]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Target/X86/X86InstrFPStack.td
MFV r329774:
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Target / X86 / X86InstrFPStack.td
1 //===- X86InstrFPStack.td - FPU Instruction Set ------------*- tablegen -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file describes the X86 x87 FPU instruction set, defining the
11 // instructions, and properties of the instructions which are needed for code
12 // generation, machine code emission, and analysis.
13 //
14 //===----------------------------------------------------------------------===//
15
16 //===----------------------------------------------------------------------===//
17 // FPStack specific DAG Nodes.
18 //===----------------------------------------------------------------------===//
19
20 def SDTX86FpGet2    : SDTypeProfile<2, 0, [SDTCisVT<0, f80>,
21                                            SDTCisVT<1, f80>]>;
22 def SDTX86Fld       : SDTypeProfile<1, 2, [SDTCisFP<0>,
23                                            SDTCisPtrTy<1>,
24                                            SDTCisVT<2, OtherVT>]>;
25 def SDTX86Fst       : SDTypeProfile<0, 3, [SDTCisFP<0>,
26                                            SDTCisPtrTy<1>,
27                                            SDTCisVT<2, OtherVT>]>;
28 def SDTX86Fild      : SDTypeProfile<1, 2, [SDTCisFP<0>, SDTCisPtrTy<1>,
29                                            SDTCisVT<2, OtherVT>]>;
30 def SDTX86Fnstsw    : SDTypeProfile<1, 1, [SDTCisVT<0, i16>, SDTCisVT<1, i16>]>;
31 def SDTX86FpToIMem  : SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisPtrTy<1>]>;
32
33 def SDTX86CwdStore  : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>;
34
35 def X86fld          : SDNode<"X86ISD::FLD", SDTX86Fld,
36                              [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
37 def X86fst          : SDNode<"X86ISD::FST", SDTX86Fst,
38                              [SDNPHasChain, SDNPInGlue, SDNPMayStore,
39                               SDNPMemOperand]>;
40 def X86fild         : SDNode<"X86ISD::FILD", SDTX86Fild,
41                              [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
42 def X86fildflag     : SDNode<"X86ISD::FILD_FLAG", SDTX86Fild,
43                              [SDNPHasChain, SDNPOutGlue, SDNPMayLoad,
44                               SDNPMemOperand]>;
45 def X86fp_stsw      : SDNode<"X86ISD::FNSTSW16r", SDTX86Fnstsw>;
46 def X86fp_to_i16mem : SDNode<"X86ISD::FP_TO_INT16_IN_MEM", SDTX86FpToIMem,
47                              [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
48 def X86fp_to_i32mem : SDNode<"X86ISD::FP_TO_INT32_IN_MEM", SDTX86FpToIMem,
49                              [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
50 def X86fp_to_i64mem : SDNode<"X86ISD::FP_TO_INT64_IN_MEM", SDTX86FpToIMem,
51                              [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
52 def X86fp_cwd_get16 : SDNode<"X86ISD::FNSTCW16m",          SDTX86CwdStore,
53                              [SDNPHasChain, SDNPMayStore, SDNPSideEffect,
54                               SDNPMemOperand]>;
55
56 //===----------------------------------------------------------------------===//
57 // FPStack pattern fragments
58 //===----------------------------------------------------------------------===//
59
60 def fpimm0 : FPImmLeaf<fAny, [{
61   return Imm.isExactlyValue(+0.0);
62 }]>;
63
64 def fpimmneg0 : FPImmLeaf<fAny, [{
65   return Imm.isExactlyValue(-0.0);
66 }]>;
67
68 def fpimm1 : FPImmLeaf<fAny, [{
69   return Imm.isExactlyValue(+1.0);
70 }]>;
71
72 def fpimmneg1 : FPImmLeaf<fAny, [{
73   return Imm.isExactlyValue(-1.0);
74 }]>;
75
76 // Some 'special' instructions - expanded after instruction selection.
77 let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in {
78   def FP32_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP32:$src),
79                               [(X86fp_to_i16mem RFP32:$src, addr:$dst)]>;
80   def FP32_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP32:$src),
81                               [(X86fp_to_i32mem RFP32:$src, addr:$dst)]>;
82   def FP32_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP32:$src),
83                               [(X86fp_to_i64mem RFP32:$src, addr:$dst)]>;
84   def FP64_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP64:$src),
85                               [(X86fp_to_i16mem RFP64:$src, addr:$dst)]>;
86   def FP64_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP64:$src),
87                               [(X86fp_to_i32mem RFP64:$src, addr:$dst)]>;
88   def FP64_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP64:$src),
89                               [(X86fp_to_i64mem RFP64:$src, addr:$dst)]>;
90   def FP80_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP80:$src),
91                               [(X86fp_to_i16mem RFP80:$src, addr:$dst)]>;
92   def FP80_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP80:$src),
93                               [(X86fp_to_i32mem RFP80:$src, addr:$dst)]>;
94   def FP80_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP80:$src),
95                               [(X86fp_to_i64mem RFP80:$src, addr:$dst)]>;
96 }
97
98 // All FP Stack operations are represented with four instructions here.  The
99 // first three instructions, generated by the instruction selector, use "RFP32"
100 // "RFP64" or "RFP80" registers: traditional register files to reference 32-bit,
101 // 64-bit or 80-bit floating point values.  These sizes apply to the values,
102 // not the registers, which are always 80 bits; RFP32, RFP64 and RFP80 can be
103 // copied to each other without losing information.  These instructions are all
104 // pseudo instructions and use the "_Fp" suffix.
105 // In some cases there are additional variants with a mixture of different
106 // register sizes.
107 // The second instruction is defined with FPI, which is the actual instruction
108 // emitted by the assembler.  These use "RST" registers, although frequently
109 // the actual register(s) used are implicit.  These are always 80 bits.
110 // The FP stackifier pass converts one to the other after register allocation
111 // occurs.
112 //
113 // Note that the FpI instruction should have instruction selection info (e.g.
114 // a pattern) and the FPI instruction should have emission info (e.g. opcode
115 // encoding and asm printing info).
116
117 // FpIf32, FpIf64 - Floating Point Pseudo Instruction template.
118 // f32 instructions can use SSE1 and are predicated on FPStackf32 == !SSE1.
119 // f64 instructions can use SSE2 and are predicated on FPStackf64 == !SSE2.
120 // f80 instructions cannot use SSE and use neither of these.
