles;
121
122     // The edge bundle analysis provides indices into the LiveBundles vector.
123     EdgeBundles *Bundles;
124
125     // Return a bitmask of FP registers in block's live-in list.
126     static unsigned calcLiveInMask(MachineBasicBlock *MBB) {
127       unsigned Mask = 0;
128       for (const auto &LI : MBB->liveins()) {
129         if (LI.PhysReg < X86::FP0 || LI.PhysReg > X86::FP6)
130           continue;
131         Mask |= 1 << (LI.PhysReg - X86::FP0);
132       }
133       return Mask;
134     }
135
136     // Partition all the CFG edges into LiveBundles.
137     void bundleCFG(MachineFunction &MF);
138
139     MachineBasicBlock *MBB;     // Current basic block
140
141     // The hardware keeps track of how many FP registers are live, so we have
142     // to model that exactly. Usually, each live register corresponds to an
143     // FP<n> register, but when dealing with calls, returns, and inline
144     // assembly, it is sometimes necessary to have live scratch registers.
145     unsigned Stack[8];          // FP<n> Registers in each stack slot...
146     unsigned StackTop;          // The current top of the FP stack.
147
148     enum {
149       NumFPRegs = 8             // Including scratch pseudo-registers.
150     };
151
152     // For each live FP<n> register, point to its Stack[] entry.
153     // The first entries correspond to FP0-FP6, the rest are scratch registers
154     // used when we need slightly different live registers than what the
155     // register allocator thinks.
156     unsigned RegMap[NumFPRegs];
157
158     // Set up our stack model to match the incoming registers to MBB.
159     void setupBlockStack();
160
161     // Shuffle live registers to match the expectations of successor blocks.
162     void finishBlockStack();
163
164 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
165     void dumpStack() const {
166       dbgs() << "Stack contents:";
167       for (unsigned i = 0; i != StackTop; ++i) {
168         dbgs() << " FP" << Stack[i];
169         assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
170       }
171     }
172 #endif
173
174     /// getSlot - Return the stack slot number a particular register number is
175     /// in.
176     unsigned getSlot(unsigned RegNo) const {
177       assert(RegNo < NumFPRegs && "Regno out of range!");
178       return RegMap[RegNo];
179     }
180
181     /// isLive - Is RegNo currently live in the stack?
182     bool isLive(unsigned RegNo) const {
183       unsigned Slot = getSlot(RegNo);
184       return Slot < StackTop && Stack[Slot] == RegNo;
185     }
186
187     /// getStackEntry - Return the X86::FP<n> register in register ST(i).
188     unsigned getStackEntry(unsigned STi) const {
189       if (STi >= StackTop)
190         report_fatal_error("Access past stack top!");
191       return Stack[StackTop-1-STi];
192     }
193
194     /// getSTReg - Return the X86::ST(i) register which contains the specified
195     /// FP<RegNo> register.
196     unsigned getSTReg(unsigned RegNo) const {
197       return StackTop - 1 - getSlot(RegNo) + X86::ST0;
198     }
199
200     // pushReg - Push the specified FP<n> register onto the stack.
201     void pushReg(unsigned Reg) {
202       assert(Reg < NumFPRegs && "Register number out of range!");
203       if (StackTop >= 8)
204         report_fatal_error("Stack overflow!");
205       Stack[StackTop] = Reg;
206       RegMap[Reg] = StackTop++;
207     }
208
209     bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
210     void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
211       DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
212       if (isAtTop(RegNo)) return;
213
214       unsigned STReg = getSTReg(RegNo);
215       unsigned RegOnTop = getStackEntry(0);
216
217       // Swap the slots the regs are in.
218       std::swap(RegMap[RegNo], RegMap[RegOnTop]);
219
220       // Swap stack slot contents.
221       if (RegMap[RegOnTop] >= StackTop)
222         report_fatal_error("Access past stack top!");
223       std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
224
225       // Emit an fxch to update the runtime processors version of the state.
226       BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
227       ++NumFXCH;
228     }
229
230     void duplicateToTop(unsigned RegNo, unsigned AsReg,
231                         MachineBasicBlock::iterator I) {
232       DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
233       unsigned STReg = getSTReg(RegNo);
234       pushReg(AsReg);   // New register on top of stack
235
236       BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
237     }
238
239     /// popStackAfter - Pop the current value off of the top of the FP stack
240     /// after the specified instruction.
241     void popStackAfter(MachineBasicBlock::iterator &I);
242
243     /// freeStackSlotAfter - Free the specified register from the register
244     /// stack, so that it is no longer in a register.  If the register is
245     /// currently at the top of the stack, we just pop the current instruction,
246     /// otherwise we store the current top-of-stack into the specified slot,
247     /// then pop the top of stack.
248     void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
249
250     /// freeStackSlotBefore - Just the pop, no folding. Return the inserted
251     /// instruction.
252     MachineBasicBlock::iterator
253     freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo);
254
255     /// Adjust the live registers to be the set in Mask.
256     void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I);
257
258     /// Shuffle the top FixCount stack entries such that FP reg FixStack[0] is
259     /// st(0), FP reg FixStack[1] is st(1) etc.
260     void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount,
261                          MachineBasicBlock::iterator I);
262
263     bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
264
265     void handleCall(MachineBasicBlock::iterator &I);
266     void handleReturn(MachineBasicBlock::iterator &I);
267     void handleZeroArgFP(MachineBasicBlock::iterator &I);
268     void handleOneArgFP(MachineBasicBlock::iterator &I);
269     void handleOneArgFPRW(MachineBasicBlock::iterator &I);
270     void handleTwoArgFP(MachineBasicBlock::iterator &I);
271     void handleCompareFP(MachineBasicBlock::iterator &I);
272     void handleCondMovFP(MachineBasicBlock::iterator &I);
273     void handleSpecialFP(MachineBasicBlock::iterator &I);
274
275     // Check if a COPY instruction is using FP registers.
276     static bool isFPCopy(MachineInstr &MI) {
277       unsigned DstReg = MI.getOperand(0).getReg();
278       unsigned SrcReg = MI.getOperand(1).getReg();
279
280       return X86::RFP80RegClass.contains(DstReg) ||
281         X86::RFP80RegClass.contains(SrcReg);
282     }
283
284     void setKillFlags(MachineBasicBlock &MBB) const;
285   };
286   char FPS::ID = 0;
287 }
288
289 FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
290
291 /// getFPReg - Return the X86::FPx register number for the specified operand.
292 /// For example, this returns 3 for X86::FP3.
293 static unsigned getFPReg(const MachineOperand &MO) {
294   assert(MO.isReg() && "Expected an FP register!");
295   unsigned Reg = MO.getReg();
296   assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
297   return Reg - X86::FP0;
298 }
299
300 /// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
301 /// register references into FP stack references.
302 ///
303 bool FPS::runOnMachineFunction(MachineFunction &MF) {
304   // We only need to run this pass if there are any FP registers used in this
305   // function.  If it is all integer, there is nothing for us to do!
306   bool FPIsUsed = false;
307
308   static_assert(X86::FP6 == X86::FP0+6, "Register enums aren't sorted right!");
309   const MachineRegisterInfo &MRI = MF.getRegInfo();
310   for (unsigned i = 0; i <= 6; ++i)
311     if (!MRI.reg_nodbg_empty(X86::FP0 + i)) {
312       FPIsUsed = true;
313       break;
314     }
315
316   // Early exit.
317   if (!FPIsUsed) return false;
318
319   Bundles = &getAnalysis<EdgeBundles>();
320   TII = MF.getSubtarget().getInstrInfo();
321
322   // Prepare cross-MBB liveness.
323   bundleCFG(MF);
324
325   StackTop = 0;
326
327   // Process the function in depth first order so that we process at least one
328   // of the predecessors for every reachable block in the function.
329   SmallPtrSet<MachineBasicBlock*, 8> Processed;
330   MachineBasicBlock *Entry = &MF.front();
331
332   bool Changed = false;
333   for (MachineBasicBlock *BB : depth_first_ext(Entry, Processed))
334     Changed |= processBasicBlock(MF, *BB);
335
336   // Process any unreachable blocks in arbitrary order now.
