]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Target/X86/X86MCInstLower.cpp
Merge clang 7.0.1 and several follow-up changes
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Target / X86 / X86MCInstLower.cpp
1 //===-- X86MCInstLower.cpp - Convert X86 MachineInstr to an MCInst --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains code to lower X86 MachineInstrs to their corresponding
11 // MCInst records.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "InstPrinter/X86ATTInstPrinter.h"
16 #include "InstPrinter/X86InstComments.h"
17 #include "MCTargetDesc/X86BaseInfo.h"
18 #include "MCTargetDesc/X86TargetStreamer.h"
19 #include "Utils/X86ShuffleDecode.h"
20 #include "X86AsmPrinter.h"
21 #include "X86RegisterInfo.h"
22 #include "X86ShuffleDecodeConstantPool.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/ADT/SmallString.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/CodeGen/MachineConstantPool.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/StackMaps.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/GlobalValue.h"
33 #include "llvm/IR/Mangler.h"
34 #include "llvm/MC/MCAsmInfo.h"
35 #include "llvm/MC/MCCodeEmitter.h"
36 #include "llvm/MC/MCContext.h"
37 #include "llvm/MC/MCExpr.h"
38 #include "llvm/MC/MCFixup.h"
39 #include "llvm/MC/MCInst.h"
40 #include "llvm/MC/MCInstBuilder.h"
41 #include "llvm/MC/MCSection.h"
42 #include "llvm/MC/MCSectionELF.h"
43 #include "llvm/MC/MCStreamer.h"
44 #include "llvm/MC/MCSymbol.h"
45 #include "llvm/MC/MCSymbolELF.h"
46 #include "llvm/Target/TargetLoweringObjectFile.h"
47
48 using namespace llvm;
49
50 namespace {
51
52 /// X86MCInstLower - This class is used to lower an MachineInstr into an MCInst.
53 class X86MCInstLower {
54   MCContext &Ctx;
55   const MachineFunction &MF;
56   const TargetMachine &TM;
57   const MCAsmInfo &MAI;
58   X86AsmPrinter &AsmPrinter;
59
60 public:
61   X86MCInstLower(const MachineFunction &MF, X86AsmPrinter &asmprinter);
62
63   Optional<MCOperand> LowerMachineOperand(const MachineInstr *MI,
64                                           const MachineOperand &MO) const;
65   void Lower(const MachineInstr *MI, MCInst &OutMI) const;
66
67   MCSymbol *GetSymbolFromOperand(const MachineOperand &MO) const;
68   MCOperand LowerSymbolOperand(const MachineOperand &MO, MCSymbol *Sym) const;
69
70 private:
71   MachineModuleInfoMachO &getMachOMMI() const;
72 };
73
74 } // end anonymous namespace
75
76 // Emit a minimal sequence of nops spanning NumBytes bytes.
77 static void EmitNops(MCStreamer &OS, unsigned NumBytes, bool Is64Bit,
78                      const MCSubtargetInfo &STI);
79
80 void X86AsmPrinter::StackMapShadowTracker::count(MCInst &Inst,
81                                                  const MCSubtargetInfo &STI,
82                                                  MCCodeEmitter *CodeEmitter) {
83   if (InShadow) {
84     SmallString<256> Code;
85     SmallVector<MCFixup, 4> Fixups;
86     raw_svector_ostream VecOS(Code);
87     CodeEmitter->encodeInstruction(Inst, VecOS, Fixups, STI);
88     CurrentShadowSize += Code.size();
89     if (CurrentShadowSize >= RequiredShadowSize)
90       InShadow = false; // The shadow is big enough. Stop counting.
91   }
92 }
93
94 void X86AsmPrinter::StackMapShadowTracker::emitShadowPadding(
95     MCStreamer &OutStreamer, const MCSubtargetInfo &STI) {
96   if (InShadow && CurrentShadowSize < RequiredShadowSize) {
97     InShadow = false;
98     EmitNops(OutStreamer, RequiredShadowSize - CurrentShadowSize,
99              MF->getSubtarget<X86Subtarget>().is64Bit(), STI);
100   }
101 }
102
103 void X86AsmPrinter::EmitAndCountInstruction(MCInst &Inst) {
104   OutStreamer->EmitInstruction(Inst, getSubtargetInfo(),
105                                EnablePrintSchedInfo &&
106                                    !(Inst.getFlags() & X86::NO_SCHED_INFO));
107   SMShadowTracker.count(Inst, getSubtargetInfo(), CodeEmitter.get());
108 }
109
110 X86MCInstLower::X86MCInstLower(const MachineFunction &mf,
111                                X86AsmPrinter &asmprinter)
112     : Ctx(mf.getContext()), MF(mf), TM(mf.getTarget()), MAI(*TM.getMCAsmInfo()),
113       AsmPrinter(asmprinter) {}
114
115 MachineModuleInfoMachO &X86MCInstLower::getMachOMMI() const {
116   return MF.getMMI().getObjFileInfo<MachineModuleInfoMachO>();
117 }
118
119 /// GetSymbolFromOperand - Lower an MO_GlobalAddress or MO_ExternalSymbol
120 /// operand to an MCSymbol.
121 MCSymbol *X86MCInstLower::GetSymbolFromOperand(const MachineOperand &MO) const {
122   const DataLayout &DL = MF.getDataLayout();
123   assert((MO.isGlobal() || MO.isSymbol() || MO.isMBB()) &&
124          "Isn't a symbol reference");
125
126   MCSymbol *Sym = nullptr;
127   SmallString<128> Name;
128   StringRef Suffix;
129
130   switch (MO.getTargetFlags()) {
131   case X86II::MO_DLLIMPORT:
132     // Handle dllimport linkage.
133     Name += "__imp_";
134     break;
135   case X86II::MO_DARWIN_NONLAZY:
136   case X86II::MO_DARWIN_NONLAZY_PIC_BASE:
137     Suffix = "$non_lazy_ptr";
138     break;
139   }
140
141   if (!Suffix.empty())
142     Name += DL.getPrivateGlobalPrefix();
143
144   if (MO.isGlobal()) {
145     const GlobalValue *GV = MO.getGlobal();
146     AsmPrinter.getNameWithPrefix(Name, GV);
147   } else if (MO.isSymbol()) {
148     Mangler::getNameWithPrefix(Name, MO.getSymbolName(), DL);
149   } else if (MO.isMBB()) {
150     assert(Suffix.empty());
151     Sym = MO.getMBB()->getSymbol();
152   }
153
154   Name += Suffix;
155   if (!Sym)
156     Sym = Ctx.getOrCreateSymbol(Name);
157
158   // If the target flags on the operand changes the name of the symbol, do that
159   // before we return the symbol.
160   switch (MO.getTargetFlags()) {
161   default:
162     break;
163   case X86II::MO_DARWIN_NONLAZY:
164   case X86II::MO_DARWIN_NONLAZY_PIC_BASE: {
165     MachineModuleInfoImpl::StubValueTy &StubSym =
166         getMachOMMI().getGVStubEntry(Sym);
167     if (!StubSym.getPointer()) {
168       assert(MO.isGlobal() && "Extern symbol not handled yet");
169       StubSym = MachineModuleInfoImpl::StubValueTy(
170           AsmPrinter.getSymbol(MO.getGlobal()),
171           !MO.getGlobal()->hasInternalLinkage());
172     }
173     break;
174   }
175   }
176
177   return Sym;
178 }
179
180 MCOperand X86MCInstLower::LowerSymbolOperand(const MachineOperand &MO,
181                                              MCSymbol *Sym) const {
182   // FIXME: We would like an efficient form for this, so we don't have to do a
183   // lot of extra uniquing.
184   const MCExpr *Expr = nullptr;
185   MCSymbolRefExpr::VariantKind RefKind = MCSymbolRefExpr::VK_None;
186
187   switch (MO.getTargetFlags()) {
188   default:
189     llvm_unreachable("Unknown target flag on GV operand");
190   case X86II::MO_NO_FLAG: // No flag.
191   // These affect the name of the symbol, not any suffix.
192   case X86II::MO_DARWIN_NONLAZY:
193   case X86II::MO_DLLIMPORT:
194     break;
195
196   case X86II::MO_TLVP:
197     RefKind = MCSymbolRefExpr::VK_TLVP;
198     break;
199   case X86II::MO_TLVP_PIC_BASE:
200     Expr = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_TLVP, Ctx);
201     // Subtract the pic base.
202     Expr = MCBinaryExpr::createSub(
203         Expr, MCSymbolRefExpr::create(MF.getPICBaseSymbol(), Ctx), Ctx);
204     break;
205   case X86II::MO_SECREL:
206     RefKind = MCSymbolRefExpr::VK_SECREL;
207     break;
208   case X86II::MO_TLSGD:
209     RefKind = MCSymbolRefExpr::VK_TLSGD;
210     break;
211   case X86II::MO_TLSLD:
212     RefKind = MCSymbolRefExpr::VK_TLSLD;
213     break;
214   case X86II::MO_TLSLDM:
215     RefKind = MCSymbolRefExpr::VK_TLSLDM;
216     break;
217   case X86II::MO_GOTTPOFF:
218     RefKind = MCSymbolRefExpr::VK_GOTTPOFF;
219     break;
220   case X86II::MO_INDNTPOFF:
221     RefKind = MCSymbolRefExpr::VK_INDNTPOFF;
222     break;
223   case X86II::MO_TPOFF:
224     RefKind = MCSymbolRefExpr::VK_TPOFF;
225     break;
226   case X86II::MO_DTPOFF:
227     RefKind = MCSymbolRefExpr::VK_DTPOFF;
228     break;
229   case X86II::MO_NTPOFF:
230     RefKind = MCSymbolRefExpr::VK_NTPOFF;
231     break;
232   case X86II::MO_GOTNTPOFF:
233     RefKind = MCSymbolRefExpr::VK_GOTNTPOFF;
234     break;
235   case X86II::MO_GOTPCREL:
236     RefKind = MCSymbolRefExpr::VK_GOTPCREL;
237     break;
238   case X86II::MO_GOT:
239     RefKind = MCSymbolRefExpr::VK_GOT;
240     break;
241   case X86II::MO_GOTOFF:
242     RefKind = MCSymbolRefExpr::VK_GOTOFF;
243     break;
244   case X86II::MO_PLT:
245     RefKind = MCSymbolRefExpr::VK_PLT;
246     break;
247   case X86II::MO_ABS8:
248     RefKind = MCSymbolRefExpr::VK_X86_ABS8;
249     break;
250   case X86II::MO_PIC_BASE_OFFSET:
251   case X86II::MO_DARWIN_NONLAZY_PIC_BASE:
252     Expr = MCSymbolRefExpr::create(Sym, Ctx);
253     // Subtract the pic base.
254     Expr = MCBinaryExpr::createSub(
255         Expr, MCSymbolRefExpr::create(MF.getPICBaseSymbol(), Ctx), Ctx);
256     if (MO.isJTI()) {
257       assert(MAI.doesSetDirectiveSuppressReloc());
258       // If .set directive is supported, use it to reduce the number of
259       // relocations the assembler will generate for differences between
260       // local labels. This is only safe when the symbols are in the same
261       // section so we are restricting it to jumptable references.
262       MCSymbol *Label = Ctx.createTempSymbol();
263       AsmPrinter.OutStreamer->EmitAssignment(Label, Expr);
264       Expr = MCSymbolRefExpr::create(Label, Ctx);
265     }
266     break;
267   }
268
269   if (!Expr)
270     Expr = MCSymbolRefExpr::create(Sym, RefKind, Ctx);
271
272   if (!MO.isJTI() && !MO.isMBB() && MO.getOffset())
273     Expr = MCBinaryExpr::createAdd(
274         Expr, MCConstantExpr::create(MO.getOffset(), Ctx), Ctx);
275   return MCOperand::createExpr(Expr);
276 }
277
278 /// Simplify FOO $imm, %{al,ax,eax,rax} to FOO $imm, for instruction with
279 /// a short fixed-register form.
280 static void SimplifyShortImmForm(MCInst &Inst, unsigned Opcode) {
281   unsigned ImmOp = Inst.getNumOperands() - 1;
282   assert(Inst.getOperand(0).isReg() &&
283          (Inst.getOperand(ImmOp).isImm() || Inst.getOperand(ImmOp).isExpr()) &&
284          ((Inst.getNumOperands() == 3 && Inst.getOperand(1).isReg() &&
285            Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) ||
286           Inst.getNumOperands() == 2) &&
287          "Unexpected instruction!");
288
289   // Check whether the destination register can be fixed.
290   unsigned Reg = Inst.getOperand(0).getReg();
291   if (Reg != X86::AL && Reg != X86::AX && Reg != X86::EAX && Reg != X86::RAX)
292     return;
293
294   // If so, rewrite the instruction.
295   MCOperand Saved = Inst.getOperand(ImmOp);
296   Inst = MCInst();
297   Inst.setOpcode(Opcode);
298   Inst.addOperand(Saved);
299 }
300
301 /// If a movsx instruction has a shorter encoding for the used register
302 /// simplify the instruction to use it instead.