121 class FpIf32<dag outs, dag ins, FPFormat fp, list<dag> pattern,
122              InstrItinClass itin = NoItinerary> :
123              FpI_<outs, ins, fp, pattern, itin>, Requires<[FPStackf32]>;
124 class FpIf64<dag outs, dag ins, FPFormat fp, list<dag> pattern,
125              InstrItinClass itin = NoItinerary> :
126              FpI_<outs, ins, fp, pattern, itin>, Requires<[FPStackf64]>;
127
128 // Factoring for arithmetic.
129 multiclass FPBinary_rr<SDNode OpNode> {
130 // Register op register -> register
131 // These are separated out because they have no reversed form.
132 def _Fp32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2), TwoArgFP,
133                 [(set RFP32:$dst, (OpNode RFP32:$src1, RFP32:$src2))]>;
134 def _Fp64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2), TwoArgFP,
135                 [(set RFP64:$dst, (OpNode RFP64:$src1, RFP64:$src2))]>;
136 def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2), TwoArgFP,
137                 [(set RFP80:$dst, (OpNode RFP80:$src1, RFP80:$src2))]>;
138 }
139 // The FopST0 series are not included here because of the irregularities
140 // in where the 'r' goes in assembly output.
141 // These instructions cannot address 80-bit memory.
142 multiclass FPBinary<SDNode OpNode, Format fp, string asmstring,
143                     bit Forward = 1> {
144 let mayLoad = 1, hasSideEffects = 1 in {
145 // ST(0) = ST(0) + [mem]
146 def _Fp32m  : FpIf32<(outs RFP32:$dst),
147                      (ins RFP32:$src1, f32mem:$src2), OneArgFPRW,
148                   [!if(Forward,
149                        (set RFP32:$dst,
150                         (OpNode RFP32:$src1, (loadf32 addr:$src2))),
151                        (set RFP32:$dst,
152                         (OpNode (loadf32 addr:$src2), RFP32:$src1)))]>;
153 def _Fp64m  : FpIf64<(outs RFP64:$dst),
154                      (ins RFP64:$src1, f64mem:$src2), OneArgFPRW,
155                   [!if(Forward,
156                        (set RFP64:$dst,
157                         (OpNode RFP64:$src1, (loadf64 addr:$src2))),
158                        (set RFP64:$dst,
159                         (OpNode (loadf64 addr:$src2), RFP64:$src1)))]>;
160 def _Fp64m32: FpIf64<(outs RFP64:$dst),
161                      (ins RFP64:$src1, f32mem:$src2), OneArgFPRW,
162                   [!if(Forward,
163                        (set RFP64:$dst,
164                         (OpNode RFP64:$src1, (f64 (extloadf32 addr:$src2)))),
165                        (set RFP64:$dst,
166                         (OpNode (f64 (extloadf32 addr:$src2)), RFP64:$src1)))]>;
167 def _Fp80m32: FpI_<(outs RFP80:$dst),
168                    (ins RFP80:$src1, f32mem:$src2), OneArgFPRW,
169                   [!if(Forward,
170                        (set RFP80:$dst,
171                         (OpNode RFP80:$src1, (f80 (extloadf32 addr:$src2)))),
172                        (set RFP80:$dst,
173                         (OpNode (f80 (extloadf32 addr:$src2)), RFP80:$src1)))]>;
174 def _Fp80m64: FpI_<(outs RFP80:$dst),
175                    (ins RFP80:$src1, f64mem:$src2), OneArgFPRW,
176                   [!if(Forward,
177                        (set RFP80:$dst,
178                         (OpNode RFP80:$src1, (f80 (extloadf64 addr:$src2)))),
179                        (set RFP80:$dst,
180                         (OpNode (f80 (extloadf64 addr:$src2)), RFP80:$src1)))]>;
181 def _F32m  : FPI<0xD8, fp, (outs), (ins f32mem:$src),
182                  !strconcat("f", asmstring, "{s}\t$src")>;
183 def _F64m  : FPI<0xDC, fp, (outs), (ins f64mem:$src),
184                  !strconcat("f", asmstring, "{l}\t$src")>;
185 // ST(0) = ST(0) + [memint]
186 def _FpI16m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i16mem:$src2),
187                        OneArgFPRW,
188                        [!if(Forward,
189                             (set RFP32:$dst,
190                              (OpNode RFP32:$src1, (X86fild addr:$src2, i16))),
191                             (set RFP32:$dst,
192                              (OpNode (X86fild addr:$src2, i16), RFP32:$src1)))]>;
193 def _FpI32m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i32mem:$src2),
194                        OneArgFPRW,
195                        [!if(Forward,
196                             (set RFP32:$dst,
197                              (OpNode RFP32:$src1, (X86fild addr:$src2, i32))),
198                             (set RFP32:$dst,
199                              (OpNode (X86fild addr:$src2, i32), RFP32:$src1)))]>;
200 def _FpI16m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i16mem:$src2),
201                        OneArgFPRW,
202                        [!if(Forward,
203                             (set RFP64:$dst,
204                              (OpNode RFP64:$src1, (X86fild addr:$src2, i16))),
205                             (set RFP64:$dst,
206                              (OpNode (X86fild addr:$src2, i16), RFP64:$src1)))]>;
207 def _FpI32m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i32mem:$src2),
208                        OneArgFPRW,
209                        [!if(Forward,
210                             (set RFP64:$dst,
211                              (OpNode RFP64:$src1, (X86fild addr:$src2, i32))),
212                             (set RFP64:$dst,
213                              (OpNode (X86fild addr:$src2, i32), RFP64:$src1)))]>;
214 def _FpI16m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i16mem:$src2),
215                      OneArgFPRW,
216                      [!if(Forward,
217                           (set RFP80:$dst,
218                            (OpNode RFP80:$src1, (X86fild addr:$src2, i16))),
219                           (set RFP80:$dst,
220                            (OpNode (X86fild addr:$src2, i16), RFP80:$src1)))]>;
221 def _FpI32m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i32mem:$src2),
222                      OneArgFPRW,
223                      [!if(Forward,
224                           (set RFP80:$dst,
225                            (OpNode RFP80:$src1, (X86fild addr:$src2, i32))),
226                           (set RFP80:$dst,
227                            (OpNode (X86fild addr:$src2, i32), RFP80:$src1)))]>;
228 def _FI16m  : FPI<0xDE, fp, (outs), (ins i16mem:$src),
229                   !strconcat("fi", asmstring, "{s}\t$src")>;
230 def _FI32m  : FPI<0xDA, fp, (outs), (ins i32mem:$src),
231                   !strconcat("fi", asmstring, "{l}\t$src")>;
232 } // mayLoad = 1, hasSideEffects = 1
233 }
234
235 let Defs = [FPSW] in {
236 // FPBinary_rr just defines pseudo-instructions, no need to set a scheduling
237 // resources.