337   if (MF.size() != Processed.size())
338     for (MachineBasicBlock &BB : MF)
339       if (Processed.insert(&BB).second)
340         Changed |= processBasicBlock(MF, BB);
341
342   LiveBundles.clear();
343
344   return Changed;
345 }
346
347 /// bundleCFG - Scan all the basic blocks to determine consistent live-in and
348 /// live-out sets for the FP registers. Consistent means that the set of
349 /// registers live-out from a block is identical to the live-in set of all
350 /// successors. This is not enforced by the normal live-in lists since
351 /// registers may be implicitly defined, or not used by all successors.
352 void FPS::bundleCFG(MachineFunction &MF) {
353   assert(LiveBundles.empty() && "Stale data in LiveBundles");
354   LiveBundles.resize(Bundles->getNumBundles());
355
356   // Gather the actual live-in masks for all MBBs.
357   for (MachineBasicBlock &MBB : MF) {
358     const unsigned Mask = calcLiveInMask(&MBB);
359     if (!Mask)
360       continue;
361     // Update MBB ingoing bundle mask.
362     LiveBundles[Bundles->getBundle(MBB.getNumber(), false)].Mask |= Mask;
363   }
364 }
365
366 /// processBasicBlock - Loop over all of the instructions in the basic block,
367 /// transforming FP instructions into their stack form.
368 ///
369 bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
370   bool Changed = false;
371   MBB = &BB;
372
373   setKillFlags(BB);
374   setupBlockStack();
375
376   for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
377     MachineInstr &MI = *I;
378     uint64_t Flags = MI.getDesc().TSFlags;
379
380     unsigned FPInstClass = Flags & X86II::FPTypeMask;
381     if (MI.isInlineAsm())
382       FPInstClass = X86II::SpecialFP;
383
384     if (MI.isCopy() && isFPCopy(MI))
385       FPInstClass = X86II::SpecialFP;
386
387     if (MI.isImplicitDef() &&
388         X86::RFP80RegClass.contains(MI.getOperand(0).getReg()))
389       FPInstClass = X86II::SpecialFP;
390
391     if (MI.isCall())
392       FPInstClass = X86II::SpecialFP;
393
394     if (FPInstClass == X86II::NotFP)
395       continue;  // Efficiently ignore non-fp insts!
396
397     MachineInstr *PrevMI = nullptr;
398     if (I != BB.begin())
399       PrevMI = &*std::prev(I);
400
401     ++NumFP;  // Keep track of # of pseudo instrs
402     DEBUG(dbgs() << "\nFPInst:\t" << MI);
403
404     // Get dead variables list now because the MI pointer may be deleted as part
405     // of processing!
406     SmallVector<unsigned, 8> DeadRegs;
407     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
408       const MachineOperand &MO = MI.getOperand(i);
409       if (MO.isReg() && MO.isDead())
410         DeadRegs.push_back(MO.getReg());
411     }
412
413     switch (FPInstClass) {
414     case X86II::ZeroArgFP:  handleZeroArgFP(I); break;
415     case X86II::OneArgFP:   handleOneArgFP(I);  break;  // fstp ST(0)
416     case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
417     case X86II::TwoArgFP:   handleTwoArgFP(I);  break;
418     case X86II::CompareFP:  handleCompareFP(I); break;
419     case X86II::CondMovFP:  handleCondMovFP(I); break;
420     case X86II::SpecialFP:  handleSpecialFP(I); break;
421     default: llvm_unreachable("Unknown FP Type!");
422     }
423
424     // Check to see if any of the values defined by this instruction are dead
425     // after definition.  If so, pop them.
426     for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
427       unsigned Reg = DeadRegs[i];
428       // Check if Reg is live on the stack. An inline-asm register operand that
429       // is in the clobber list and marked dead might not be live on the stack.
430       if (Reg >= X86::FP0 && Reg <= X86::FP6 && isLive(Reg-X86::FP0)) {
431         DEBUG(dbgs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
432         freeStackSlotAfter(I, Reg-X86::FP0);
433       }
434     }
435
436     // Print out all of the instructions expanded to if -debug
437     DEBUG({
438       MachineBasicBlock::iterator PrevI = PrevMI;
439       if (I == PrevI) {
440         dbgs() << "Just deleted pseudo instruction\n";
441       } else {
442         MachineBasicBlock::iterator Start = I;
443         // Rewind to first instruction newly inserted.
444         while (Start != BB.begin() && std::prev(Start) != PrevI)
445           --Start;
446         dbgs() << "Inserted instructions:\n\t";
447         Start->print(dbgs());
448         while (++Start != std::next(I)) {
449         }
450       }
451       dumpStack();
452     });
453     (void)PrevMI;
454
455     Changed = true;
456   }
457
458   finishBlockStack();
459
460   return Changed;
461 }
462
463 /// setupBlockStack - Use the live bundles to set up our model of the stack
464 /// to match predecessors' live out stack.
465 void FPS::setupBlockStack() {
466   DEBUG(dbgs() << "\nSetting up live-ins for BB#" << MBB->getNumber()
467                << " derived from " << MBB->getName() << ".\n");
468   StackTop = 0;
469   // Get the live-in bundle for MBB.
470   const LiveBundle &Bundle =
471     LiveBundles[Bundles->getBundle(MBB->getNumber(), false)];
472
473   if (!Bundle.Mask) {
474     DEBUG(dbgs() << "Block has no FP live-ins.\n");
475     return;
476   }
477
478   // Depth-first iteration should ensure that we always have an assigned stack.
479   assert(Bundle.isFixed() && "Reached block before any predecessors");
480
481   // Push the fixed live-in registers.
482   for (unsigned i = Bundle.FixCount; i > 0; --i) {
483     MBB->addLiveIn(X86::ST0+i-1);
484     DEBUG(dbgs() << "Live-in st(" << (i-1) << "): %FP"
485                  << unsigned(Bundle.FixStack[i-1]) << '\n');
486     pushReg(Bundle.FixStack[i-1]);
487   }
488
489   // Kill off unwanted live-ins. This can happen with a critical edge.
490   // FIXME: We could keep these live registers around as zombies. They may need
491   // to be revived at the end of a short block. It might save a few instrs.
492   adjustLiveRegs(calcLiveInMask(MBB), MBB->begin());
493   DEBUG(MBB->dump());
494 }
495
496 /// finishBlockStack - Revive live-outs that are implicitly defined out of
497 /// MBB. Shuffle live registers to match the expected fixed stack of any
498 /// predecessors, and ensure that all predecessors are expecting the same
499 /// stack.
500 void FPS::finishBlockStack() {
501   // The RET handling below takes care of return blocks for us.
502   if (MBB->succ_empty())
503     return;
504
505   DEBUG(dbgs() << "Setting up live-outs for BB#" << MBB->getNumber()
506                << " derived from " << MBB->getName() << ".\n");
507
508   // Get MBB's live-out bundle.
509   unsigned BundleIdx = Bundles->getBundle(MBB->getNumber(), true);
510   LiveBundle &Bundle = LiveBundles[BundleIdx];
511
512   // We may need to kill and define some registers to match successors.
513   // FIXME: This can probably be combined with the shuffle below.
514   MachineBasicBlock::iterator Term = MBB->getFirstTerminator();
515   adjustLiveRegs(Bundle.Mask, Term);
516
517   if (!Bundle.Mask) {
518     DEBUG(dbgs() << "No live-outs.\n");
519     return;
520   }
521
522   // Has the stack order been fixed yet?
523   DEBUG(dbgs() << "LB#" << BundleIdx << ": ");
524   if (Bundle.isFixed()) {
525     DEBUG(dbgs() << "Shuffling stack to match.\n");
526     shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term);
527   } else {
528     // Not fixed yet, we get to choose.