303 static void SimplifyMOVSX(MCInst &Inst) {
304   unsigned NewOpcode = 0;
305   unsigned Op0 = Inst.getOperand(0).getReg(), Op1 = Inst.getOperand(1).getReg();
306   switch (Inst.getOpcode()) {
307   default:
308     llvm_unreachable("Unexpected instruction!");
309   case X86::MOVSX16rr8: // movsbw %al, %ax   --> cbtw
310     if (Op0 == X86::AX && Op1 == X86::AL)
311       NewOpcode = X86::CBW;
312     break;
313   case X86::MOVSX32rr16: // movswl %ax, %eax  --> cwtl
314     if (Op0 == X86::EAX && Op1 == X86::AX)
315       NewOpcode = X86::CWDE;
316     break;
317   case X86::MOVSX64rr32: // movslq %eax, %rax --> cltq
318     if (Op0 == X86::RAX && Op1 == X86::EAX)
319       NewOpcode = X86::CDQE;
320     break;
321   }
322
323   if (NewOpcode != 0) {
324     Inst = MCInst();
325     Inst.setOpcode(NewOpcode);
326   }
327 }
328
329 /// Simplify things like MOV32rm to MOV32o32a.
330 static void SimplifyShortMoveForm(X86AsmPrinter &Printer, MCInst &Inst,
331                                   unsigned Opcode) {
332   // Don't make these simplifications in 64-bit mode; other assemblers don't
333   // perform them because they make the code larger.
334   if (Printer.getSubtarget().is64Bit())
335     return;
336
337   bool IsStore = Inst.getOperand(0).isReg() && Inst.getOperand(1).isReg();
338   unsigned AddrBase = IsStore;
339   unsigned RegOp = IsStore ? 0 : 5;
340   unsigned AddrOp = AddrBase + 3;
341   assert(
342       Inst.getNumOperands() == 6 && Inst.getOperand(RegOp).isReg() &&
343       Inst.getOperand(AddrBase + X86::AddrBaseReg).isReg() &&
344       Inst.getOperand(AddrBase + X86::AddrScaleAmt).isImm() &&
345       Inst.getOperand(AddrBase + X86::AddrIndexReg).isReg() &&
346       Inst.getOperand(AddrBase + X86::AddrSegmentReg).isReg() &&
347       (Inst.getOperand(AddrOp).isExpr() || Inst.getOperand(AddrOp).isImm()) &&
348       "Unexpected instruction!");
349
350   // Check whether the destination register can be fixed.
351   unsigned Reg = Inst.getOperand(RegOp).getReg();
352   if (Reg != X86::AL && Reg != X86::AX && Reg != X86::EAX && Reg != X86::RAX)
353     return;
354
355   // Check whether this is an absolute address.
356   // FIXME: We know TLVP symbol refs aren't, but there should be a better way
357   // to do this here.
358   bool Absolute = true;
359   if (Inst.getOperand(AddrOp).isExpr()) {
360     const MCExpr *MCE = Inst.getOperand(AddrOp).getExpr();
361     if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(MCE))
362       if (SRE->getKind() == MCSymbolRefExpr::VK_TLVP)
363         Absolute = false;
364   }
365
366   if (Absolute &&
367       (Inst.getOperand(AddrBase + X86::AddrBaseReg).getReg() != 0 ||
368        Inst.getOperand(AddrBase + X86::AddrScaleAmt).getImm() != 1 ||
369        Inst.getOperand(AddrBase + X86::AddrIndexReg).getReg() != 0))
370     return;
371
372   // If so, rewrite the instruction.
373   MCOperand Saved = Inst.getOperand(AddrOp);
374   MCOperand Seg = Inst.getOperand(AddrBase + X86::AddrSegmentReg);
375   Inst = MCInst();
376   Inst.setOpcode(Opcode);
377   Inst.addOperand(Saved);
378   Inst.addOperand(Seg);
379 }
380
381 static unsigned getRetOpcode(const X86Subtarget &Subtarget) {
382   return Subtarget.is64Bit() ? X86::RETQ : X86::RETL;
383 }
384
385 Optional<MCOperand>
386 X86MCInstLower::LowerMachineOperand(const MachineInstr *MI,
387                                     const MachineOperand &MO) const {
388   switch (MO.getType()) {
389   default:
390     MI->print(errs());
391     llvm_unreachable("unknown operand type");
392   case MachineOperand::MO_Register:
393     // Ignore all implicit register operands.
394     if (MO.isImplicit())
395       return None;
396     return MCOperand::createReg(MO.getReg());
397   case MachineOperand::MO_Immediate:
398     return MCOperand::createImm(MO.getImm());
399   case MachineOperand::MO_MachineBasicBlock:
400   case MachineOperand::MO_GlobalAddress:
401   case MachineOperand::MO_ExternalSymbol:
402     return LowerSymbolOperand(MO, GetSymbolFromOperand(MO));
403   case MachineOperand::MO_MCSymbol:
404     return LowerSymbolOperand(MO, MO.getMCSymbol());
405   case MachineOperand::MO_JumpTableIndex:
406     return LowerSymbolOperand(MO, AsmPrinter.GetJTISymbol(MO.getIndex()));
407   case MachineOperand::MO_ConstantPoolIndex:
408     return LowerSymbolOperand(MO, AsmPrinter.GetCPISymbol(MO.getIndex()));
409   case MachineOperand::MO_BlockAddress:
410     return LowerSymbolOperand(
411         MO, AsmPrinter.GetBlockAddressSymbol(MO.getBlockAddress()));
412   case MachineOperand::MO_RegisterMask:
413     // Ignore call clobbers.
414     return None;
415   }
416 }
417
418 void X86MCInstLower::Lower(const MachineInstr *MI, MCInst &OutMI) const {
419   OutMI.setOpcode(MI->getOpcode());
420
421   for (const MachineOperand &MO : MI->operands())
422     if (auto MaybeMCOp = LowerMachineOperand(MI, MO))
423       OutMI.addOperand(MaybeMCOp.getValue());
424
425   // Handle a few special cases to eliminate operand modifiers.
426 ReSimplify:
427   switch (OutMI.getOpcode()) {
428   case X86::LEA64_32r:
429   case X86::LEA64r:
430   case X86::LEA16r:
431   case X86::LEA32r:
432     // LEA should have a segment register, but it must be empty.
433     assert(OutMI.getNumOperands() == 1 + X86::AddrNumOperands &&
434            "Unexpected # of LEA operands");
435     assert(OutMI.getOperand(1 + X86::AddrSegmentReg).getReg() == 0 &&
436            "LEA has segment specified!");
437     break;
438
439   // Commute operands to get a smaller encoding by using VEX.R instead of VEX.B
440   // if one of the registers is extended, but other isn't.
441   case X86::VMOVZPQILo2PQIrr:
442   case X86::VMOVAPDrr:
443   case X86::VMOVAPDYrr:
444   case X86::VMOVAPSrr:
445   case X86::VMOVAPSYrr:
446   case X86::VMOVDQArr:
447   case X86::VMOVDQAYrr:
448   case X86::VMOVDQUrr:
449   case X86::VMOVDQUYrr:
450   case X86::VMOVUPDrr:
451   case X86::VMOVUPDYrr:
452   case X86::VMOVUPSrr:
453   case X86::VMOVUPSYrr: {
454     if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(0).getReg()) &&
455         X86II::isX86_64ExtendedReg(OutMI.getOperand(1).getReg())) {
456       unsigned NewOpc;
457       switch (OutMI.getOpcode()) {
458       default: llvm_unreachable("Invalid opcode");
459       case X86::VMOVZPQILo2PQIrr: NewOpc = X86::VMOVPQI2QIrr;   break;
460       case X86::VMOVAPDrr:        NewOpc = X86::VMOVAPDrr_REV;  break;
461       case X86::VMOVAPDYrr:       NewOpc = X86::VMOVAPDYrr_REV; break;
462       case X86::VMOVAPSrr:        NewOpc = X86::VMOVAPSrr_REV;  break;
463       case X86::VMOVAPSYrr:       NewOpc = X86::VMOVAPSYrr_REV; break;
464       case X86::VMOVDQArr:        NewOpc = X86::VMOVDQArr_REV;  break;
465       case X86::VMOVDQAYrr:       NewOpc = X86::VMOVDQAYrr_REV; break;
466       case X86::VMOVDQUrr:        NewOpc = X86::VMOVDQUrr_REV;  break;
467       case X86::VMOVDQUYrr:       NewOpc = X86::VMOVDQUYrr_REV; break;
468       case X86::VMOVUPDrr:        NewOpc = X86::VMOVUPDrr_REV;  break;
469       case X86::VMOVUPDYrr:       NewOpc = X86::VMOVUPDYrr_REV; break;
470       case X86::VMOVUPSrr:        NewOpc = X86::VMOVUPSrr_REV;  break;
471       case X86::VMOVUPSYrr:       NewOpc = X86::VMOVUPSYrr_REV; break;
472       }
473       OutMI.setOpcode(NewOpc);
474     }
475     break;
476   }
477   case X86::VMOVSDrr:
478   case X86::VMOVSSrr: {
479     if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(0).getReg()) &&
480         X86II::isX86_64ExtendedReg(OutMI.getOperand(2).getReg())) {
481       unsigned NewOpc;
482       switch (OutMI.getOpcode()) {
483       default: llvm_unreachable("Invalid opcode");
484       case X86::VMOVSDrr: NewOpc = X86::VMOVSDrr_REV; break;
485       case X86::VMOVSSrr: NewOpc = X86::VMOVSSrr_REV; break;
486       }
487       OutMI.setOpcode(NewOpc);
488     }
489     break;
490   }
491
492   // TAILJMPr64, CALL64r, CALL64pcrel32 - These instructions have register
493   // inputs modeled as normal uses instead of implicit uses.  As such, truncate
494   // off all but the first operand (the callee).  FIXME: Change isel.
495   case X86::TAILJMPr64:
496   case X86::TAILJMPr64_REX:
497   case X86::CALL64r:
498   case X86::CALL64pcrel32: {
499     unsigned Opcode = OutMI.getOpcode();
500     MCOperand Saved = OutMI.getOperand(0);
501     OutMI = MCInst();
502     OutMI.setOpcode(Opcode);
503     OutMI.addOperand(Saved);
504     break;
505   }
506
507   case X86::EH_RETURN:
508   case X86::EH_RETURN64: {
509     OutMI = MCInst();
510     OutMI.setOpcode(getRetOpcode(AsmPrinter.getSubtarget()));
511     break;
512   }
513
514   case X86::CLEANUPRET: {
515     // Replace CATCHRET with the appropriate RET.
516     OutMI = MCInst();
517     OutMI.setOpcode(getRetOpcode(AsmPrinter.getSubtarget()));
518     break;
519   }
520
521   case X86::CATCHRET: {
522     // Replace CATCHRET with the appropriate RET.
523     const X86Subtarget &Subtarget = AsmPrinter.getSubtarget();
524     unsigned ReturnReg = Subtarget.is64Bit() ? X86::RAX : X86::EAX;
525     OutMI = MCInst();
526     OutMI.setOpcode(getRetOpcode(Subtarget));
527     OutMI.addOperand(MCOperand::createReg(ReturnReg));
528     break;
529   }
530
531     // TAILJMPd, TAILJMPd64, TailJMPd_cc - Lower to the correct jump
532     // instruction.
533     {
534       unsigned Opcode;
535     case X86::TAILJMPr:
536       Opcode = X86::JMP32r;
537       goto SetTailJmpOpcode;
538     case X86::TAILJMPd:
539     case X86::TAILJMPd64:
540       Opcode = X86::JMP_1;
541       goto SetTailJmpOpcode;
542     case X86::TAILJMPd_CC:
543     case X86::TAILJMPd64_CC:
544       Opcode = X86::GetCondBranchFromCond(
545           static_cast<X86::CondCode>(MI->getOperand(1).getImm()));
546       goto SetTailJmpOpcode;
547
548     SetTailJmpOpcode:
549       MCOperand Saved = OutMI.getOperand(0);
550       OutMI = MCInst();
551       OutMI.setOpcode(Opcode);
552       OutMI.addOperand(Saved);
553       break;
554     }
555
556   case X86::DEC16r:
557   case X86::DEC32r:
558   case X86::INC16r:
559   case X86::INC32r:
560     // If we aren't in 64-bit mode we can use the 1-byte inc/dec instructions.
561     if (!AsmPrinter.getSubtarget().is64Bit()) {
562       unsigned Opcode;
563       switch (OutMI.getOpcode()) {
564       default: llvm_unreachable("Invalid opcode");
565       case X86::DEC16r: Opcode = X86::DEC16r_alt; break;
566       case X86::DEC32r: Opcode = X86::DEC32r_alt; break;
567       case X86::INC16r: Opcode = X86::INC16r_alt; break;
568       case X86::INC32r: Opcode = X86::INC32r_alt; break;
569       }
570       OutMI.setOpcode(Opcode);
571     }
572     break;
573
574   // These are pseudo-ops for OR to help with the OR->ADD transformation.  We do
575   // this with an ugly goto in case the resultant OR uses EAX and needs the
576   // short form.