238 let hasNoSchedulingInfo = 1 in {
239 defm ADD : FPBinary_rr<fadd>;
240 defm SUB : FPBinary_rr<fsub>;
241 defm MUL : FPBinary_rr<fmul>;
242 defm DIV : FPBinary_rr<fdiv>;
243 }
244
245 // Sets the scheduling resources for the actual NAME#_F<size>m defintions.
246 let SchedRW = [WriteFAddLd] in {
247 defm ADD : FPBinary<fadd, MRM0m, "add">;
248 defm SUB : FPBinary<fsub, MRM4m, "sub">;
249 defm SUBR: FPBinary<fsub ,MRM5m, "subr", 0>;
250 }
251
252 let SchedRW = [WriteFMulLd] in {
253 defm MUL : FPBinary<fmul, MRM1m, "mul">;
254 }
255
256 let SchedRW = [WriteFDivLd] in {
257 defm DIV : FPBinary<fdiv, MRM6m, "div">;
258 defm DIVR: FPBinary<fdiv, MRM7m, "divr", 0>;
259 }
260 } // Defs = [FPSW]
261
262 class FPST0rInst<Format fp, string asm>
263   : FPI<0xD8, fp, (outs), (ins RST:$op), asm>;
264 class FPrST0Inst<Format fp, string asm>
265   : FPI<0xDC, fp, (outs), (ins RST:$op), asm>;
266 class FPrST0PInst<Format fp, string asm>
267   : FPI<0xDE, fp, (outs), (ins RST:$op), asm>;
268
269 // NOTE: GAS and apparently all other AT&T style assemblers have a broken notion
270 // of some of the 'reverse' forms of the fsub and fdiv instructions.  As such,
271 // we have to put some 'r's in and take them out of weird places.
272 let SchedRW = [WriteFAdd] in {
273 def ADD_FST0r   : FPST0rInst <MRM0r, "fadd\t$op">;
274 def ADD_FrST0   : FPrST0Inst <MRM0r, "fadd\t{%st(0), $op|$op, st(0)}">;
275 def ADD_FPrST0  : FPrST0PInst<MRM0r, "faddp\t$op">;
276 def SUBR_FST0r  : FPST0rInst <MRM5r, "fsubr\t$op">;
277 def SUB_FrST0   : FPrST0Inst <MRM5r, "fsub{r}\t{%st(0), $op|$op, st(0)}">;
278 def SUB_FPrST0  : FPrST0PInst<MRM5r, "fsub{r}p\t$op">;
279 def SUB_FST0r   : FPST0rInst <MRM4r, "fsub\t$op">;
280 def SUBR_FrST0  : FPrST0Inst <MRM4r, "fsub{|r}\t{%st(0), $op|$op, st(0)}">;
281 def SUBR_FPrST0 : FPrST0PInst<MRM4r, "fsub{|r}p\t$op">;
282 def COM_FST0r   : FPST0rInst <MRM2r, "fcom\t$op">;
283 def COMP_FST0r  : FPST0rInst <MRM3r, "fcomp\t$op">;
284 } // SchedRW
285 let SchedRW = [WriteFMul] in {
286 def MUL_FST0r   : FPST0rInst <MRM1r, "fmul\t$op">;
287 def MUL_FrST0   : FPrST0Inst <MRM1r, "fmul\t{%st(0), $op|$op, st(0)}">;
288 def MUL_FPrST0  : FPrST0PInst<MRM1r, "fmulp\t$op">;
289 } // SchedRW
290 let SchedRW = [WriteFDiv] in {
291 def DIVR_FST0r  : FPST0rInst <MRM7r, "fdivr\t$op">;
292 def DIV_FrST0   : FPrST0Inst <MRM7r, "fdiv{r}\t{%st(0), $op|$op, st(0)}">;
293 def DIV_FPrST0  : FPrST0PInst<MRM7r, "fdiv{r}p\t$op">;
294 def DIV_FST0r   : FPST0rInst <MRM6r, "fdiv\t$op">;
295 def DIVR_FrST0  : FPrST0Inst <MRM6r, "fdiv{|r}\t{%st(0), $op|$op, st(0)}">;
296 def DIVR_FPrST0 : FPrST0PInst<MRM6r, "fdiv{|r}p\t$op">;
297 } // SchedRW
298
299 // Unary operations.
300 multiclass FPUnary<SDNode OpNode, Format fp, string asmstring,
301                    InstrItinClass itin> {
302 def _Fp32  : FpIf32<(outs RFP32:$dst), (ins RFP32:$src), OneArgFPRW,
303                  [(set RFP32:$dst, (OpNode RFP32:$src))], itin>;
304 def _Fp64  : FpIf64<(outs RFP64:$dst), (ins RFP64:$src), OneArgFPRW,
305                  [(set RFP64:$dst, (OpNode RFP64:$src))], itin>;
306 def _Fp80  : FpI_<(outs RFP80:$dst), (ins RFP80:$src), OneArgFPRW,
307                  [(set RFP80:$dst, (OpNode RFP80:$src))], itin>;
308 def _F     : FPI<0xD9, fp, (outs), (ins), asmstring, itin>;
309 }
310
311 let Defs = [FPSW] in {
312
313 let SchedRW = [WriteVecLogic] in {
314 defm CHS : FPUnary<fneg, MRM_E0, "fchs", IIC_FSIGN>;
315 defm ABS : FPUnary<fabs, MRM_E1, "fabs", IIC_FSIGN>;
316 }
317
318 let SchedRW = [WriteFSqrt] in
319 defm SQRT: FPUnary<fsqrt,MRM_FA, "fsqrt", IIC_FSQRT>;
320
321 let SchedRW = [WriteMicrocoded] in {
322 defm SIN : FPUnary<fsin, MRM_FE, "fsin", IIC_FSINCOS>;
323 defm COS : FPUnary<fcos, MRM_FF, "fcos", IIC_FSINCOS>;
324 }
325
326 let SchedRW = [WriteFAdd] in {
327 let hasSideEffects = 0 in {
328 def TST_Fp32  : FpIf32<(outs), (ins RFP32:$src), OneArgFP, []>;
329 def TST_Fp64  : FpIf64<(outs), (ins RFP64:$src), OneArgFP, []>;
330 def TST_Fp80  : FpI_<(outs), (ins RFP80:$src), OneArgFP, []>;
331 } // hasSideEffects
332
333 def TST_F  : FPI<0xD9, MRM_E4, (outs), (ins), "ftst", IIC_FCOMI>;
334 } // SchedRW
335 } // Defs = [FPSW]
336
337 // Versions of FP instructions that take a single memory operand.  Added for the
338 //   disassembler; remove as they are included with patterns elsewhere.