529     DEBUG(dbgs() << "Fixing stack order now.\n");
530     Bundle.FixCount = StackTop;
531     for (unsigned i = 0; i < StackTop; ++i)
532       Bundle.FixStack[i] = getStackEntry(i);
533   }
534 }
535
536
537 //===----------------------------------------------------------------------===//
538 // Efficient Lookup Table Support
539 //===----------------------------------------------------------------------===//
540
541 namespace {
542   struct TableEntry {
543     uint16_t from;
544     uint16_t to;
545     bool operator<(const TableEntry &TE) const { return from < TE.from; }
546     friend bool operator<(const TableEntry &TE, unsigned V) {
547       return TE.from < V;
548     }
549     friend bool LLVM_ATTRIBUTE_UNUSED operator<(unsigned V,
550                                                 const TableEntry &TE) {
551       return V < TE.from;
552     }
553   };
554 }
555
556 static int Lookup(ArrayRef<TableEntry> Table, unsigned Opcode) {
557   const TableEntry *I = std::lower_bound(Table.begin(), Table.end(), Opcode);
558   if (I != Table.end() && I->from == Opcode)
559     return I->to;
560   return -1;
561 }
562
563 #ifdef NDEBUG
564 #define ASSERT_SORTED(TABLE)
565 #else
566 #define ASSERT_SORTED(TABLE)                                              \
567   { static bool TABLE##Checked = false;                                   \
568     if (!TABLE##Checked) {                                                \
569        assert(std::is_sorted(std::begin(TABLE), std::end(TABLE)) &&       \
570               "All lookup tables must be sorted for efficient access!");  \
571        TABLE##Checked = true;                                             \
572     }                                                                     \
573   }
574 #endif
575
576 //===----------------------------------------------------------------------===//
577 // Register File -> Register Stack Mapping Methods
578 //===----------------------------------------------------------------------===//
579
580 // OpcodeTable - Sorted map of register instructions to their stack version.
581 // The first element is an register file pseudo instruction, the second is the
582 // concrete X86 instruction which uses the register stack.
583 //
584 static const TableEntry OpcodeTable[] = {
585   { X86::ABS_Fp32     , X86::ABS_F     },
586   { X86::ABS_Fp64     , X86::ABS_F     },
587   { X86::ABS_Fp80     , X86::ABS_F     },
588   { X86::ADD_Fp32m    , X86::ADD_F32m  },
589   { X86::ADD_Fp64m    , X86::ADD_F64m  },
590   { X86::ADD_Fp64m32  , X86::ADD_F32m  },
591   { X86::ADD_Fp80m32  , X86::ADD_F32m  },
592   { X86::ADD_Fp80m64  , X86::ADD_F64m  },
593   { X86::ADD_FpI16m32 , X86::ADD_FI16m },
594   { X86::ADD_FpI16m64 , X86::ADD_FI16m },
595   { X86::ADD_FpI16m80 , X86::ADD_FI16m },
596   { X86::ADD_FpI32m32 , X86::ADD_FI32m },
597   { X86::ADD_FpI32m64 , X86::ADD_FI32m },
598   { X86::ADD_FpI32m80 , X86::ADD_FI32m },
599   { X86::CHS_Fp32     , X86::CHS_F     },
600   { X86::CHS_Fp64     , X86::CHS_F     },
601   { X86::CHS_Fp80     , X86::CHS_F     },
602   { X86::CMOVBE_Fp32  , X86::CMOVBE_F  },
603   { X86::CMOVBE_Fp64  , X86::CMOVBE_F  },
604   { X86::CMOVBE_Fp80  , X86::CMOVBE_F  },
605   { X86::CMOVB_Fp32   , X86::CMOVB_F   },
606   { X86::CMOVB_Fp64   , X86::CMOVB_F  },
607   { X86::CMOVB_Fp80   , X86::CMOVB_F  },
608   { X86::CMOVE_Fp32   , X86::CMOVE_F  },
609   { X86::CMOVE_Fp64   , X86::CMOVE_F   },
610   { X86::CMOVE_Fp80   , X86::CMOVE_F   },
611   { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
612   { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
613   { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
614   { X86::CMOVNB_Fp32  , X86::CMOVNB_F  },
615   { X86::CMOVNB_Fp64  , X86::CMOVNB_F  },
616   { X86::CMOVNB_Fp80  , X86::CMOVNB_F  },
617   { X86::CMOVNE_Fp32  , X86::CMOVNE_F  },
618   { X86::CMOVNE_Fp64  , X86::CMOVNE_F  },
619   { X86::CMOVNE_Fp80  , X86::CMOVNE_F  },
620   { X86::CMOVNP_Fp32  , X86::CMOVNP_F  },
621   { X86::CMOVNP_Fp64  , X86::CMOVNP_F  },
622   { X86::CMOVNP_Fp80  , X86::CMOVNP_F  },
623   { X86::CMOVP_Fp32   , X86::CMOVP_F   },
624   { X86::CMOVP_Fp64   , X86::CMOVP_F   },
625   { X86::CMOVP_Fp80   , X86::CMOVP_F   },
626   { X86::COS_Fp32     , X86::COS_F     },
627   { X86::COS_Fp64     , X86::COS_F     },
628   { X86::COS_Fp80     , X86::COS_F     },
629   { X86::DIVR_Fp32m   , X86::DIVR_F32m },
630   { X86::DIVR_Fp64m   , X86::DIVR_F64m },
631   { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
632   { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
633   { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
634   { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
635   { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
636   { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
637   { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
638   { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
639   { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
640   { X86::DIV_Fp32m    , X86::DIV_F32m  },
641   { X86::DIV_Fp64m    , X86::DIV_F64m  },
642   { X86::DIV_Fp64m32  , X86::DIV_F32m  },
643   { X86::DIV_Fp80m32  , X86::DIV_F32m  },
644   { X86::DIV_Fp80m64  , X86::DIV_F64m  },
645   { X86::DIV_FpI16m32 , X86::DIV_FI16m },
646   { X86::DIV_FpI16m64 , X86::DIV_FI16m },
647   { X86::DIV_FpI16m80 , X86::DIV_FI16m },
648   { X86::DIV_FpI32m32 , X86::DIV_FI32m },
649   { X86::DIV_FpI32m64 , X86::DIV_FI32m },
650   { X86::DIV_FpI32m80 , X86::DIV_FI32m },
651   { X86::ILD_Fp16m32  , X86::ILD_F16m  },
652   { X86::ILD_Fp16m64  , X86::ILD_F16m  },
653   { X86::ILD_Fp16m80  , X86::ILD_F16m  },
654   { X86::ILD_Fp32m32  , X86::ILD_F32m  },
655   { X86::ILD_Fp32m64  , X86::ILD_F32m  },
656   { X86::ILD_Fp32m80  , X86::ILD_F32m  },
657   { X86::ILD_Fp64m32  , X86::ILD_F64m  },
658   { X86::ILD_Fp64m64  , X86::ILD_F64m  },
659   { X86::ILD_Fp64m80  , X86::ILD_F64m  },
660   { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
661   { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
662   { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
663   { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
664   { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
665   { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
666   { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
667   { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
668   { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
669   { X86::IST_Fp16m32  , X86::IST_F16m  },
670   { X86::IST_Fp16m64  , X86::IST_F16m  },
671   { X86::IST_Fp16m80  , X86::IST_F16m  },
672   { X86::IST_Fp32m32  , X86::IST_F32m  },
673   { X86::IST_Fp32m64  , X86::IST_F32m  },
674   { X86::IST_Fp32m80  , X86::IST_F32m  },
675   { X86::IST_Fp64m32  , X86::IST_FP64m },
676   { X86::IST_Fp64m64  , X86::IST_FP64m },
677   { X86::IST_Fp64m80  , X86::IST_FP64m },
678   { X86::LD_Fp032     , X86::LD_F0     },
679   { X86::LD_Fp064     , X86::LD_F0     },
680   { X86::LD_Fp080     , X86::LD_F0     },
681   { X86::LD_Fp132     , X86::LD_F1     },
682   { X86::LD_Fp164     , X86::LD_F1     },
683   { X86::LD_Fp180     , X86::LD_F1     },
684   { X86::LD_Fp32m     , X86::LD_F32m   },
685   { X86::LD_Fp32m64   , X86::LD_F32m   },
686   { X86::LD_Fp32m80   , X86::LD_F32m   },
687   { X86::LD_Fp64m     , X86::LD_F64m   },
688   { X86::LD_Fp64m80   , X86::LD_F64m   },
689   { X86::LD_Fp80m     , X86::LD_F80m   },
690   { X86::MUL_Fp32m    , X86::MUL_F32m  },
691   { X86::MUL_Fp64m    , X86::MUL_F64m  },
692   { X86::MUL_Fp64m32  , X86::MUL_F32m  },
693   { X86::MUL_Fp80m32  , X86::MUL_F32m  },
694   { X86::MUL_Fp80m64  , X86::MUL_F64m  },
