]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Target/X86/X86FrameLowering.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Target / X86 / X86FrameLowering.cpp
1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the X86 implementation of TargetFrameLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "X86FrameLowering.h"
15 #include "X86InstrBuilder.h"
16 #include "X86InstrInfo.h"
17 #include "X86MachineFunctionInfo.h"
18 #include "X86Subtarget.h"
19 #include "X86TargetMachine.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/Analysis/EHPersonalities.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineModuleInfo.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/WinEHFuncInfo.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/MC/MCAsmInfo.h"
31 #include "llvm/MC/MCSymbol.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Target/TargetOptions.h"
34 #include <cstdlib>
35
36 using namespace llvm;
37
38 X86FrameLowering::X86FrameLowering(const X86Subtarget &STI,
39                                    unsigned StackAlignOverride)
40     : TargetFrameLowering(StackGrowsDown, StackAlignOverride,
41                           STI.is64Bit() ? -8 : -4),
42       STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) {
43   // Cache a bunch of frame-related predicates for this subtarget.
44   SlotSize = TRI->getSlotSize();
45   Is64Bit = STI.is64Bit();
46   IsLP64 = STI.isTarget64BitLP64();
47   // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
48   Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64();
49   StackPtr = TRI->getStackRegister();
50 }
51
52 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
53   return !MF.getFrameInfo().hasVarSizedObjects() &&
54          !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
55 }
56
57 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the
58 /// call frame pseudos can be simplified.  Having a FP, as in the default
59 /// implementation, is not sufficient here since we can't always use it.
60 /// Use a more nuanced condition.
61 bool
62 X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
63   return hasReservedCallFrame(MF) ||
64          (hasFP(MF) && !TRI->needsStackRealignment(MF)) ||
65          TRI->hasBasePointer(MF);
66 }
67
68 // needsFrameIndexResolution - Do we need to perform FI resolution for
69 // this function. Normally, this is required only when the function
70 // has any stack objects. However, FI resolution actually has another job,
71 // not apparent from the title - it resolves callframesetup/destroy
72 // that were not simplified earlier.
73 // So, this is required for x86 functions that have push sequences even
74 // when there are no stack objects.
75 bool
76 X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const {
77   return MF.getFrameInfo().hasStackObjects() ||
78          MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
79 }
80
81 /// hasFP - Return true if the specified function should have a dedicated frame
82 /// pointer register.  This is true if the function has variable sized allocas
83 /// or if frame pointer elimination is disabled.
84 bool X86FrameLowering::hasFP(const MachineFunction &MF) const {
85   const MachineFrameInfo &MFI = MF.getFrameInfo();
86   return (MF.getTarget().Options.DisableFramePointerElim(MF) ||
87           TRI->needsStackRealignment(MF) ||
88           MFI.hasVarSizedObjects() ||
89           MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() ||
90           MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
91           MF.callsUnwindInit() || MF.hasEHFunclets() || MF.callsEHReturn() ||
92           MFI.hasStackMap() || MFI.hasPatchPoint() ||
93           MFI.hasCopyImplyingStackAdjustment());
94 }
95
96 static unsigned getSUBriOpcode(unsigned IsLP64, int64_t Imm) {
97   if (IsLP64) {
98     if (isInt<8>(Imm))
99       return X86::SUB64ri8;
100     return X86::SUB64ri32;
101   } else {
102     if (isInt<8>(Imm))
103       return X86::SUB32ri8;
104     return X86::SUB32ri;
105   }
106 }
107
108 static unsigned getADDriOpcode(unsigned IsLP64, int64_t Imm) {
109   if (IsLP64) {
110     if (isInt<8>(Imm))
111       return X86::ADD64ri8;
112     return X86::ADD64ri32;
113   } else {
114     if (isInt<8>(Imm))
115       return X86::ADD32ri8;
116     return X86::ADD32ri;
117   }
118 }
119
120 static unsigned getSUBrrOpcode(unsigned isLP64) {
121   return isLP64 ? X86::SUB64rr : X86::SUB32rr;
122 }
123
124 static unsigned getADDrrOpcode(unsigned isLP64) {
125   return isLP64 ? X86::ADD64rr : X86::ADD32rr;
126 }
127
128 static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) {
129   if (IsLP64) {
130     if (isInt<8>(Imm))
131       return X86::AND64ri8;
132     return X86::AND64ri32;
133   }
134   if (isInt<8>(Imm))
135     return X86::AND32ri8;
136   return X86::AND32ri;
137 }
138
139 static unsigned getLEArOpcode(unsigned IsLP64) {
140   return IsLP64 ? X86::LEA64r : X86::LEA32r;
141 }
142
143 /// findDeadCallerSavedReg - Return a caller-saved register that isn't live
144 /// when it reaches the "return" instruction. We can then pop a stack object
145 /// to this register without worry about clobbering it.
146 static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB,
147                                        MachineBasicBlock::iterator &MBBI,
148                                        const X86RegisterInfo *TRI,
149                                        bool Is64Bit) {
150   const MachineFunction *MF = MBB.getParent();
151   if (MF->callsEHReturn())
152     return 0;
153
154   const TargetRegisterClass &AvailableRegs = *TRI->getGPRsForTailCall(*MF);
155
156   if (MBBI == MBB.end())
157     return 0;
158
159   switch (MBBI->getOpcode()) {
160   default: return 0;
161   case TargetOpcode::PATCHABLE_RET:
162   case X86::RET:
163   case X86::RETL:
164   case X86::RETQ:
165   case X86::RETIL:
166   case X86::RETIQ:
167   case X86::TCRETURNdi:
168   case X86::TCRETURNri:
169   case X86::TCRETURNmi:
170   case X86::TCRETURNdi64:
171   case X86::TCRETURNri64:
172   case X86::TCRETURNmi64:
173   case X86::EH_RETURN:
174   case X86::EH_RETURN64: {
175     SmallSet<uint16_t, 8> Uses;
176     for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) {
177       MachineOperand &MO = MBBI->getOperand(i);
178       if (!MO.isReg() || MO.isDef())
179         continue;
180       unsigned Reg = MO.getReg();
181       if (!Reg)
182         continue;
183       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
184         Uses.insert(*AI);
185     }
186
187     for (auto CS : AvailableRegs)
188       if (!Uses.count(CS) && CS != X86::RIP && CS != X86::RSP &&
189           CS != X86::ESP)
190         return CS;
191   }
192   }
193
194   return 0;
195 }
196
197 static bool isEAXLiveIn(MachineBasicBlock &MBB) {
198   for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) {
199     unsigned Reg = RegMask.PhysReg;
200
201     if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX ||
202         Reg == X86::AH || Reg == X86::AL)
203       return true;
204   }
205
206   return false;
207 }
208
209 /// Check if the flags need to be preserved before the terminators.
210 /// This would be the case, if the eflags is live-in of the region
211 /// composed by the terminators or live-out of that region, without
212 /// being defined by a terminator.
213 static bool
214 flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) {
215   for (const MachineInstr &MI : MBB.terminators()) {
216     bool BreakNext = false;
217     for (const MachineOperand &MO : MI.operands()) {
218       if (!MO.isReg())
219         continue;
220       unsigned Reg = MO.getReg();
221       if (Reg != X86::EFLAGS)
222         continue;
223
224       // This terminator needs an eflags that is not defined
225       // by a previous another terminator:
226       // EFLAGS is live-in of the region composed by the terminators.
227       if (!MO.isDef())
228         return true;
229       // This terminator defines the eflags, i.e., we don't need to preserve it.
230       // However, we still need to check this specific terminator does not
231       // read a live-in value.
232       BreakNext = true;
233     }
234     // We found a definition of the eflags, no need to preserve them.
235     if (BreakNext)
236       return false;
237   }
238
239   // None of the terminators use or define the eflags.
240   // Check if they are live-out, that would imply we need to preserve them.
241   for (const MachineBasicBlock *Succ : MBB.successors())
242     if (Succ->isLiveIn(X86::EFLAGS))
243       return true;
244
245   return false;
246 }
247
248 /// emitSPUpdate - Emit a series of instructions to increment / decrement the
249 /// stack pointer by a constant value.
250 void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB,
251                                     MachineBasicBlock::iterator &MBBI,
252                                     const DebugLoc &DL,
253                                     int64_t NumBytes, bool InEpilogue) const {
254   bool isSub = NumBytes < 0;
255   uint64_t Offset = isSub ? -NumBytes : NumBytes;
256   MachineInstr::MIFlag Flag =
257       isSub ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy;
258
259   uint64_t Chunk = (1LL << 31) - 1;
260
261   if (Offset > Chunk) {
262     // Rather than emit a long series of instructions for large offsets,
263     // load the offset into a register and do one sub/add
264     unsigned Reg = 0;
265     unsigned Rax = (unsigned)(Is64Bit ? X86::RAX : X86::EAX);
266
267     if (isSub && !isEAXLiveIn(MBB))
268       Reg = Rax;
269     else
270       Reg = findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
271
272     unsigned MovRIOpc = Is64Bit ? X86::MOV64ri : X86::MOV32ri;
273     unsigned AddSubRROpc =
274         isSub ? getSUBrrOpcode(Is64Bit) : getADDrrOpcode(Is64Bit);
275     if (Reg) {
276       BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Reg)
277           .addImm(Offset)
278           .setMIFlag(Flag);
279       MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AddSubRROpc), StackPtr)
280                              .addReg(StackPtr)
281                              .addReg(Reg);
282       MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
283       return;
284     } else if (Offset > 8 * Chunk) {
285       // If we would need more than 8 add or sub instructions (a >16GB stack
286       // frame), it's worth spilling RAX to materialize this immediate.
287       //   pushq %rax
288       //   movabsq +-$Offset+-SlotSize, %rax
289       //   addq %rsp, %rax
290       //   xchg %rax, (%rsp)
291       //   movq (%rsp), %rsp
292       assert(Is64Bit && "can't have 32-bit 16GB stack frame");
293       BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
294           .addReg(Rax, RegState::Kill)
295           .setMIFlag(Flag);
296       // Subtract is not commutative, so negate the offset and always use add.
297       // Subtract 8 less and add 8 more to account for the PUSH we just did.
298       if (isSub)
299         Offset = -(Offset - SlotSize);
300       else
301         Offset = Offset + SlotSize;
302       BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Rax)
303           .addImm(Offset)
304           .setMIFlag(Flag);
305       MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(X86::ADD64rr), Rax)
306                              .addReg(Rax)
307                              .addReg(StackPtr);
308       MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
309       // Exchange the new SP in RAX with the top of the stack.
310       addRegOffset(
311           BuildMI(MBB, MBBI, DL, TII.get(X86::XCHG64rm), Rax).addReg(Rax),
312           StackPtr, false, 0);
313       // Load new SP from the top of the stack into RSP.
314       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), StackPtr),
315                    StackPtr, false, 0);
316       return;
317     }
318   }
319
320   while (Offset) {
321     uint64_t ThisVal = std::min(Offset, Chunk);
322     if (ThisVal == SlotSize) {
323       // Use push / pop for slot sized adjustments as a size optimization. We
324       // need to find a dead register when using pop.
325       unsigned Reg = isSub
326         ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX)
327         : findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
328       if (Reg) {
329         unsigned Opc = isSub
330           ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r)
331           : (Is64Bit ? X86::POP64r  : X86::POP32r);
332         BuildMI(MBB, MBBI, DL, TII.get(Opc))
333             .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub))
334             .setMIFlag(Flag);
335         Offset -= ThisVal;
336         continue;
337       }
338     }
339
340     BuildStackAdjustment(MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue)
341         .setMIFlag(Flag);
342
343     Offset -= ThisVal;
344   }
345 }
346
347 MachineInstrBuilder X86FrameLowering::BuildStackAdjustment(
348     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
349     const DebugLoc &DL, int64_t Offset, bool InEpilogue) const {
350   assert(Offset != 0 && "zero offset stack adjustment requested");
351
352   // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue
353   // is tricky.
354   bool UseLEA;
355   if (!InEpilogue) {
356     // Check if inserting the prologue at the beginning
357     // of MBB would require to use LEA operations.
358     // We need to use LEA operations if EFLAGS is live in, because
359     // it means an instruction will read it before it gets defined.
360     UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS);
361   } else {
362     // If we can use LEA for SP but we shouldn't, check that none
363     // of the terminators uses the eflags. Otherwise we will insert
364     // a ADD that will redefine the eflags and break the condition.
365     // Alternatively, we could move the ADD, but this may not be possible
366     // and is an optimization anyway.
367     UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent());
368     if (UseLEA && !STI.useLeaForSP())
369       UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB);
370     // If that assert breaks, that means we do not do the right thing
371     // in canUseAsEpilogue.
372     assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) &&
373            "We shouldn't have allowed this insertion point");
374   }
375
376   MachineInstrBuilder MI;
377   if (UseLEA) {
378     MI = addRegOffset(BuildMI(MBB, MBBI, DL,
379                               TII.get(getLEArOpcode(Uses64BitFramePtr)),
380                               StackPtr),
381                       StackPtr, false, Offset);
382   } else {
383     bool IsSub = Offset < 0;
384     uint64_t AbsOffset = IsSub ? -Offset : Offset;
385     unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset)
386                          : getADDriOpcode(Uses64BitFramePtr, AbsOffset);
387     MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
388              .addReg(StackPtr)
389              .addImm(AbsOffset);
390     MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
391   }
392   return MI;
393 }
394
395 int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB,
396                                      MachineBasicBlock::iterator &MBBI,
397                                      bool doMergeWithPrevious) const {
398   if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
399       (!doMergeWithPrevious && MBBI == MBB.end()))
400     return 0;
401
402   MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI;
403
404   PI = skipDebugInstructionsBackward(PI, MBB.begin());
405   // It is assumed that ADD/SUB/LEA instruction is succeded by one CFI
406   // instruction, and that there are no DBG_VALUE or other instructions between
407   // ADD/SUB/LEA and its corresponding CFI instruction.
408   /* TODO: Add support for the case where there are multiple CFI instructions
409     below the ADD/SUB/LEA, e.g.:
410     ...
411     add
412     cfi_def_cfa_offset
413     cfi_offset
414     ...
415   */
416   if (doMergeWithPrevious && PI != MBB.begin() && PI->isCFIInstruction())
417     PI = std::prev(PI);
418
419   unsigned Opc = PI->getOpcode();
420   int Offset = 0;
421
422   if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
423        Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
424       PI->getOperand(0).getReg() == StackPtr){
425     assert(PI->getOperand(1).getReg() == StackPtr);
426     Offset = PI->getOperand(2).getImm();
427   } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) &&
428              PI->getOperand(0).getReg() == StackPtr &&
429              PI->getOperand(1).getReg() == StackPtr &&
430              PI->getOperand(2).getImm() == 1 &&
431              PI->getOperand(3).getReg() == X86::NoRegister &&
432              PI->getOperand(5).getReg() == X86::NoRegister) {
433     // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg.
434     Offset = PI->getOperand(4).getImm();
435   } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
436               Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
437              PI->getOperand(0).getReg() == StackPtr) {
438     assert(PI->getOperand(1).getReg() == StackPtr);
439     Offset = -PI->getOperand(2).getImm();
440   } else
441     return 0;
442
443   PI = MBB.erase(PI);
444   if (PI != MBB.end() && PI->isCFIInstruction()) PI = MBB.erase(PI);
445   if (!doMergeWithPrevious)
446     MBBI = skipDebugInstructionsForward(PI, MBB.end());
447
448   return Offset;
449 }
450
451 void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB,
452                                 MachineBasicBlock::iterator MBBI,
453                                 const DebugLoc &DL,
454                                 const MCCFIInstruction &CFIInst) const {
455   MachineFunction &MF = *MBB.getParent();
456   unsigned CFIIndex = MF.addFrameInst(CFIInst);
457   BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
458       .addCFIIndex(CFIIndex);
459 }
460
461 void X86FrameLowering::emitCalleeSavedFrameMoves(
462     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
463     const DebugLoc &DL) const {
464   MachineFunction &MF = *MBB.getParent();
465   MachineFrameInfo &MFI = MF.getFrameInfo();
466   MachineModuleInfo &MMI = MF.getMMI();
467   const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
468
469   // Add callee saved registers to move list.