339 let SchedRW = [WriteFAddLd] in {
340 def FCOM32m  : FPI<0xD8, MRM2m, (outs), (ins f32mem:$src), "fcom{s}\t$src">;
341 def FCOMP32m : FPI<0xD8, MRM3m, (outs), (ins f32mem:$src), "fcomp{s}\t$src">;
342
343 def FCOM64m  : FPI<0xDC, MRM2m, (outs), (ins f64mem:$src), "fcom{l}\t$src">;
344 def FCOMP64m : FPI<0xDC, MRM3m, (outs), (ins f64mem:$src), "fcomp{l}\t$src">;
345
346 def FICOM16m : FPI<0xDE, MRM2m, (outs), (ins i16mem:$src), "ficom{s}\t$src">;
347 def FICOMP16m: FPI<0xDE, MRM3m, (outs), (ins i16mem:$src), "ficomp{s}\t$src">;
348
349 def FICOM32m : FPI<0xDA, MRM2m, (outs), (ins i32mem:$src), "ficom{l}\t$src">;
350 def FICOMP32m: FPI<0xDA, MRM3m, (outs), (ins i32mem:$src), "ficomp{l}\t$src">;
351 } // SchedRW
352
353 let SchedRW = [WriteMicrocoded] in {
354 def FLDENVm  : FPI<0xD9, MRM4m, (outs), (ins f32mem:$src), "fldenv\t$src">;
355 def FSTENVm  : FPI<0xD9, MRM6m, (outs), (ins f32mem:$dst), "fnstenv\t$dst">;
356
357 def FRSTORm  : FPI<0xDD, MRM4m, (outs), (ins f32mem:$dst), "frstor\t$dst">;
358 def FSAVEm   : FPI<0xDD, MRM6m, (outs), (ins f32mem:$dst), "fnsave\t$dst">;
359 def FNSTSWm  : FPI<0xDD, MRM7m, (outs), (ins i16mem:$dst), "fnstsw\t$dst">;
360
361 def FBLDm    : FPI<0xDF, MRM4m, (outs), (ins f80mem:$src), "fbld\t$src">;
362 def FBSTPm   : FPI<0xDF, MRM6m, (outs), (ins f80mem:$dst), "fbstp\t$dst">;
363 } // SchedRW
364
365 // Floating point cmovs.
366 class FpIf32CMov<dag outs, dag ins, FPFormat fp, list<dag> pattern,
367                  InstrItinClass itin> :
368   FpI_<outs, ins, fp, pattern, itin>, Requires<[FPStackf32, HasCMov]>;
369 class FpIf64CMov<dag outs, dag ins, FPFormat fp, list<dag> pattern,
370                  InstrItinClass itin> :
371   FpI_<outs, ins, fp, pattern, itin>, Requires<[FPStackf64, HasCMov]>;
372
373 multiclass FPCMov<PatLeaf cc> {
374   def _Fp32  : FpIf32CMov<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2),
375                        CondMovFP,
376                      [(set RFP32:$dst, (X86cmov RFP32:$src1, RFP32:$src2,
377                                         cc, EFLAGS))], IIC_FCMOV>;
378   def _Fp64  : FpIf64CMov<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2),
379                        CondMovFP,
380                      [(set RFP64:$dst, (X86cmov RFP64:$src1, RFP64:$src2,
381                                         cc, EFLAGS))], IIC_FCMOV>;
382   def _Fp80  : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2),
383                      CondMovFP,
384                      [(set RFP80:$dst, (X86cmov RFP80:$src1, RFP80:$src2,
385                                         cc, EFLAGS))], IIC_FCMOV>,
386                                         Requires<[HasCMov]>;
387 }
388
389 let Defs = [FPSW] in {
390 let SchedRW = [WriteFAdd] in {
391 let Uses = [EFLAGS], Constraints = "$src1 = $dst" in {
392 defm CMOVB  : FPCMov<X86_COND_B>;
393 defm CMOVBE : FPCMov<X86_COND_BE>;
394 defm CMOVE  : FPCMov<X86_COND_E>;
395 defm CMOVP  : FPCMov<X86_COND_P>;
396 defm CMOVNB : FPCMov<X86_COND_AE>;
397 defm CMOVNBE: FPCMov<X86_COND_A>;
398 defm CMOVNE : FPCMov<X86_COND_NE>;
399 defm CMOVNP : FPCMov<X86_COND_NP>;
400 } // Uses = [EFLAGS], Constraints = "$src1 = $dst"
401
402 let Predicates = [HasCMov] in {
403 // These are not factored because there's no clean way to pass DA/DB.
404 def CMOVB_F  : FPI<0xDA, MRM0r, (outs), (ins RST:$op),
405                   "fcmovb\t{$op, %st(0)|st(0), $op}", IIC_FCMOV>;
406 def CMOVBE_F : FPI<0xDA, MRM2r, (outs), (ins RST:$op),
407                   "fcmovbe\t{$op, %st(0)|st(0), $op}", IIC_FCMOV>;
408 def CMOVE_F  : FPI<0xDA, MRM1r, (outs), (ins RST:$op),
409                   "fcmove\t{$op, %st(0)|st(0), $op}", IIC_FCMOV>;
410 def CMOVP_F  : FPI<0xDA, MRM3r, (outs), (ins RST:$op),
411                   "fcmovu\t{$op, %st(0)|st(0), $op}", IIC_FCMOV>;
412 def CMOVNB_F : FPI<0xDB, MRM0r, (outs), (ins RST:$op),
413                   "fcmovnb\t{$op, %st(0)|st(0), $op}", IIC_FCMOV>;
414 def CMOVNBE_F: FPI<0xDB, MRM2r, (outs), (ins RST:$op),
415                   "fcmovnbe\t{$op, %st(0)|st(0), $op}", IIC_FCMOV>;
416 def CMOVNE_F : FPI<0xDB, MRM1r, (outs), (ins RST:$op),
417                   "fcmovne\t{$op, %st(0)|st(0), $op}", IIC_FCMOV>;
418 def CMOVNP_F : FPI<0xDB, MRM3r, (outs), (ins RST:$op),
419                   "fcmovnu\t{$op, %st(0)|st(0), $op}", IIC_FCMOV>;
420 } // Predicates = [HasCMov]
421 } // SchedRW
422
423 // Floating point loads & stores.