695   { X86::MUL_FpI16m32 , X86::MUL_FI16m },
696   { X86::MUL_FpI16m64 , X86::MUL_FI16m },
697   { X86::MUL_FpI16m80 , X86::MUL_FI16m },
698   { X86::MUL_FpI32m32 , X86::MUL_FI32m },
699   { X86::MUL_FpI32m64 , X86::MUL_FI32m },
700   { X86::MUL_FpI32m80 , X86::MUL_FI32m },
701   { X86::SIN_Fp32     , X86::SIN_F     },
702   { X86::SIN_Fp64     , X86::SIN_F     },
703   { X86::SIN_Fp80     , X86::SIN_F     },
704   { X86::SQRT_Fp32    , X86::SQRT_F    },
705   { X86::SQRT_Fp64    , X86::SQRT_F    },
706   { X86::SQRT_Fp80    , X86::SQRT_F    },
707   { X86::ST_Fp32m     , X86::ST_F32m   },
708   { X86::ST_Fp64m     , X86::ST_F64m   },
709   { X86::ST_Fp64m32   , X86::ST_F32m   },
710   { X86::ST_Fp80m32   , X86::ST_F32m   },
711   { X86::ST_Fp80m64   , X86::ST_F64m   },
712   { X86::ST_FpP80m    , X86::ST_FP80m  },
713   { X86::SUBR_Fp32m   , X86::SUBR_F32m },
714   { X86::SUBR_Fp64m   , X86::SUBR_F64m },
715   { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
716   { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
717   { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
718   { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
719   { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
720   { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
721   { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
722   { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
723   { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
724   { X86::SUB_Fp32m    , X86::SUB_F32m  },
725   { X86::SUB_Fp64m    , X86::SUB_F64m  },
726   { X86::SUB_Fp64m32  , X86::SUB_F32m  },
727   { X86::SUB_Fp80m32  , X86::SUB_F32m  },
728   { X86::SUB_Fp80m64  , X86::SUB_F64m  },
729   { X86::SUB_FpI16m32 , X86::SUB_FI16m },
730   { X86::SUB_FpI16m64 , X86::SUB_FI16m },
731   { X86::SUB_FpI16m80 , X86::SUB_FI16m },
732   { X86::SUB_FpI32m32 , X86::SUB_FI32m },
733   { X86::SUB_FpI32m64 , X86::SUB_FI32m },
734   { X86::SUB_FpI32m80 , X86::SUB_FI32m },
735   { X86::TST_Fp32     , X86::TST_F     },
736   { X86::TST_Fp64     , X86::TST_F     },
737   { X86::TST_Fp80     , X86::TST_F     },
738   { X86::UCOM_FpIr32  , X86::UCOM_FIr  },
739   { X86::UCOM_FpIr64  , X86::UCOM_FIr  },
740   { X86::UCOM_FpIr80  , X86::UCOM_FIr  },
741   { X86::UCOM_Fpr32   , X86::UCOM_Fr   },
742   { X86::UCOM_Fpr64   , X86::UCOM_Fr   },
743   { X86::UCOM_Fpr80   , X86::UCOM_Fr   },
744 };
745
746 static unsigned getConcreteOpcode(unsigned Opcode) {
747   ASSERT_SORTED(OpcodeTable);
748   int Opc = Lookup(OpcodeTable, Opcode);
749   assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
750   return Opc;
751 }
752
753 //===----------------------------------------------------------------------===//
754 // Helper Methods
755 //===----------------------------------------------------------------------===//
756
757 // PopTable - Sorted map of instructions to their popping version.  The first
758 // element is an instruction, the second is the version which pops.
759 //
760 static const TableEntry PopTable[] = {
761   { X86::ADD_FrST0 , X86::ADD_FPrST0  },
762
763   { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
764   { X86::DIV_FrST0 , X86::DIV_FPrST0  },
765
766   { X86::IST_F16m  , X86::IST_FP16m   },
767   { X86::IST_F32m  , X86::IST_FP32m   },
768
769   { X86::MUL_FrST0 , X86::MUL_FPrST0  },
770
771   { X86::ST_F32m   , X86::ST_FP32m    },
772   { X86::ST_F64m   , X86::ST_FP64m    },
773   { X86::ST_Frr    , X86::ST_FPrr     },
774
775   { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
776   { X86::SUB_FrST0 , X86::SUB_FPrST0  },
777
778   { X86::UCOM_FIr  , X86::UCOM_FIPr   },
779
780   { X86::UCOM_FPr  , X86::UCOM_FPPr   },
781   { X86::UCOM_Fr   , X86::UCOM_FPr    },
782 };
783
784 /// popStackAfter - Pop the current value off of the top of the FP stack after
785 /// the specified instruction.  This attempts to be sneaky and combine the pop
786 /// into the instruction itself if possible.  The iterator is left pointing to
787 /// the last instruction, be it a new pop instruction inserted, or the old
788 /// instruction if it was modified in place.
789 ///
790 void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
791   MachineInstr &MI = *I;
792   const DebugLoc &dl = MI.getDebugLoc();
793   ASSERT_SORTED(PopTable);
794   if (StackTop == 0)
795     report_fatal_error("Cannot pop empty stack!");
796   RegMap[Stack[--StackTop]] = ~0;     // Update state
797
798   // Check to see if there is a popping version of this instruction...
799   int Opcode = Lookup(PopTable, I->getOpcode());
800   if (Opcode != -1) {
801     I->setDesc(TII->get(Opcode));
802     if (Opcode == X86::UCOM_FPPr)
803       I->RemoveOperand(0);
804   } else {    // Insert an explicit pop
805     I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
806   }
807 }
808
809 /// freeStackSlotAfter - Free the specified register from the register stack, so
810 /// that it is no longer in a register.  If the register is currently at the top
811 /// of the stack, we just pop the current instruction, otherwise we store the
812 /// current top-of-stack into the specified slot, then pop the top of stack.
813 void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
814   if (getStackEntry(0) == FPRegNo) {  // already at the top of stack? easy.
815     popStackAfter(I);
816     return;
817   }
818
819   // Otherwise, store the top of stack into the dead slot, killing the operand
820   // without having to add in an explicit xchg then pop.
821   //
822   I = freeStackSlotBefore(++I, FPRegNo);
823 }
824
825 /// freeStackSlotBefore - Free the specified register without trying any
826 /// folding.
827 MachineBasicBlock::iterator
828 FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) {
829   unsigned STReg    = getSTReg(FPRegNo);
830   unsigned OldSlot  = getSlot(FPRegNo);
831   unsigned TopReg   = Stack[StackTop-1];
832   Stack[OldSlot]    = TopReg;
833   RegMap[TopReg]    = OldSlot;
834   RegMap[FPRegNo]   = ~0;
835   Stack[--StackTop] = ~0;
836   return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr))
837       .addReg(STReg)
838       .getInstr();
839 }
840
841 /// adjustLiveRegs - Kill and revive registers such that exactly the FP
842 /// registers with a bit in Mask are live.
843 void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) {
844   unsigned Defs = Mask;
845   unsigned Kills = 0;
846   for (unsigned i = 0; i < StackTop; ++i) {
847     unsigned RegNo = Stack[i];
848     if (!(Defs & (1 << RegNo)))
849       // This register is live, but we don't want it.
850       Kills |= (1 << RegNo);
851     else
852       // We don't need to imp-def this live register.
853       Defs &= ~(1 << RegNo);
854   }
855   assert((Kills & Defs) == 0 && "Register needs killing and def'ing?");
856
857   // Produce implicit-defs for free by using killed registers.
858   while (Kills && Defs) {
859     unsigned KReg = countTrailingZeros(Kills);
860     unsigned DReg = countTrailingZeros(Defs);
861     DEBUG(dbgs() << "Renaming %FP" << KReg << " as imp %FP" << DReg << "\n");
862     std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]);
863     std::swap(RegMap[KReg], RegMap[DReg]);
864     Kills &= ~(1 << KReg);
865     Defs &= ~(1 << DReg);
866   }
867
868   // Kill registers by popping.
869   if (Kills && I != MBB->begin()) {
870     MachineBasicBlock::iterator I2 = std::prev(I);
871     while (StackTop) {
872       unsigned KReg = getStackEntry(0);
873       if (!(Kills & (1 << KReg)))
874         break;
875       DEBUG(dbgs() << "Popping %FP" << KReg << "\n");
876       popStackAfter(I2);
877       Kills &= ~(1 << KReg);
878     }
879   }
880
881   // Manually kill the rest.