470   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
471   if (CSI.empty()) return;
472
473   // Calculate offsets.
474   for (std::vector<CalleeSavedInfo>::const_iterator
475          I = CSI.begin(), E = CSI.end(); I != E; ++I) {
476     int64_t Offset = MFI.getObjectOffset(I->getFrameIdx());
477     unsigned Reg = I->getReg();
478
479     unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
480     BuildCFI(MBB, MBBI, DL,
481              MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
482   }
483 }
484
485 void X86FrameLowering::emitStackProbe(MachineFunction &MF,
486                                       MachineBasicBlock &MBB,
487                                       MachineBasicBlock::iterator MBBI,
488                                       const DebugLoc &DL, bool InProlog) const {
489   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
490   if (STI.isTargetWindowsCoreCLR()) {
491     if (InProlog) {
492       emitStackProbeInlineStub(MF, MBB, MBBI, DL, true);
493     } else {
494       emitStackProbeInline(MF, MBB, MBBI, DL, false);
495     }
496   } else {
497     emitStackProbeCall(MF, MBB, MBBI, DL, InProlog);
498   }
499 }
500
501 void X86FrameLowering::inlineStackProbe(MachineFunction &MF,
502                                         MachineBasicBlock &PrologMBB) const {
503   const StringRef ChkStkStubSymbol = "__chkstk_stub";
504   MachineInstr *ChkStkStub = nullptr;
505
506   for (MachineInstr &MI : PrologMBB) {
507     if (MI.isCall() && MI.getOperand(0).isSymbol() &&
508         ChkStkStubSymbol == MI.getOperand(0).getSymbolName()) {
509       ChkStkStub = &MI;
510       break;
511     }
512   }
513
514   if (ChkStkStub != nullptr) {
515     assert(!ChkStkStub->isBundled() &&
516            "Not expecting bundled instructions here");
517     MachineBasicBlock::iterator MBBI = std::next(ChkStkStub->getIterator());
518     assert(std::prev(MBBI) == ChkStkStub &&
519            "MBBI expected after __chkstk_stub.");
520     DebugLoc DL = PrologMBB.findDebugLoc(MBBI);
521     emitStackProbeInline(MF, PrologMBB, MBBI, DL, true);
522     ChkStkStub->eraseFromParent();
523   }
524 }
525
526 void X86FrameLowering::emitStackProbeInline(MachineFunction &MF,
527                                             MachineBasicBlock &MBB,
528                                             MachineBasicBlock::iterator MBBI,
529                                             const DebugLoc &DL,
530                                             bool InProlog) const {
531   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
532   assert(STI.is64Bit() && "different expansion needed for 32 bit");
533   assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR");
534   const TargetInstrInfo &TII = *STI.getInstrInfo();
535   const BasicBlock *LLVM_BB = MBB.getBasicBlock();
536
537   // RAX contains the number of bytes of desired stack adjustment.
538   // The handling here assumes this value has already been updated so as to
539   // maintain stack alignment.
540   //
541   // We need to exit with RSP modified by this amount and execute suitable
542   // page touches to notify the OS that we're growing the stack responsibly.
543   // All stack probing must be done without modifying RSP.
544   //
545   // MBB:
546   //    SizeReg = RAX;
547   //    ZeroReg = 0
548   //    CopyReg = RSP
549   //    Flags, TestReg = CopyReg - SizeReg
550   //    FinalReg = !Flags.Ovf ? TestReg : ZeroReg
551   //    LimitReg = gs magic thread env access
552   //    if FinalReg >= LimitReg goto ContinueMBB
553   // RoundBB:
554   //    RoundReg = page address of FinalReg
555   // LoopMBB:
556   //    LoopReg = PHI(LimitReg,ProbeReg)
557   //    ProbeReg = LoopReg - PageSize
558   //    [ProbeReg] = 0
559   //    if (ProbeReg > RoundReg) goto LoopMBB
560   // ContinueMBB:
561   //    RSP = RSP - RAX
562   //    [rest of original MBB]
563
564   // Set up the new basic blocks
565   MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB);
566   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
567   MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB);
568
569   MachineFunction::iterator MBBIter = std::next(MBB.getIterator());
570   MF.insert(MBBIter, RoundMBB);
571   MF.insert(MBBIter, LoopMBB);
572   MF.insert(MBBIter, ContinueMBB);
573
574   // Split MBB and move the tail portion down to ContinueMBB.
575   MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI);
576   ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end());
577   ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB);
578
579   // Some useful constants
580   const int64_t ThreadEnvironmentStackLimit = 0x10;
581   const int64_t PageSize = 0x1000;
582   const int64_t PageMask = ~(PageSize - 1);
583
584   // Registers we need. For the normal case we use virtual
585   // registers. For the prolog expansion we use RAX, RCX and RDX.
586   MachineRegisterInfo &MRI = MF.getRegInfo();
587   const TargetRegisterClass *RegClass = &X86::GR64RegClass;
588   const unsigned SizeReg = InProlog ? (unsigned)X86::RAX
589                                     : MRI.createVirtualRegister(RegClass),
590                  ZeroReg = InProlog ? (unsigned)X86::RCX
591                                     : MRI.createVirtualRegister(RegClass),
592                  CopyReg = InProlog ? (unsigned)X86::RDX
593                                     : MRI.createVirtualRegister(RegClass),
594                  TestReg = InProlog ? (unsigned)X86::RDX
595                                     : MRI.createVirtualRegister(RegClass),
596                  FinalReg = InProlog ? (unsigned)X86::RDX
597                                      : MRI.createVirtualRegister(RegClass),
598                  RoundedReg = InProlog ? (unsigned)X86::RDX
599                                        : MRI.createVirtualRegister(RegClass),
600                  LimitReg = InProlog ? (unsigned)X86::RCX
601                                      : MRI.createVirtualRegister(RegClass),
602                  JoinReg = InProlog ? (unsigned)X86::RCX
603                                     : MRI.createVirtualRegister(RegClass),
604                  ProbeReg = InProlog ? (unsigned)X86::RCX
605                                      : MRI.createVirtualRegister(RegClass);
606
607   // SP-relative offsets where we can save RCX and RDX.
608   int64_t RCXShadowSlot = 0;
609   int64_t RDXShadowSlot = 0;
610
611   // If inlining in the prolog, save RCX and RDX.
612   if (InProlog) {
613     // Compute the offsets. We need to account for things already
614     // pushed onto the stack at this point: return address, frame
615     // pointer (if used), and callee saves.
616     X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
617     const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize();
618     const bool HasFP = hasFP(MF);
619
620     // Check if we need to spill RCX and/or RDX.
621     // Here we assume that no earlier prologue instruction changes RCX and/or
622     // RDX, so checking the block live-ins is enough.
623     const bool IsRCXLiveIn = MBB.isLiveIn(X86::RCX);
624     const bool IsRDXLiveIn = MBB.isLiveIn(X86::RDX);
625     int64_t InitSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0);
626     // Assign the initial slot to both registers, then change RDX's slot if both
627     // need to be spilled.
628     if (IsRCXLiveIn)
629       RCXShadowSlot = InitSlot;
630     if (IsRDXLiveIn)
631       RDXShadowSlot = InitSlot;
632     if (IsRDXLiveIn && IsRCXLiveIn)
633       RDXShadowSlot += 8;
634     // Emit the saves if needed.
635     if (IsRCXLiveIn)
636       addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
637                    RCXShadowSlot)
638           .addReg(X86::RCX);
639     if (IsRDXLiveIn)
640       addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
641                    RDXShadowSlot)
642           .addReg(X86::RDX);
643   } else {
644     // Not in the prolog. Copy RAX to a virtual reg.
645     BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX);
646   }
647
648   // Add code to MBB to check for overflow and set the new target stack pointer
649   // to zero if so.
650   BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg)
651       .addReg(ZeroReg, RegState::Undef)
652       .addReg(ZeroReg, RegState::Undef);
653   BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP);
654   BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg)
655       .addReg(CopyReg)
656       .addReg(SizeReg);
657   BuildMI(&MBB, DL, TII.get(X86::CMOVB64rr), FinalReg)
658       .addReg(TestReg)
659       .addReg(ZeroReg);
660
661   // FinalReg now holds final stack pointer value, or zero if
662   // allocation would overflow. Compare against the current stack
663   // limit from the thread environment block. Note this limit is the
664   // lowest touched page on the stack, not the point at which the OS
665   // will cause an overflow exception, so this is just an optimization
666   // to avoid unnecessarily touching pages that are below the current
667   // SP but already committed to the stack by the OS.
668   BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg)
669       .addReg(0)
670       .addImm(1)
671       .addReg(0)
672       .addImm(ThreadEnvironmentStackLimit)
673       .addReg(X86::GS);
674   BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg);
675   // Jump if the desired stack pointer is at or above the stack limit.
676   BuildMI(&MBB, DL, TII.get(X86::JAE_1)).addMBB(ContinueMBB);
677
678   // Add code to roundMBB to round the final stack pointer to a page boundary.
679   RoundMBB->addLiveIn(FinalReg);
680   BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg)
681       .addReg(FinalReg)
682       .addImm(PageMask);
683   BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB);
684
685   // LimitReg now holds the current stack limit, RoundedReg page-rounded
686   // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page
687   // and probe until we reach RoundedReg.
688   if (!InProlog) {
689     BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg)
690         .addReg(LimitReg)
691         .addMBB(RoundMBB)
692         .addReg(ProbeReg)
693         .addMBB(LoopMBB);
694   }
695
696   LoopMBB->addLiveIn(JoinReg);
697   addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg,
698                false, -PageSize);
699
700   // Probe by storing a byte onto the stack.
701   BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi))
702       .addReg(ProbeReg)
703       .addImm(1)
704       .addReg(0)
705       .addImm(0)
706       .addReg(0)
707       .addImm(0);
708
709   LoopMBB->addLiveIn(RoundedReg);
710   BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr))
711       .addReg(RoundedReg)
712       .addReg(ProbeReg);
713   BuildMI(LoopMBB, DL, TII.get(X86::JNE_1)).addMBB(LoopMBB);
714
715   MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI();
716
717   // If in prolog, restore RDX and RCX.
718   if (InProlog) {
719     if (RCXShadowSlot) // It means we spilled RCX in the prologue.
720       addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL,
721                            TII.get(X86::MOV64rm), X86::RCX),
722                    X86::RSP, false, RCXShadowSlot);
723     if (RDXShadowSlot) // It means we spilled RDX in the prologue.
724       addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL,
725                            TII.get(X86::MOV64rm), X86::RDX),
726                    X86::RSP, false, RDXShadowSlot);
727   }
728
729   // Now that the probing is done, add code to continueMBB to update
730   // the stack pointer for real.
731   ContinueMBB->addLiveIn(SizeReg);
732   BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP)
733       .addReg(X86::RSP)
734       .addReg(SizeReg);
735
736   // Add the control flow edges we need.
737   MBB.addSuccessor(ContinueMBB);
738   MBB.addSuccessor(RoundMBB);
739   RoundMBB->addSuccessor(LoopMBB);
740   LoopMBB->addSuccessor(ContinueMBB);
741   LoopMBB->addSuccessor(LoopMBB);
742
743   // Mark all the instructions added to the prolog as frame setup.
744   if (InProlog) {
745     for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) {
746       BeforeMBBI->setFlag(MachineInstr::FrameSetup);
747     }
748     for (MachineInstr &MI : *RoundMBB) {
749       MI.setFlag(MachineInstr::FrameSetup);
750     }
751     for (MachineInstr &MI : *LoopMBB) {
752       MI.setFlag(MachineInstr::FrameSetup);
753     }
754     for (MachineBasicBlock::iterator CMBBI = ContinueMBB->begin();
755          CMBBI != ContinueMBBI; ++CMBBI) {
756       CMBBI->setFlag(MachineInstr::FrameSetup);
757     }
758   }
759 }
760
761 void X86FrameLowering::emitStackProbeCall(MachineFunction &MF,
762                                           MachineBasicBlock &MBB,
763                                           MachineBasicBlock::iterator MBBI,
764                                           const DebugLoc &DL,
765                                           bool InProlog) const {
766   bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large;
767
768   // FIXME: Add retpoline support and remove this.
769   if (Is64Bit && IsLargeCodeModel && STI.useRetpolineIndirectCalls())
770     report_fatal_error("Emitting stack probe calls on 64-bit with the large "
771                        "code model and retpoline not yet implemented.");
772
773   unsigned CallOp;
774   if (Is64Bit)
775     CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32;
776   else
777     CallOp = X86::CALLpcrel32;
778
779   StringRef Symbol = STI.getTargetLowering()->getStackProbeSymbolName(MF);
780
781   MachineInstrBuilder CI;
782   MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI);
783
784   // All current stack probes take AX and SP as input, clobber flags, and
785   // preserve all registers. x86_64 probes leave RSP unmodified.
786   if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
787     // For the large code model, we have to call through a register. Use R11,
788     // as it is scratch in all supported calling conventions.
789     BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11)
790         .addExternalSymbol(MF.createExternalSymbolName(Symbol));
791     CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11);
792   } else {
793     CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp))
794         .addExternalSymbol(MF.createExternalSymbolName(Symbol));
795   }
796
797   unsigned AX = Is64Bit ? X86::RAX : X86::EAX;
798   unsigned SP = Is64Bit ? X86::RSP : X86::ESP;
799   CI.addReg(AX, RegState::Implicit)
800       .addReg(SP, RegState::Implicit)
801       .addReg(AX, RegState::Define | RegState::Implicit)
802       .addReg(SP, RegState::Define | RegState::Implicit)
803       .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
804
805   if (STI.isTargetWin64() || !STI.isOSWindows()) {
806     // MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves.
807     // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp
808     // themselves. They also does not clobber %rax so we can reuse it when
809     // adjusting %rsp.
810     // All other platforms do not specify a particular ABI for the stack probe
811     // function, so we arbitrarily define it to not adjust %esp/%rsp itself.
812     BuildMI(MBB, MBBI, DL, TII.get(getSUBrrOpcode(Is64Bit)), SP)
813         .addReg(SP)
814         .addReg(AX);
815   }
816
817   if (InProlog) {
818     // Apply the frame setup flag to all inserted instrs.
819     for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI)
820       ExpansionMBBI->setFlag(MachineInstr::FrameSetup);
821   }
822 }
823
824 void X86FrameLowering::emitStackProbeInlineStub(
825     MachineFunction &MF, MachineBasicBlock &MBB,
826     MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const {
827
828   assert(InProlog && "ChkStkStub called outside prolog!");
829
830   BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32))
831       .addExternalSymbol("__chkstk_stub");
832 }
833
834 static unsigned calculateSetFPREG(uint64_t SPAdjust) {
835   // Win64 ABI has a less restrictive limitation of 240; 128 works equally well
836   // and might require smaller successive adjustments.
837   const uint64_t Win64MaxSEHOffset = 128;
838   uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset);
839   // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode.
840   return SEHFrameOffset & -16;
841 }
842
843 // If we're forcing a stack realignment we can't rely on just the frame
844 // info, we need to know the ABI stack alignment as well in case we
845 // have a call out.  Otherwise just make sure we have some alignment - we'll
846 // go with the minimum SlotSize.
847 uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const {
848   const MachineFrameInfo &MFI = MF.getFrameInfo();
849   uint64_t MaxAlign = MFI.getMaxAlignment(); // Desired stack alignment.