424 let SchedRW = [WriteLoad] in {
425 let canFoldAsLoad = 1 in {
426 def LD_Fp32m   : FpIf32<(outs RFP32:$dst), (ins f32mem:$src), ZeroArgFP,
427                   [(set RFP32:$dst, (loadf32 addr:$src))]>;
428 let isReMaterializable = 1 in
429   def LD_Fp64m : FpIf64<(outs RFP64:$dst), (ins f64mem:$src), ZeroArgFP,
430                   [(set RFP64:$dst, (loadf64 addr:$src))]>;
431 def LD_Fp80m   : FpI_<(outs RFP80:$dst), (ins f80mem:$src), ZeroArgFP,
432                   [(set RFP80:$dst, (loadf80 addr:$src))]>;
433 } // canFoldAsLoad
434 def LD_Fp32m64 : FpIf64<(outs RFP64:$dst), (ins f32mem:$src), ZeroArgFP,
435                   [(set RFP64:$dst, (f64 (extloadf32 addr:$src)))]>;
436 def LD_Fp64m80 : FpI_<(outs RFP80:$dst), (ins f64mem:$src), ZeroArgFP,
437                   [(set RFP80:$dst, (f80 (extloadf64 addr:$src)))]>;
438 def LD_Fp32m80 : FpI_<(outs RFP80:$dst), (ins f32mem:$src), ZeroArgFP,
439                   [(set RFP80:$dst, (f80 (extloadf32 addr:$src)))]>;
440 def ILD_Fp16m32: FpIf32<(outs RFP32:$dst), (ins i16mem:$src), ZeroArgFP,
441                   [(set RFP32:$dst, (X86fild addr:$src, i16))]>;
442 def ILD_Fp32m32: FpIf32<(outs RFP32:$dst), (ins i32mem:$src), ZeroArgFP,
443                   [(set RFP32:$dst, (X86fild addr:$src, i32))]>;
444 def ILD_Fp64m32: FpIf32<(outs RFP32:$dst), (ins i64mem:$src), ZeroArgFP,
445                   [(set RFP32:$dst, (X86fild addr:$src, i64))]>;
446 def ILD_Fp16m64: FpIf64<(outs RFP64:$dst), (ins i16mem:$src), ZeroArgFP,
447                   [(set RFP64:$dst, (X86fild addr:$src, i16))]>;
448 def ILD_Fp32m64: FpIf64<(outs RFP64:$dst), (ins i32mem:$src), ZeroArgFP,
449                   [(set RFP64:$dst, (X86fild addr:$src, i32))]>;
450 def ILD_Fp64m64: FpIf64<(outs RFP64:$dst), (ins i64mem:$src), ZeroArgFP,
451                   [(set RFP64:$dst, (X86fild addr:$src, i64))]>;
452 def ILD_Fp16m80: FpI_<(outs RFP80:$dst), (ins i16mem:$src), ZeroArgFP,
453                   [(set RFP80:$dst, (X86fild addr:$src, i16))]>;
454 def ILD_Fp32m80: FpI_<(outs RFP80:$dst), (ins i32mem:$src), ZeroArgFP,
455                   [(set RFP80:$dst, (X86fild addr:$src, i32))]>;
456 def ILD_Fp64m80: FpI_<(outs RFP80:$dst), (ins i64mem:$src), ZeroArgFP,
457                   [(set RFP80:$dst, (X86fild addr:$src, i64))]>;
458 } // SchedRW
459
460 let SchedRW = [WriteStore] in {
461 def ST_Fp32m   : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP,
462                   [(store RFP32:$src, addr:$op)]>;
463 def ST_Fp64m32 : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP,
464                   [(truncstoref32 RFP64:$src, addr:$op)]>;
465 def ST_Fp64m   : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP,
466                   [(store RFP64:$src, addr:$op)]>;
467 def ST_Fp80m32 : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP,
468                   [(truncstoref32 RFP80:$src, addr:$op)]>;
469 def ST_Fp80m64 : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP,
470                   [(truncstoref64 RFP80:$src, addr:$op)]>;
471 // FST does not support 80-bit memory target; FSTP must be used.