882   while (Kills) {
883     unsigned KReg = countTrailingZeros(Kills);
884     DEBUG(dbgs() << "Killing %FP" << KReg << "\n");
885     freeStackSlotBefore(I, KReg);
886     Kills &= ~(1 << KReg);
887   }
888
889   // Load zeros for all the imp-defs.
890   while(Defs) {
891     unsigned DReg = countTrailingZeros(Defs);
892     DEBUG(dbgs() << "Defining %FP" << DReg << " as 0\n");
893     BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0));
894     pushReg(DReg);
895     Defs &= ~(1 << DReg);
896   }
897
898   // Now we should have the correct registers live.
899   DEBUG(dumpStack());
900   assert(StackTop == countPopulation(Mask) && "Live count mismatch");
901 }
902
903 /// shuffleStackTop - emit fxch instructions before I to shuffle the top
904 /// FixCount entries into the order given by FixStack.
905 /// FIXME: Is there a better algorithm than insertion sort?
906 void FPS::shuffleStackTop(const unsigned char *FixStack,
907                           unsigned FixCount,
908                           MachineBasicBlock::iterator I) {
909   // Move items into place, starting from the desired stack bottom.
910   while (FixCount--) {
911     // Old register at position FixCount.
912     unsigned OldReg = getStackEntry(FixCount);
913     // Desired register at position FixCount.
914     unsigned Reg = FixStack[FixCount];
915     if (Reg == OldReg)
916       continue;
917     // (Reg st0) (OldReg st0) = (Reg OldReg st0)
918     moveToTop(Reg, I);
919     if (FixCount > 0)
920       moveToTop(OldReg, I);
921   }
922   DEBUG(dumpStack());
923 }
924
925
926 //===----------------------------------------------------------------------===//
927 // Instruction transformation implementation
928 //===----------------------------------------------------------------------===//
929
930 void FPS::handleCall(MachineBasicBlock::iterator &I) {
931   unsigned STReturns = 0;
932
933   for (const auto &MO : I->operands()) {
934     if (!MO.isReg())
935       continue;
936
937     unsigned R = MO.getReg() - X86::FP0;
938
939     if (R < 8) {
940       assert(MO.isDef() && MO.isImplicit());
941       STReturns |= 1 << R;
942     }
943   }
944
945   unsigned N = countTrailingOnes(STReturns);
946
947   // FP registers used for function return must be consecutive starting at
948   // FP0.
949   assert(STReturns == 0 || (isMask_32(STReturns) && N <= 2));
950
951   for (unsigned I = 0; I < N; ++I)
952     pushReg(N - I - 1);
953 }
954
955 /// If RET has an FP register use operand, pass the first one in ST(0) and
956 /// the second one in ST(1).
957 void FPS::handleReturn(MachineBasicBlock::iterator &I) {
958   MachineInstr &MI = *I;
959
960   // Find the register operands.
961   unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
962   unsigned LiveMask = 0;
963
964   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
965     MachineOperand &Op = MI.getOperand(i);
966     if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
967       continue;
968     // FP Register uses must be kills unless there are two uses of the same
969     // register, in which case only one will be a kill.
970     assert(Op.isUse() &&
971            (Op.isKill() ||                    // Marked kill.
972             getFPReg(Op) == FirstFPRegOp ||   // Second instance.
973             MI.killsRegister(Op.getReg())) && // Later use is marked kill.
974            "Ret only defs operands, and values aren't live beyond it");
975
976     if (FirstFPRegOp == ~0U)
977       FirstFPRegOp = getFPReg(Op);
978     else {
979       assert(SecondFPRegOp == ~0U && "More than two fp operands!");
980       SecondFPRegOp = getFPReg(Op);
981     }
982     LiveMask |= (1 << getFPReg(Op));
983
984     // Remove the operand so that later passes don't see it.
985     MI.RemoveOperand(i);
986     --i;
987     --e;
988   }
989
990   // We may have been carrying spurious live-ins, so make sure only the
991   // returned registers are left live.
992   adjustLiveRegs(LiveMask, MI);
993   if (!LiveMask) return;  // Quick check to see if any are possible.
994
995   // There are only four possibilities here:
996   // 1) we are returning a single FP value.  In this case, it has to be in
997   //    ST(0) already, so just declare success by removing the value from the
998   //    FP Stack.
999   if (SecondFPRegOp == ~0U) {
1000     // Assert that the top of stack contains the right FP register.
1001     assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
1002            "Top of stack not the right register for RET!");
1003
1004     // Ok, everything is good, mark the value as not being on the stack
1005     // anymore so that our assertion about the stack being empty at end of
1006     // block doesn't fire.
1007     StackTop = 0;
1008     return;
1009   }
1010
1011   // Otherwise, we are returning two values:
1012   // 2) If returning the same value for both, we only have one thing in the FP
1013   //    stack.  Consider:  RET FP1, FP1
1014   if (StackTop == 1) {
1015     assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
1016            "Stack misconfiguration for RET!");
1017
1018     // Duplicate the TOS so that we return it twice.  Just pick some other FPx
1019     // register to hold it.
1020     unsigned NewReg = ScratchFPReg;
1021     duplicateToTop(FirstFPRegOp, NewReg, MI);
1022     FirstFPRegOp = NewReg;
1023   }
1024
1025   /// Okay we know we have two different FPx operands now:
1026   assert(StackTop == 2 && "Must have two values live!");
1027
1028   /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1029   ///    in ST(1).  In this case, emit an fxch.
1030   if (getStackEntry(0) == SecondFPRegOp) {
1031     assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
1032     moveToTop(FirstFPRegOp, MI);
1033   }
1034
1035   /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1036   /// ST(1).  Just remove both from our understanding of the stack and return.
1037   assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
1038   assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
1039   StackTop = 0;
1040 }
1041
1042 /// handleZeroArgFP - ST(0) = fld0    ST(0) = flds <mem>
1043 ///
1044 void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
1045   MachineInstr &MI = *I;
1046   unsigned DestReg = getFPReg(MI.getOperand(0));
1047
1048   // Change from the pseudo instruction to the concrete instruction.
1049   MI.RemoveOperand(0); // Remove the explicit ST(0) operand
1050   MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1051
1052   // Result gets pushed on the stack.
1053   pushReg(DestReg);
1054 }
1055
1056 /// handleOneArgFP - fst <mem>, ST(0)
1057 ///
1058 void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
1059   MachineInstr &MI = *I;
1060   unsigned NumOps = MI.getDesc().getNumOperands();
1061   assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) &&
1062          "Can only handle fst* & ftst instructions!");
1063
1064   // Is this the last use of the source register?
1065   unsigned Reg = getFPReg(MI.getOperand(NumOps - 1));
1066   bool KillsSrc = MI.killsRegister(X86::FP0 + Reg);
1067
1068   // FISTP64m is strange because there isn't a non-popping versions.
1069   // If we have one _and_ we don't want to pop the operand, duplicate the value
1070   // on the stack instead of moving it.  This ensure that popping the value is
1071   // always ok.
1072   // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
1073   //
1074   if (!KillsSrc && (MI.getOpcode() == X86::IST_Fp64m32 ||
1075                     MI.getOpcode() == X86::ISTT_Fp16m32 ||
1076                     MI.getOpcode() == X86::ISTT_Fp32m32 ||
1077                     MI.getOpcode() == X86::ISTT_Fp64m32 ||
1078                     MI.getOpcode() == X86::IST_Fp64m64 ||
1079                     MI.getOpcode() == X86::ISTT_Fp16m64 ||
1080                     MI.getOpcode() == X86::ISTT_Fp32m64 ||
1081                     MI.getOpcode() == X86::ISTT_Fp64m64 ||
1082                     MI.getOpcode() == X86::IST_Fp64m80 ||
1083                     MI.getOpcode() == X86::ISTT_Fp16m80 ||
1084                     MI.getOpcode() == X86::ISTT_Fp32m80 ||
1085                     MI.getOpcode() == X86::ISTT_Fp64m80 ||
1086                     MI.getOpcode() == X86::ST_FpP80m)) {
1087     duplicateToTop(Reg, ScratchFPReg, I);
1088   } else {
1089     moveToTop(Reg, I);            // Move to the top of the stack...
1090   }
1091
1092   // Convert from the pseudo instruction to the concrete instruction.