577   case X86::ADD16rr_DB:   OutMI.setOpcode(X86::OR16rr);   goto ReSimplify;
578   case X86::ADD32rr_DB:   OutMI.setOpcode(X86::OR32rr);   goto ReSimplify;
579   case X86::ADD64rr_DB:   OutMI.setOpcode(X86::OR64rr);   goto ReSimplify;
580   case X86::ADD16ri_DB:   OutMI.setOpcode(X86::OR16ri);   goto ReSimplify;
581   case X86::ADD32ri_DB:   OutMI.setOpcode(X86::OR32ri);   goto ReSimplify;
582   case X86::ADD64ri32_DB: OutMI.setOpcode(X86::OR64ri32); goto ReSimplify;
583   case X86::ADD16ri8_DB:  OutMI.setOpcode(X86::OR16ri8);  goto ReSimplify;
584   case X86::ADD32ri8_DB:  OutMI.setOpcode(X86::OR32ri8);  goto ReSimplify;
585   case X86::ADD64ri8_DB:  OutMI.setOpcode(X86::OR64ri8);  goto ReSimplify;
586
587   // Atomic load and store require a separate pseudo-inst because Acquire
588   // implies mayStore and Release implies mayLoad; fix these to regular MOV
589   // instructions here
590   case X86::ACQUIRE_MOV8rm:    OutMI.setOpcode(X86::MOV8rm);    goto ReSimplify;
591   case X86::ACQUIRE_MOV16rm:   OutMI.setOpcode(X86::MOV16rm);   goto ReSimplify;
592   case X86::ACQUIRE_MOV32rm:   OutMI.setOpcode(X86::MOV32rm);   goto ReSimplify;
593   case X86::ACQUIRE_MOV64rm:   OutMI.setOpcode(X86::MOV64rm);   goto ReSimplify;
594   case X86::RELEASE_MOV8mr:    OutMI.setOpcode(X86::MOV8mr);    goto ReSimplify;
595   case X86::RELEASE_MOV16mr:   OutMI.setOpcode(X86::MOV16mr);   goto ReSimplify;
596   case X86::RELEASE_MOV32mr:   OutMI.setOpcode(X86::MOV32mr);   goto ReSimplify;
597   case X86::RELEASE_MOV64mr:   OutMI.setOpcode(X86::MOV64mr);   goto ReSimplify;
598   case X86::RELEASE_MOV8mi:    OutMI.setOpcode(X86::MOV8mi);    goto ReSimplify;
599   case X86::RELEASE_MOV16mi:   OutMI.setOpcode(X86::MOV16mi);   goto ReSimplify;
600   case X86::RELEASE_MOV32mi:   OutMI.setOpcode(X86::MOV32mi);   goto ReSimplify;
601   case X86::RELEASE_MOV64mi32: OutMI.setOpcode(X86::MOV64mi32); goto ReSimplify;
602   case X86::RELEASE_ADD8mi:    OutMI.setOpcode(X86::ADD8mi);    goto ReSimplify;
603   case X86::RELEASE_ADD8mr:    OutMI.setOpcode(X86::ADD8mr);    goto ReSimplify;
604   case X86::RELEASE_ADD32mi:   OutMI.setOpcode(X86::ADD32mi);   goto ReSimplify;
605   case X86::RELEASE_ADD32mr:   OutMI.setOpcode(X86::ADD32mr);   goto ReSimplify;
606   case X86::RELEASE_ADD64mi32: OutMI.setOpcode(X86::ADD64mi32); goto ReSimplify;
607   case X86::RELEASE_ADD64mr:   OutMI.setOpcode(X86::ADD64mr);   goto ReSimplify;
608   case X86::RELEASE_AND8mi:    OutMI.setOpcode(X86::AND8mi);    goto ReSimplify;
609   case X86::RELEASE_AND8mr:    OutMI.setOpcode(X86::AND8mr);    goto ReSimplify;
610   case X86::RELEASE_AND32mi:   OutMI.setOpcode(X86::AND32mi);   goto ReSimplify;
611   case X86::RELEASE_AND32mr:   OutMI.setOpcode(X86::AND32mr);   goto ReSimplify;
612   case X86::RELEASE_AND64mi32: OutMI.setOpcode(X86::AND64mi32); goto ReSimplify;
613   case X86::RELEASE_AND64mr:   OutMI.setOpcode(X86::AND64mr);   goto ReSimplify;
614   case X86::RELEASE_OR8mi:     OutMI.setOpcode(X86::OR8mi);     goto ReSimplify;
615   case X86::RELEASE_OR8mr:     OutMI.setOpcode(X86::OR8mr);     goto ReSimplify;
616   case X86::RELEASE_OR32mi:    OutMI.setOpcode(X86::OR32mi);    goto ReSimplify;
617   case X86::RELEASE_OR32mr:    OutMI.setOpcode(X86::OR32mr);    goto ReSimplify;
618   case X86::RELEASE_OR64mi32:  OutMI.setOpcode(X86::OR64mi32);  goto ReSimplify;
619   case X86::RELEASE_OR64mr:    OutMI.setOpcode(X86::OR64mr);    goto ReSimplify;
620   case X86::RELEASE_XOR8mi:    OutMI.setOpcode(X86::XOR8mi);    goto ReSimplify;
621   case X86::RELEASE_XOR8mr:    OutMI.setOpcode(X86::XOR8mr);    goto ReSimplify;
622   case X86::RELEASE_XOR32mi:   OutMI.setOpcode(X86::XOR32mi);   goto ReSimplify;
623   case X86::RELEASE_XOR32mr:   OutMI.setOpcode(X86::XOR32mr);   goto ReSimplify;
624   case X86::RELEASE_XOR64mi32: OutMI.setOpcode(X86::XOR64mi32); goto ReSimplify;
625   case X86::RELEASE_XOR64mr:   OutMI.setOpcode(X86::XOR64mr);   goto ReSimplify;
626   case X86::RELEASE_INC8m:     OutMI.setOpcode(X86::INC8m);     goto ReSimplify;
627   case X86::RELEASE_INC16m:    OutMI.setOpcode(X86::INC16m);    goto ReSimplify;
628   case X86::RELEASE_INC32m:    OutMI.setOpcode(X86::INC32m);    goto ReSimplify;
629   case X86::RELEASE_INC64m:    OutMI.setOpcode(X86::INC64m);    goto ReSimplify;
630   case X86::RELEASE_DEC8m:     OutMI.setOpcode(X86::DEC8m);     goto ReSimplify;
631   case X86::RELEASE_DEC16m:    OutMI.setOpcode(X86::DEC16m);    goto ReSimplify;
632   case X86::RELEASE_DEC32m:    OutMI.setOpcode(X86::DEC32m);    goto ReSimplify;
633   case X86::RELEASE_DEC64m:    OutMI.setOpcode(X86::DEC64m);    goto ReSimplify;
634
635   // We don't currently select the correct instruction form for instructions
636   // which have a short %eax, etc. form. Handle this by custom lowering, for
637   // now.
638   //
639   // Note, we are currently not handling the following instructions:
640   // MOV64ao8, MOV64o8a
641   // XCHG16ar, XCHG32ar, XCHG64ar
642   case X86::MOV8mr_NOREX:
643   case X86::MOV8mr:
644   case X86::MOV8rm_NOREX:
645   case X86::MOV8rm:
646   case X86::MOV16mr:
647   case X86::MOV16rm:
648   case X86::MOV32mr:
649   case X86::MOV32rm: {
650     unsigned NewOpc;
651     switch (OutMI.getOpcode()) {
652     default: llvm_unreachable("Invalid opcode");
653     case X86::MOV8mr_NOREX:
654     case X86::MOV8mr:  NewOpc = X86::MOV8o32a; break;
655     case X86::MOV8rm_NOREX:
656     case X86::MOV8rm:  NewOpc = X86::MOV8ao32; break;
657     case X86::MOV16mr: NewOpc = X86::MOV16o32a; break;
658     case X86::MOV16rm: NewOpc = X86::MOV16ao32; break;
659     case X86::MOV32mr: NewOpc = X86::MOV32o32a; break;
660     case X86::MOV32rm: NewOpc = X86::MOV32ao32; break;
661     }
662     SimplifyShortMoveForm(AsmPrinter, OutMI, NewOpc);
663     break;
664   }
665
666   case X86::ADC8ri: case X86::ADC16ri: case X86::ADC32ri: case X86::ADC64ri32:
667   case X86::ADD8ri: case X86::ADD16ri: case X86::ADD32ri: case X86::ADD64ri32:
668   case X86::AND8ri: case X86::AND16ri: case X86::AND32ri: case X86::AND64ri32:
669   case X86::CMP8ri: case X86::CMP16ri: case X86::CMP32ri: case X86::CMP64ri32:
670   case X86::OR8ri:  case X86::OR16ri:  case X86::OR32ri:  case X86::OR64ri32:
671   case X86::SBB8ri: case X86::SBB16ri: case X86::SBB32ri: case X86::SBB64ri32:
672   case X86::SUB8ri: case X86::SUB16ri: case X86::SUB32ri: case X86::SUB64ri32:
673   case X86::TEST8ri:case X86::TEST16ri:case X86::TEST32ri:case X86::TEST64ri32:
674   case X86::XOR8ri: case X86::XOR16ri: case X86::XOR32ri: case X86::XOR64ri32: {
675     unsigned NewOpc;
676     switch (OutMI.getOpcode()) {
677     default: llvm_unreachable("Invalid opcode");
678     case X86::ADC8ri:     NewOpc = X86::ADC8i8;    break;
679     case X86::ADC16ri:    NewOpc = X86::ADC16i16;  break;
680     case X86::ADC32ri:    NewOpc = X86::ADC32i32;  break;
681     case X86::ADC64ri32:  NewOpc = X86::ADC64i32;  break;
682     case X86::ADD8ri:     NewOpc = X86::ADD8i8;    break;
683     case X86::ADD16ri:    NewOpc = X86::ADD16i16;  break;
684     case X86::ADD32ri:    NewOpc = X86::ADD32i32;  break;
685     case X86::ADD64ri32:  NewOpc = X86::ADD64i32;  break;
686     case X86::AND8ri:     NewOpc = X86::AND8i8;    break;
687     case X86::AND16ri:    NewOpc = X86::AND16i16;  break;
688     case X86::AND32ri:    NewOpc = X86::AND32i32;  break;
689     case X86::AND64ri32:  NewOpc = X86::AND64i32;  break;
690     case X86::CMP8ri:     NewOpc = X86::CMP8i8;    break;
691     case X86::CMP16ri:    NewOpc = X86::CMP16i16;  break;
692     case X86::CMP32ri:    NewOpc = X86::CMP32i32;  break;
693     case X86::CMP64ri32:  NewOpc = X86::CMP64i32;  break;
694     case X86::OR8ri:      NewOpc = X86::OR8i8;     break;
695     case X86::OR16ri:     NewOpc = X86::OR16i16;   break;
696     case X86::OR32ri:     NewOpc = X86::OR32i32;   break;
697     case X86::OR64ri32:   NewOpc = X86::OR64i32;   break;
698     case X86::SBB8ri:     NewOpc = X86::SBB8i8;    break;
699     case X86::SBB16ri:    NewOpc = X86::SBB16i16;  break;
700     case X86::SBB32ri:    NewOpc = X86::SBB32i32;  break;
701     case X86::SBB64ri32:  NewOpc = X86::SBB64i32;  break;
702     case X86::SUB8ri:     NewOpc = X86::SUB8i8;    break;
703     case X86::SUB16ri:    NewOpc = X86::SUB16i16;  break;
704     case X86::SUB32ri:    NewOpc = X86::SUB32i32;  break;
705     case X86::SUB64ri32:  NewOpc = X86::SUB64i32;  break;
706     case X86::TEST8ri:    NewOpc = X86::TEST8i8;   break;
707     case X86::TEST16ri:   NewOpc = X86::TEST16i16; break;
708     case X86::TEST32ri:   NewOpc = X86::TEST32i32; break;
709     case X86::TEST64ri32: NewOpc = X86::TEST64i32; break;
710     case X86::XOR8ri:     NewOpc = X86::XOR8i8;    break;
711     case X86::XOR16ri:    NewOpc = X86::XOR16i16;  break;
712     case X86::XOR32ri:    NewOpc = X86::XOR32i32;  break;
713     case X86::XOR64ri32:  NewOpc = X86::XOR64i32;  break;
714     }
715     SimplifyShortImmForm(OutMI, NewOpc);
716     break;
717   }
718
719   // Try to shrink some forms of movsx.