850   unsigned StackAlign = getStackAlignment();
851   if (MF.getFunction().hasFnAttribute("stackrealign")) {
852     if (MFI.hasCalls())
853       MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
854     else if (MaxAlign < SlotSize)
855       MaxAlign = SlotSize;
856   }
857   return MaxAlign;
858 }
859
860 void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB,
861                                           MachineBasicBlock::iterator MBBI,
862                                           const DebugLoc &DL, unsigned Reg,
863                                           uint64_t MaxAlign) const {
864   uint64_t Val = -MaxAlign;
865   unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val);
866   MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg)
867                          .addReg(Reg)
868                          .addImm(Val)
869                          .setMIFlag(MachineInstr::FrameSetup);
870
871   // The EFLAGS implicit def is dead.
872   MI->getOperand(3).setIsDead();
873 }
874
875 /// emitPrologue - Push callee-saved registers onto the stack, which
876 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate
877 /// space for local variables. Also emit labels used by the exception handler to
878 /// generate the exception handling frames.
879
880 /*
881   Here's a gist of what gets emitted:
882
883   ; Establish frame pointer, if needed
884   [if needs FP]
885       push  %rbp
886       .cfi_def_cfa_offset 16
887       .cfi_offset %rbp, -16
888       .seh_pushreg %rpb
889       mov  %rsp, %rbp
890       .cfi_def_cfa_register %rbp
891
892   ; Spill general-purpose registers
893   [for all callee-saved GPRs]
894       pushq %<reg>
895       [if not needs FP]
896          .cfi_def_cfa_offset (offset from RETADDR)
897       .seh_pushreg %<reg>
898
899   ; If the required stack alignment > default stack alignment
900   ; rsp needs to be re-aligned.  This creates a "re-alignment gap"
901   ; of unknown size in the stack frame.
902   [if stack needs re-alignment]
903       and  $MASK, %rsp
904
905   ; Allocate space for locals
906   [if target is Windows and allocated space > 4096 bytes]
907       ; Windows needs special care for allocations larger
908       ; than one page.
909       mov $NNN, %rax
910       call ___chkstk_ms/___chkstk
911       sub  %rax, %rsp
912   [else]
913       sub  $NNN, %rsp
914
915   [if needs FP]
916       .seh_stackalloc (size of XMM spill slots)
917       .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots
918   [else]
919       .seh_stackalloc NNN
920
921   ; Spill XMMs
922   ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved,
923   ; they may get spilled on any platform, if the current function
924   ; calls @llvm.eh.unwind.init
925   [if needs FP]
926       [for all callee-saved XMM registers]
927           movaps  %<xmm reg>, -MMM(%rbp)
928       [for all callee-saved XMM registers]
929           .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset)
930               ; i.e. the offset relative to (%rbp - SEHFrameOffset)
931   [else]
932       [for all callee-saved XMM registers]
933           movaps  %<xmm reg>, KKK(%rsp)
934       [for all callee-saved XMM registers]
935           .seh_savexmm %<xmm reg>, KKK
936
937   .seh_endprologue
938
939   [if needs base pointer]
940       mov  %rsp, %rbx
941       [if needs to restore base pointer]
942           mov %rsp, -MMM(%rbp)
943
944   ; Emit CFI info
945   [if needs FP]
946       [for all callee-saved registers]
947           .cfi_offset %<reg>, (offset from %rbp)
948   [else]
949        .cfi_def_cfa_offset (offset from RETADDR)
950       [for all callee-saved registers]
951           .cfi_offset %<reg>, (offset from %rsp)
952
953   Notes:
954   - .seh directives are emitted only for Windows 64 ABI
955   - .cv_fpo directives are emitted on win32 when emitting CodeView
956   - .cfi directives are emitted for all other ABIs
957   - for 32-bit code, substitute %e?? registers for %r??
958 */
959
960 void X86FrameLowering::emitPrologue(MachineFunction &MF,
961                                     MachineBasicBlock &MBB) const {
962   assert(&STI == &MF.getSubtarget<X86Subtarget>() &&
963          "MF used frame lowering for wrong subtarget");
964   MachineBasicBlock::iterator MBBI = MBB.begin();
965   MachineFrameInfo &MFI = MF.getFrameInfo();
966   const Function &Fn = MF.getFunction();
967   MachineModuleInfo &MMI = MF.getMMI();
968   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
969   uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment.
970   uint64_t StackSize = MFI.getStackSize();    // Number of bytes to allocate.
971   bool IsFunclet = MBB.isEHFuncletEntry();
972   EHPersonality Personality = EHPersonality::Unknown;
973   if (Fn.hasPersonalityFn())
974     Personality = classifyEHPersonality(Fn.getPersonalityFn());
975   bool FnHasClrFunclet =
976       MF.hasEHFunclets() && Personality == EHPersonality::CoreCLR;
977   bool IsClrFunclet = IsFunclet && FnHasClrFunclet;
978   bool HasFP = hasFP(MF);
979   bool IsWin64CC = STI.isCallingConvWin64(Fn.getCallingConv());
980   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
981   bool NeedsWin64CFI = IsWin64Prologue && Fn.needsUnwindTableEntry();
982   // FIXME: Emit FPO data for EH funclets.
983   bool NeedsWinFPO =
984       !IsFunclet && STI.isTargetWin32() && MMI.getModule()->getCodeViewFlag();
985   bool NeedsWinCFI = NeedsWin64CFI || NeedsWinFPO;
986   bool NeedsDwarfCFI =
987       !IsWin64Prologue && (MMI.hasDebugInfo() || Fn.needsUnwindTableEntry());
988   unsigned FramePtr = TRI->getFrameRegister(MF);
989   const unsigned MachineFramePtr =
990       STI.isTarget64BitILP32()
991           ? getX86SubSuperRegister(FramePtr, 64) : FramePtr;
992   unsigned BasePtr = TRI->getBaseRegister();
993   bool HasWinCFI = false;
994
995   // Debug location must be unknown since the first debug location is used
996   // to determine the end of the prologue.
997   DebugLoc DL;
998
999   // Add RETADDR move area to callee saved frame size.
1000   int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1001   if (TailCallReturnAddrDelta && IsWin64Prologue)
1002     report_fatal_error("Can't handle guaranteed tail call under win64 yet");
1003
1004   if (TailCallReturnAddrDelta < 0)
1005     X86FI->setCalleeSavedFrameSize(
1006       X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta);
1007
1008   bool UseStackProbe = !STI.getTargetLowering()->getStackProbeSymbolName(MF).empty();
1009
1010   // The default stack probe size is 4096 if the function has no stackprobesize
1011   // attribute.
1012   unsigned StackProbeSize = 4096;
1013   if (Fn.hasFnAttribute("stack-probe-size"))
1014     Fn.getFnAttribute("stack-probe-size")
1015         .getValueAsString()
1016         .getAsInteger(0, StackProbeSize);
1017
1018   // Re-align the stack on 64-bit if the x86-interrupt calling convention is
1019   // used and an error code was pushed, since the x86-64 ABI requires a 16-byte
1020   // stack alignment.
1021   if (Fn.getCallingConv() == CallingConv::X86_INTR && Is64Bit &&
1022       Fn.arg_size() == 2) {
1023     StackSize += 8;
1024     MFI.setStackSize(StackSize);
1025     emitSPUpdate(MBB, MBBI, DL, -8, /*InEpilogue=*/false);
1026   }
1027
1028   // If this is x86-64 and the Red Zone is not disabled, if we are a leaf
1029   // function, and use up to 128 bytes of stack space, don't have a frame
1030   // pointer, calls, or dynamic alloca then we do not need to adjust the
1031   // stack pointer (we fit in the Red Zone). We also check that we don't
1032   // push and pop from the stack.
1033   if (Is64Bit && !Fn.hasFnAttribute(Attribute::NoRedZone) &&
1034       !TRI->needsStackRealignment(MF) &&
1035       !MFI.hasVarSizedObjects() &&             // No dynamic alloca.
1036       !MFI.adjustsStack() &&                   // No calls.
1037       !UseStackProbe &&                        // No stack probes.
1038       !IsWin64CC &&                            // Win64 has no Red Zone
1039       !MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop.
1040       !MF.shouldSplitStack()) {                // Regular stack
1041     uint64_t MinSize = X86FI->getCalleeSavedFrameSize();
1042     if (HasFP) MinSize += SlotSize;
1043     X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0);
1044     StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0);
1045     MFI.setStackSize(StackSize);
1046   }
1047
1048   // Insert stack pointer adjustment for later moving of return addr.  Only
1049   // applies to tail call optimized functions where the callee argument stack
1050   // size is bigger than the callers.
1051   if (TailCallReturnAddrDelta < 0) {
1052     BuildStackAdjustment(MBB, MBBI, DL, TailCallReturnAddrDelta,
1053                          /*InEpilogue=*/false)
1054         .setMIFlag(MachineInstr::FrameSetup);
1055   }
1056
1057   // Mapping for machine moves:
1058   //
1059   //   DST: VirtualFP AND
1060   //        SRC: VirtualFP              => DW_CFA_def_cfa_offset
1061   //        ELSE                        => DW_CFA_def_cfa
1062   //
1063   //   SRC: VirtualFP AND
1064   //        DST: Register               => DW_CFA_def_cfa_register
1065   //
1066   //   ELSE
1067   //        OFFSET < 0                  => DW_CFA_offset_extended_sf
1068   //        REG < 64                    => DW_CFA_offset + Reg
1069   //        ELSE                        => DW_CFA_offset_extended
1070
1071   uint64_t NumBytes = 0;
1072   int stackGrowth = -SlotSize;
1073
1074   // Find the funclet establisher parameter
1075   unsigned Establisher = X86::NoRegister;
1076   if (IsClrFunclet)
1077     Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX;
1078   else if (IsFunclet)
1079     Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX;
1080
1081   if (IsWin64Prologue && IsFunclet && !IsClrFunclet) {
1082     // Immediately spill establisher into the home slot.
1083     // The runtime cares about this.
1084     // MOV64mr %rdx, 16(%rsp)
1085     unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1086     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16)
1087         .addReg(Establisher)
1088         .setMIFlag(MachineInstr::FrameSetup);
1089     MBB.addLiveIn(Establisher);
1090   }
1091
1092   if (HasFP) {
1093     assert(MF.getRegInfo().isReserved(MachineFramePtr) && "FP reserved");
1094
1095     // Calculate required stack adjustment.
1096     uint64_t FrameSize = StackSize - SlotSize;
1097     // If required, include space for extra hidden slot for stashing base pointer.
1098     if (X86FI->getRestoreBasePointer())
1099       FrameSize += SlotSize;
1100
1101     NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize();
1102
1103     // Callee-saved registers are pushed on stack before the stack is realigned.
1104     if (TRI->needsStackRealignment(MF) && !IsWin64Prologue)
1105       NumBytes = alignTo(NumBytes, MaxAlign);
1106
1107     // Save EBP/RBP into the appropriate stack slot.
1108     BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
1109       .addReg(MachineFramePtr, RegState::Kill)
1110       .setMIFlag(MachineInstr::FrameSetup);
1111
1112     if (NeedsDwarfCFI) {
1113       // Mark the place where EBP/RBP was saved.
1114       // Define the current CFA rule to use the provided offset.
1115       assert(StackSize);
1116       BuildCFI(MBB, MBBI, DL,
1117                MCCFIInstruction::createDefCfaOffset(nullptr, 2 * stackGrowth));
1118
1119       // Change the rule for the FramePtr to be an "offset" rule.
1120       unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
1121       BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createOffset(
1122                                   nullptr, DwarfFramePtr, 2 * stackGrowth));
1123     }
1124
1125     if (NeedsWinCFI) {
1126       HasWinCFI = true;
1127       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
1128           .addImm(FramePtr)
1129           .setMIFlag(MachineInstr::FrameSetup);
1130     }
1131
1132     if (!IsWin64Prologue && !IsFunclet) {
1133       // Update EBP with the new base value.
1134       BuildMI(MBB, MBBI, DL,
1135               TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr),
1136               FramePtr)
1137           .addReg(StackPtr)
1138           .setMIFlag(MachineInstr::FrameSetup);
1139
1140       if (NeedsDwarfCFI) {
1141         // Mark effective beginning of when frame pointer becomes valid.
1142         // Define the current CFA to use the EBP/RBP register.
1143         unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
1144         BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaRegister(
1145                                     nullptr, DwarfFramePtr));
1146       }
1147
1148       if (NeedsWinFPO) {
1149         // .cv_fpo_setframe $FramePtr
1150         HasWinCFI = true;
1151         BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
1152             .addImm(FramePtr)
1153             .addImm(0)
1154             .setMIFlag(MachineInstr::FrameSetup);
1155       }
1156     }
1157   } else {
1158     assert(!IsFunclet && "funclets without FPs not yet implemented");
1159     NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
1160   }
1161
1162   // Update the offset adjustment, which is mainly used by codeview to translate
1163   // from ESP to VFRAME relative local variable offsets.
1164   if (!IsFunclet) {
1165     if (HasFP && TRI->needsStackRealignment(MF))
1166       MFI.setOffsetAdjustment(-NumBytes);
1167     else
1168       MFI.setOffsetAdjustment(-StackSize);
1169   }
1170
1171   // For EH funclets, only allocate enough space for outgoing calls. Save the
1172   // NumBytes value that we would've used for the parent frame.
1173   unsigned ParentFrameNumBytes = NumBytes;
1174   if (IsFunclet)
1175     NumBytes = getWinEHFuncletFrameSize(MF);
1176
1177   // Skip the callee-saved push instructions.
1178   bool PushedRegs = false;
1179   int StackOffset = 2 * stackGrowth;
1180
1181   while (MBBI != MBB.end() &&
1182          MBBI->getFlag(MachineInstr::FrameSetup) &&
1183          (MBBI->getOpcode() == X86::PUSH32r ||
1184           MBBI->getOpcode() == X86::PUSH64r)) {
1185     PushedRegs = true;
1186     unsigned Reg = MBBI->getOperand(0).getReg();
1187     ++MBBI;
1188
1189     if (!HasFP && NeedsDwarfCFI) {
1190       // Mark callee-saved push instruction.
1191       // Define the current CFA rule to use the provided offset.
1192       assert(StackSize);
1193       BuildCFI(MBB, MBBI, DL,
1194                MCCFIInstruction::createDefCfaOffset(nullptr, StackOffset));
1195       StackOffset += stackGrowth;
1196     }
1197
1198     if (NeedsWinCFI) {
1199       HasWinCFI = true;
1200       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
1201           .addImm(Reg)
1202           .setMIFlag(MachineInstr::FrameSetup);
1203     }
1204   }
1205
1206   // Realign stack after we pushed callee-saved registers (so that we'll be
1207   // able to calculate their offsets from the frame pointer).
1208   // Don't do this for Win64, it needs to realign the stack after the prologue.
1209   if (!IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) {
1210     assert(HasFP && "There should be a frame pointer if stack is realigned.");
1211     BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign);
1212
1213     if (NeedsWinCFI) {
1214       HasWinCFI = true;
1215       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlign))
1216           .addImm(MaxAlign)
1217           .setMIFlag(MachineInstr::FrameSetup);
1218     }
1219   }
1220
1221   // If there is an SUB32ri of ESP immediately before this instruction, merge
1222   // the two. This can be the case when tail call elimination is enabled and
1223   // the callee has more arguments then the caller.
1224   NumBytes -= mergeSPUpdates(MBB, MBBI, true);
1225
1226   // Adjust stack pointer: ESP -= numbytes.