1093   MI.RemoveOperand(NumOps - 1); // Remove explicit ST(0) operand
1094   MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1095
1096   if (MI.getOpcode() == X86::IST_FP64m || MI.getOpcode() == X86::ISTT_FP16m ||
1097       MI.getOpcode() == X86::ISTT_FP32m || MI.getOpcode() == X86::ISTT_FP64m ||
1098       MI.getOpcode() == X86::ST_FP80m) {
1099     if (StackTop == 0)
1100       report_fatal_error("Stack empty??");
1101     --StackTop;
1102   } else if (KillsSrc) { // Last use of operand?
1103     popStackAfter(I);
1104   }
1105 }
1106
1107
1108 /// handleOneArgFPRW: Handle instructions that read from the top of stack and
1109 /// replace the value with a newly computed value.  These instructions may have
1110 /// non-fp operands after their FP operands.
1111 ///
1112 ///  Examples:
1113 ///     R1 = fchs R2
1114 ///     R1 = fadd R2, [mem]
1115 ///
1116 void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
1117   MachineInstr &MI = *I;
1118 #ifndef NDEBUG
1119   unsigned NumOps = MI.getDesc().getNumOperands();
1120   assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
1121 #endif
1122
1123   // Is this the last use of the source register?
1124   unsigned Reg = getFPReg(MI.getOperand(1));
1125   bool KillsSrc = MI.killsRegister(X86::FP0 + Reg);
1126
1127   if (KillsSrc) {
1128     // If this is the last use of the source register, just make sure it's on
1129     // the top of the stack.
1130     moveToTop(Reg, I);
1131     if (StackTop == 0)
1132       report_fatal_error("Stack cannot be empty!");
1133     --StackTop;
1134     pushReg(getFPReg(MI.getOperand(0)));
1135   } else {
1136     // If this is not the last use of the source register, _copy_ it to the top
1137     // of the stack.
1138     duplicateToTop(Reg, getFPReg(MI.getOperand(0)), I);
1139   }
1140
1141   // Change from the pseudo instruction to the concrete instruction.
1142   MI.RemoveOperand(1); // Drop the source operand.
1143   MI.RemoveOperand(0); // Drop the destination operand.
1144   MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1145 }
1146
1147
1148 //===----------------------------------------------------------------------===//
1149 // Define tables of various ways to map pseudo instructions
1150 //
1151
1152 // ForwardST0Table - Map: A = B op C  into: ST(0) = ST(0) op ST(i)
1153 static const TableEntry ForwardST0Table[] = {
1154   { X86::ADD_Fp32  , X86::ADD_FST0r },
1155   { X86::ADD_Fp64  , X86::ADD_FST0r },
1156   { X86::ADD_Fp80  , X86::ADD_FST0r },
1157   { X86::DIV_Fp32  , X86::DIV_FST0r },
1158   { X86::DIV_Fp64  , X86::DIV_FST0r },
1159   { X86::DIV_Fp80  , X86::DIV_FST0r },
1160   { X86::MUL_Fp32  , X86::MUL_FST0r },
1161   { X86::MUL_Fp64  , X86::MUL_FST0r },
1162   { X86::MUL_Fp80  , X86::MUL_FST0r },
1163   { X86::SUB_Fp32  , X86::SUB_FST0r },
1164   { X86::SUB_Fp64  , X86::SUB_FST0r },
1165   { X86::SUB_Fp80  , X86::SUB_FST0r },
1166 };
1167
1168 // ReverseST0Table - Map: A = B op C  into: ST(0) = ST(i) op ST(0)
1169 static const TableEntry ReverseST0Table[] = {
1170   { X86::ADD_Fp32  , X86::ADD_FST0r  },   // commutative
1171   { X86::ADD_Fp64  , X86::ADD_FST0r  },   // commutative
1172   { X86::ADD_Fp80  , X86::ADD_FST0r  },   // commutative
1173   { X86::DIV_Fp32  , X86::DIVR_FST0r },
1174   { X86::DIV_Fp64  , X86::DIVR_FST0r },
1175   { X86::DIV_Fp80  , X86::DIVR_FST0r },
1176   { X86::MUL_Fp32  , X86::MUL_FST0r  },   // commutative
1177   { X86::MUL_Fp64  , X86::MUL_FST0r  },   // commutative
1178   { X86::MUL_Fp80  , X86::MUL_FST0r  },   // commutative
1179   { X86::SUB_Fp32  , X86::SUBR_FST0r },
1180   { X86::SUB_Fp64  , X86::SUBR_FST0r },
1181   { X86::SUB_Fp80  , X86::SUBR_FST0r },
1182 };
1183
1184 // ForwardSTiTable - Map: A = B op C  into: ST(i) = ST(0) op ST(i)
1185 static const TableEntry ForwardSTiTable[] = {
1186   { X86::ADD_Fp32  , X86::ADD_FrST0  },   // commutative
1187   { X86::ADD_Fp64  , X86::ADD_FrST0  },   // commutative
1188   { X86::ADD_Fp80  , X86::ADD_FrST0  },   // commutative
1189   { X86::DIV_Fp32  , X86::DIVR_FrST0 },
1190   { X86::DIV_Fp64  , X86::DIVR_FrST0 },
1191   { X86::DIV_Fp80  , X86::DIVR_FrST0 },
1192   { X86::MUL_Fp32  , X86::MUL_FrST0  },   // commutative
1193   { X86::MUL_Fp64  , X86::MUL_FrST0  },   // commutative
1194   { X86::MUL_Fp80  , X86::MUL_FrST0  },   // commutative
1195   { X86::SUB_Fp32  , X86::SUBR_FrST0 },
1196   { X86::SUB_Fp64  , X86::SUBR_FrST0 },
1197   { X86::SUB_Fp80  , X86::SUBR_FrST0 },
1198 };
1199
1200 // ReverseSTiTable - Map: A = B op C  into: ST(i) = ST(i) op ST(0)
1201 static const TableEntry ReverseSTiTable[] = {
1202   { X86::ADD_Fp32  , X86::ADD_FrST0 },
1203   { X86::ADD_Fp64  , X86::ADD_FrST0 },
1204   { X86::ADD_Fp80  , X86::ADD_FrST0 },
1205   { X86::DIV_Fp32  , X86::DIV_FrST0 },
1206   { X86::DIV_Fp64  , X86::DIV_FrST0 },
1207   { X86::DIV_Fp80  , X86::DIV_FrST0 },
1208   { X86::MUL_Fp32  , X86::MUL_FrST0 },
1209   { X86::MUL_Fp64  , X86::MUL_FrST0 },
1210   { X86::MUL_Fp80  , X86::MUL_FrST0 },
1211   { X86::SUB_Fp32  , X86::SUB_FrST0 },
1212   { X86::SUB_Fp64  , X86::SUB_FrST0 },
1213   { X86::SUB_Fp80  , X86::SUB_FrST0 },
1214 };
1215
1216
1217 /// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
1218 /// instructions which need to be simplified and possibly transformed.
1219 ///
1220 /// Result: ST(0) = fsub  ST(0), ST(i)
1221 ///         ST(i) = fsub  ST(0), ST(i)
1222 ///         ST(0) = fsubr ST(0), ST(i)
1223 ///         ST(i) = fsubr ST(0), ST(i)
1224 ///
1225 void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
1226   ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1227   ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1228   MachineInstr &MI = *I;
1229
1230   unsigned NumOperands = MI.getDesc().getNumOperands();
1231   assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
1232   unsigned Dest = getFPReg(MI.getOperand(0));
1233   unsigned Op0 = getFPReg(MI.getOperand(NumOperands - 2));
1234   unsigned Op1 = getFPReg(MI.getOperand(NumOperands - 1));
1235   bool KillsOp0 = MI.killsRegister(X86::FP0 + Op0);
1236   bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1);
1237   DebugLoc dl = MI.getDebugLoc();
1238
1239   unsigned TOS = getStackEntry(0);
1240
1241   // One of our operands must be on the top of the stack.  If neither is yet, we
1242   // need to move one.
1243   if (Op0 != TOS && Op1 != TOS) {   // No operand at TOS?
1244     // We can choose to move either operand to the top of the stack.  If one of
1245     // the operands is killed by this instruction, we want that one so that we
1246     // can update right on top of the old version.
1247     if (KillsOp0) {
1248       moveToTop(Op0, I);         // Move dead operand to TOS.