720   case X86::MOVSX16rr8:
721   case X86::MOVSX32rr16:
722   case X86::MOVSX64rr32:
723     SimplifyMOVSX(OutMI);
724     break;
725   }
726 }
727
728 void X86AsmPrinter::LowerTlsAddr(X86MCInstLower &MCInstLowering,
729                                  const MachineInstr &MI) {
730
731   bool is64Bits = MI.getOpcode() == X86::TLS_addr64 ||
732                   MI.getOpcode() == X86::TLS_base_addr64;
733
734   bool needsPadding = MI.getOpcode() == X86::TLS_addr64;
735
736   MCContext &context = OutStreamer->getContext();
737
738   if (needsPadding)
739     EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));
740
741   MCSymbolRefExpr::VariantKind SRVK;
742   switch (MI.getOpcode()) {
743   case X86::TLS_addr32:
744   case X86::TLS_addr64:
745     SRVK = MCSymbolRefExpr::VK_TLSGD;
746     break;
747   case X86::TLS_base_addr32:
748     SRVK = MCSymbolRefExpr::VK_TLSLDM;
749     break;
750   case X86::TLS_base_addr64:
751     SRVK = MCSymbolRefExpr::VK_TLSLD;
752     break;
753   default:
754     llvm_unreachable("unexpected opcode");
755   }
756
757   MCSymbol *sym = MCInstLowering.GetSymbolFromOperand(MI.getOperand(3));
758   const MCSymbolRefExpr *symRef = MCSymbolRefExpr::create(sym, SRVK, context);
759
760   MCInst LEA;
761   if (is64Bits) {
762     LEA.setOpcode(X86::LEA64r);
763     LEA.addOperand(MCOperand::createReg(X86::RDI)); // dest
764     LEA.addOperand(MCOperand::createReg(X86::RIP)); // base
765     LEA.addOperand(MCOperand::createImm(1));        // scale
766     LEA.addOperand(MCOperand::createReg(0));        // index
767     LEA.addOperand(MCOperand::createExpr(symRef));  // disp
768     LEA.addOperand(MCOperand::createReg(0));        // seg
769   } else if (SRVK == MCSymbolRefExpr::VK_TLSLDM) {
770     LEA.setOpcode(X86::LEA32r);
771     LEA.addOperand(MCOperand::createReg(X86::EAX)); // dest
772     LEA.addOperand(MCOperand::createReg(X86::EBX)); // base
773     LEA.addOperand(MCOperand::createImm(1));        // scale
774     LEA.addOperand(MCOperand::createReg(0));        // index
775     LEA.addOperand(MCOperand::createExpr(symRef));  // disp
776     LEA.addOperand(MCOperand::createReg(0));        // seg
777   } else {
778     LEA.setOpcode(X86::LEA32r);
779     LEA.addOperand(MCOperand::createReg(X86::EAX)); // dest
780     LEA.addOperand(MCOperand::createReg(0));        // base
781     LEA.addOperand(MCOperand::createImm(1));        // scale
782     LEA.addOperand(MCOperand::createReg(X86::EBX)); // index
783     LEA.addOperand(MCOperand::createExpr(symRef));  // disp
784     LEA.addOperand(MCOperand::createReg(0));        // seg
785   }
786   EmitAndCountInstruction(LEA);
787
788   if (needsPadding) {
789     EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));
790     EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));
791     EmitAndCountInstruction(MCInstBuilder(X86::REX64_PREFIX));
792   }
793
794   StringRef name = is64Bits ? "__tls_get_addr" : "___tls_get_addr";
795   MCSymbol *tlsGetAddr = context.getOrCreateSymbol(name);
796   const MCSymbolRefExpr *tlsRef =
797       MCSymbolRefExpr::create(tlsGetAddr, MCSymbolRefExpr::VK_PLT, context);
798
799   EmitAndCountInstruction(
800       MCInstBuilder(is64Bits ? X86::CALL64pcrel32 : X86::CALLpcrel32)
801           .addExpr(tlsRef));
802 }
803
804 /// Emit the largest nop instruction smaller than or equal to \p NumBytes
805 /// bytes.  Return the size of nop emitted.
806 static unsigned EmitNop(MCStreamer &OS, unsigned NumBytes, bool Is64Bit,
807                         const MCSubtargetInfo &STI) {
808   // This works only for 64bit. For 32bit we have to do additional checking if
809   // the CPU supports multi-byte nops.
810   assert(Is64Bit && "EmitNops only supports X86-64");
811
812   unsigned NopSize;
813   unsigned Opc, BaseReg, ScaleVal, IndexReg, Displacement, SegmentReg;
814   Opc = IndexReg = Displacement = SegmentReg = 0;
815   BaseReg = X86::RAX;
816   ScaleVal = 1;
817   switch (NumBytes) {
818   case 0:
819     llvm_unreachable("Zero nops?");
820     break;
821   case 1:
822     NopSize = 1;
823     Opc = X86::NOOP;
824     break;
825   case 2:
826     NopSize = 2;
827     Opc = X86::XCHG16ar;
828     break;
829   case 3:
830     NopSize = 3;
831     Opc = X86::NOOPL;
832     break;
833   case 4:
834     NopSize = 4;
835     Opc = X86::NOOPL;
836     Displacement = 8;
837     break;
838   case 5:
839     NopSize = 5;
840     Opc = X86::NOOPL;
841     Displacement = 8;
842     IndexReg = X86::RAX;
843     break;
844   case 6:
845     NopSize = 6;
846     Opc = X86::NOOPW;
847     Displacement = 8;
848     IndexReg = X86::RAX;
849     break;
850   case 7:
851     NopSize = 7;
852     Opc = X86::NOOPL;
853     Displacement = 512;
854     break;
855   case 8:
856     NopSize = 8;
857     Opc = X86::NOOPL;
858     Displacement = 512;
859     IndexReg = X86::RAX;
860     break;
861   case 9:
862     NopSize = 9;
863     Opc = X86::NOOPW;
864     Displacement = 512;
865     IndexReg = X86::RAX;
866     break;
867   default:
868     NopSize = 10;
869     Opc = X86::NOOPW;
870     Displacement = 512;
871     IndexReg = X86::RAX;
872     SegmentReg = X86::CS;
873     break;
874   }
875
876   unsigned NumPrefixes = std::min(NumBytes - NopSize, 5U);
877   NopSize += NumPrefixes;
878   for (unsigned i = 0; i != NumPrefixes; ++i)
879     OS.EmitBytes("\x66");
880
881   switch (Opc) {
882   default: llvm_unreachable("Unexpected opcode");
883   case X86::NOOP:
884     OS.EmitInstruction(MCInstBuilder(Opc), STI);
885     break;
886   case X86::XCHG16ar:
887     OS.EmitInstruction(MCInstBuilder(Opc).addReg(X86::AX).addReg(X86::AX), STI);
888     break;
889   case X86::NOOPL:
890   case X86::NOOPW:
891     OS.EmitInstruction(MCInstBuilder(Opc)
892                            .addReg(BaseReg)
893                            .addImm(ScaleVal)
894                            .addReg(IndexReg)
895                            .addImm(Displacement)
896                            .addReg(SegmentReg),
897                        STI);
898     break;
899   }
900   assert(NopSize <= NumBytes && "We overemitted?");
901   return NopSize;
902 }
903
904 /// Emit the optimal amount of multi-byte nops on X86.
905 static void EmitNops(MCStreamer &OS, unsigned NumBytes, bool Is64Bit,
906                      const MCSubtargetInfo &STI) {
907   unsigned NopsToEmit = NumBytes;
908   (void)NopsToEmit;
909   while (NumBytes) {
910     NumBytes -= EmitNop(OS, NumBytes, Is64Bit, STI);
911     assert(NopsToEmit >= NumBytes && "Emitted more than I asked for!");
912   }
913 }
914
915 void X86AsmPrinter::LowerSTATEPOINT(const MachineInstr &MI,
916                                     X86MCInstLower &MCIL) {
917   assert(Subtarget->is64Bit() && "Statepoint currently only supports X86-64");
918
919   StatepointOpers SOpers(&MI);
920   if (unsigned PatchBytes = SOpers.getNumPatchBytes()) {
921     EmitNops(*OutStreamer, PatchBytes, Subtarget->is64Bit(),
922              getSubtargetInfo());
923   } else {
924     // Lower call target and choose correct opcode
925     const MachineOperand &CallTarget = SOpers.getCallTarget();
926     MCOperand CallTargetMCOp;
927     unsigned CallOpcode;
928     switch (CallTarget.getType()) {
929     case MachineOperand::MO_GlobalAddress:
930     case MachineOperand::MO_ExternalSymbol:
931       CallTargetMCOp = MCIL.LowerSymbolOperand(
932           CallTarget, MCIL.GetSymbolFromOperand(CallTarget));
933       CallOpcode = X86::CALL64pcrel32;
934       // Currently, we only support relative addressing with statepoints.
935       // Otherwise, we'll need a scratch register to hold the target
936       // address.  You'll fail asserts during load & relocation if this
937       // symbol is to far away. (TODO: support non-relative addressing)
938       break;
939     case MachineOperand::MO_Immediate:
940       CallTargetMCOp = MCOperand::createImm(CallTarget.getImm());
941       CallOpcode = X86::CALL64pcrel32;
942       // Currently, we only support relative addressing with statepoints.
943       // Otherwise, we'll need a scratch register to hold the target
944       // immediate.  You'll fail asserts during load & relocation if this
945       // address is to far away. (TODO: support non-relative addressing)
946       break;
947     case MachineOperand::MO_Register:
948       // FIXME: Add retpoline support and remove this.
949       if (Subtarget->useRetpoline())
950         report_fatal_error("Lowering register statepoints with retpoline not "
951                            "yet implemented.");
952       CallTargetMCOp = MCOperand::createReg(CallTarget.getReg());
953       CallOpcode = X86::CALL64r;
954       break;
955     default:
956       llvm_unreachable("Unsupported operand type in statepoint call target");
957       break;
958     }
959
960     // Emit call
961     MCInst CallInst;
962     CallInst.setOpcode(CallOpcode);
963     CallInst.addOperand(CallTargetMCOp);
964     OutStreamer->EmitInstruction(CallInst, getSubtargetInfo());
965   }
966
967   // Record our statepoint node in the same section used by STACKMAP
968   // and PATCHPOINT
969   SM.recordStatepoint(MI);
970 }
971
972 void X86AsmPrinter::LowerFAULTING_OP(const MachineInstr &FaultingMI,
973                                      X86MCInstLower &MCIL) {
974   // FAULTING_LOAD_OP <def>, <faltinf type>, <MBB handler>,
975   //                  <opcode>, <operands>
976
977   unsigned DefRegister = FaultingMI.getOperand(0).getReg();
978   FaultMaps::FaultKind FK =
979       static_cast<FaultMaps::FaultKind>(FaultingMI.getOperand(1).getImm());
980   MCSymbol *HandlerLabel = FaultingMI.getOperand(2).getMBB()->getSymbol();
981   unsigned Opcode = FaultingMI.getOperand(3).getImm();
982   unsigned OperandsBeginIdx = 4;
983
984   assert(FK < FaultMaps::FaultKindMax && "Invalid Faulting Kind!");
985   FM.recordFaultingOp(FK, HandlerLabel);
986
987   MCInst MI;
988   MI.setOpcode(Opcode);
989
990   if (DefRegister != X86::NoRegister)
991     MI.addOperand(MCOperand::createReg(DefRegister));
992
993   for (auto I = FaultingMI.operands_begin() + OperandsBeginIdx,
994             E = FaultingMI.operands_end();
995        I != E; ++I)
996     if (auto MaybeOperand = MCIL.LowerMachineOperand(&FaultingMI, *I))
997       MI.addOperand(MaybeOperand.getValue());
998
999   OutStreamer->EmitInstruction(MI, getSubtargetInfo());
1000 }
1001
1002 void X86AsmPrinter::LowerFENTRY_CALL(const MachineInstr &MI,
1003                                      X86MCInstLower &MCIL) {
1004   bool Is64Bits = Subtarget->is64Bit();
1005   MCContext &Ctx = OutStreamer->getContext();
1006   MCSymbol *fentry = Ctx.getOrCreateSymbol("__fentry__");
1007   const MCSymbolRefExpr *Op =
1008       MCSymbolRefExpr::create(fentry, MCSymbolRefExpr::VK_None, Ctx);
1009
1010   EmitAndCountInstruction(
1011       MCInstBuilder(Is64Bits ? X86::CALL64pcrel32 : X86::CALLpcrel32)
1012           .addExpr(Op));
1013 }
1014
1015 void X86AsmPrinter::LowerPATCHABLE_OP(const MachineInstr &MI,
1016                                       X86MCInstLower &MCIL) {
1017   // PATCHABLE_OP minsize, opcode, operands
1018
1019   unsigned MinSize = MI.getOperand(0).getImm();
1020   unsigned Opcode = MI.getOperand(1).getImm();
1021
1022   MCInst MCI;
1023   MCI.setOpcode(Opcode);
1024   for (auto &MO : make_range(MI.operands_begin() + 2, MI.operands_end()))
1025     if (auto MaybeOperand = MCIL.LowerMachineOperand(&MI, MO))
1026       MCI.addOperand(MaybeOperand.getValue());
1027
1028   SmallString<256> Code;
1029   SmallVector<MCFixup, 4> Fixups;
1030   raw_svector_ostream VecOS(Code);
1031   CodeEmitter->encodeInstruction(MCI, VecOS, Fixups, getSubtargetInfo());
1032
1033   if (Code.size() < MinSize) {
1034     if (MinSize == 2 && Opcode == X86::PUSH64r) {
1035       // This is an optimization that lets us get away without emitting a nop in
1036       // many cases.
1037       //
1038       // NB! In some cases the encoding for PUSH64r (e.g. PUSH64r %r9) takes two
1039       // bytes too, so the check on MinSize is important.
1040       MCI.setOpcode(X86::PUSH64rmr);
1041     } else {
1042       unsigned NopSize = EmitNop(*OutStreamer, MinSize, Subtarget->is64Bit(),
1043                                  getSubtargetInfo());
1044       assert(NopSize == MinSize && "Could not implement MinSize!");
1045       (void)NopSize;
1046     }
1047   }
1048
1049   OutStreamer->EmitInstruction(MCI, getSubtargetInfo());
1050 }
1051
1052 // Lower a stackmap of the form:
1053 // <id>, <shadowBytes>, ...
1054 void X86AsmPrinter::LowerSTACKMAP(const MachineInstr &MI) {
1055   SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo());
1056   SM.recordStackMap(MI);
1057   unsigned NumShadowBytes = MI.getOperand(1).getImm();
1058   SMShadowTracker.reset(NumShadowBytes);
1059 }
1060
1061 // Lower a patchpoint of the form:
1062 // [<def>], <id>, <numBytes>, <target>, <numArgs>, <cc>, ...