1227
1228   // Windows and cygwin/mingw require a prologue helper routine when allocating
1229   // more than 4K bytes on the stack.  Windows uses __chkstk and cygwin/mingw
1230   // uses __alloca.  __alloca and the 32-bit version of __chkstk will probe the
1231   // stack and adjust the stack pointer in one go.  The 64-bit version of
1232   // __chkstk is only responsible for probing the stack.  The 64-bit prologue is
1233   // responsible for adjusting the stack pointer.  Touching the stack at 4K
1234   // increments is necessary to ensure that the guard pages used by the OS
1235   // virtual memory manager are allocated in correct sequence.
1236   uint64_t AlignedNumBytes = NumBytes;
1237   if (IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF))
1238     AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign);
1239   if (AlignedNumBytes >= StackProbeSize && UseStackProbe) {
1240     assert(!X86FI->getUsesRedZone() &&
1241            "The Red Zone is not accounted for in stack probes");
1242
1243     // Check whether EAX is livein for this block.
1244     bool isEAXAlive = isEAXLiveIn(MBB);
1245
1246     if (isEAXAlive) {
1247       if (Is64Bit) {
1248         // Save RAX
1249         BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
1250           .addReg(X86::RAX, RegState::Kill)
1251           .setMIFlag(MachineInstr::FrameSetup);
1252       } else {
1253         // Save EAX
1254         BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
1255           .addReg(X86::EAX, RegState::Kill)
1256           .setMIFlag(MachineInstr::FrameSetup);
1257       }
1258     }
1259
1260     if (Is64Bit) {
1261       // Handle the 64-bit Windows ABI case where we need to call __chkstk.
1262       // Function prologue is responsible for adjusting the stack pointer.
1263       int Alloc = isEAXAlive ? NumBytes - 8 : NumBytes;
1264       if (isUInt<32>(Alloc)) {
1265         BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1266             .addImm(Alloc)
1267             .setMIFlag(MachineInstr::FrameSetup);
1268       } else if (isInt<32>(Alloc)) {
1269         BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri32), X86::RAX)
1270             .addImm(Alloc)
1271             .setMIFlag(MachineInstr::FrameSetup);
1272       } else {
1273         BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX)
1274             .addImm(Alloc)
1275             .setMIFlag(MachineInstr::FrameSetup);
1276       }
1277     } else {
1278       // Allocate NumBytes-4 bytes on stack in case of isEAXAlive.
1279       // We'll also use 4 already allocated bytes for EAX.
1280       BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1281           .addImm(isEAXAlive ? NumBytes - 4 : NumBytes)
1282           .setMIFlag(MachineInstr::FrameSetup);
1283     }
1284
1285     // Call __chkstk, __chkstk_ms, or __alloca.
1286     emitStackProbe(MF, MBB, MBBI, DL, true);
1287
1288     if (isEAXAlive) {
1289       // Restore RAX/EAX
1290       MachineInstr *MI;
1291       if (Is64Bit)
1292         MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV64rm), X86::RAX),
1293                           StackPtr, false, NumBytes - 8);
1294       else
1295         MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX),
1296                           StackPtr, false, NumBytes - 4);
1297       MI->setFlag(MachineInstr::FrameSetup);
1298       MBB.insert(MBBI, MI);
1299     }
1300   } else if (NumBytes) {
1301     emitSPUpdate(MBB, MBBI, DL, -(int64_t)NumBytes, /*InEpilogue=*/false);
1302   }
1303
1304   if (NeedsWinCFI && NumBytes) {
1305     HasWinCFI = true;
1306     BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc))
1307         .addImm(NumBytes)
1308         .setMIFlag(MachineInstr::FrameSetup);
1309   }
1310
1311   int SEHFrameOffset = 0;
1312   unsigned SPOrEstablisher;
1313   if (IsFunclet) {
1314     if (IsClrFunclet) {
1315       // The establisher parameter passed to a CLR funclet is actually a pointer
1316       // to the (mostly empty) frame of its nearest enclosing funclet; we have
1317       // to find the root function establisher frame by loading the PSPSym from
1318       // the intermediate frame.
1319       unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
1320       MachinePointerInfo NoInfo;
1321       MBB.addLiveIn(Establisher);
1322       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher),
1323                    Establisher, false, PSPSlotOffset)
1324           .addMemOperand(MF.getMachineMemOperand(
1325               NoInfo, MachineMemOperand::MOLoad, SlotSize, SlotSize));
1326       ;
1327       // Save the root establisher back into the current funclet's (mostly
1328       // empty) frame, in case a sub-funclet or the GC needs it.
1329       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr,
1330                    false, PSPSlotOffset)
1331           .addReg(Establisher)
1332           .addMemOperand(
1333               MF.getMachineMemOperand(NoInfo, MachineMemOperand::MOStore |
1334                                                   MachineMemOperand::MOVolatile,
1335                                       SlotSize, SlotSize));
1336     }
1337     SPOrEstablisher = Establisher;
1338   } else {
1339     SPOrEstablisher = StackPtr;
1340   }
1341
1342   if (IsWin64Prologue && HasFP) {
1343     // Set RBP to a small fixed offset from RSP. In the funclet case, we base
1344     // this calculation on the incoming establisher, which holds the value of
1345     // RSP from the parent frame at the end of the prologue.
1346     SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes);
1347     if (SEHFrameOffset)
1348       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr),
1349                    SPOrEstablisher, false, SEHFrameOffset);
1350     else
1351       BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr)
1352           .addReg(SPOrEstablisher);
1353
1354     // If this is not a funclet, emit the CFI describing our frame pointer.
1355     if (NeedsWinCFI && !IsFunclet) {
1356       assert(!NeedsWinFPO && "this setframe incompatible with FPO data");
1357       HasWinCFI = true;
1358       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
1359           .addImm(FramePtr)
1360           .addImm(SEHFrameOffset)
1361           .setMIFlag(MachineInstr::FrameSetup);
1362       if (isAsynchronousEHPersonality(Personality))
1363         MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset;
1364     }
1365   } else if (IsFunclet && STI.is32Bit()) {
1366     // Reset EBP / ESI to something good for funclets.
1367     MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL);
1368     // If we're a catch funclet, we can be returned to via catchret. Save ESP
1369     // into the registration node so that the runtime will restore it for us.
1370     if (!MBB.isCleanupFuncletEntry()) {
1371       assert(Personality == EHPersonality::MSVC_CXX);
1372       unsigned FrameReg;
1373       int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex;
1374       int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg);
1375       // ESP is the first field, so no extra displacement is needed.
1376       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg,
1377                    false, EHRegOffset)
1378           .addReg(X86::ESP);
1379     }
1380   }
1381
1382   while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) {
1383     const MachineInstr &FrameInstr = *MBBI;
1384     ++MBBI;
1385
1386     if (NeedsWinCFI) {
1387       int FI;
1388       if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) {
1389         if (X86::FR64RegClass.contains(Reg)) {
1390           unsigned IgnoredFrameReg;
1391           int Offset = getFrameIndexReference(MF, FI, IgnoredFrameReg);
1392           Offset += SEHFrameOffset;
1393
1394           HasWinCFI = true;
1395           assert(!NeedsWinFPO && "SEH_SaveXMM incompatible with FPO data");
1396           BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM))
1397               .addImm(Reg)
1398               .addImm(Offset)
1399               .setMIFlag(MachineInstr::FrameSetup);
1400         }
1401       }
1402     }
1403   }
1404
1405   if (NeedsWinCFI && HasWinCFI)
1406     BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue))
1407         .setMIFlag(MachineInstr::FrameSetup);
1408
1409   if (FnHasClrFunclet && !IsFunclet) {
1410     // Save the so-called Initial-SP (i.e. the value of the stack pointer
1411     // immediately after the prolog)  into the PSPSlot so that funclets
1412     // and the GC can recover it.
1413     unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
1414     auto PSPInfo = MachinePointerInfo::getFixedStack(
1415         MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx);
1416     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false,
1417                  PSPSlotOffset)
1418         .addReg(StackPtr)
1419         .addMemOperand(MF.getMachineMemOperand(
1420             PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
1421             SlotSize, SlotSize));
1422   }
1423
1424   // Realign stack after we spilled callee-saved registers (so that we'll be
1425   // able to calculate their offsets from the frame pointer).
1426   // Win64 requires aligning the stack after the prologue.
1427   if (IsWin64Prologue && TRI->needsStackRealignment(MF)) {
1428     assert(HasFP && "There should be a frame pointer if stack is realigned.");
1429     BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign);
1430   }
1431
1432   // We already dealt with stack realignment and funclets above.
1433   if (IsFunclet && STI.is32Bit())
1434     return;
1435
1436   // If we need a base pointer, set it up here. It's whatever the value
1437   // of the stack pointer is at this point. Any variable size objects
1438   // will be allocated after this, so we can still use the base pointer
1439   // to reference locals.
1440   if (TRI->hasBasePointer(MF)) {
1441     // Update the base pointer with the current stack pointer.
1442     unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr;
1443     BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr)
1444       .addReg(SPOrEstablisher)
1445       .setMIFlag(MachineInstr::FrameSetup);
1446     if (X86FI->getRestoreBasePointer()) {
1447       // Stash value of base pointer.  Saving RSP instead of EBP shortens
1448       // dependence chain. Used by SjLj EH.
1449       unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1450       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)),
1451                    FramePtr, true, X86FI->getRestoreBasePointerOffset())
1452         .addReg(SPOrEstablisher)
1453         .setMIFlag(MachineInstr::FrameSetup);
1454     }
1455
1456     if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) {
1457       // Stash the value of the frame pointer relative to the base pointer for
1458       // Win32 EH. This supports Win32 EH, which does the inverse of the above:
1459       // it recovers the frame pointer from the base pointer rather than the
1460       // other way around.
1461       unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1462       unsigned UsedReg;
1463       int Offset =
1464           getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg);
1465       assert(UsedReg == BasePtr);
1466       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset)
1467           .addReg(FramePtr)
1468           .setMIFlag(MachineInstr::FrameSetup);
1469     }
1470   }
1471
1472   if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) {
1473     // Mark end of stack pointer adjustment.
1474     if (!HasFP && NumBytes) {
1475       // Define the current CFA rule to use the provided offset.
1476       assert(StackSize);
1477       BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaOffset(
1478                                   nullptr, -StackSize + stackGrowth));
1479     }
1480
1481     // Emit DWARF info specifying the offsets of the callee-saved registers.
1482     emitCalleeSavedFrameMoves(MBB, MBBI, DL);
1483   }
1484
1485   // X86 Interrupt handling function cannot assume anything about the direction
1486   // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction
1487   // in each prologue of interrupt handler function.
1488   //
1489   // FIXME: Create "cld" instruction only in these cases:
1490   // 1. The interrupt handling function uses any of the "rep" instructions.
1491   // 2. Interrupt handling function calls another function.
1492   //
1493   if (Fn.getCallingConv() == CallingConv::X86_INTR)
1494     BuildMI(MBB, MBBI, DL, TII.get(X86::CLD))
1495         .setMIFlag(MachineInstr::FrameSetup);
1496
1497   // At this point we know if the function has WinCFI or not.
1498   MF.setHasWinCFI(HasWinCFI);
1499 }
1500
1501 bool X86FrameLowering::canUseLEAForSPInEpilogue(
1502     const MachineFunction &MF) const {
1503   // We can't use LEA instructions for adjusting the stack pointer if we don't
1504   // have a frame pointer in the Win64 ABI.  Only ADD instructions may be used
1505   // to deallocate the stack.
1506   // This means that we can use LEA for SP in two situations:
1507   // 1. We *aren't* using the Win64 ABI which means we are free to use LEA.
1508   // 2. We *have* a frame pointer which means we are permitted to use LEA.
1509   return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF);
1510 }
1511
1512 static bool isFuncletReturnInstr(MachineInstr &MI) {
1513   switch (MI.getOpcode()) {
1514   case X86::CATCHRET:
1515   case X86::CLEANUPRET:
1516     return true;
1517   default:
1518     return false;
1519   }
1520   llvm_unreachable("impossible");
1521 }
1522
1523 // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the
1524 // stack. It holds a pointer to the bottom of the root function frame.  The
1525 // establisher frame pointer passed to a nested funclet may point to the
1526 // (mostly empty) frame of its parent funclet, but it will need to find
1527 // the frame of the root function to access locals.  To facilitate this,
1528 // every funclet copies the pointer to the bottom of the root function
1529 // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the
1530 // same offset for the PSPSym in the root function frame that's used in the
1531 // funclets' frames allows each funclet to dynamically accept any ancestor
1532 // frame as its establisher argument (the runtime doesn't guarantee the
1533 // immediate parent for some reason lost to history), and also allows the GC,
1534 // which uses the PSPSym for some bookkeeping, to find it in any funclet's
1535 // frame with only a single offset reported for the entire method.
1536 unsigned
1537 X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const {
1538   const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo();
1539   unsigned SPReg;
1540   int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg,
1541                                               /*IgnoreSPUpdates*/ true);
1542   assert(Offset >= 0 && SPReg == TRI->getStackRegister());
1543   return static_cast<unsigned>(Offset);
1544 }
1545
1546 unsigned
1547 X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const {
1548   // This is the size of the pushed CSRs.
1549   unsigned CSSize =
1550       MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize();
1551   // This is the amount of stack a funclet needs to allocate.
1552   unsigned UsedSize;
1553   EHPersonality Personality =
1554       classifyEHPersonality(MF.getFunction().getPersonalityFn());
1555   if (Personality == EHPersonality::CoreCLR) {
1556     // CLR funclets need to hold enough space to include the PSPSym, at the
1557     // same offset from the stack pointer (immediately after the prolog) as it
1558     // resides at in the main function.
1559     UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize;
1560   } else {
1561     // Other funclets just need enough stack for outgoing call arguments.
1562     UsedSize = MF.getFrameInfo().getMaxCallFrameSize();
1563   }
1564   // RBP is not included in the callee saved register block. After pushing RBP,
1565   // everything is 16 byte aligned. Everything we allocate before an outgoing
1566   // call must also be 16 byte aligned.
1567   unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlignment());
1568   // Subtract out the size of the callee saved registers. This is how much stack
1569   // each funclet will allocate.
1570   return FrameSizeMinusRBP - CSSize;
1571 }
1572
1573 static bool isTailCallOpcode(unsigned Opc) {
1574     return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi ||
1575         Opc == X86::TCRETURNmi ||
1576         Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNdi64 ||
1577         Opc == X86::TCRETURNmi64;
1578 }
1579
1580 void X86FrameLowering::emitEpilogue(MachineFunction &MF,
1581                                     MachineBasicBlock &MBB) const {
1582   const MachineFrameInfo &MFI = MF.getFrameInfo();
1583   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1584   MachineBasicBlock::iterator Terminator = MBB.getFirstTerminator();
1585   MachineBasicBlock::iterator MBBI = Terminator;
1586   DebugLoc DL;
1587   if (MBBI != MBB.end())
1588     DL = MBBI->getDebugLoc();
1589   // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
1590   const bool Is64BitILP32 = STI.isTarget64BitILP32();
1591   unsigned FramePtr = TRI->getFrameRegister(MF);
1592   unsigned MachineFramePtr =
1593       Is64BitILP32 ? getX86SubSuperRegister(FramePtr, 64) : FramePtr;
1594
1595   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
1596   bool NeedsWin64CFI =
1597       IsWin64Prologue && MF.getFunction().needsUnwindTableEntry();
1598   bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(*MBBI);
1599
1600   // Get the number of bytes to allocate from the FrameInfo.