1249       TOS = Op0;
1250     } else if (KillsOp1) {
1251       moveToTop(Op1, I);
1252       TOS = Op1;
1253     } else {
1254       // All of the operands are live after this instruction executes, so we
1255       // cannot update on top of any operand.  Because of this, we must
1256       // duplicate one of the stack elements to the top.  It doesn't matter
1257       // which one we pick.
1258       //
1259       duplicateToTop(Op0, Dest, I);
1260       Op0 = TOS = Dest;
1261       KillsOp0 = true;
1262     }
1263   } else if (!KillsOp0 && !KillsOp1) {
1264     // If we DO have one of our operands at the top of the stack, but we don't
1265     // have a dead operand, we must duplicate one of the operands to a new slot
1266     // on the stack.
1267     duplicateToTop(Op0, Dest, I);
1268     Op0 = TOS = Dest;
1269     KillsOp0 = true;
1270   }
1271
1272   // Now we know that one of our operands is on the top of the stack, and at
1273   // least one of our operands is killed by this instruction.
1274   assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
1275          "Stack conditions not set up right!");
1276
1277   // We decide which form to use based on what is on the top of the stack, and
1278   // which operand is killed by this instruction.
1279   ArrayRef<TableEntry> InstTable;
1280   bool isForward = TOS == Op0;
1281   bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
1282   if (updateST0) {
1283     if (isForward)
1284       InstTable = ForwardST0Table;
1285     else
1286       InstTable = ReverseST0Table;
1287   } else {
1288     if (isForward)
1289       InstTable = ForwardSTiTable;
1290     else
1291       InstTable = ReverseSTiTable;
1292   }
1293
1294   int Opcode = Lookup(InstTable, MI.getOpcode());
1295   assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
1296
1297   // NotTOS - The register which is not on the top of stack...
1298   unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
1299
1300   // Replace the old instruction with a new instruction
1301   MBB->remove(&*I++);
1302   I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
1303
1304   // If both operands are killed, pop one off of the stack in addition to
1305   // overwriting the other one.
1306   if (KillsOp0 && KillsOp1 && Op0 != Op1) {
1307     assert(!updateST0 && "Should have updated other operand!");
1308     popStackAfter(I);   // Pop the top of stack
1309   }
1310
1311   // Update stack information so that we know the destination register is now on
1312   // the stack.
1313   unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
1314   assert(UpdatedSlot < StackTop && Dest < 7);
1315   Stack[UpdatedSlot]   = Dest;
1316   RegMap[Dest]         = UpdatedSlot;
1317   MBB->getParent()->DeleteMachineInstr(&MI); // Remove the old instruction
1318 }
1319
1320 /// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
1321 /// register arguments and no explicit destinations.
1322 ///
1323 void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
1324   ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1325   ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1326   MachineInstr &MI = *I;
1327
1328   unsigned NumOperands = MI.getDesc().getNumOperands();
1329   assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
1330   unsigned Op0 = getFPReg(MI.getOperand(NumOperands - 2));
1331   unsigned Op1 = getFPReg(MI.getOperand(NumOperands - 1));
1332   bool KillsOp0 = MI.killsRegister(X86::FP0 + Op0);
1333   bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1);
1334
1335   // Make sure the first operand is on the top of stack, the other one can be
1336   // anywhere.
1337   moveToTop(Op0, I);
1338
1339   // Change from the pseudo instruction to the concrete instruction.
1340   MI.getOperand(0).setReg(getSTReg(Op1));
1341   MI.RemoveOperand(1);
1342   MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1343
1344   // If any of the operands are killed by this instruction, free them.
1345   if (KillsOp0) freeStackSlotAfter(I, Op0);
1346   if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
1347 }
1348
1349 /// handleCondMovFP - Handle two address conditional move instructions.  These
1350 /// instructions move a st(i) register to st(0) iff a condition is true.  These
1351 /// instructions require that the first operand is at the top of the stack, but
1352 /// otherwise don't modify the stack at all.
1353 void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
1354   MachineInstr &MI = *I;
1355
1356   unsigned Op0 = getFPReg(MI.getOperand(0));
1357   unsigned Op1 = getFPReg(MI.getOperand(2));
1358   bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1);
1359
1360   // The first operand *must* be on the top of the stack.
1361   moveToTop(Op0, I);
1362
1363   // Change the second operand to the stack register that the operand is in.
1364   // Change from the pseudo instruction to the concrete instruction.
1365   MI.RemoveOperand(0);
1366   MI.RemoveOperand(1);
1367   MI.getOperand(0).setReg(getSTReg(Op1));
1368   MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1369
1370   // If we kill the second operand, make sure to pop it from the stack.
1371   if (Op0 != Op1 && KillsOp1) {
1372     // Get this value off of the register stack.
1373     freeStackSlotAfter(I, Op1);
1374   }
1375 }
1376
1377
1378 /// handleSpecialFP - Handle special instructions which behave unlike other
1379 /// floating point instructions.  This is primarily intended for use by pseudo
1380 /// instructions.
1381 ///
1382 void FPS::handleSpecialFP(MachineBasicBlock::iterator &Inst) {
1383   MachineInstr &MI = *Inst;
1384
1385   if (MI.isCall()) {
1386     handleCall(Inst);
1387     return;
1388   }
1389
1390   if (MI.isReturn()) {
1391     handleReturn(Inst);
1392     return;
1393   }
1394
1395   switch (MI.getOpcode()) {
1396   default: llvm_unreachable("Unknown SpecialFP instruction!");
1397   case TargetOpcode::COPY: {
1398     // We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP.
1399     const MachineOperand &MO1 = MI.getOperand(1);
1400     const MachineOperand &MO0 = MI.getOperand(0);
1401     bool KillsSrc = MI.killsRegister(MO1.getReg());
1402
1403     // FP <- FP copy.
1404     unsigned DstFP = getFPReg(MO0);
1405     unsigned SrcFP = getFPReg(MO1);
1406     assert(isLive(SrcFP) && "Cannot copy dead register");
1407     if (KillsSrc) {
1408       // If the input operand is killed, we can just change the owner of the
1409       // incoming stack slot into the result.
1410       unsigned Slot = getSlot(SrcFP);
1411       Stack[Slot] = DstFP;
1412       RegMap[DstFP] = Slot;
1413     } else {
1414       // For COPY we just duplicate the specified value to a new stack slot.
1415       // This could be made better, but would require substantial changes.
1416       duplicateToTop(SrcFP, DstFP, Inst);
1417     }
1418     break;
1419   }
1420
1421   case TargetOpcode::IMPLICIT_DEF: {
1422     // All FP registers must be explicitly defined, so load a 0 instead.
1423     unsigned Reg = MI.getOperand(0).getReg() - X86::FP0;
1424     DEBUG(dbgs() << "Emitting LD_F0 for implicit FP" << Reg << '\n');
1425     BuildMI(*MBB, Inst, MI.getDebugLoc(), TII->get(X86::LD_F0));
1426     pushReg(Reg);
1427     break;
1428   }
1429
1430   case TargetOpcode::INLINEASM: {
1431     // The inline asm MachineInstr currently only *uses* FP registers for the
1432     // 'f' constraint.  These should be turned into the current ST(x) register
1433     // in the machine instr.
1434     //
1435     // There are special rules for x87 inline assembly. The compiler must know
1436     // exactly how many registers are popped and pushed implicitly by the asm.
1437     // Otherwise it is not possible to restore the stack state after the inline
1438     // asm.
1439     //
1440     // There are 3 kinds of input operands:
1441     //
1442     // 1. Popped inputs. These must appear at the stack top in ST0-STn. A
1443     //    popped input operand must be in a fixed stack slot, and it is either
1444     //    tied to an output operand, or in the clobber list. The MI has ST use
1445     //    and def operands for these inputs.
1446     //
1447     // 2. Fixed inputs. These inputs appear in fixed stack slots, but are
1448     //    preserved by the inline asm. The fixed stack slots must be STn-STm
1449     //    following the popped inputs. A fixed input operand cannot be tied to
1450     //    an output or appear in the clobber list. The MI has ST use operands
1451     //    and no defs for these inputs.
1452     //
1453     // 3. Preserved inputs. These inputs use the "f" constraint which is
1454     //    represented as an FP register. The inline asm won't change these
1455     //    stack slots.