1063 void X86AsmPrinter::LowerPATCHPOINT(const MachineInstr &MI,
1064                                     X86MCInstLower &MCIL) {
1065   assert(Subtarget->is64Bit() && "Patchpoint currently only supports X86-64");
1066
1067   SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo());
1068
1069   SM.recordPatchPoint(MI);
1070
1071   PatchPointOpers opers(&MI);
1072   unsigned ScratchIdx = opers.getNextScratchIdx();
1073   unsigned EncodedBytes = 0;
1074   const MachineOperand &CalleeMO = opers.getCallTarget();
1075
1076   // Check for null target. If target is non-null (i.e. is non-zero or is
1077   // symbolic) then emit a call.
1078   if (!(CalleeMO.isImm() && !CalleeMO.getImm())) {
1079     MCOperand CalleeMCOp;
1080     switch (CalleeMO.getType()) {
1081     default:
1082       /// FIXME: Add a verifier check for bad callee types.
1083       llvm_unreachable("Unrecognized callee operand type.");
1084     case MachineOperand::MO_Immediate:
1085       if (CalleeMO.getImm())
1086         CalleeMCOp = MCOperand::createImm(CalleeMO.getImm());
1087       break;
1088     case MachineOperand::MO_ExternalSymbol:
1089     case MachineOperand::MO_GlobalAddress:
1090       CalleeMCOp = MCIL.LowerSymbolOperand(CalleeMO,
1091                                            MCIL.GetSymbolFromOperand(CalleeMO));
1092       break;
1093     }
1094
1095     // Emit MOV to materialize the target address and the CALL to target.
1096     // This is encoded with 12-13 bytes, depending on which register is used.
1097     unsigned ScratchReg = MI.getOperand(ScratchIdx).getReg();
1098     if (X86II::isX86_64ExtendedReg(ScratchReg))
1099       EncodedBytes = 13;
1100     else
1101       EncodedBytes = 12;
1102
1103     EmitAndCountInstruction(
1104         MCInstBuilder(X86::MOV64ri).addReg(ScratchReg).addOperand(CalleeMCOp));
1105     // FIXME: Add retpoline support and remove this.
1106     if (Subtarget->useRetpoline())
1107       report_fatal_error(
1108           "Lowering patchpoint with retpoline not yet implemented.");
1109     EmitAndCountInstruction(MCInstBuilder(X86::CALL64r).addReg(ScratchReg));
1110   }
1111
1112   // Emit padding.
1113   unsigned NumBytes = opers.getNumPatchBytes();
1114   assert(NumBytes >= EncodedBytes &&
1115          "Patchpoint can't request size less than the length of a call.");
1116
1117   EmitNops(*OutStreamer, NumBytes - EncodedBytes, Subtarget->is64Bit(),
1118            getSubtargetInfo());
1119 }
1120
1121 void X86AsmPrinter::LowerPATCHABLE_EVENT_CALL(const MachineInstr &MI,
1122                                               X86MCInstLower &MCIL) {
1123   assert(Subtarget->is64Bit() && "XRay custom events only supports X86-64");
1124
1125   // We want to emit the following pattern, which follows the x86 calling
1126   // convention to prepare for the trampoline call to be patched in.
1127   //
1128   //   .p2align 1, ...
1129   // .Lxray_event_sled_N:
1130   //   jmp +N                        // jump across the instrumentation sled
1131   //   ...                           // set up arguments in register
1132   //   callq __xray_CustomEvent@plt  // force dependency to symbol
1133   //   ...
1134   //   <jump here>
1135   //
1136   // After patching, it would look something like:
1137   //
1138   //   nopw (2-byte nop)
1139   //   ...
1140   //   callq __xrayCustomEvent  // already lowered
1141   //   ...
1142   //
1143   // ---
1144   // First we emit the label and the jump.
1145   auto CurSled = OutContext.createTempSymbol("xray_event_sled_", true);
1146   OutStreamer->AddComment("# XRay Custom Event Log");
1147   OutStreamer->EmitCodeAlignment(2);
1148   OutStreamer->EmitLabel(CurSled);
1149
1150   // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
1151   // an operand (computed as an offset from the jmp instruction).
1152   // FIXME: Find another less hacky way do force the relative jump.
1153   OutStreamer->EmitBinaryData("\xeb\x0f");
1154
1155   // The default C calling convention will place two arguments into %rcx and
1156   // %rdx -- so we only work with those.
1157   unsigned DestRegs[] = {X86::RDI, X86::RSI};
1158   bool UsedMask[] = {false, false};
1159   // Filled out in loop.
1160   unsigned SrcRegs[] = {0, 0};
1161
1162   // Then we put the operands in the %rdi and %rsi registers. We spill the
1163   // values in the register before we clobber them, and mark them as used in
1164   // UsedMask. In case the arguments are already in the correct register, we use
1165   // emit nops appropriately sized to keep the sled the same size in every
1166   // situation.
1167   for (unsigned I = 0; I < MI.getNumOperands(); ++I)
1168     if (auto Op = MCIL.LowerMachineOperand(&MI, MI.getOperand(I))) {
1169       assert(Op->isReg() && "Only support arguments in registers");
1170       SrcRegs[I] = Op->getReg();
1171       if (SrcRegs[I] != DestRegs[I]) {
1172         UsedMask[I] = true;
1173         EmitAndCountInstruction(
1174             MCInstBuilder(X86::PUSH64r).addReg(DestRegs[I]));
1175       } else {
1176         EmitNops(*OutStreamer, 4, Subtarget->is64Bit(), getSubtargetInfo());
1177       }
1178     }
1179
1180   // Now that the register values are stashed, mov arguments into place.
1181   for (unsigned I = 0; I < MI.getNumOperands(); ++I)
1182     if (SrcRegs[I] != DestRegs[I])
1183       EmitAndCountInstruction(
1184           MCInstBuilder(X86::MOV64rr).addReg(DestRegs[I]).addReg(SrcRegs[I]));
1185
1186   // We emit a hard dependency on the __xray_CustomEvent symbol, which is the
1187   // name of the trampoline to be implemented by the XRay runtime.
1188   auto TSym = OutContext.getOrCreateSymbol("__xray_CustomEvent");
1189   MachineOperand TOp = MachineOperand::CreateMCSymbol(TSym);
1190   if (isPositionIndependent())
1191     TOp.setTargetFlags(X86II::MO_PLT);
1192
1193   // Emit the call instruction.
1194   EmitAndCountInstruction(MCInstBuilder(X86::CALL64pcrel32)
1195                               .addOperand(MCIL.LowerSymbolOperand(TOp, TSym)));
1196
1197   // Restore caller-saved and used registers.
1198   for (unsigned I = sizeof UsedMask; I-- > 0;)
1199     if (UsedMask[I])
1200       EmitAndCountInstruction(MCInstBuilder(X86::POP64r).addReg(DestRegs[I]));
1201     else
1202       EmitNops(*OutStreamer, 1, Subtarget->is64Bit(), getSubtargetInfo());
1203
1204   OutStreamer->AddComment("xray custom event end.");
1205
1206   // Record the sled version. Older versions of this sled were spelled
1207   // differently, so we let the runtime handle the different offsets we're
1208   // using.
1209   recordSled(CurSled, MI, SledKind::CUSTOM_EVENT, 1);
1210 }
1211
1212 void X86AsmPrinter::LowerPATCHABLE_TYPED_EVENT_CALL(const MachineInstr &MI,
1213                                                     X86MCInstLower &MCIL) {
1214   assert(Subtarget->is64Bit() && "XRay typed events only supports X86-64");
1215
1216   // We want to emit the following pattern, which follows the x86 calling
1217   // convention to prepare for the trampoline call to be patched in.
1218   //
1219   //   .p2align 1, ...
1220   // .Lxray_event_sled_N:
1221   //   jmp +N                        // jump across the instrumentation sled
1222   //   ...                           // set up arguments in register
1223   //   callq __xray_TypedEvent@plt  // force dependency to symbol
1224   //   ...
1225   //   <jump here>
1226   //
1227   // After patching, it would look something like:
1228   //
1229   //   nopw (2-byte nop)
1230   //   ...
1231   //   callq __xrayTypedEvent  // already lowered
1232   //   ...
1233   //
1234   // ---
1235   // First we emit the label and the jump.
1236   auto CurSled = OutContext.createTempSymbol("xray_typed_event_sled_", true);
1237   OutStreamer->AddComment("# XRay Typed Event Log");
1238   OutStreamer->EmitCodeAlignment(2);
1239   OutStreamer->EmitLabel(CurSled);
1240
1241   // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
1242   // an operand (computed as an offset from the jmp instruction).
1243   // FIXME: Find another less hacky way do force the relative jump.
1244   OutStreamer->EmitBinaryData("\xeb\x14");
1245
1246   // An x86-64 convention may place three arguments into %rcx, %rdx, and R8,
1247   // so we'll work with those. Or we may be called via SystemV, in which case
1248   // we don't have to do any translation.
1249   unsigned DestRegs[] = {X86::RDI, X86::RSI, X86::RDX};
1250   bool UsedMask[] = {false, false, false};
1251
1252   // Will fill out src regs in the loop.
1253   unsigned SrcRegs[] = {0, 0, 0};
1254
1255   // Then we put the operands in the SystemV registers. We spill the values in
1256   // the registers before we clobber them, and mark them as used in UsedMask.
1257   // In case the arguments are already in the correct register, we emit nops
1258   // appropriately sized to keep the sled the same size in every situation.
1259   for (unsigned I = 0; I < MI.getNumOperands(); ++I)
1260     if (auto Op = MCIL.LowerMachineOperand(&MI, MI.getOperand(I))) {
1261       // TODO: Is register only support adequate?
1262       assert(Op->isReg() && "Only supports arguments in registers");
1263       SrcRegs[I] = Op->getReg();
1264       if (SrcRegs[I] != DestRegs[I]) {
1265         UsedMask[I] = true;
1266         EmitAndCountInstruction(
1267             MCInstBuilder(X86::PUSH64r).addReg(DestRegs[I]));
1268       } else {
1269         EmitNops(*OutStreamer, 4, Subtarget->is64Bit(), getSubtargetInfo());
1270       }
1271     }
1272
1273   // In the above loop we only stash all of the destination registers or emit
1274   // nops if the arguments are already in the right place. Doing the actually
1275   // moving is postponed until after all the registers are stashed so nothing
1276   // is clobbers. We've already added nops to account for the size of mov and
1277   // push if the register is in the right place, so we only have to worry about
1278   // emitting movs.
1279   for (unsigned I = 0; I < MI.getNumOperands(); ++I)
1280     if (UsedMask[I])
1281       EmitAndCountInstruction(
1282           MCInstBuilder(X86::MOV64rr).addReg(DestRegs[I]).addReg(SrcRegs[I]));
1283
1284   // We emit a hard dependency on the __xray_TypedEvent symbol, which is the
1285   // name of the trampoline to be implemented by the XRay runtime.
1286   auto TSym = OutContext.getOrCreateSymbol("__xray_TypedEvent");
1287   MachineOperand TOp = MachineOperand::CreateMCSymbol(TSym);
1288   if (isPositionIndependent())
1289     TOp.setTargetFlags(X86II::MO_PLT);
1290
1291   // Emit the call instruction.
1292   EmitAndCountInstruction(MCInstBuilder(X86::CALL64pcrel32)
1293                               .addOperand(MCIL.LowerSymbolOperand(TOp, TSym)));
1294
1295   // Restore caller-saved and used registers.
1296   for (unsigned I = sizeof UsedMask; I-- > 0;)
1297     if (UsedMask[I])
1298       EmitAndCountInstruction(MCInstBuilder(X86::POP64r).addReg(DestRegs[I]));
1299     else
1300       EmitNops(*OutStreamer, 1, Subtarget->is64Bit(), getSubtargetInfo());
1301
1302   OutStreamer->AddComment("xray typed event end.");
1303
1304   // Record the sled version.
1305   recordSled(CurSled, MI, SledKind::TYPED_EVENT, 0);
1306 }
1307
1308 void X86AsmPrinter::LowerPATCHABLE_FUNCTION_ENTER(const MachineInstr &MI,
1309                                                   X86MCInstLower &MCIL) {
1310   // We want to emit the following pattern:
1311   //
1312   //   .p2align 1, ...
1313   // .Lxray_sled_N:
1314   //   jmp .tmpN
1315   //   # 9 bytes worth of noops
1316   //
1317   // We need the 9 bytes because at runtime, we'd be patching over the full 11
1318   // bytes with the following pattern:
1319   //
1320   //   mov %r10, <function id, 32-bit>   // 6 bytes
1321   //   call <relative offset, 32-bits>   // 5 bytes
1322   //
1323   auto CurSled = OutContext.createTempSymbol("xray_sled_", true);
1324   OutStreamer->EmitCodeAlignment(2);
1325   OutStreamer->EmitLabel(CurSled);
1326
1327   // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
1328   // an operand (computed as an offset from the jmp instruction).
1329   // FIXME: Find another less hacky way do force the relative jump.
1330   OutStreamer->EmitBytes("\xeb\x09");
1331   EmitNops(*OutStreamer, 9, Subtarget->is64Bit(), getSubtargetInfo());
1332   recordSled(CurSled, MI, SledKind::FUNCTION_ENTER);
1333 }
1334
1335 void X86AsmPrinter::LowerPATCHABLE_RET(const MachineInstr &MI,
1336                                        X86MCInstLower &MCIL) {
1337   // Since PATCHABLE_RET takes the opcode of the return statement as an
1338   // argument, we use that to emit the correct form of the RET that we want.