472
473 let mayStore = 1, hasSideEffects = 0 in {
474 def ST_FpP32m    : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP, []>;
475 def ST_FpP64m32  : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP, []>;
476 def ST_FpP64m    : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP, []>;
477 def ST_FpP80m32  : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP, []>;
478 def ST_FpP80m64  : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP, []>;
479 } // mayStore
480
481 def ST_FpP80m    : FpI_<(outs), (ins f80mem:$op, RFP80:$src), OneArgFP,
482                     [(store RFP80:$src, addr:$op)]>;
483
484 let mayStore = 1, hasSideEffects = 0 in {
485 def IST_Fp16m32  : FpIf32<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP, []>;
486 def IST_Fp32m32  : FpIf32<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP, []>;
487 def IST_Fp64m32  : FpIf32<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP, []>;
488 def IST_Fp16m64  : FpIf64<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP, []>;
489 def IST_Fp32m64  : FpIf64<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP, []>;
490 def IST_Fp64m64  : FpIf64<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP, []>;
491 def IST_Fp16m80  : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP, []>;
492 def IST_Fp32m80  : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP, []>;
493 def IST_Fp64m80  : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP, []>;
494 } // mayStore
495 } // SchedRW
496
497 let mayLoad = 1, SchedRW = [WriteLoad] in {
498 def LD_F32m   : FPI<0xD9, MRM0m, (outs), (ins f32mem:$src), "fld{s}\t$src",
499                     IIC_FLD>;
500 def LD_F64m   : FPI<0xDD, MRM0m, (outs), (ins f64mem:$src), "fld{l}\t$src",
501                     IIC_FLD>;
502 def LD_F80m   : FPI<0xDB, MRM5m, (outs), (ins f80mem:$src), "fld{t}\t$src",
503                     IIC_FLD80>;
504 def ILD_F16m  : FPI<0xDF, MRM0m, (outs), (ins i16mem:$src), "fild{s}\t$src",
505                     IIC_FILD>;
506 def ILD_F32m  : FPI<0xDB, MRM0m, (outs), (ins i32mem:$src), "fild{l}\t$src",
507                     IIC_FILD>;
508 def ILD_F64m  : FPI<0xDF, MRM5m, (outs), (ins i64mem:$src), "fild{ll}\t$src",
509                     IIC_FILD>;
510 }
511 let mayStore = 1, SchedRW = [WriteStore] in {
512 def ST_F32m   : FPI<0xD9, MRM2m, (outs), (ins f32mem:$dst), "fst{s}\t$dst",
513                     IIC_FST>;
514 def ST_F64m   : FPI<0xDD, MRM2m, (outs), (ins f64mem:$dst), "fst{l}\t$dst",
515                     IIC_FST>;
516 def ST_FP32m  : FPI<0xD9, MRM3m, (outs), (ins f32mem:$dst), "fstp{s}\t$dst",
517                     IIC_FST>;
518 def ST_FP64m  : FPI<0xDD, MRM3m, (outs), (ins f64mem:$dst), "fstp{l}\t$dst",
519                     IIC_FST>;
520 def ST_FP80m  : FPI<0xDB, MRM7m, (outs), (ins f80mem:$dst), "fstp{t}\t$dst",
521                     IIC_FST80>;
522 def IST_F16m  : FPI<0xDF, MRM2m, (outs), (ins i16mem:$dst), "fist{s}\t$dst",
523                     IIC_FIST>;
524 def IST_F32m  : FPI<0xDB, MRM2m, (outs), (ins i32mem:$dst), "fist{l}\t$dst",
525                     IIC_FIST>;
526 def IST_FP16m : FPI<0xDF, MRM3m, (outs), (ins i16mem:$dst), "fistp{s}\t$dst",
527                     IIC_FIST>;
528 def IST_FP32m : FPI<0xDB, MRM3m, (outs), (ins i32mem:$dst), "fistp{l}\t$dst",
529                     IIC_FIST>;
530 def IST_FP64m : FPI<0xDF, MRM7m, (outs), (ins i64mem:$dst), "fistp{ll}\t$dst",
531                     IIC_FIST>;
532 }
533
534 // FISTTP requires SSE3 even though it's a FPStack op.
535 let Predicates = [HasSSE3], SchedRW = [WriteStore] in {
536 def ISTT_Fp16m32 : FpI_<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP,
537                     [(X86fp_to_i16mem RFP32:$src, addr:$op)]>;
538 def ISTT_Fp32m32 : FpI_<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP,
539                     [(X86fp_to_i32mem RFP32:$src, addr:$op)]>;
540 def ISTT_Fp64m32 : FpI_<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP,
541                     [(X86fp_to_i64mem RFP32:$src, addr:$op)]>;
542 def ISTT_Fp16m64 : FpI_<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP,
543                     [(X86fp_to_i16mem RFP64:$src, addr:$op)]>;
544 def ISTT_Fp32m64 : FpI_<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP,
545                     [(X86fp_to_i32mem RFP64:$src, addr:$op)]>;
546 def ISTT_Fp64m64 : FpI_<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP,
547                     [(X86fp_to_i64mem RFP64:$src, addr:$op)]>;
548 def ISTT_Fp16m80 : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP,
549                     [(X86fp_to_i16mem RFP80:$src, addr:$op)]>;
550 def ISTT_Fp32m80 : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP,
551                     [(X86fp_to_i32mem RFP80:$src, addr:$op)]>;
552 def ISTT_Fp64m80 : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP,
553                     [(X86fp_to_i64mem RFP80:$src, addr:$op)]>;
554 } // Predicates = [HasSSE3]
555
556 let mayStore = 1, SchedRW = [WriteStore] in {
557 def ISTT_FP16m : FPI<0xDF, MRM1m, (outs), (ins i16mem:$dst), "fisttp{s}\t$dst",
558   IIC_FST>;
559 def ISTT_FP32m : FPI<0xDB, MRM1m, (outs), (ins i32mem:$dst), "fisttp{l}\t$dst",
560   IIC_FST>;
561 def ISTT_FP64m : FPI<0xDD, MRM1m, (outs), (ins i64mem:$dst),
562   "fisttp{ll}\t$dst", IIC_FST>;
563 }
564
565 // FP Stack manipulation instructions.
566 let SchedRW = [WriteMove] in {
567 def LD_Frr   : FPI<0xD9, MRM0r, (outs), (ins RST:$op), "fld\t$op", IIC_FLD>;
568 def ST_Frr   : FPI<0xDD, MRM2r, (outs), (ins RST:$op), "fst\t$op", IIC_FST>;
569 def ST_FPrr  : FPI<0xDD, MRM3r, (outs), (ins RST:$op), "fstp\t$op", IIC_FST>;
570 def XCH_F    : FPI<0xD9, MRM1r, (outs), (ins RST:$op), "fxch\t$op", IIC_FXCH>;
571 }
572
573 // Floating point constant loads.
574 let isReMaterializable = 1, SchedRW = [WriteZero] in {
575 def LD_Fp032 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP,
576                 [(set RFP32:$dst, fpimm0)]>;
577 def LD_Fp132 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP,
578                 [(set RFP32:$dst, fpimm1)]>;
579 def LD_Fp064 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP,
580                 [(set RFP64:$dst, fpimm0)]>;
581 def LD_Fp164 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP,
582                 [(set RFP64:$dst, fpimm1)]>;
583 def LD_Fp080 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP,
584                 [(set RFP80:$dst, fpimm0)]>;
585 def LD_Fp180 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP,
586                 [(set RFP80:$dst, fpimm1)]>;
587 }
588
589 let SchedRW = [WriteZero] in {
590 def LD_F0 : FPI<0xD9, MRM_EE, (outs), (ins), "fldz", IIC_FLDZ>;
591 def LD_F1 : FPI<0xD9, MRM_E8, (outs), (ins), "fld1", IIC_FIST>;
592 }
593
594 // Floating point compares.