1456     //
1457     // Outputs must be in ST registers, FP outputs are not allowed. Clobbered
1458     // registers do not count as output operands. The inline asm changes the
1459     // stack as if it popped all the popped inputs and then pushed all the
1460     // output operands.
1461
1462     // Scan the assembly for ST registers used, defined and clobbered. We can
1463     // only tell clobbers from defs by looking at the asm descriptor.
1464     unsigned STUses = 0, STDefs = 0, STClobbers = 0, STDeadDefs = 0;
1465     unsigned NumOps = 0;
1466     SmallSet<unsigned, 1> FRegIdx;
1467     unsigned RCID;
1468
1469     for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI.getNumOperands();
1470          i != e && MI.getOperand(i).isImm(); i += 1 + NumOps) {
1471       unsigned Flags = MI.getOperand(i).getImm();
1472
1473       NumOps = InlineAsm::getNumOperandRegisters(Flags);
1474       if (NumOps != 1)
1475         continue;
1476       const MachineOperand &MO = MI.getOperand(i + 1);
1477       if (!MO.isReg())
1478         continue;
1479       unsigned STReg = MO.getReg() - X86::FP0;
1480       if (STReg >= 8)
1481         continue;
1482
1483       // If the flag has a register class constraint, this must be an operand
1484       // with constraint "f". Record its index and continue.
1485       if (InlineAsm::hasRegClassConstraint(Flags, RCID)) {
1486         FRegIdx.insert(i + 1);
1487         continue;
1488       }
1489
1490       switch (InlineAsm::getKind(Flags)) {
1491       case InlineAsm::Kind_RegUse:
1492         STUses |= (1u << STReg);
1493         break;
1494       case InlineAsm::Kind_RegDef:
1495       case InlineAsm::Kind_RegDefEarlyClobber:
1496         STDefs |= (1u << STReg);
1497         if (MO.isDead())
1498           STDeadDefs |= (1u << STReg);
1499         break;
1500       case InlineAsm::Kind_Clobber:
1501         STClobbers |= (1u << STReg);
1502         break;
1503       default:
1504         break;
1505       }
1506     }
1507
1508     if (STUses && !isMask_32(STUses))
1509       MI.emitError("fixed input regs must be last on the x87 stack");
1510     unsigned NumSTUses = countTrailingOnes(STUses);
1511
1512     // Defs must be contiguous from the stack top. ST0-STn.
1513     if (STDefs && !isMask_32(STDefs)) {
1514       MI.emitError("output regs must be last on the x87 stack");
1515       STDefs = NextPowerOf2(STDefs) - 1;
1516     }
1517     unsigned NumSTDefs = countTrailingOnes(STDefs);
1518
1519     // So must the clobbered stack slots. ST0-STm, m >= n.
1520     if (STClobbers && !isMask_32(STDefs | STClobbers))
1521       MI.emitError("clobbers must be last on the x87 stack");
1522
1523     // Popped inputs are the ones that are also clobbered or defined.
1524     unsigned STPopped = STUses & (STDefs | STClobbers);
1525     if (STPopped && !isMask_32(STPopped))
1526       MI.emitError("implicitly popped regs must be last on the x87 stack");
1527     unsigned NumSTPopped = countTrailingOnes(STPopped);
1528
1529     DEBUG(dbgs() << "Asm uses " << NumSTUses << " fixed regs, pops "
1530                  << NumSTPopped << ", and defines " << NumSTDefs << " regs.\n");
1531
1532 #ifndef NDEBUG
1533     // If any input operand uses constraint "f", all output register
1534     // constraints must be early-clobber defs.
1535     for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I)
1536       if (FRegIdx.count(I)) {
1537         assert((1 << getFPReg(MI.getOperand(I)) & STDefs) == 0 &&
1538                "Operands with constraint \"f\" cannot overlap with defs");
1539       }
1540 #endif
1541
1542     // Collect all FP registers (register operands with constraints "t", "u",
1543     // and "f") to kill afer the instruction.
1544     unsigned FPKills = ((1u << NumFPRegs) - 1) & ~0xff;
1545     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1546       MachineOperand &Op = MI.getOperand(i);
1547       if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1548         continue;
1549       unsigned FPReg = getFPReg(Op);
1550
1551       // If we kill this operand, make sure to pop it from the stack after the
1552       // asm.  We just remember it for now, and pop them all off at the end in
1553       // a batch.
1554       if (Op.isUse() && Op.isKill())
1555         FPKills |= 1U << FPReg;
1556     }
1557
1558     // Do not include registers that are implicitly popped by defs/clobbers.
1559     FPKills &= ~(STDefs | STClobbers);
1560
1561     // Now we can rearrange the live registers to match what was requested.
1562     unsigned char STUsesArray[8];
1563
1564     for (unsigned I = 0; I < NumSTUses; ++I)
1565       STUsesArray[I] = I;
1566
1567     shuffleStackTop(STUsesArray, NumSTUses, Inst);
1568     DEBUG({dbgs() << "Before asm: "; dumpStack();});
1569
1570     // With the stack layout fixed, rewrite the FP registers.
1571     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1572       MachineOperand &Op = MI.getOperand(i);
1573       if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1574         continue;
1575
1576       unsigned FPReg = getFPReg(Op);
1577
1578       if (FRegIdx.count(i))
1579         // Operand with constraint "f".
1580         Op.setReg(getSTReg(FPReg));
1581       else
1582         // Operand with a single register class constraint ("t" or "u").
1583         Op.setReg(X86::ST0 + FPReg);
1584     }
1585
1586     // Simulate the inline asm popping its inputs and pushing its outputs.
1587     StackTop -= NumSTPopped;
1588
1589     for (unsigned i = 0; i < NumSTDefs; ++i)
1590       pushReg(NumSTDefs - i - 1);
1591
1592     // If this asm kills any FP registers (is the last use of them) we must
1593     // explicitly emit pop instructions for them.  Do this now after the asm has
1594     // executed so that the ST(x) numbers are not off (which would happen if we
1595     // did this inline with operand rewriting).
1596     //
1597     // Note: this might be a non-optimal pop sequence.  We might be able to do
1598     // better by trying to pop in stack order or something.
1599     while (FPKills) {
1600       unsigned FPReg = countTrailingZeros(FPKills);
1601       if (isLive(FPReg))
1602         freeStackSlotAfter(Inst, FPReg);
1603       FPKills &= ~(1U << FPReg);
1604     }
1605
1606     // Don't delete the inline asm!
1607     return;
1608   }
1609   }
1610
1611   Inst = MBB->erase(Inst);  // Remove the pseudo instruction
1612
1613   // We want to leave I pointing to the previous instruction, but what if we
1614   // just erased the first instruction?
1615   if (Inst == MBB->begin()) {
1616     DEBUG(dbgs() << "Inserting dummy KILL\n");
1617     Inst = BuildMI(*MBB, Inst, DebugLoc(), TII->get(TargetOpcode::KILL));
1618   } else
1619     --Inst;
1620 }
1621
1622 void FPS::setKillFlags(MachineBasicBlock &MBB) const {
1623   const TargetRegisterInfo *TRI =
1624       MBB.getParent()->getSubtarget().getRegisterInfo();
1625   LivePhysRegs LPR(TRI);
1626
1627   LPR.addLiveOuts(MBB);
1628
1629   for (MachineBasicBlock::reverse_iterator I = MBB.rbegin(), E = MBB.rend();
1630        I != E; ++I) {
1631     if (I->isDebugValue())
1632       continue;
1633
1634     std::bitset<8> Defs;
1635     SmallVector<MachineOperand *, 2> Uses;
1636     MachineInstr &MI = *I;
1637
1638     for (auto &MO : I->operands()) {
1639       if (!MO.isReg())
1640         continue;
1641
1642       unsigned Reg = MO.getReg() - X86::FP0;
1643
1644       if (Reg >= 8)
1645         continue;
1646
1647       if (MO.isDef()) {
1648         Defs.set(Reg);
1649         if (!LPR.contains(MO.getReg()))
1650           MO.setIsDead();
1651       } else
1652         Uses.push_back(&MO);
1653     }
1654
1655     for (auto *MO : Uses)
1656       if (Defs.test(getFPReg(*MO)) || !LPR.contains(MO->getReg()))
1657         MO->setIsKill();
1658
1659     LPR.stepBackward(MI);
1660   }
1661 }