1339   // i.e. when we see this:
1340   //
1341   //   PATCHABLE_RET X86::RET ...
1342   //
1343   // We should emit the RET followed by sleds.
1344   //
1345   //   .p2align 1, ...
1346   // .Lxray_sled_N:
1347   //   ret  # or equivalent instruction
1348   //   # 10 bytes worth of noops
1349   //
1350   // This just makes sure that the alignment for the next instruction is 2.
1351   auto CurSled = OutContext.createTempSymbol("xray_sled_", true);
1352   OutStreamer->EmitCodeAlignment(2);
1353   OutStreamer->EmitLabel(CurSled);
1354   unsigned OpCode = MI.getOperand(0).getImm();
1355   MCInst Ret;
1356   Ret.setOpcode(OpCode);
1357   for (auto &MO : make_range(MI.operands_begin() + 1, MI.operands_end()))
1358     if (auto MaybeOperand = MCIL.LowerMachineOperand(&MI, MO))
1359       Ret.addOperand(MaybeOperand.getValue());
1360   OutStreamer->EmitInstruction(Ret, getSubtargetInfo());
1361   EmitNops(*OutStreamer, 10, Subtarget->is64Bit(), getSubtargetInfo());
1362   recordSled(CurSled, MI, SledKind::FUNCTION_EXIT);
1363 }
1364
1365 void X86AsmPrinter::LowerPATCHABLE_TAIL_CALL(const MachineInstr &MI,
1366                                              X86MCInstLower &MCIL) {
1367   // Like PATCHABLE_RET, we have the actual instruction in the operands to this
1368   // instruction so we lower that particular instruction and its operands.
1369   // Unlike PATCHABLE_RET though, we put the sled before the JMP, much like how
1370   // we do it for PATCHABLE_FUNCTION_ENTER. The sled should be very similar to
1371   // the PATCHABLE_FUNCTION_ENTER case, followed by the lowering of the actual
1372   // tail call much like how we have it in PATCHABLE_RET.
1373   auto CurSled = OutContext.createTempSymbol("xray_sled_", true);
1374   OutStreamer->EmitCodeAlignment(2);
1375   OutStreamer->EmitLabel(CurSled);
1376   auto Target = OutContext.createTempSymbol();
1377
1378   // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
1379   // an operand (computed as an offset from the jmp instruction).
1380   // FIXME: Find another less hacky way do force the relative jump.
1381   OutStreamer->EmitBytes("\xeb\x09");
1382   EmitNops(*OutStreamer, 9, Subtarget->is64Bit(), getSubtargetInfo());
1383   OutStreamer->EmitLabel(Target);
1384   recordSled(CurSled, MI, SledKind::TAIL_CALL);
1385
1386   unsigned OpCode = MI.getOperand(0).getImm();
1387   MCInst TC;
1388   TC.setOpcode(OpCode);
1389
1390   // Before emitting the instruction, add a comment to indicate that this is
1391   // indeed a tail call.
1392   OutStreamer->AddComment("TAILCALL");
1393   for (auto &MO : make_range(MI.operands_begin() + 1, MI.operands_end()))
1394     if (auto MaybeOperand = MCIL.LowerMachineOperand(&MI, MO))
1395       TC.addOperand(MaybeOperand.getValue());
1396   OutStreamer->EmitInstruction(TC, getSubtargetInfo());
1397 }
1398
1399 // Returns instruction preceding MBBI in MachineFunction.
1400 // If MBBI is the first instruction of the first basic block, returns null.
1401 static MachineBasicBlock::const_iterator
1402 PrevCrossBBInst(MachineBasicBlock::const_iterator MBBI) {
1403   const MachineBasicBlock *MBB = MBBI->getParent();
1404   while (MBBI == MBB->begin()) {
1405     if (MBB == &MBB->getParent()->front())
1406       return MachineBasicBlock::const_iterator();
1407     MBB = MBB->getPrevNode();
1408     MBBI = MBB->end();
1409   }
1410   return --MBBI;
1411 }
1412
1413 static const Constant *getConstantFromPool(const MachineInstr &MI,
1414                                            const MachineOperand &Op) {
1415   if (!Op.isCPI())
1416     return nullptr;
1417
1418   ArrayRef<MachineConstantPoolEntry> Constants =
1419       MI.getParent()->getParent()->getConstantPool()->getConstants();
1420   const MachineConstantPoolEntry &ConstantEntry = Constants[Op.getIndex()];
1421
1422   // Bail if this is a machine constant pool entry, we won't be able to dig out
1423   // anything useful.
1424   if (ConstantEntry.isMachineConstantPoolEntry())
1425     return nullptr;
1426
1427   auto *C = dyn_cast<Constant>(ConstantEntry.Val.ConstVal);
1428   assert((!C || ConstantEntry.getType() == C->getType()) &&
1429          "Expected a constant of the same type!");
1430   return C;
1431 }
1432
1433 static std::string getShuffleComment(const MachineInstr *MI, unsigned SrcOp1Idx,
1434                                      unsigned SrcOp2Idx, ArrayRef<int> Mask) {
1435   std::string Comment;
1436
1437   // Compute the name for a register. This is really goofy because we have
1438   // multiple instruction printers that could (in theory) use different
1439   // names. Fortunately most people use the ATT style (outside of Windows)
1440   // and they actually agree on register naming here. Ultimately, this is
1441   // a comment, and so its OK if it isn't perfect.
1442   auto GetRegisterName = [](unsigned RegNum) -> StringRef {
1443     return X86ATTInstPrinter::getRegisterName(RegNum);
1444   };
1445
1446   const MachineOperand &DstOp = MI->getOperand(0);
1447   const MachineOperand &SrcOp1 = MI->getOperand(SrcOp1Idx);
1448   const MachineOperand &SrcOp2 = MI->getOperand(SrcOp2Idx);
1449
1450   StringRef DstName = DstOp.isReg() ? GetRegisterName(DstOp.getReg()) : "mem";
1451   StringRef Src1Name =
1452       SrcOp1.isReg() ? GetRegisterName(SrcOp1.getReg()) : "mem";
1453   StringRef Src2Name =
1454       SrcOp2.isReg() ? GetRegisterName(SrcOp2.getReg()) : "mem";
1455
1456   // One source operand, fix the mask to print all elements in one span.
1457   SmallVector<int, 8> ShuffleMask(Mask.begin(), Mask.end());
1458   if (Src1Name == Src2Name)
1459     for (int i = 0, e = ShuffleMask.size(); i != e; ++i)
1460       if (ShuffleMask[i] >= e)
1461         ShuffleMask[i] -= e;
1462
1463   raw_string_ostream CS(Comment);
1464   CS << DstName;
1465
1466   // Handle AVX512 MASK/MASXZ write mask comments.
1467   // MASK: zmmX {%kY}
1468   // MASKZ: zmmX {%kY} {z}
1469   if (SrcOp1Idx > 1) {
1470     assert((SrcOp1Idx == 2 || SrcOp1Idx == 3) && "Unexpected writemask");
1471
1472     const MachineOperand &WriteMaskOp = MI->getOperand(SrcOp1Idx - 1);
1473     if (WriteMaskOp.isReg()) {
1474       CS << " {%" << GetRegisterName(WriteMaskOp.getReg()) << "}";
1475
1476       if (SrcOp1Idx == 2) {
1477         CS << " {z}";
1478       }
1479     }
1480   }
1481
1482   CS << " = ";
1483
1484   for (int i = 0, e = ShuffleMask.size(); i != e; ++i) {
1485     if (i != 0)
1486       CS << ",";
1487     if (ShuffleMask[i] == SM_SentinelZero) {
1488       CS << "zero";
1489       continue;
1490     }
1491
1492     // Otherwise, it must come from src1 or src2.  Print the span of elements
1493     // that comes from this src.
1494     bool isSrc1 = ShuffleMask[i] < (int)e;
1495     CS << (isSrc1 ? Src1Name : Src2Name) << '[';
1496
1497     bool IsFirst = true;
1498     while (i != e && ShuffleMask[i] != SM_SentinelZero &&
1499            (ShuffleMask[i] < (int)e) == isSrc1) {
1500       if (!IsFirst)
1501         CS << ',';
1502       else
1503         IsFirst = false;
1504       if (ShuffleMask[i] == SM_SentinelUndef)
1505         CS << "u";
1506       else
1507         CS << ShuffleMask[i] % (int)e;
1508       ++i;
1509     }
1510     CS << ']';
1511     --i; // For loop increments element #.
1512   }
1513   CS.flush();
1514
1515   return Comment;
1516 }
1517
1518 static void printConstant(const Constant *COp, raw_ostream &CS) {
1519   if (isa<UndefValue>(COp)) {
1520     CS << "u";
1521   } else if (auto *CI = dyn_cast<ConstantInt>(COp)) {
1522     if (CI->getBitWidth() <= 64) {
1523       CS << CI->getZExtValue();
1524     } else {
1525       // print multi-word constant as (w0,w1)
1526       const auto &Val = CI->getValue();
1527       CS << "(";
1528       for (int i = 0, N = Val.getNumWords(); i < N; ++i) {
1529         if (i > 0)
1530           CS << ",";
1531         CS << Val.getRawData()[i];
1532       }
1533       CS << ")";
1534     }
1535   } else if (auto *CF = dyn_cast<ConstantFP>(COp)) {
1536     SmallString<32> Str;
1537     CF->getValueAPF().toString(Str);
1538     CS << Str;
1539   } else {
1540     CS << "?";
1541   }
1542 }
1543
1544 void X86AsmPrinter::EmitSEHInstruction(const MachineInstr *MI) {
1545   assert(MF->hasWinCFI() && "SEH_ instruction in function without WinCFI?");
1546   assert(getSubtarget().isOSWindows() && "SEH_ instruction Windows only");
1547   const X86RegisterInfo *RI =
1548       MF->getSubtarget<X86Subtarget>().getRegisterInfo();
1549
1550   // Use the .cv_fpo directives if we're emitting CodeView on 32-bit x86.
1551   if (EmitFPOData) {
1552     X86TargetStreamer *XTS =
1553         static_cast<X86TargetStreamer *>(OutStreamer->getTargetStreamer());
1554     switch (MI->getOpcode()) {
1555     case X86::SEH_PushReg:
1556       XTS->emitFPOPushReg(MI->getOperand(0).getImm());
1557       break;
1558     case X86::SEH_StackAlloc:
1559       XTS->emitFPOStackAlloc(MI->getOperand(0).getImm());
1560       break;
1561     case X86::SEH_SetFrame:
1562       assert(MI->getOperand(1).getImm() == 0 &&
1563              ".cv_fpo_setframe takes no offset");
1564       XTS->emitFPOSetFrame(MI->getOperand(0).getImm());
1565       break;
1566     case X86::SEH_EndPrologue:
1567       XTS->emitFPOEndPrologue();
1568       break;
1569     case X86::SEH_SaveReg:
1570     case X86::SEH_SaveXMM:
1571     case X86::SEH_PushFrame:
1572       llvm_unreachable("SEH_ directive incompatible with FPO");
1573       break;
1574     default:
1575       llvm_unreachable("expected SEH_ instruction");
1576     }
1577     return;
1578   }
1579
1580   // Otherwise, use the .seh_ directives for all other Windows platforms.
1581   switch (MI->getOpcode()) {
1582   case X86::SEH_PushReg:
1583     OutStreamer->EmitWinCFIPushReg(
1584         RI->getSEHRegNum(MI->getOperand(0).getImm()));
1585     break;
1586
1587   case X86::SEH_SaveReg:
1588     OutStreamer->EmitWinCFISaveReg(RI->getSEHRegNum(MI->getOperand(0).getImm()),
1589                                    MI->getOperand(1).getImm());
1590     break;
1591
1592   case X86::SEH_SaveXMM:
1593     OutStreamer->EmitWinCFISaveXMM(RI->getSEHRegNum(MI->getOperand(0).getImm()),
1594                                    MI->getOperand(1).getImm());
1595     break;
1596
1597   case X86::SEH_StackAlloc:
1598     OutStreamer->EmitWinCFIAllocStack(MI->getOperand(0).getImm());
1599     break;
1600
1601   case X86::SEH_SetFrame:
1602     OutStreamer->EmitWinCFISetFrame(
1603         RI->getSEHRegNum(MI->getOperand(0).getImm()),
1604         MI->getOperand(1).getImm());
1605     break;
1606
1607   case X86::SEH_PushFrame:
1608     OutStreamer->EmitWinCFIPushFrame(MI->getOperand(0).getImm());
1609     break;
1610
1611   case X86::SEH_EndPrologue:
1612     OutStreamer->EmitWinCFIEndProlog();
1613     break;
1614
1615   default:
1616     llvm_unreachable("expected SEH_ instruction");
1617   }
1618 }
1619
1620 void X86AsmPrinter::EmitInstruction(const MachineInstr *MI) {
1621   X86MCInstLower MCInstLowering(*MF, *this);
1622   const X86RegisterInfo *RI =
1623       MF->getSubtarget<X86Subtarget>().getRegisterInfo();
1624
1625   // Add a comment about EVEX-2-VEX compression for AVX-512 instrs that
1626   // are compressed from EVEX encoding to VEX encoding.
1627   if (TM.Options.MCOptions.ShowMCEncoding) {
1628     if (MI->getAsmPrinterFlags() & X86::AC_EVEX_2_VEX)
1629       OutStreamer->AddComment("EVEX TO VEX Compression ", false);
1630   }
1631
1632   switch (MI->getOpcode()) {
1633   case TargetOpcode::DBG_VALUE:
1634     llvm_unreachable("Should be handled target independently");
1635
1636   // Emit nothing here but a comment if we can.