595 let SchedRW = [WriteFAdd] in {
596 def UCOM_Fpr32 : FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP,
597                         [(set FPSW, (trunc (X86cmp RFP32:$lhs, RFP32:$rhs)))]>;
598 def UCOM_Fpr64 : FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP,
599                         [(set FPSW, (trunc (X86cmp RFP64:$lhs, RFP64:$rhs)))]>;
600 def UCOM_Fpr80 : FpI_  <(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP,
601                         [(set FPSW, (trunc (X86cmp RFP80:$lhs, RFP80:$rhs)))]>;
602 } // SchedRW
603 } // Defs = [FPSW]
604
605 let SchedRW = [WriteFAdd] in {
606 // CC = ST(0) cmp ST(i)
607 let Defs = [EFLAGS, FPSW] in {
608 def UCOM_FpIr32: FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP,
609                   [(set EFLAGS, (X86cmp RFP32:$lhs, RFP32:$rhs))]>;
610 def UCOM_FpIr64: FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP,
611                   [(set EFLAGS, (X86cmp RFP64:$lhs, RFP64:$rhs))]>;
612 def UCOM_FpIr80: FpI_<(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP,
613                   [(set EFLAGS, (X86cmp RFP80:$lhs, RFP80:$rhs))]>;
614 }
615
616 let Defs = [FPSW], Uses = [ST0] in {
617 def UCOM_Fr    : FPI<0xDD, MRM4r,    // FPSW = cmp ST(0) with ST(i)
618                     (outs), (ins RST:$reg), "fucom\t$reg", IIC_FUCOM>;
619 def UCOM_FPr   : FPI<0xDD, MRM5r,    // FPSW = cmp ST(0) with ST(i), pop
620                     (outs), (ins RST:$reg), "fucomp\t$reg", IIC_FUCOM>;
621 def UCOM_FPPr  : FPI<0xDA, MRM_E9,       // cmp ST(0) with ST(1), pop, pop
622                     (outs), (ins), "fucompp", IIC_FUCOM>;
623 }
624
625 let Defs = [EFLAGS, FPSW], Uses = [ST0] in {
626 def UCOM_FIr   : FPI<0xDB, MRM5r,     // CC = cmp ST(0) with ST(i)
627                     (outs), (ins RST:$reg), "fucomi\t$reg", IIC_FUCOMI>;
628 def UCOM_FIPr  : FPI<0xDF, MRM5r,     // CC = cmp ST(0) with ST(i), pop
629                     (outs), (ins RST:$reg), "fucompi\t$reg", IIC_FUCOMI>;
630 }
631
632 let Defs = [EFLAGS, FPSW] in {
633 def COM_FIr : FPI<0xDB, MRM6r, (outs), (ins RST:$reg),
634                   "fcomi\t$reg", IIC_FCOMI>;
635 def COM_FIPr : FPI<0xDF, MRM6r, (outs), (ins RST:$reg),
636                    "fcompi\t$reg", IIC_FCOMI>;
637 }
638 } // SchedRW
639
640 // Floating point flag ops.
641 let SchedRW = [WriteALU] in {
642 let Defs = [AX], Uses = [FPSW] in
643 def FNSTSW16r : I<0xDF, MRM_E0,                  // AX = fp flags
644                   (outs), (ins), "fnstsw\t{%ax|ax}",
645                   [(set AX, (X86fp_stsw FPSW))], IIC_FNSTSW>;
646 let Defs = [FPSW] in
647 def FNSTCW16m : I<0xD9, MRM7m,                   // [mem16] = X87 control world
648                   (outs), (ins i16mem:$dst), "fnstcw\t$dst",
649                   [(X86fp_cwd_get16 addr:$dst)], IIC_FNSTCW>;
650 } // SchedRW
651 let Defs = [FPSW], mayLoad = 1 in
652 def FLDCW16m  : I<0xD9, MRM5m,                   // X87 control world = [mem16]
653                   (outs), (ins i16mem:$dst), "fldcw\t$dst", [], IIC_FLDCW>,
654                 Sched<[WriteLoad]>;
655
656 // FPU control instructions
657 let SchedRW = [WriteMicrocoded] in {
658 let Defs = [FPSW] in {
659 def FNINIT : I<0xDB, MRM_E3, (outs), (ins), "fninit", [], IIC_FNINIT>;
660 def FFREE : FPI<0xDD, MRM0r, (outs), (ins RST:$reg),
661                 "ffree\t$reg", IIC_FFREE>;
662 def FFREEP : FPI<0xDF, MRM0r, (outs), (ins RST:$reg),
663                 "ffreep\t$reg", IIC_FFREE>;
664
665 // Clear exceptions
666 def FNCLEX : I<0xDB, MRM_E2, (outs), (ins), "fnclex", [], IIC_FNCLEX>;
667 } // Defs = [FPSW]
668 } // SchedRW
669
670 // Operandless floating-point instructions for the disassembler.