1601   uint64_t StackSize = MFI.getStackSize();
1602   uint64_t MaxAlign = calculateMaxStackAlign(MF);
1603   unsigned CSSize = X86FI->getCalleeSavedFrameSize();
1604   bool HasFP = hasFP(MF);
1605   uint64_t NumBytes = 0;
1606
1607   bool NeedsDwarfCFI =
1608       (!MF.getTarget().getTargetTriple().isOSDarwin() &&
1609        !MF.getTarget().getTargetTriple().isOSWindows()) &&
1610       (MF.getMMI().hasDebugInfo() || MF.getFunction().needsUnwindTableEntry());
1611
1612   if (IsFunclet) {
1613     assert(HasFP && "EH funclets without FP not yet implemented");
1614     NumBytes = getWinEHFuncletFrameSize(MF);
1615   } else if (HasFP) {
1616     // Calculate required stack adjustment.
1617     uint64_t FrameSize = StackSize - SlotSize;
1618     NumBytes = FrameSize - CSSize;
1619
1620     // Callee-saved registers were pushed on stack before the stack was
1621     // realigned.
1622     if (TRI->needsStackRealignment(MF) && !IsWin64Prologue)
1623       NumBytes = alignTo(FrameSize, MaxAlign);
1624   } else {
1625     NumBytes = StackSize - CSSize;
1626   }
1627   uint64_t SEHStackAllocAmt = NumBytes;
1628
1629   if (HasFP) {
1630     // Pop EBP.
1631     BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r),
1632             MachineFramePtr)
1633         .setMIFlag(MachineInstr::FrameDestroy);
1634     if (NeedsDwarfCFI) {
1635       unsigned DwarfStackPtr =
1636           TRI->getDwarfRegNum(Is64Bit ? X86::RSP : X86::ESP, true);
1637       BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfa(
1638                                   nullptr, DwarfStackPtr, -SlotSize));
1639       --MBBI;
1640     }
1641   }
1642
1643   MachineBasicBlock::iterator FirstCSPop = MBBI;
1644   // Skip the callee-saved pop instructions.
1645   while (MBBI != MBB.begin()) {
1646     MachineBasicBlock::iterator PI = std::prev(MBBI);
1647     unsigned Opc = PI->getOpcode();
1648
1649     if (Opc != X86::DBG_VALUE && !PI->isTerminator()) {
1650       if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) &&
1651           (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy)))
1652         break;
1653       FirstCSPop = PI;
1654     }
1655
1656     --MBBI;
1657   }
1658   MBBI = FirstCSPop;
1659
1660   if (IsFunclet && Terminator->getOpcode() == X86::CATCHRET)
1661     emitCatchRetReturnValue(MBB, FirstCSPop, &*Terminator);
1662
1663   if (MBBI != MBB.end())
1664     DL = MBBI->getDebugLoc();
1665
1666   // If there is an ADD32ri or SUB32ri of ESP immediately before this
1667   // instruction, merge the two instructions.
1668   if (NumBytes || MFI.hasVarSizedObjects())
1669     NumBytes += mergeSPUpdates(MBB, MBBI, true);
1670
1671   // If dynamic alloca is used, then reset esp to point to the last callee-saved
1672   // slot before popping them off! Same applies for the case, when stack was
1673   // realigned. Don't do this if this was a funclet epilogue, since the funclets
1674   // will not do realignment or dynamic stack allocation.
1675   if ((TRI->needsStackRealignment(MF) || MFI.hasVarSizedObjects()) &&
1676       !IsFunclet) {
1677     if (TRI->needsStackRealignment(MF))
1678       MBBI = FirstCSPop;
1679     unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt);
1680     uint64_t LEAAmount =
1681         IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize;
1682
1683     // There are only two legal forms of epilogue:
1684     // - add SEHAllocationSize, %rsp
1685     // - lea SEHAllocationSize(%FramePtr), %rsp
1686     //
1687     // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence.
1688     // However, we may use this sequence if we have a frame pointer because the
1689     // effects of the prologue can safely be undone.
1690     if (LEAAmount != 0) {
1691       unsigned Opc = getLEArOpcode(Uses64BitFramePtr);
1692       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr),
1693                    FramePtr, false, LEAAmount);
1694       --MBBI;
1695     } else {
1696       unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr);
1697       BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
1698         .addReg(FramePtr);
1699       --MBBI;
1700     }
1701   } else if (NumBytes) {
1702     // Adjust stack pointer back: ESP += numbytes.
1703     emitSPUpdate(MBB, MBBI, DL, NumBytes, /*InEpilogue=*/true);
1704     if (!hasFP(MF) && NeedsDwarfCFI) {
1705       // Define the current CFA rule to use the provided offset.
1706       BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaOffset(
1707                                   nullptr, -CSSize - SlotSize));
1708     }
1709     --MBBI;
1710   }
1711
1712   // Windows unwinder will not invoke function's exception handler if IP is
1713   // either in prologue or in epilogue.  This behavior causes a problem when a
1714   // call immediately precedes an epilogue, because the return address points
1715   // into the epilogue.  To cope with that, we insert an epilogue marker here,
1716   // then replace it with a 'nop' if it ends up immediately after a CALL in the
1717   // final emitted code.
1718   if (NeedsWin64CFI && MF.hasWinCFI())
1719     BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue));
1720
1721   if (!hasFP(MF) && NeedsDwarfCFI) {
1722     MBBI = FirstCSPop;
1723     int64_t Offset = -CSSize - SlotSize;
1724     // Mark callee-saved pop instruction.
1725     // Define the current CFA rule to use the provided offset.
1726     while (MBBI != MBB.end()) {
1727       MachineBasicBlock::iterator PI = MBBI;
1728       unsigned Opc = PI->getOpcode();
1729       ++MBBI;
1730       if (Opc == X86::POP32r || Opc == X86::POP64r) {
1731         Offset += SlotSize;
1732         BuildCFI(MBB, MBBI, DL,
1733                  MCCFIInstruction::createDefCfaOffset(nullptr, Offset));
1734       }
1735     }
1736   }
1737
1738   if (Terminator == MBB.end() || !isTailCallOpcode(Terminator->getOpcode())) {
1739     // Add the return addr area delta back since we are not tail calling.
1740     int Offset = -1 * X86FI->getTCReturnAddrDelta();
1741     assert(Offset >= 0 && "TCDelta should never be positive");
1742     if (Offset) {
1743       // Check for possible merge with preceding ADD instruction.
1744       Offset += mergeSPUpdates(MBB, Terminator, true);
1745       emitSPUpdate(MBB, Terminator, DL, Offset, /*InEpilogue=*/true);
1746     }
1747   }
1748 }
1749
1750 int X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
1751                                              unsigned &FrameReg) const {
1752   const MachineFrameInfo &MFI = MF.getFrameInfo();
1753
1754   bool IsFixed = MFI.isFixedObjectIndex(FI);
1755   // We can't calculate offset from frame pointer if the stack is realigned,
1756   // so enforce usage of stack/base pointer.  The base pointer is used when we
1757   // have dynamic allocas in addition to dynamic realignment.
1758   if (TRI->hasBasePointer(MF))
1759     FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getBaseRegister();
1760   else if (TRI->needsStackRealignment(MF))
1761     FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getStackRegister();
1762   else
1763     FrameReg = TRI->getFrameRegister(MF);
1764
1765   // Offset will hold the offset from the stack pointer at function entry to the
1766   // object.
1767   // We need to factor in additional offsets applied during the prologue to the
1768   // frame, base, and stack pointer depending on which is used.
1769   int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea();
1770   const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1771   unsigned CSSize = X86FI->getCalleeSavedFrameSize();
1772   uint64_t StackSize = MFI.getStackSize();
1773   bool HasFP = hasFP(MF);
1774   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
1775   int64_t FPDelta = 0;
1776
1777   if (IsWin64Prologue) {
1778     assert(!MFI.hasCalls() || (StackSize % 16) == 8);
1779
1780     // Calculate required stack adjustment.
1781     uint64_t FrameSize = StackSize - SlotSize;
1782     // If required, include space for extra hidden slot for stashing base pointer.
1783     if (X86FI->getRestoreBasePointer())
1784       FrameSize += SlotSize;
1785     uint64_t NumBytes = FrameSize - CSSize;
1786
1787     uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes);
1788     if (FI && FI == X86FI->getFAIndex())
1789       return -SEHFrameOffset;
1790
1791     // FPDelta is the offset from the "traditional" FP location of the old base
1792     // pointer followed by return address and the location required by the
1793     // restricted Win64 prologue.
1794     // Add FPDelta to all offsets below that go through the frame pointer.
1795     FPDelta = FrameSize - SEHFrameOffset;
1796     assert((!MFI.hasCalls() || (FPDelta % 16) == 0) &&
1797            "FPDelta isn't aligned per the Win64 ABI!");
1798   }
1799
1800
1801   if (TRI->hasBasePointer(MF)) {
1802     assert(HasFP && "VLAs and dynamic stack realign, but no FP?!");
1803     if (FI < 0) {
1804       // Skip the saved EBP.
1805       return Offset + SlotSize + FPDelta;
1806     } else {
1807       assert((-(Offset + StackSize)) % MFI.getObjectAlignment(FI) == 0);
1808       return Offset + StackSize;
1809     }
1810   } else if (TRI->needsStackRealignment(MF)) {
1811     if (FI < 0) {
1812       // Skip the saved EBP.
1813       return Offset + SlotSize + FPDelta;
1814     } else {
1815       assert((-(Offset + StackSize)) % MFI.getObjectAlignment(FI) == 0);
1816       return Offset + StackSize;
1817     }
1818     // FIXME: Support tail calls
1819   } else {
1820     if (!HasFP)
1821       return Offset + StackSize;
1822
1823     // Skip the saved EBP.
1824     Offset += SlotSize;
1825
1826     // Skip the RETADDR move area
1827     int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1828     if (TailCallReturnAddrDelta < 0)
1829       Offset -= TailCallReturnAddrDelta;
1830   }
1831
1832   return Offset + FPDelta;
1833 }
1834
1835 int X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction &MF,
1836                                                int FI, unsigned &FrameReg,
1837                                                int Adjustment) const {
1838   const MachineFrameInfo &MFI = MF.getFrameInfo();
1839   FrameReg = TRI->getStackRegister();
1840   return MFI.getObjectOffset(FI) - getOffsetOfLocalArea() + Adjustment;
1841 }
1842
1843 int
1844 X86FrameLowering::getFrameIndexReferencePreferSP(const MachineFunction &MF,
1845                                                  int FI, unsigned &FrameReg,
1846                                                  bool IgnoreSPUpdates) const {
1847
1848   const MachineFrameInfo &MFI = MF.getFrameInfo();
1849   // Does not include any dynamic realign.
1850   const uint64_t StackSize = MFI.getStackSize();
1851   // LLVM arranges the stack as follows:
1852   //   ...
1853   //   ARG2
1854   //   ARG1
1855   //   RETADDR
1856   //   PUSH RBP   <-- RBP points here
1857   //   PUSH CSRs
1858   //   ~~~~~~~    <-- possible stack realignment (non-win64)
1859   //   ...
1860   //   STACK OBJECTS
1861   //   ...        <-- RSP after prologue points here
1862   //   ~~~~~~~    <-- possible stack realignment (win64)
1863   //
1864   // if (hasVarSizedObjects()):
1865   //   ...        <-- "base pointer" (ESI/RBX) points here
1866   //   DYNAMIC ALLOCAS
1867   //   ...        <-- RSP points here
1868   //
1869   // Case 1: In the simple case of no stack realignment and no dynamic
1870   // allocas, both "fixed" stack objects (arguments and CSRs) are addressable
1871   // with fixed offsets from RSP.
1872   //
1873   // Case 2: In the case of stack realignment with no dynamic allocas, fixed
1874   // stack objects are addressed with RBP and regular stack objects with RSP.
1875   //
1876   // Case 3: In the case of dynamic allocas and stack realignment, RSP is used
1877   // to address stack arguments for outgoing calls and nothing else. The "base
1878   // pointer" points to local variables, and RBP points to fixed objects.
1879   //
1880   // In cases 2 and 3, we can only answer for non-fixed stack objects, and the
1881   // answer we give is relative to the SP after the prologue, and not the
1882   // SP in the middle of the function.
1883
1884   if (MFI.isFixedObjectIndex(FI) && TRI->needsStackRealignment(MF) &&
1885       !STI.isTargetWin64())
1886     return getFrameIndexReference(MF, FI, FrameReg);
1887
1888   // If !hasReservedCallFrame the function might have SP adjustement in the
1889   // body.  So, even though the offset is statically known, it depends on where
1890   // we are in the function.
1891   const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
1892   if (!IgnoreSPUpdates && !TFI->hasReservedCallFrame(MF))
1893     return getFrameIndexReference(MF, FI, FrameReg);
1894
1895   // We don't handle tail calls, and shouldn't be seeing them either.
1896   assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 &&
1897          "we don't handle this case!");
1898
1899   // This is how the math works out:
1900   //
1901   //  %rsp grows (i.e. gets lower) left to right. Each box below is
1902   //  one word (eight bytes).  Obj0 is the stack slot we're trying to
1903   //  get to.
1904   //
1905   //    ----------------------------------
1906   //    | BP | Obj0 | Obj1 | ... | ObjN |
1907   //    ----------------------------------
1908   //    ^    ^      ^                   ^
1909   //    A    B      C                   E
1910   //
1911   // A is the incoming stack pointer.
1912   // (B - A) is the local area offset (-8 for x86-64) [1]
1913   // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2]
1914   //
1915   // |(E - B)| is the StackSize (absolute value, positive).  For a
1916   // stack that grown down, this works out to be (B - E). [3]
1917   //
1918   // E is also the value of %rsp after stack has been set up, and we
1919   // want (C - E) -- the value we can add to %rsp to get to Obj0.  Now
1920   // (C - E) == (C - A) - (B - A) + (B - E)
1921   //            { Using [1], [2] and [3] above }
1922   //         == getObjectOffset - LocalAreaOffset + StackSize
1923
1924   return getFrameIndexReferenceSP(MF, FI, FrameReg, StackSize);
1925 }
1926
1927 bool X86FrameLowering::assignCalleeSavedSpillSlots(
1928     MachineFunction &MF, const TargetRegisterInfo *TRI,
1929     std::vector<CalleeSavedInfo> &CSI) const {
1930   MachineFrameInfo &MFI = MF.getFrameInfo();
1931   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1932
1933   unsigned CalleeSavedFrameSize = 0;
1934   int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta();
1935
1936   int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1937
1938   if (TailCallReturnAddrDelta < 0) {
1939     // create RETURNADDR area
1940     //   arg
1941     //   arg
1942     //   RETADDR
1943     //   { ...
1944     //     RETADDR area
1945     //     ...
1946     //   }
1947     //   [EBP]
1948     MFI.CreateFixedObject(-TailCallReturnAddrDelta,
1949                            TailCallReturnAddrDelta - SlotSize, true);
1950   }
1951
1952   // Spill the BasePtr if it's used.
1953   if (this->TRI->hasBasePointer(MF)) {
1954     // Allocate a spill slot for EBP if we have a base pointer and EH funclets.
1955     if (MF.hasEHFunclets()) {
1956       int FI = MFI.CreateSpillStackObject(SlotSize, SlotSize);
1957       X86FI->setHasSEHFramePtrSave(true);
1958       X86FI->setSEHFramePtrSaveIndex(FI);
1959     }
1960   }
1961
1962   if (hasFP(MF)) {
1963     // emitPrologue always spills frame register the first thing.
1964     SpillSlotOffset -= SlotSize;
1965     MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
1966
1967     // Since emitPrologue and emitEpilogue will handle spilling and restoring of
1968     // the frame register, we can delete it from CSI list and not have to worry
1969     // about avoiding it later.
1970     unsigned FPReg = TRI->getFrameRegister(MF);
1971     for (unsigned i = 0; i < CSI.size(); ++i) {
1972       if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) {
1973         CSI.erase(CSI.begin() + i);
1974         break;
1975       }
1976     }
1977   }
1978
1979   // Assign slots for GPRs. It increases frame size.