1637   case X86::Int_MemBarrier:
1638     OutStreamer->emitRawComment("MEMBARRIER");
1639     return;
1640
1641   case X86::EH_RETURN:
1642   case X86::EH_RETURN64: {
1643     // Lower these as normal, but add some comments.
1644     unsigned Reg = MI->getOperand(0).getReg();
1645     OutStreamer->AddComment(StringRef("eh_return, addr: %") +
1646                             X86ATTInstPrinter::getRegisterName(Reg));
1647     break;
1648   }
1649   case X86::CLEANUPRET: {
1650     // Lower these as normal, but add some comments.
1651     OutStreamer->AddComment("CLEANUPRET");
1652     break;
1653   }
1654
1655   case X86::CATCHRET: {
1656     // Lower these as normal, but add some comments.
1657     OutStreamer->AddComment("CATCHRET");
1658     break;
1659   }
1660
1661   case X86::TAILJMPr:
1662   case X86::TAILJMPm:
1663   case X86::TAILJMPd:
1664   case X86::TAILJMPd_CC:
1665   case X86::TAILJMPr64:
1666   case X86::TAILJMPm64:
1667   case X86::TAILJMPd64:
1668   case X86::TAILJMPd64_CC:
1669   case X86::TAILJMPr64_REX:
1670   case X86::TAILJMPm64_REX:
1671     // Lower these as normal, but add some comments.
1672     OutStreamer->AddComment("TAILCALL");
1673     break;
1674
1675   case X86::TLS_addr32:
1676   case X86::TLS_addr64:
1677   case X86::TLS_base_addr32:
1678   case X86::TLS_base_addr64:
1679     return LowerTlsAddr(MCInstLowering, *MI);
1680
1681   case X86::MOVPC32r: {
1682     // This is a pseudo op for a two instruction sequence with a label, which
1683     // looks like:
1684     //     call "L1$pb"
1685     // "L1$pb":
1686     //     popl %esi
1687
1688     // Emit the call.
1689     MCSymbol *PICBase = MF->getPICBaseSymbol();
1690     // FIXME: We would like an efficient form for this, so we don't have to do a
1691     // lot of extra uniquing.
1692     EmitAndCountInstruction(
1693         MCInstBuilder(X86::CALLpcrel32)
1694             .addExpr(MCSymbolRefExpr::create(PICBase, OutContext)));
1695
1696     const X86FrameLowering *FrameLowering =
1697         MF->getSubtarget<X86Subtarget>().getFrameLowering();
1698     bool hasFP = FrameLowering->hasFP(*MF);
1699
1700     // TODO: This is needed only if we require precise CFA.
1701     bool HasActiveDwarfFrame = OutStreamer->getNumFrameInfos() &&
1702                                !OutStreamer->getDwarfFrameInfos().back().End;
1703
1704     int stackGrowth = -RI->getSlotSize();
1705
1706     if (HasActiveDwarfFrame && !hasFP) {
1707       OutStreamer->EmitCFIAdjustCfaOffset(-stackGrowth);
1708     }
1709
1710     // Emit the label.
1711     OutStreamer->EmitLabel(PICBase);
1712
1713     // popl $reg
1714     EmitAndCountInstruction(
1715         MCInstBuilder(X86::POP32r).addReg(MI->getOperand(0).getReg()));
1716
1717     if (HasActiveDwarfFrame && !hasFP) {
1718       OutStreamer->EmitCFIAdjustCfaOffset(stackGrowth);
1719     }
1720     return;
1721   }
1722
1723   case X86::MOVGOT64r: {
1724     // Materializes the GOT for the 64-bit large code model.
1725     MCSymbol *DotSym = OutContext.createTempSymbol();
1726     OutStreamer->EmitLabel(DotSym);
1727
1728     unsigned DstReg = MI->getOperand(0).getReg();
1729     unsigned ScratchReg = MI->getOperand(1).getReg();
1730     MCSymbol *GOTSym = MCInstLowering.GetSymbolFromOperand(MI->getOperand(2));
1731
1732     // .LtmpN: leaq .LtmpN(%rip), %dst
1733     const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext);
1734     EmitAndCountInstruction(MCInstBuilder(X86::LEA64r)
1735                                 .addReg(DstReg)   // dest
1736                                 .addReg(X86::RIP) // base
1737                                 .addImm(1)        // scale
1738                                 .addReg(0)        // index
1739                                 .addExpr(DotExpr) // disp
1740                                 .addReg(0));      // seg
1741
1742     // movq $_GLOBAL_OFFSET_TABLE_ - .LtmpN, %scratch
1743     const MCExpr *GOTSymExpr = MCSymbolRefExpr::create(GOTSym, OutContext);
1744     const MCExpr *GOTDiffExpr =
1745         MCBinaryExpr::createSub(GOTSymExpr, DotExpr, OutContext);
1746     EmitAndCountInstruction(MCInstBuilder(X86::MOV64ri)
1747                                 .addReg(ScratchReg)     // dest
1748                                 .addExpr(GOTDiffExpr)); // disp
1749
1750     // addq %scratch, %dst
1751     EmitAndCountInstruction(MCInstBuilder(X86::ADD64rr)
1752                                 .addReg(DstReg)       // dest
1753                                 .addReg(DstReg)       // dest
1754                                 .addReg(ScratchReg)); // src
1755     return;
1756   }
1757
1758   case X86::ADD32ri: {
1759     // Lower the MO_GOT_ABSOLUTE_ADDRESS form of ADD32ri.
1760     if (MI->getOperand(2).getTargetFlags() != X86II::MO_GOT_ABSOLUTE_ADDRESS)
1761       break;
1762
1763     // Okay, we have something like:
1764     //  EAX = ADD32ri EAX, MO_GOT_ABSOLUTE_ADDRESS(@MYGLOBAL)
1765
1766     // For this, we want to print something like:
1767     //   MYGLOBAL + (. - PICBASE)
1768     // However, we can't generate a ".", so just emit a new label here and refer
1769     // to it.
1770     MCSymbol *DotSym = OutContext.createTempSymbol();
1771     OutStreamer->EmitLabel(DotSym);
1772
1773     // Now that we have emitted the label, lower the complex operand expression.
1774     MCSymbol *OpSym = MCInstLowering.GetSymbolFromOperand(MI->getOperand(2));
1775
1776     const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext);
1777     const MCExpr *PICBase =
1778         MCSymbolRefExpr::create(MF->getPICBaseSymbol(), OutContext);
1779     DotExpr = MCBinaryExpr::createSub(DotExpr, PICBase, OutContext);
1780
1781     DotExpr = MCBinaryExpr::createAdd(
1782         MCSymbolRefExpr::create(OpSym, OutContext), DotExpr, OutContext);
1783
1784     EmitAndCountInstruction(MCInstBuilder(X86::ADD32ri)
1785                                 .addReg(MI->getOperand(0).getReg())
1786                                 .addReg(MI->getOperand(1).getReg())
1787                                 .addExpr(DotExpr));
1788     return;
1789   }
1790   case TargetOpcode::STATEPOINT:
1791     return LowerSTATEPOINT(*MI, MCInstLowering);
1792
1793   case TargetOpcode::FAULTING_OP:
1794     return LowerFAULTING_OP(*MI, MCInstLowering);
1795
1796   case TargetOpcode::FENTRY_CALL:
1797     return LowerFENTRY_CALL(*MI, MCInstLowering);
1798
1799   case TargetOpcode::PATCHABLE_OP:
1800     return LowerPATCHABLE_OP(*MI, MCInstLowering);
1801
1802   case TargetOpcode::STACKMAP:
1803     return LowerSTACKMAP(*MI);
1804
1805   case TargetOpcode::PATCHPOINT:
1806     return LowerPATCHPOINT(*MI, MCInstLowering);
1807
1808   case TargetOpcode::PATCHABLE_FUNCTION_ENTER:
1809     return LowerPATCHABLE_FUNCTION_ENTER(*MI, MCInstLowering);
1810
1811   case TargetOpcode::PATCHABLE_RET:
1812     return LowerPATCHABLE_RET(*MI, MCInstLowering);
1813
1814   case TargetOpcode::PATCHABLE_TAIL_CALL:
1815     return LowerPATCHABLE_TAIL_CALL(*MI, MCInstLowering);
1816
1817   case TargetOpcode::PATCHABLE_EVENT_CALL:
1818     return LowerPATCHABLE_EVENT_CALL(*MI, MCInstLowering);
1819
1820   case TargetOpcode::PATCHABLE_TYPED_EVENT_CALL:
1821     return LowerPATCHABLE_TYPED_EVENT_CALL(*MI, MCInstLowering);
1822
1823   case X86::MORESTACK_RET:
1824     EmitAndCountInstruction(MCInstBuilder(getRetOpcode(*Subtarget)));
1825     return;
1826
1827   case X86::MORESTACK_RET_RESTORE_R10:
1828     // Return, then restore R10.
1829     EmitAndCountInstruction(MCInstBuilder(getRetOpcode(*Subtarget)));
1830     EmitAndCountInstruction(
1831         MCInstBuilder(X86::MOV64rr).addReg(X86::R10).addReg(X86::RAX));
1832     return;
1833
1834   case X86::SEH_PushReg:
1835   case X86::SEH_SaveReg:
1836   case X86::SEH_SaveXMM:
1837   case X86::SEH_StackAlloc:
1838   case X86::SEH_SetFrame:
1839   case X86::SEH_PushFrame:
1840   case X86::SEH_EndPrologue:
1841     EmitSEHInstruction(MI);
1842     return;
1843
1844   case X86::SEH_Epilogue: {
1845     assert(MF->hasWinCFI() && "SEH_ instruction in function without WinCFI?");
1846     MachineBasicBlock::const_iterator MBBI(MI);
1847     // Check if preceded by a call and emit nop if so.
1848     for (MBBI = PrevCrossBBInst(MBBI);
1849          MBBI != MachineBasicBlock::const_iterator();
1850          MBBI = PrevCrossBBInst(MBBI)) {
1851       // Conservatively assume that pseudo instructions don't emit code and keep
1852       // looking for a call. We may emit an unnecessary nop in some cases.
1853       if (!MBBI->isPseudo()) {
1854         if (MBBI->isCall())
1855           EmitAndCountInstruction(MCInstBuilder(X86::NOOP));
1856         break;
1857       }
1858     }
1859     return;
1860   }
1861
1862   // Lower PSHUFB and VPERMILP normally but add a comment if we can find
1863   // a constant shuffle mask. We won't be able to do this at the MC layer
1864   // because the mask isn't an immediate.