671 let SchedRW = [WriteMicrocoded] in {
672 def FNOP : I<0xD9, MRM_D0, (outs), (ins), "fnop", [], IIC_FNOP>;
673
674 let Defs = [FPSW] in {
675 def WAIT : I<0x9B, RawFrm, (outs), (ins), "wait", [], IIC_WAIT>;
676 def FXAM : I<0xD9, MRM_E5, (outs), (ins), "fxam", [], IIC_FXAM>;
677 def FLDL2T : I<0xD9, MRM_E9, (outs), (ins), "fldl2t", [], IIC_FLDL>;
678 def FLDL2E : I<0xD9, MRM_EA, (outs), (ins), "fldl2e", [], IIC_FLDL>;
679 def FLDPI : I<0xD9, MRM_EB, (outs), (ins), "fldpi", [], IIC_FLDL>;
680 def FLDLG2 : I<0xD9, MRM_EC, (outs), (ins), "fldlg2", [], IIC_FLDL>;
681 def FLDLN2 : I<0xD9, MRM_ED, (outs), (ins), "fldln2", [], IIC_FLDL>;
682 def F2XM1 : I<0xD9, MRM_F0, (outs), (ins), "f2xm1", [], IIC_F2XM1>;
683 def FYL2X : I<0xD9, MRM_F1, (outs), (ins), "fyl2x", [], IIC_FYL2X>;
684 def FPTAN : I<0xD9, MRM_F2, (outs), (ins), "fptan", [], IIC_FPTAN>;
685 def FPATAN : I<0xD9, MRM_F3, (outs), (ins), "fpatan", [], IIC_FPATAN>;
686 def FXTRACT : I<0xD9, MRM_F4, (outs), (ins), "fxtract", [], IIC_FXTRACT>;
687 def FPREM1 : I<0xD9, MRM_F5, (outs), (ins), "fprem1", [], IIC_FPREM1>;
688 def FDECSTP : I<0xD9, MRM_F6, (outs), (ins), "fdecstp", [], IIC_FPSTP>;
689 def FINCSTP : I<0xD9, MRM_F7, (outs), (ins), "fincstp", [], IIC_FPSTP>;
690 def FPREM : I<0xD9, MRM_F8, (outs), (ins), "fprem", [], IIC_FPREM>;
691 def FYL2XP1 : I<0xD9, MRM_F9, (outs), (ins), "fyl2xp1", [], IIC_FYL2XP1>;
692 def FSINCOS : I<0xD9, MRM_FB, (outs), (ins), "fsincos", [], IIC_FSINCOS>;
693 def FRNDINT : I<0xD9, MRM_FC, (outs), (ins), "frndint", [], IIC_FRNDINT>;
694 def FSCALE : I<0xD9, MRM_FD, (outs), (ins), "fscale", [], IIC_FSCALE>;
695 def FCOMPP : I<0xDE, MRM_D9, (outs), (ins), "fcompp", [], IIC_FCOMPP>;
696 } // Defs = [FPSW]
697
698 def FXSAVE : I<0xAE, MRM0m, (outs), (ins opaque512mem:$dst),
699              "fxsave\t$dst", [(int_x86_fxsave addr:$dst)], IIC_FXSAVE>, TB,
700              Requires<[HasFXSR]>;
701 def FXSAVE64 : RI<0xAE, MRM0m, (outs), (ins opaque512mem:$dst),
702                "fxsave64\t$dst", [(int_x86_fxsave64 addr:$dst)],
703                IIC_FXSAVE>, TB, Requires<[HasFXSR, In64BitMode]>;
704 def FXRSTOR : I<0xAE, MRM1m, (outs), (ins opaque512mem:$src),
705               "fxrstor\t$src", [(int_x86_fxrstor addr:$src)], IIC_FXRSTOR>,
706               TB, Requires<[HasFXSR]>;
707 def FXRSTOR64 : RI<0xAE, MRM1m, (outs), (ins opaque512mem:$src),
708                 "fxrstor64\t$src", [(int_x86_fxrstor64 addr:$src)],
709                 IIC_FXRSTOR>, TB, Requires<[HasFXSR, In64BitMode]>;
710 } // SchedRW
711
712 //===----------------------------------------------------------------------===//
713 // Non-Instruction Patterns
714 //===----------------------------------------------------------------------===//
715
716 // Required for RET of f32 / f64 / f80 values.
717 def : Pat<(X86fld addr:$src, f32), (LD_Fp32m addr:$src)>;
718 def : Pat<(X86fld addr:$src, f64), (LD_Fp64m addr:$src)>;
719 def : Pat<(X86fld addr:$src, f80), (LD_Fp80m addr:$src)>;
720
721 // Required for CALL which return f32 / f64 / f80 values.
722 def : Pat<(X86fst RFP32:$src, addr:$op, f32), (ST_Fp32m addr:$op, RFP32:$src)>;
723 def : Pat<(X86fst RFP64:$src, addr:$op, f32), (ST_Fp64m32 addr:$op,
724                                                           RFP64:$src)>;
725 def : Pat<(X86fst RFP64:$src, addr:$op, f64), (ST_Fp64m addr:$op, RFP64:$src)>;
726 def : Pat<(X86fst RFP80:$src, addr:$op, f32), (ST_Fp80m32 addr:$op,
727                                                           RFP80:$src)>;
728 def : Pat<(X86fst RFP80:$src, addr:$op, f64), (ST_Fp80m64 addr:$op,
729                                                           RFP80:$src)>;
730 def : Pat<(X86fst RFP80:$src, addr:$op, f80), (ST_FpP80m addr:$op,
731                                                          RFP80:$src)>;
732
733 // Floating point constant -0.0 and -1.0
734 def : Pat<(f32 fpimmneg0), (CHS_Fp32 (LD_Fp032))>, Requires<[FPStackf32]>;
735 def : Pat<(f32 fpimmneg1), (CHS_Fp32 (LD_Fp132))>, Requires<[FPStackf32]>;
736 def : Pat<(f64 fpimmneg0), (CHS_Fp64 (LD_Fp064))>, Requires<[FPStackf64]>;
737 def : Pat<(f64 fpimmneg1), (CHS_Fp64 (LD_Fp164))>, Requires<[FPStackf64]>;
738 def : Pat<(f80 fpimmneg0), (CHS_Fp80 (LD_Fp080))>;
739 def : Pat<(f80 fpimmneg1), (CHS_Fp80 (LD_Fp180))>;
740
741 // Used to conv. i64 to f64 since there isn't a SSE version.
742 def : Pat<(X86fildflag addr:$src, i64), (ILD_Fp64m64 addr:$src)>;
743
744 // FP extensions map onto simple pseudo-value conversions if they are to/from
745 // the FP stack.
746 def : Pat<(f64 (fpextend RFP32:$src)), (COPY_TO_REGCLASS RFP32:$src, RFP64)>,
747           Requires<[FPStackf32]>;
748 def : Pat<(f80 (fpextend RFP32:$src)), (COPY_TO_REGCLASS RFP32:$src, RFP80)>,
749            Requires<[FPStackf32]>;
750 def : Pat<(f80 (fpextend RFP64:$src)), (COPY_TO_REGCLASS RFP64:$src, RFP80)>,
751            Requires<[FPStackf64]>;
752
753 // FP truncations map onto simple pseudo-value conversions if they are to/from
754 // the FP stack.  We have validated that only value-preserving truncations make
755 // it through isel.
756 def : Pat<(f32 (fpround RFP64:$src)), (COPY_TO_REGCLASS RFP64:$src, RFP32)>,
757           Requires<[FPStackf32]>;
758 def : Pat<(f32 (fpround RFP80:$src)), (COPY_TO_REGCLASS RFP80:$src, RFP32)>,
759            Requires<[FPStackf32]>;
760 def : Pat<(f64 (fpround RFP80:$src)), (COPY_TO_REGCLASS RFP80:$src, RFP64)>,
761            Requires<[FPStackf64]>;