1980   for (unsigned i = CSI.size(); i != 0; --i) {
1981     unsigned Reg = CSI[i - 1].getReg();
1982
1983     if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
1984       continue;
1985
1986     SpillSlotOffset -= SlotSize;
1987     CalleeSavedFrameSize += SlotSize;
1988
1989     int SlotIndex = MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
1990     CSI[i - 1].setFrameIdx(SlotIndex);
1991   }
1992
1993   X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize);
1994   MFI.setCVBytesOfCalleeSavedRegisters(CalleeSavedFrameSize);
1995
1996   // Assign slots for XMMs.
1997   for (unsigned i = CSI.size(); i != 0; --i) {
1998     unsigned Reg = CSI[i - 1].getReg();
1999     if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
2000       continue;
2001
2002     // If this is k-register make sure we lookup via the largest legal type.
2003     MVT VT = MVT::Other;
2004     if (X86::VK16RegClass.contains(Reg))
2005       VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
2006
2007     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2008     unsigned Size = TRI->getSpillSize(*RC);
2009     unsigned Align = TRI->getSpillAlignment(*RC);
2010     // ensure alignment
2011     SpillSlotOffset -= std::abs(SpillSlotOffset) % Align;
2012     // spill into slot
2013     SpillSlotOffset -= Size;
2014     int SlotIndex = MFI.CreateFixedSpillStackObject(Size, SpillSlotOffset);
2015     CSI[i - 1].setFrameIdx(SlotIndex);
2016     MFI.ensureMaxAlignment(Align);
2017   }
2018
2019   return true;
2020 }
2021
2022 bool X86FrameLowering::spillCalleeSavedRegisters(
2023     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2024     const std::vector<CalleeSavedInfo> &CSI,
2025     const TargetRegisterInfo *TRI) const {
2026   DebugLoc DL = MBB.findDebugLoc(MI);
2027
2028   // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI
2029   // for us, and there are no XMM CSRs on Win32.
2030   if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows())
2031     return true;
2032
2033   // Push GPRs. It increases frame size.
2034   const MachineFunction &MF = *MBB.getParent();
2035   unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r;
2036   for (unsigned i = CSI.size(); i != 0; --i) {
2037     unsigned Reg = CSI[i - 1].getReg();
2038
2039     if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
2040       continue;
2041
2042     const MachineRegisterInfo &MRI = MF.getRegInfo();
2043     bool isLiveIn = MRI.isLiveIn(Reg);
2044     if (!isLiveIn)
2045       MBB.addLiveIn(Reg);
2046
2047     // Decide whether we can add a kill flag to the use.
2048     bool CanKill = !isLiveIn;
2049     // Check if any subregister is live-in
2050     if (CanKill) {
2051       for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) {
2052         if (MRI.isLiveIn(*AReg)) {
2053           CanKill = false;
2054           break;
2055         }
2056       }
2057     }
2058
2059     // Do not set a kill flag on values that are also marked as live-in. This
2060     // happens with the @llvm-returnaddress intrinsic and with arguments
2061     // passed in callee saved registers.
2062     // Omitting the kill flags is conservatively correct even if the live-in
2063     // is not used after all.
2064     BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, getKillRegState(CanKill))
2065       .setMIFlag(MachineInstr::FrameSetup);
2066   }
2067
2068   // Make XMM regs spilled. X86 does not have ability of push/pop XMM.
2069   // It can be done by spilling XMMs to stack frame.
2070   for (unsigned i = CSI.size(); i != 0; --i) {
2071     unsigned Reg = CSI[i-1].getReg();
2072     if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
2073       continue;
2074
2075     // If this is k-register make sure we lookup via the largest legal type.
2076     MVT VT = MVT::Other;
2077     if (X86::VK16RegClass.contains(Reg))
2078       VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
2079
2080     // Add the callee-saved register as live-in. It's killed at the spill.
2081     MBB.addLiveIn(Reg);
2082     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2083
2084     TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i - 1].getFrameIdx(), RC,
2085                             TRI);
2086     --MI;
2087     MI->setFlag(MachineInstr::FrameSetup);
2088     ++MI;
2089   }
2090
2091   return true;
2092 }
2093
2094 void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock &MBB,
2095                                                MachineBasicBlock::iterator MBBI,
2096                                                MachineInstr *CatchRet) const {
2097   // SEH shouldn't use catchret.
2098   assert(!isAsynchronousEHPersonality(classifyEHPersonality(
2099              MBB.getParent()->getFunction().getPersonalityFn())) &&
2100          "SEH should not use CATCHRET");
2101   DebugLoc DL = CatchRet->getDebugLoc();
2102   MachineBasicBlock *CatchRetTarget = CatchRet->getOperand(0).getMBB();
2103
2104   // Fill EAX/RAX with the address of the target block.
2105   if (STI.is64Bit()) {
2106     // LEA64r CatchRetTarget(%rip), %rax
2107     BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), X86::RAX)
2108         .addReg(X86::RIP)
2109         .addImm(0)
2110         .addReg(0)
2111         .addMBB(CatchRetTarget)
2112         .addReg(0);
2113   } else {
2114     // MOV32ri $CatchRetTarget, %eax
2115     BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
2116         .addMBB(CatchRetTarget);
2117   }
2118
2119   // Record that we've taken the address of CatchRetTarget and no longer just
2120   // reference it in a terminator.
2121   CatchRetTarget->setHasAddressTaken();
2122 }
2123
2124 bool X86FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
2125                                                MachineBasicBlock::iterator MI,
2126                                           std::vector<CalleeSavedInfo> &CSI,
2127                                           const TargetRegisterInfo *TRI) const {
2128   if (CSI.empty())
2129     return false;
2130
2131   if (MI != MBB.end() && isFuncletReturnInstr(*MI) && STI.isOSWindows()) {
2132     // Don't restore CSRs in 32-bit EH funclets. Matches
2133     // spillCalleeSavedRegisters.
2134     if (STI.is32Bit())
2135       return true;
2136     // Don't restore CSRs before an SEH catchret. SEH except blocks do not form
2137     // funclets. emitEpilogue transforms these to normal jumps.
2138     if (MI->getOpcode() == X86::CATCHRET) {
2139       const Function &F = MBB.getParent()->getFunction();
2140       bool IsSEH = isAsynchronousEHPersonality(
2141           classifyEHPersonality(F.getPersonalityFn()));
2142       if (IsSEH)
2143         return true;
2144     }
2145   }
2146
2147   DebugLoc DL = MBB.findDebugLoc(MI);
2148
2149   // Reload XMMs from stack frame.
2150   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2151     unsigned Reg = CSI[i].getReg();
2152     if (X86::GR64RegClass.contains(Reg) ||
2153         X86::GR32RegClass.contains(Reg))
2154       continue;
2155
2156     // If this is k-register make sure we lookup via the largest legal type.
2157     MVT VT = MVT::Other;
2158     if (X86::VK16RegClass.contains(Reg))
2159       VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
2160
2161     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2162     TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI);
2163   }
2164
2165   // POP GPRs.
2166   unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r;
2167   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2168     unsigned Reg = CSI[i].getReg();
2169     if (!X86::GR64RegClass.contains(Reg) &&
2170         !X86::GR32RegClass.contains(Reg))
2171       continue;
2172
2173     BuildMI(MBB, MI, DL, TII.get(Opc), Reg)
2174         .setMIFlag(MachineInstr::FrameDestroy);
2175   }
2176   return true;
2177 }
2178
2179 void X86FrameLowering::determineCalleeSaves(MachineFunction &MF,
2180                                             BitVector &SavedRegs,
2181                                             RegScavenger *RS) const {
2182   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
2183
2184   // Spill the BasePtr if it's used.
2185   if (TRI->hasBasePointer(MF)){
2186     unsigned BasePtr = TRI->getBaseRegister();
2187     if (STI.isTarget64BitILP32())
2188       BasePtr = getX86SubSuperRegister(BasePtr, 64);
2189     SavedRegs.set(BasePtr);
2190   }
2191 }
2192
2193 static bool
2194 HasNestArgument(const MachineFunction *MF) {
2195   const Function &F = MF->getFunction();
2196   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
2197        I != E; I++) {
2198     if (I->hasNestAttr())
2199       return true;
2200   }
2201   return false;
2202 }
2203
2204 /// GetScratchRegister - Get a temp register for performing work in the
2205 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform
2206 /// and the properties of the function either one or two registers will be
2207 /// needed. Set primary to true for the first register, false for the second.
2208 static unsigned
2209 GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) {
2210   CallingConv::ID CallingConvention = MF.getFunction().getCallingConv();
2211
2212   // Erlang stuff.
2213   if (CallingConvention == CallingConv::HiPE) {
2214     if (Is64Bit)
2215       return Primary ? X86::R14 : X86::R13;
2216     else
2217       return Primary ? X86::EBX : X86::EDI;
2218   }
2219
2220   if (Is64Bit) {
2221     if (IsLP64)
2222       return Primary ? X86::R11 : X86::R12;
2223     else
2224       return Primary ? X86::R11D : X86::R12D;
2225   }
2226
2227   bool IsNested = HasNestArgument(&MF);
2228
2229   if (CallingConvention == CallingConv::X86_FastCall ||
2230       CallingConvention == CallingConv::Fast) {
2231     if (IsNested)
2232       report_fatal_error("Segmented stacks does not support fastcall with "
2233                          "nested function.");
2234     return Primary ? X86::EAX : X86::ECX;
2235   }
2236   if (IsNested)
2237     return Primary ? X86::EDX : X86::EAX;
2238   return Primary ? X86::ECX : X86::EAX;
2239 }
2240
2241 // The stack limit in the TCB is set to this many bytes above the actual stack
2242 // limit.
2243 static const uint64_t kSplitStackAvailable = 256;
2244
2245 void X86FrameLowering::adjustForSegmentedStacks(
2246     MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2247   MachineFrameInfo &MFI = MF.getFrameInfo();
2248   uint64_t StackSize;
2249   unsigned TlsReg, TlsOffset;
2250   DebugLoc DL;
2251
2252   // To support shrink-wrapping we would need to insert the new blocks
2253   // at the right place and update the branches to PrologueMBB.
2254   assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
2255
2256   unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2257   assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
2258          "Scratch register is live-in");
2259
2260   if (MF.getFunction().isVarArg())
2261     report_fatal_error("Segmented stacks do not support vararg functions.");
2262   if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() &&
2263       !STI.isTargetWin64() && !STI.isTargetFreeBSD() &&
2264       !STI.isTargetDragonFly())
2265     report_fatal_error("Segmented stacks not supported on this platform.");
2266
2267   // Eventually StackSize will be calculated by a link-time pass; which will
2268   // also decide whether checking code needs to be injected into this particular
2269   // prologue.
2270   StackSize = MFI.getStackSize();
2271
2272   // Do not generate a prologue for leaf functions with a stack of size zero.
2273   // For non-leaf functions we have to allow for the possibility that the
2274   // callis to a non-split function, as in PR37807. This function could also
2275   // take the address of a non-split function. When the linker tries to adjust
2276   // its non-existent prologue, it would fail with an error. Mark the object
2277   // file so that such failures are not errors. See this Go language bug-report
2278   // https://go-review.googlesource.com/c/go/+/148819/
2279   if (StackSize == 0 && !MFI.hasTailCall()) {
2280     MF.getMMI().setHasNosplitStack(true);
2281     return;
2282   }
2283
2284   MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock();
2285   MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock();
2286   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2287   bool IsNested = false;
2288
2289   // We need to know if the function has a nest argument only in 64 bit mode.
2290   if (Is64Bit)
2291     IsNested = HasNestArgument(&MF);
2292
2293   // The MOV R10, RAX needs to be in a different block, since the RET we emit in
2294   // allocMBB needs to be last (terminating) instruction.
2295
2296   for (const auto &LI : PrologueMBB.liveins()) {
2297     allocMBB->addLiveIn(LI);
2298     checkMBB->addLiveIn(LI);
2299   }
2300
2301   if (IsNested)
2302     allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D);
2303
2304   MF.push_front(allocMBB);
2305   MF.push_front(checkMBB);
2306
2307   // When the frame size is less than 256 we just compare the stack
2308   // boundary directly to the value of the stack pointer, per gcc.
2309   bool CompareStackPointer = StackSize < kSplitStackAvailable;
2310
2311   // Read the limit off the current stacklet off the stack_guard location.
2312   if (Is64Bit) {
2313     if (STI.isTargetLinux()) {
2314       TlsReg = X86::FS;
2315       TlsOffset = IsLP64 ? 0x70 : 0x40;
2316     } else if (STI.isTargetDarwin()) {
2317       TlsReg = X86::GS;
2318       TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90.
2319     } else if (STI.isTargetWin64()) {
2320       TlsReg = X86::GS;
2321       TlsOffset = 0x28; // pvArbitrary, reserved for application use
2322     } else if (STI.isTargetFreeBSD()) {
2323       TlsReg = X86::FS;
2324       TlsOffset = 0x18;
2325     } else if (STI.isTargetDragonFly()) {
2326       TlsReg = X86::FS;
2327       TlsOffset = 0x20; // use tls_tcb.tcb_segstack
2328     } else {
2329       report_fatal_error("Segmented stacks not supported on this platform.");
2330     }
2331
2332     if (CompareStackPointer)
2333       ScratchReg = IsLP64 ? X86::RSP : X86::ESP;
2334     else
2335       BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP)
2336         .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
2337
2338     BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg)
2339       .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg);
2340   } else {
2341     if (STI.isTargetLinux()) {
2342       TlsReg = X86::GS;
2343       TlsOffset = 0x30;
2344     } else if (STI.isTargetDarwin()) {
2345       TlsReg = X86::GS;
2346       TlsOffset = 0x48 + 90*4;
2347     } else if (STI.isTargetWin32()) {
2348       TlsReg = X86::FS;
2349       TlsOffset = 0x14; // pvArbitrary, reserved for application use
2350     } else if (STI.isTargetDragonFly()) {
2351       TlsReg = X86::FS;
2352       TlsOffset = 0x10; // use tls_tcb.tcb_segstack
2353     } else if (STI.isTargetFreeBSD()) {
2354       report_fatal_error("Segmented stacks not supported on FreeBSD i386.");
2355     } else {
2356       report_fatal_error("Segmented stacks not supported on this platform.");
2357     }
2358
2359     if (CompareStackPointer)
2360       ScratchReg = X86::ESP;
2361     else
2362       BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP)
2363         .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
2364
2365     if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() ||
2366         STI.isTargetDragonFly()) {
2367       BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg)
2368         .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg);
2369     } else if (STI.isTargetDarwin()) {
2370
2371       // TlsOffset doesn't fit into a mod r/m byte so we need an extra register.
2372       unsigned ScratchReg2;
2373       bool SaveScratch2;
2374       if (CompareStackPointer) {
2375         // The primary scratch register is available for holding the TLS offset.
2376         ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2377         SaveScratch2 = false;
2378       } else {
2379         // Need to use a second register to hold the TLS offset
2380         ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false);
2381
2382         // Unfortunately, with fastcc the second scratch register may hold an
2383         // argument.
2384         SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2);
2385       }
2386
2387       // If Scratch2 is live-in then it needs to be saved.
2388       assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) &&
2389              "Scratch register is live-in and not saved");
2390
2391       if (SaveScratch2)
2392         BuildMI(checkMBB, DL, TII.get(X86::PUSH32r))
2393           .addReg(ScratchReg2, RegState::Kill);
2394
2395       BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2)
2396         .addImm(TlsOffset);
2397       BuildMI(checkMBB, DL, TII.get(X86::CMP32rm))
2398         .addReg(ScratchReg)
2399         .addReg(ScratchReg2).addImm(1).addReg(0)
2400         .addImm(0)
2401         .addReg(TlsReg);
2402
2403       if (SaveScratch2)
2404         BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2);
2405     }
2406   }
2407
2408   // This jump is taken if SP >= (Stacklet Limit + Stack Space required).
2409   // It jumps to normal execution of the function body.
2410   BuildMI(checkMBB, DL, TII.get(X86::JA_1)).addMBB(&PrologueMBB);
2411
2412   // On 32 bit we first push the arguments size and then the frame size. On 64
2413   // bit, we pass the stack frame size in r10 and the argument size in r11.
2414   if (Is64Bit) {
2415     // Functions with nested arguments use R10, so it needs to be saved across
2416     // the call to _morestack
2417
2418     const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX;
2419     const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D;
2420     const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D;
2421     const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr;
2422     const unsigned MOVri = IsLP64 ? X86::MOV64ri : X86::MOV32ri;
2423
2424     if (IsNested)
2425       BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10);
2426
2427     BuildMI(allocMBB, DL, TII.get(MOVri), Reg10)
2428       .addImm(StackSize);
2429     BuildMI(allocMBB, DL, TII.get(MOVri), Reg11)
2430       .addImm(X86FI->getArgumentStackSize());
2431   } else {
2432     BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
2433       .addImm(X86FI->getArgumentStackSize());
2434     BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
2435       .addImm(StackSize);
2436   }
2437
2438   // __morestack is in libgcc
2439   if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
2440     // Under the large code model, we cannot assume that __morestack lives
2441     // within 2^31 bytes of the call site, so we cannot use pc-relative
2442     // addressing. We cannot perform the call via a temporary register,
2443     // as the rax register may be used to store the static chain, and all
2444     // other suitable registers may be either callee-save or used for
2445     // parameter passing. We cannot use the stack at this point either
2446     // because __morestack manipulates the stack directly.
2447     //
2448     // To avoid these issues, perform an indirect call via a read-only memory
2449     // location containing the address.
2450     //
2451     // This solution is not perfect, as it assumes that the .rodata section
2452     // is laid out within 2^31 bytes of each function body, but this seems
2453     // to be sufficient for JIT.
2454     // FIXME: Add retpoline support and remove the error here..
2455     if (STI.useRetpolineIndirectCalls())
2456       report_fatal_error("Emitting morestack calls on 64-bit with the large "
2457                          "code model and retpoline not yet implemented.");
2458     BuildMI(allocMBB, DL, TII.get(X86::CALL64m))
2459         .addReg(X86::RIP)
2460         .addImm(0)
2461         .addReg(0)
2462         .addExternalSymbol("__morestack_addr")
2463         .addReg(0);
2464     MF.getMMI().setUsesMorestackAddr(true);
2465   } else {
2466     if (Is64Bit)
2467       BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32))
2468         .addExternalSymbol("__morestack");
2469     else
2470       BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32))
2471         .addExternalSymbol("__morestack");
2472   }
2473
2474   if (IsNested)
2475     BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10));
2476   else
2477     BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET));
2478
2479   allocMBB->addSuccessor(&PrologueMBB);
2480
2481   checkMBB->addSuccessor(allocMBB, BranchProbability::getZero());
2482   checkMBB->addSuccessor(&PrologueMBB, BranchProbability::getOne());
2483
2484 #ifdef EXPENSIVE_CHECKS
2485   MF.verify();
2486 #endif
2487 }
2488
2489 /// Lookup an ERTS parameter in the !hipe.literals named metadata node.
2490 /// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets
2491 /// to fields it needs, through a named metadata node "hipe.literals" containing
2492 /// name-value pairs.
2493 static unsigned getHiPELiteral(
2494     NamedMDNode *HiPELiteralsMD, const StringRef LiteralName) {
2495   for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) {
2496     MDNode *Node = HiPELiteralsMD->getOperand(i);
2497     if (Node->getNumOperands() != 2) continue;
2498     MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0));
2499     ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1));
2500     if (!NodeName || !NodeVal) continue;
2501     ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue());
2502     if (ValConst && NodeName->getString() == LiteralName) {
2503       return ValConst->getZExtValue();
2504     }
2505   }
2506
2507   report_fatal_error("HiPE literal " + LiteralName
2508                      + " required but not provided");
2509 }
2510
2511 /// Erlang programs may need a special prologue to handle the stack size they
2512 /// might need at runtime. That is because Erlang/OTP does not implement a C
2513 /// stack but uses a custom implementation of hybrid stack/heap architecture.
2514 /// (for more information see Eric Stenman's Ph.D. thesis:
2515 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf)
2516 ///
2517 /// CheckStack:
2518 ///       temp0 = sp - MaxStack
2519 ///       if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
2520 /// OldStart:
2521 ///       ...
2522 /// IncStack:
2523 ///       call inc_stack   # doubles the stack space
2524 ///       temp0 = sp - MaxStack
2525 ///       if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
2526 void X86FrameLowering::adjustForHiPEPrologue(
2527     MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2528   MachineFrameInfo &MFI = MF.getFrameInfo();
2529   DebugLoc DL;
2530
2531   // To support shrink-wrapping we would need to insert the new blocks
2532   // at the right place and update the branches to PrologueMBB.
2533   assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
2534
2535   // HiPE-specific values
2536   NamedMDNode *HiPELiteralsMD = MF.getMMI().getModule()
2537     ->getNamedMetadata("hipe.literals");
2538   if (!HiPELiteralsMD)
2539     report_fatal_error(
2540         "Can't generate HiPE prologue without runtime parameters");
2541   const unsigned HipeLeafWords
2542     = getHiPELiteral(HiPELiteralsMD,
2543                      Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS");
2544   const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5;
2545   const unsigned Guaranteed = HipeLeafWords * SlotSize;
2546   unsigned CallerStkArity = MF.getFunction().arg_size() > CCRegisteredArgs ?
2547                             MF.getFunction().arg_size() - CCRegisteredArgs : 0;
2548   unsigned MaxStack = MFI.getStackSize() + CallerStkArity*SlotSize + SlotSize;
2549
2550   assert(STI.isTargetLinux() &&
2551          "HiPE prologue is only supported on Linux operating systems.");
2552
2553   // Compute the largest caller's frame that is needed to fit the callees'
2554   // frames. This 'MaxStack' is computed from:
2555   //
2556   // a) the fixed frame size, which is the space needed for all spilled temps,
2557   // b) outgoing on-stack parameter areas, and
2558   // c) the minimum stack space this function needs to make available for the
2559   //    functions it calls (a tunable ABI property).
2560   if (MFI.hasCalls()) {
2561     unsigned MoreStackForCalls = 0;
2562
2563     for (auto &MBB : MF) {
2564       for (auto &MI : MBB) {
2565         if (!MI.isCall())
2566           continue;
2567
2568         // Get callee operand.
2569         const MachineOperand &MO = MI.getOperand(0);
2570
2571         // Only take account of global function calls (no closures etc.).
2572         if (!MO.isGlobal())
2573           continue;
2574
2575         const Function *F = dyn_cast<Function>(MO.getGlobal());
2576         if (!F)
2577           continue;
2578
2579         // Do not update 'MaxStack' for primitive and built-in functions
2580         // (encoded with names either starting with "erlang."/"bif_" or not
2581         // having a ".", such as a simple <Module>.<Function>.<Arity>, or an
2582         // "_", such as the BIF "suspend_0") as they are executed on another
2583         // stack.
2584         if (F->getName().find("erlang.") != StringRef::npos ||
2585             F->getName().find("bif_") != StringRef::npos ||
2586             F->getName().find_first_of("._") == StringRef::npos)
2587           continue;
2588
2589         unsigned CalleeStkArity =
2590           F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0;
2591         if (HipeLeafWords - 1 > CalleeStkArity)
2592           MoreStackForCalls = std::max(MoreStackForCalls,
2593                                (HipeLeafWords - 1 - CalleeStkArity) * SlotSize);
2594       }
2595     }
2596     MaxStack += MoreStackForCalls;
2597   }
2598
2599   // If the stack frame needed is larger than the guaranteed then runtime checks
2600   // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue.
2601   if (MaxStack > Guaranteed) {
2602     MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock();
2603     MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock();
2604
2605     for (const auto &LI : PrologueMBB.liveins()) {
2606       stackCheckMBB->addLiveIn(LI);
2607       incStackMBB->addLiveIn(LI);
2608     }
2609
2610     MF.push_front(incStackMBB);
2611     MF.push_front(stackCheckMBB);
2612
2613     unsigned ScratchReg, SPReg, PReg, SPLimitOffset;
2614     unsigned LEAop, CMPop, CALLop;
2615     SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT");
2616     if (Is64Bit) {
2617       SPReg = X86::RSP;
2618       PReg  = X86::RBP;
2619       LEAop = X86::LEA64r;
2620       CMPop = X86::CMP64rm;
2621       CALLop = X86::CALL64pcrel32;
2622     } else {
2623       SPReg = X86::ESP;
2624       PReg  = X86::EBP;
2625       LEAop = X86::LEA32r;
2626       CMPop = X86::CMP32rm;
2627       CALLop = X86::CALLpcrel32;
2628     }
2629
2630     ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2631     assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
2632            "HiPE prologue scratch register is live-in");
2633
2634     // Create new MBB for StackCheck:
2635     addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg),
2636                  SPReg, false, -MaxStack);
2637     // SPLimitOffset is in a fixed heap location (pointed by BP).
2638     addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop))
2639                  .addReg(ScratchReg), PReg, false, SPLimitOffset);
2640     BuildMI(stackCheckMBB, DL, TII.get(X86::JAE_1)).addMBB(&PrologueMBB);
2641
2642     // Create new MBB for IncStack:
2643     BuildMI(incStackMBB, DL, TII.get(CALLop)).
2644       addExternalSymbol("inc_stack_0");
2645     addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg),
2646                  SPReg, false, -MaxStack);
2647     addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop))
2648                  .addReg(ScratchReg), PReg, false, SPLimitOffset);
2649     BuildMI(incStackMBB, DL, TII.get(X86::JLE_1)).addMBB(incStackMBB);
2650
2651     stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100});
2652     stackCheckMBB->addSuccessor(incStackMBB, {1, 100});
2653     incStackMBB->addSuccessor(&PrologueMBB, {99, 100});
2654     incStackMBB->addSuccessor(incStackMBB, {1, 100});
2655   }
2656 #ifdef EXPENSIVE_CHECKS
2657   MF.verify();
2658 #endif
2659 }
2660
2661 bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB,
2662                                            MachineBasicBlock::iterator MBBI,
2663                                            const DebugLoc &DL,
2664                                            int Offset) const {
2665
2666   if (Offset <= 0)
2667     return false;
2668
2669   if (Offset % SlotSize)
2670     return false;
2671
2672   int NumPops = Offset / SlotSize;
2673   // This is only worth it if we have at most 2 pops.
2674   if (NumPops != 1 && NumPops != 2)
2675     return false;
2676
2677   // Handle only the trivial case where the adjustment directly follows
2678   // a call. This is the most common one, anyway.
2679   if (MBBI == MBB.begin())
2680     return false;
2681   MachineBasicBlock::iterator Prev = std::prev(MBBI);
2682   if (!Prev->isCall() || !Prev->getOperand(1).isRegMask())
2683     return false;
2684
2685   unsigned Regs[2];
2686   unsigned FoundRegs = 0;
2687
2688   auto &MRI = MBB.getParent()->getRegInfo();
2689   auto RegMask = Prev->getOperand(1);
2690
2691   auto &RegClass =
2692       Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass;
2693   // Try to find up to NumPops free registers.
2694   for (auto Candidate : RegClass) {
2695
2696     // Poor man's liveness:
2697     // Since we're immediately after a call, any register that is clobbered
2698     // by the call and not defined by it can be considered dead.
2699     if (!RegMask.clobbersPhysReg(Candidate))
2700       continue;
2701
2702     // Don't clobber reserved registers
2703     if (MRI.isReserved(Candidate))
2704       continue;
2705
2706     bool IsDef = false;
2707     for (const MachineOperand &MO : Prev->implicit_operands()) {
2708       if (MO.isReg() && MO.isDef() &&
2709           TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) {
2710         IsDef = true;
2711         break;
2712       }
2713     }
2714
2715     if (IsDef)
2716       continue;
2717
2718     Regs[FoundRegs++] = Candidate;
2719     if (FoundRegs == (unsigned)NumPops)
2720       break;
2721   }
2722
2723   if (FoundRegs == 0)
2724     return false;
2725
2726   // If we found only one free register, but need two, reuse the same one twice.
2727   while (FoundRegs < (unsigned)NumPops)
2728     Regs[FoundRegs++] = Regs[0];
2729
2730   for (int i = 0; i < NumPops; ++i)
2731     BuildMI(MBB, MBBI, DL,
2732             TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]);
2733
2734   return true;
2735 }
2736
2737 MachineBasicBlock::iterator X86FrameLowering::
2738 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
2739                               MachineBasicBlock::iterator I) const {
2740   bool reserveCallFrame = hasReservedCallFrame(MF);
2741   unsigned Opcode = I->getOpcode();
2742   bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode();
2743   DebugLoc DL = I->getDebugLoc();
2744   uint64_t Amount = !reserveCallFrame ? TII.getFrameSize(*I) : 0;
2745   uint64_t InternalAmt = (isDestroy || Amount) ? TII.getFrameAdjustment(*I) : 0;
2746   I = MBB.erase(I);
2747   auto InsertPos = skipDebugInstructionsForward(I, MBB.end());
2748
2749   if (!reserveCallFrame) {
2750     // If the stack pointer can be changed after prologue, turn the
2751     // adjcallstackup instruction into a 'sub ESP, <amt>' and the
2752     // adjcallstackdown instruction into 'add ESP, <amt>'
2753
2754     // We need to keep the stack aligned properly.  To do this, we round the
2755     // amount of space needed for the outgoing arguments up to the next
2756     // alignment boundary.
2757     unsigned StackAlign = getStackAlignment();
2758     Amount = alignTo(Amount, StackAlign);
2759
2760     MachineModuleInfo &MMI = MF.getMMI();
2761     const Function &F = MF.getFunction();
2762     bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
2763     bool DwarfCFI = !WindowsCFI &&
2764                     (MMI.hasDebugInfo() || F.needsUnwindTableEntry());
2765
2766     // If we have any exception handlers in this function, and we adjust
2767     // the SP before calls, we may need to indicate this to the unwinder
2768     // using GNU_ARGS_SIZE. Note that this may be necessary even when
2769     // Amount == 0, because the preceding function may have set a non-0
2770     // GNU_ARGS_SIZE.
2771     // TODO: We don't need to reset this between subsequent functions,
2772     // if it didn't change.
2773     bool HasDwarfEHHandlers = !WindowsCFI && !MF.getLandingPads().empty();
2774
2775     if (HasDwarfEHHandlers && !isDestroy &&
2776         MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences())
2777       BuildCFI(MBB, InsertPos, DL,
2778                MCCFIInstruction::createGnuArgsSize(nullptr, Amount));
2779
2780     if (Amount == 0)
2781       return I;
2782
2783     // Factor out the amount that gets handled inside the sequence
2784     // (Pushes of argument for frame setup, callee pops for frame destroy)
2785     Amount -= InternalAmt;
2786
2787     // TODO: This is needed only if we require precise CFA.
2788     // If this is a callee-pop calling convention, emit a CFA adjust for
2789     // the amount the callee popped.
2790     if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF))
2791       BuildCFI(MBB, InsertPos, DL,
2792                MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt));
2793
2794     // Add Amount to SP to destroy a frame, or subtract to setup.
2795     int64_t StackAdjustment = isDestroy ? Amount : -Amount;
2796
2797     if (StackAdjustment) {
2798       // Merge with any previous or following adjustment instruction. Note: the
2799       // instructions merged with here do not have CFI, so their stack
2800       // adjustments do not feed into CfaAdjustment.
2801       StackAdjustment += mergeSPUpdates(MBB, InsertPos, true);
2802       StackAdjustment += mergeSPUpdates(MBB, InsertPos, false);
2803
2804       if (StackAdjustment) {
2805         if (!(F.optForMinSize() &&
2806               adjustStackWithPops(MBB, InsertPos, DL, StackAdjustment)))
2807           BuildStackAdjustment(MBB, InsertPos, DL, StackAdjustment,
2808                                /*InEpilogue=*/false);
2809       }
2810     }
2811
2812     if (DwarfCFI && !hasFP(MF)) {
2813       // If we don't have FP, but need to generate unwind information,
2814       // we need to set the correct CFA offset after the stack adjustment.
2815       // How much we adjust the CFA offset depends on whether we're emitting
2816       // CFI only for EH purposes or for debugging. EH only requires the CFA
2817       // offset to be correct at each call site, while for debugging we want
2818       // it to be more precise.
2819
2820       int64_t CfaAdjustment = -StackAdjustment;
2821       // TODO: When not using precise CFA, we also need to adjust for the
2822       // InternalAmt here.
2823       if (CfaAdjustment) {
2824         BuildCFI(MBB, InsertPos, DL,
2825                  MCCFIInstruction::createAdjustCfaOffset(nullptr,
2826                                                          CfaAdjustment));
2827       }
2828     }
2829
2830     return I;
2831   }
2832
2833   if (isDestroy && InternalAmt) {
2834     // If we are performing frame pointer elimination and if the callee pops
2835     // something off the stack pointer, add it back.  We do this until we have
2836     // more advanced stack pointer tracking ability.
2837     // We are not tracking the stack pointer adjustment by the callee, so make
2838     // sure we restore the stack pointer immediately after the call, there may
2839     // be spill code inserted between the CALL and ADJCALLSTACKUP instructions.
2840     MachineBasicBlock::iterator CI = I;
2841     MachineBasicBlock::iterator B = MBB.begin();
2842     while (CI != B && !std::prev(CI)->isCall())
2843       --CI;
2844     BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false);
2845   }
2846
2847   return I;
2848 }
2849
2850 bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const {
2851   assert(MBB.getParent() && "Block is not attached to a function!");
2852   const MachineFunction &MF = *MBB.getParent();
2853   return !TRI->needsStackRealignment(MF) || !MBB.isLiveIn(X86::EFLAGS);
2854 }
2855
2856 bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const {
2857   assert(MBB.getParent() && "Block is not attached to a function!");
2858
2859   // Win64 has strict requirements in terms of epilogue and we are
2860   // not taking a chance at messing with them.
2861   // I.e., unless this block is already an exit block, we can't use
2862   // it as an epilogue.
2863   if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock())
2864     return false;
2865
2866   if (canUseLEAForSPInEpilogue(*MBB.getParent()))
2867     return true;
2868
2869   // If we cannot use LEA to adjust SP, we may need to use ADD, which
2870   // clobbers the EFLAGS. Check that we do not need to preserve it,
2871   // otherwise, conservatively assume this is not
2872   // safe to insert the epilogue here.
2873   return !flagsNeedToBePreservedBeforeTheTerminators(MBB);
2874 }
2875
2876 bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
2877   // If we may need to emit frameless compact unwind information, give
2878   // up as this is currently broken: PR25614.
2879   return (MF.getFunction().hasFnAttribute(Attribute::NoUnwind) || hasFP(MF)) &&
2880          // The lowering of segmented stack and HiPE only support entry blocks
2881          // as prologue blocks: PR26107.
2882          // This limitation may be lifted if we fix:
2883          // - adjustForSegmentedStacks
2884          // - adjustForHiPEPrologue
2885          MF.getFunction().getCallingConv() != CallingConv::HiPE &&
2886          !MF.shouldSplitStack();
2887 }
2888
2889 MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers(
2890     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
2891     const DebugLoc &DL, bool RestoreSP) const {
2892   assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env");
2893   assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32");
2894   assert(STI.is32Bit() && !Uses64BitFramePtr &&
2895          "restoring EBP/ESI on non-32-bit target");
2896
2897   MachineFunction &MF = *MBB.getParent();
2898   unsigned FramePtr = TRI->getFrameRegister(MF);
2899   unsigned BasePtr = TRI->getBaseRegister();
2900   WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo();
2901   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2902   MachineFrameInfo &MFI = MF.getFrameInfo();
2903
2904   // FIXME: Don't set FrameSetup flag in catchret case.
2905
2906   int FI = FuncInfo.EHRegNodeFrameIndex;
2907   int EHRegSize = MFI.getObjectSize(FI);
2908
2909   if (RestoreSP) {
2910     // MOV32rm -EHRegSize(%ebp), %esp
2911     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP),
2912                  X86::EBP, true, -EHRegSize)
2913         .setMIFlag(MachineInstr::FrameSetup);
2914   }
2915
2916   unsigned UsedReg;
2917   int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg);
2918   int EndOffset = -EHRegOffset - EHRegSize;
2919   FuncInfo.EHRegNodeEndOffset = EndOffset;
2920
2921   if (UsedReg == FramePtr) {
2922     // ADD $offset, %ebp
2923     unsigned ADDri = getADDriOpcode(false, EndOffset);
2924     BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr)
2925         .addReg(FramePtr)
2926         .addImm(EndOffset)
2927         .setMIFlag(MachineInstr::FrameSetup)
2928         ->getOperand(3)
2929         .setIsDead();
2930     assert(EndOffset >= 0 &&
2931            "end of registration object above normal EBP position!");
2932   } else if (UsedReg == BasePtr) {
2933     // LEA offset(%ebp), %esi
2934     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr),
2935                  FramePtr, false, EndOffset)
2936         .setMIFlag(MachineInstr::FrameSetup);
2937     // MOV32rm SavedEBPOffset(%esi), %ebp
2938     assert(X86FI->getHasSEHFramePtrSave());
2939     int Offset =
2940         getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg);
2941     assert(UsedReg == BasePtr);
2942     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr),
2943                  UsedReg, true, Offset)
2944         .setMIFlag(MachineInstr::FrameSetup);
2945   } else {
2946     llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr");
2947   }
2948   return MBBI;
2949 }
2950
2951 int X86FrameLowering::getInitialCFAOffset(const MachineFunction &MF) const {
2952   return TRI->getSlotSize();
2953 }
2954
2955 unsigned X86FrameLowering::getInitialCFARegister(const MachineFunction &MF)
2956     const {
2957   return TRI->getDwarfRegNum(StackPtr, true);
2958 }
2959
2960 namespace {
2961 // Struct used by orderFrameObjects to help sort the stack objects.
2962 struct X86FrameSortingObject {
2963   bool IsValid = false;         // true if we care about this Object.
2964   unsigned ObjectIndex = 0;     // Index of Object into MFI list.
2965   unsigned ObjectSize = 0;      // Size of Object in bytes.
2966   unsigned ObjectAlignment = 1; // Alignment of Object in bytes.
2967   unsigned ObjectNumUses = 0;   // Object static number of uses.
2968 };
2969
2970 // The comparison function we use for std::sort to order our local
2971 // stack symbols. The current algorithm is to use an estimated
2972 // "density". This takes into consideration the size and number of
2973 // uses each object has in order to roughly minimize code size.
2974 // So, for example, an object of size 16B that is referenced 5 times
2975 // will get higher priority than 4 4B objects referenced 1 time each.
2976 // It's not perfect and we may be able to squeeze a few more bytes out of
2977 // it (for example : 0(esp) requires fewer bytes, symbols allocated at the
2978 // fringe end can have special consideration, given their size is less
2979 // important, etc.), but the algorithmic complexity grows too much to be
2980 // worth the extra gains we get. This gets us pretty close.
2981 // The final order leaves us with objects with highest priority going
2982 // at the end of our list.
2983 struct X86FrameSortingComparator {
2984   inline bool operator()(const X86FrameSortingObject &A,
2985                          const X86FrameSortingObject &B) {
2986     uint64_t DensityAScaled, DensityBScaled;
2987
2988     // For consistency in our comparison, all invalid objects are placed
2989     // at the end. This also allows us to stop walking when we hit the
2990     // first invalid item after it's all sorted.
2991     if (!A.IsValid)
2992       return false;
2993     if (!B.IsValid)
2994       return true;
2995
2996     // The density is calculated by doing :
2997     //     (double)DensityA = A.ObjectNumUses / A.ObjectSize
2998     //     (double)DensityB = B.ObjectNumUses / B.ObjectSize
2999     // Since this approach may cause inconsistencies in
3000     // the floating point <, >, == comparisons, depending on the floating
3001     // point model with which the compiler was built, we're going
3002     // to scale both sides by multiplying with
3003     // A.ObjectSize * B.ObjectSize. This ends up factoring away
3004     // the division and, with it, the need for any floating point
3005     // arithmetic.
3006     DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) *
3007       static_cast<uint64_t>(B.ObjectSize);
3008     DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) *
3009       static_cast<uint64_t>(A.ObjectSize);
3010
3011     // If the two densities are equal, prioritize highest alignment
3012     // objects. This allows for similar alignment objects
3013     // to be packed together (given the same density).
3014     // There's room for improvement here, also, since we can pack
3015     // similar alignment (different density) objects next to each
3016     // other to save padding. This will also require further
3017     // complexity/iterations, and the overall gain isn't worth it,
3018     // in general. Something to keep in mind, though.
3019     if (DensityAScaled == DensityBScaled)
3020       return A.ObjectAlignment < B.ObjectAlignment;
3021
3022     return DensityAScaled < DensityBScaled;
3023   }
3024 };
3025 } // namespace
3026
3027 // Order the symbols in the local stack.
3028 // We want to place the local stack objects in some sort of sensible order.
3029 // The heuristic we use is to try and pack them according to static number
3030 // of uses and size of object in order to minimize code size.
3031 void X86FrameLowering::orderFrameObjects(
3032     const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const {
3033   const MachineFrameInfo &MFI = MF.getFrameInfo();
3034
3035   // Don't waste time if there's nothing to do.
3036   if (ObjectsToAllocate.empty())
3037     return;
3038
3039   // Create an array of all MFI objects. We won't need all of these
3040   // objects, but we're going to create a full array of them to make
3041   // it easier to index into when we're counting "uses" down below.
3042   // We want to be able to easily/cheaply access an object by simply
3043   // indexing into it, instead of having to search for it every time.
3044   std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd());
3045
3046   // Walk the objects we care about and mark them as such in our working
3047   // struct.
3048   for (auto &Obj : ObjectsToAllocate) {
3049     SortingObjects[Obj].IsValid = true;
3050     SortingObjects[Obj].ObjectIndex = Obj;
3051     SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlignment(Obj);
3052     // Set the size.
3053     int ObjectSize = MFI.getObjectSize(Obj);
3054     if (ObjectSize == 0)
3055       // Variable size. Just use 4.
3056       SortingObjects[Obj].ObjectSize = 4;
3057     else
3058       SortingObjects[Obj].ObjectSize = ObjectSize;
3059   }
3060
3061   // Count the number of uses for each object.
3062   for (auto &MBB : MF) {
3063     for (auto &MI : MBB) {
3064       if (MI.isDebugInstr())
3065         continue;
3066       for (const MachineOperand &MO : MI.operands()) {
3067         // Check to see if it's a local stack symbol.
3068         if (!MO.isFI())
3069           continue;
3070         int Index = MO.getIndex();
3071         // Check to see if it falls within our range, and is tagged
3072         // to require ordering.
3073         if (Index >= 0 && Index < MFI.getObjectIndexEnd() &&
3074             SortingObjects[Index].IsValid)
3075           SortingObjects[Index].ObjectNumUses++;
3076       }
3077     }
3078   }
3079
3080   // Sort the objects using X86FrameSortingAlgorithm (see its comment for
3081   // info).
3082   std::stable_sort(SortingObjects.begin(), SortingObjects.end(),
3083                    X86FrameSortingComparator());
3084
3085   // Now modify the original list to represent the final order that
3086   // we want. The order will depend on whether we're going to access them
3087   // from the stack pointer or the frame pointer. For SP, the list should
3088   // end up with the END containing objects that we want with smaller offsets.
3089   // For FP, it should be flipped.
3090   int i = 0;
3091   for (auto &Obj : SortingObjects) {
3092     // All invalid items are sorted at the end, so it's safe to stop.
3093     if (!Obj.IsValid)
3094       break;
3095     ObjectsToAllocate[i++] = Obj.ObjectIndex;
3096   }
3097
3098   // Flip it if we're accessing off of the FP.
3099   if (!TRI->needsStackRealignment(MF) && hasFP(MF))
3100     std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end());
3101 }
3102
3103
3104 unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const {
3105   // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue.
3106   unsigned Offset = 16;
3107   // RBP is immediately pushed.
3108   Offset += SlotSize;
3109   // All callee-saved registers are then pushed.
3110   Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize();
3111   // Every funclet allocates enough stack space for the largest outgoing call.
3112   Offset += getWinEHFuncletFrameSize(MF);
3113   return Offset;
3114 }
3115
3116 void X86FrameLowering::processFunctionBeforeFrameFinalized(
3117     MachineFunction &MF, RegScavenger *RS) const {
3118   // Mark the function as not having WinCFI. We will set it back to true in
3119   // emitPrologue if it gets called and emits CFI.
3120   MF.setHasWinCFI(false);
3121
3122   // If this function isn't doing Win64-style C++ EH, we don't need to do
3123   // anything.
3124   const Function &F = MF.getFunction();
3125   if (!STI.is64Bit() || !MF.hasEHFunclets() ||
3126       classifyEHPersonality(F.getPersonalityFn()) != EHPersonality::MSVC_CXX)
3127     return;
3128
3129   // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset
3130   // relative to RSP after the prologue.  Find the offset of the last fixed
3131   // object, so that we can allocate a slot immediately following it. If there
3132   // were no fixed objects, use offset -SlotSize, which is immediately after the
3133   // return address. Fixed objects have negative frame indices.
3134   MachineFrameInfo &MFI = MF.getFrameInfo();
3135   WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo();
3136   int64_t MinFixedObjOffset = -SlotSize;
3137   for (int I = MFI.getObjectIndexBegin(); I < 0; ++I)
3138     MinFixedObjOffset = std::min(MinFixedObjOffset, MFI.getObjectOffset(I));
3139
3140   for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
3141     for (WinEHHandlerType &H : TBME.HandlerArray) {
3142       int FrameIndex = H.CatchObj.FrameIndex;
3143       if (FrameIndex != INT_MAX) {
3144         // Ensure alignment.
3145         unsigned Align = MFI.getObjectAlignment(FrameIndex);
3146         MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align;
3147         MinFixedObjOffset -= MFI.getObjectSize(FrameIndex);
3148         MFI.setObjectOffset(FrameIndex, MinFixedObjOffset);
3149       }
3150     }
3151   }
3152
3153   // Ensure alignment.
3154   MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8;
3155   int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize;
3156   int UnwindHelpFI =
3157       MFI.CreateFixedObject(SlotSize, UnwindHelpOffset, /*Immutable=*/false);
3158   EHInfo.UnwindHelpFrameIdx = UnwindHelpFI;
3159
3160   // Store -2 into UnwindHelp on function entry. We have to scan forwards past
3161   // other frame setup instructions.
3162   MachineBasicBlock &MBB = MF.front();
3163   auto MBBI = MBB.begin();
3164   while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
3165     ++MBBI;
3166
3167   DebugLoc DL = MBB.findDebugLoc(MBBI);
3168   addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)),
3169                     UnwindHelpFI)
3170       .addImm(-2);
3171 }