1865   case X86::PSHUFBrm:
1866   case X86::VPSHUFBrm:
1867   case X86::VPSHUFBYrm:
1868   case X86::VPSHUFBZ128rm:
1869   case X86::VPSHUFBZ128rmk:
1870   case X86::VPSHUFBZ128rmkz:
1871   case X86::VPSHUFBZ256rm:
1872   case X86::VPSHUFBZ256rmk:
1873   case X86::VPSHUFBZ256rmkz:
1874   case X86::VPSHUFBZrm:
1875   case X86::VPSHUFBZrmk:
1876   case X86::VPSHUFBZrmkz: {
1877     if (!OutStreamer->isVerboseAsm())
1878       break;
1879     unsigned SrcIdx, MaskIdx;
1880     switch (MI->getOpcode()) {
1881     default: llvm_unreachable("Invalid opcode");
1882     case X86::PSHUFBrm:
1883     case X86::VPSHUFBrm:
1884     case X86::VPSHUFBYrm:
1885     case X86::VPSHUFBZ128rm:
1886     case X86::VPSHUFBZ256rm:
1887     case X86::VPSHUFBZrm:
1888       SrcIdx = 1; MaskIdx = 5; break;
1889     case X86::VPSHUFBZ128rmkz:
1890     case X86::VPSHUFBZ256rmkz:
1891     case X86::VPSHUFBZrmkz:
1892       SrcIdx = 2; MaskIdx = 6; break;
1893     case X86::VPSHUFBZ128rmk:
1894     case X86::VPSHUFBZ256rmk:
1895     case X86::VPSHUFBZrmk:
1896       SrcIdx = 3; MaskIdx = 7; break;
1897     }
1898
1899     assert(MI->getNumOperands() >= 6 &&
1900            "We should always have at least 6 operands!");
1901
1902     const MachineOperand &MaskOp = MI->getOperand(MaskIdx);
1903     if (auto *C = getConstantFromPool(*MI, MaskOp)) {
1904       SmallVector<int, 64> Mask;
1905       DecodePSHUFBMask(C, Mask);
1906       if (!Mask.empty())
1907         OutStreamer->AddComment(getShuffleComment(MI, SrcIdx, SrcIdx, Mask),
1908                                 !EnablePrintSchedInfo);
1909     }
1910     break;
1911   }
1912
1913   case X86::VPERMILPSrm:
1914   case X86::VPERMILPSYrm:
1915   case X86::VPERMILPSZ128rm:
1916   case X86::VPERMILPSZ128rmk:
1917   case X86::VPERMILPSZ128rmkz:
1918   case X86::VPERMILPSZ256rm:
1919   case X86::VPERMILPSZ256rmk:
1920   case X86::VPERMILPSZ256rmkz:
1921   case X86::VPERMILPSZrm:
1922   case X86::VPERMILPSZrmk:
1923   case X86::VPERMILPSZrmkz:
1924   case X86::VPERMILPDrm:
1925   case X86::VPERMILPDYrm:
1926   case X86::VPERMILPDZ128rm:
1927   case X86::VPERMILPDZ128rmk:
1928   case X86::VPERMILPDZ128rmkz:
1929   case X86::VPERMILPDZ256rm:
1930   case X86::VPERMILPDZ256rmk:
1931   case X86::VPERMILPDZ256rmkz:
1932   case X86::VPERMILPDZrm:
1933   case X86::VPERMILPDZrmk:
1934   case X86::VPERMILPDZrmkz: {
1935     if (!OutStreamer->isVerboseAsm())
1936       break;
1937     unsigned SrcIdx, MaskIdx;
1938     unsigned ElSize;
1939     switch (MI->getOpcode()) {
1940     default: llvm_unreachable("Invalid opcode");
1941     case X86::VPERMILPSrm:
1942     case X86::VPERMILPSYrm:
1943     case X86::VPERMILPSZ128rm:
1944     case X86::VPERMILPSZ256rm:
1945     case X86::VPERMILPSZrm:
1946       SrcIdx = 1; MaskIdx = 5; ElSize = 32; break;
1947     case X86::VPERMILPSZ128rmkz:
1948     case X86::VPERMILPSZ256rmkz:
1949     case X86::VPERMILPSZrmkz:
1950       SrcIdx = 2; MaskIdx = 6; ElSize = 32; break;
1951     case X86::VPERMILPSZ128rmk:
1952     case X86::VPERMILPSZ256rmk:
1953     case X86::VPERMILPSZrmk:
1954       SrcIdx = 3; MaskIdx = 7; ElSize = 32; break;
1955     case X86::VPERMILPDrm:
1956     case X86::VPERMILPDYrm:
1957     case X86::VPERMILPDZ128rm:
1958     case X86::VPERMILPDZ256rm:
1959     case X86::VPERMILPDZrm:
1960       SrcIdx = 1; MaskIdx = 5; ElSize = 64; break;
1961     case X86::VPERMILPDZ128rmkz:
1962     case X86::VPERMILPDZ256rmkz:
1963     case X86::VPERMILPDZrmkz:
1964       SrcIdx = 2; MaskIdx = 6; ElSize = 64; break;
1965     case X86::VPERMILPDZ128rmk:
1966     case X86::VPERMILPDZ256rmk:
1967     case X86::VPERMILPDZrmk:
1968       SrcIdx = 3; MaskIdx = 7; ElSize = 64; break;
1969     }
1970
1971     assert(MI->getNumOperands() >= 6 &&
1972            "We should always have at least 6 operands!");
1973
1974     const MachineOperand &MaskOp = MI->getOperand(MaskIdx);
1975     if (auto *C = getConstantFromPool(*MI, MaskOp)) {
1976       SmallVector<int, 16> Mask;
1977       DecodeVPERMILPMask(C, ElSize, Mask);
1978       if (!Mask.empty())
1979         OutStreamer->AddComment(getShuffleComment(MI, SrcIdx, SrcIdx, Mask),
1980                                 !EnablePrintSchedInfo);
1981     }
1982     break;
1983   }
1984
1985   case X86::VPERMIL2PDrm:
1986   case X86::VPERMIL2PSrm:
1987   case X86::VPERMIL2PDYrm:
1988   case X86::VPERMIL2PSYrm: {
1989     if (!OutStreamer->isVerboseAsm())
1990       break;
1991     assert(MI->getNumOperands() >= 8 &&
1992            "We should always have at least 8 operands!");
1993
1994     const MachineOperand &CtrlOp = MI->getOperand(MI->getNumOperands() - 1);
1995     if (!CtrlOp.isImm())
1996       break;
1997
1998     unsigned ElSize;
1999     switch (MI->getOpcode()) {
2000     default: llvm_unreachable("Invalid opcode");
2001     case X86::VPERMIL2PSrm: case X86::VPERMIL2PSYrm: ElSize = 32; break;
2002     case X86::VPERMIL2PDrm: case X86::VPERMIL2PDYrm: ElSize = 64; break;
2003     }
2004
2005     const MachineOperand &MaskOp = MI->getOperand(6);
2006     if (auto *C = getConstantFromPool(*MI, MaskOp)) {
2007       SmallVector<int, 16> Mask;
2008       DecodeVPERMIL2PMask(C, (unsigned)CtrlOp.getImm(), ElSize, Mask);
2009       if (!Mask.empty())
2010         OutStreamer->AddComment(getShuffleComment(MI, 1, 2, Mask),
2011                                 !EnablePrintSchedInfo);
2012     }
2013     break;
2014   }
2015
2016   case X86::VPPERMrrm: {
2017     if (!OutStreamer->isVerboseAsm())
2018       break;
2019     assert(MI->getNumOperands() >= 7 &&
2020            "We should always have at least 7 operands!");
2021
2022     const MachineOperand &MaskOp = MI->getOperand(6);
2023     if (auto *C = getConstantFromPool(*MI, MaskOp)) {
2024       SmallVector<int, 16> Mask;
2025       DecodeVPPERMMask(C, Mask);
2026       if (!Mask.empty())
2027         OutStreamer->AddComment(getShuffleComment(MI, 1, 2, Mask),
2028                                 !EnablePrintSchedInfo);
2029     }
2030     break;
2031   }
2032
2033   case X86::MMX_MOVQ64rm: {
2034     if (!OutStreamer->isVerboseAsm())
2035       break;
2036     if (MI->getNumOperands() <= 4)
2037       break;
2038     if (auto *C = getConstantFromPool(*MI, MI->getOperand(4))) {
2039       std::string Comment;
2040       raw_string_ostream CS(Comment);
2041       const MachineOperand &DstOp = MI->getOperand(0);
2042       CS << X86ATTInstPrinter::getRegisterName(DstOp.getReg()) << " = ";
2043       if (auto *CF = dyn_cast<ConstantFP>(C)) {
2044         CS << "0x" << CF->getValueAPF().bitcastToAPInt().toString(16, false);
2045         OutStreamer->AddComment(CS.str(), !EnablePrintSchedInfo);
2046       }
2047     }
2048     break;
2049   }
2050
2051 #define MOV_CASE(Prefix, Suffix)                                               \
2052   case X86::Prefix##MOVAPD##Suffix##rm:                                        \
2053   case X86::Prefix##MOVAPS##Suffix##rm:                                        \
2054   case X86::Prefix##MOVUPD##Suffix##rm:                                        \
2055   case X86::Prefix##MOVUPS##Suffix##rm:                                        \
2056   case X86::Prefix##MOVDQA##Suffix##rm:                                        \
2057   case X86::Prefix##MOVDQU##Suffix##rm:
2058
2059 #define MOV_AVX512_CASE(Suffix)                                                \
2060   case X86::VMOVDQA64##Suffix##rm:                                             \
2061   case X86::VMOVDQA32##Suffix##rm:                                             \
2062   case X86::VMOVDQU64##Suffix##rm:                                             \
2063   case X86::VMOVDQU32##Suffix##rm:                                             \
2064   case X86::VMOVDQU16##Suffix##rm:                                             \
2065   case X86::VMOVDQU8##Suffix##rm:                                              \
2066   case X86::VMOVAPS##Suffix##rm:                                               \
2067   case X86::VMOVAPD##Suffix##rm:                                               \
2068   case X86::VMOVUPS##Suffix##rm:                                               \
2069   case X86::VMOVUPD##Suffix##rm:
2070
2071 #define CASE_ALL_MOV_RM()                                                      \
2072   MOV_CASE(, )   /* SSE */                                                     \
2073   MOV_CASE(V, )  /* AVX-128 */                                                 \
2074   MOV_CASE(V, Y) /* AVX-256 */                                                 \
2075   MOV_AVX512_CASE(Z)                                                           \
2076   MOV_AVX512_CASE(Z256)                                                        \
2077   MOV_AVX512_CASE(Z128)
2078
2079     // For loads from a constant pool to a vector register, print the constant
2080     // loaded.
2081     CASE_ALL_MOV_RM()
2082   case X86::VBROADCASTF128:
2083   case X86::VBROADCASTI128:
2084   case X86::VBROADCASTF32X4Z256rm:
2085   case X86::VBROADCASTF32X4rm:
2086   case X86::VBROADCASTF32X8rm:
2087   case X86::VBROADCASTF64X2Z128rm:
2088   case X86::VBROADCASTF64X2rm:
2089   case X86::VBROADCASTF64X4rm:
2090   case X86::VBROADCASTI32X4Z256rm:
2091   case X86::VBROADCASTI32X4rm:
2092   case X86::VBROADCASTI32X8rm:
2093   case X86::VBROADCASTI64X2Z128rm:
2094   case X86::VBROADCASTI64X2rm:
2095   case X86::VBROADCASTI64X4rm:
2096     if (!OutStreamer->isVerboseAsm())
2097       break;
2098     if (MI->getNumOperands() <= 4)
2099       break;
2100     if (auto *C = getConstantFromPool(*MI, MI->getOperand(4))) {
2101       int NumLanes = 1;
2102       // Override NumLanes for the broadcast instructions.
2103       switch (MI->getOpcode()) {
2104       case X86::VBROADCASTF128:        NumLanes = 2; break;
2105       case X86::VBROADCASTI128:        NumLanes = 2; break;
2106       case X86::VBROADCASTF32X4Z256rm: NumLanes = 2; break;
2107       case X86::VBROADCASTF32X4rm:     NumLanes = 4; break;
2108       case X86::VBROADCASTF32X8rm:     NumLanes = 2; break;
2109       case X86::VBROADCASTF64X2Z128rm: NumLanes = 2; break;
2110       case X86::VBROADCASTF64X2rm:     NumLanes = 4; break;
2111       case X86::VBROADCASTF64X4rm:     NumLanes = 2; break;
2112       case X86::VBROADCASTI32X4Z256rm: NumLanes = 2; break;
2113       case X86::VBROADCASTI32X4rm:     NumLanes = 4; break;
2114       case X86::VBROADCASTI32X8rm:     NumLanes = 2; break;
2115       case X86::VBROADCASTI64X2Z128rm: NumLanes = 2; break;
2116       case X86::VBROADCASTI64X2rm:     NumLanes = 4; break;
2117       case X86::VBROADCASTI64X4rm:     NumLanes = 2; break;
2118       }
2119
2120       std::string Comment;
2121       raw_string_ostream CS(Comment);
2122       const MachineOperand &DstOp = MI->getOperand(0);
2123       CS << X86ATTInstPrinter::getRegisterName(DstOp.getReg()) << " = ";
2124       if (auto *CDS = dyn_cast<ConstantDataSequential>(C)) {
2125         CS << "[";
2126         for (int l = 0; l != NumLanes; ++l) {
2127           for (int i = 0, NumElements = CDS->getNumElements(); i < NumElements;
2128                ++i) {
2129             if (i != 0 || l != 0)
2130               CS << ",";
2131             if (CDS->getElementType()->isIntegerTy())
2132               CS << CDS->getElementAsInteger(i);
2133             else if (CDS->getElementType()->isFloatTy())
2134               CS << CDS->getElementAsFloat(i);
2135             else if (CDS->getElementType()->isDoubleTy())
2136               CS << CDS->getElementAsDouble(i);
2137             else
2138               CS << "?";
2139           }
2140         }
2141         CS << "]";
2142         OutStreamer->AddComment(CS.str(), !EnablePrintSchedInfo);
2143       } else if (auto *CV = dyn_cast<ConstantVector>(C)) {
2144         CS << "<";
2145         for (int l = 0; l != NumLanes; ++l) {
2146           for (int i = 0, NumOperands = CV->getNumOperands(); i < NumOperands;
2147                ++i) {
2148             if (i != 0 || l != 0)
2149               CS << ",";
2150             printConstant(CV->getOperand(i), CS);
2151           }
2152         }
2153         CS << ">";
2154         OutStreamer->AddComment(CS.str(), !EnablePrintSchedInfo);
2155       }
2156     }
2157     break;
2158   case X86::VBROADCASTSSrm:
2159   case X86::VBROADCASTSSYrm:
2160   case X86::VBROADCASTSSZ128m:
2161   case X86::VBROADCASTSSZ256m:
2162   case X86::VBROADCASTSSZm:
2163   case X86::VBROADCASTSDYrm:
2164   case X86::VBROADCASTSDZ256m:
2165   case X86::VBROADCASTSDZm:
2166   case X86::VPBROADCASTBrm:
2167   case X86::VPBROADCASTBYrm:
2168   case X86::VPBROADCASTBZ128m:
2169   case X86::VPBROADCASTBZ256m:
2170   case X86::VPBROADCASTBZm:
2171   case X86::VPBROADCASTDrm:
2172   case X86::VPBROADCASTDYrm:
2173   case X86::VPBROADCASTDZ128m:
2174   case X86::VPBROADCASTDZ256m:
2175   case X86::VPBROADCASTDZm:
2176   case X86::VPBROADCASTQrm:
2177   case X86::VPBROADCASTQYrm:
2178   case X86::VPBROADCASTQZ128m:
2179   case X86::VPBROADCASTQZ256m:
2180   case X86::VPBROADCASTQZm:
2181   case X86::VPBROADCASTWrm:
2182   case X86::VPBROADCASTWYrm:
2183   case X86::VPBROADCASTWZ128m:
2184   case X86::VPBROADCASTWZ256m:
2185   case X86::VPBROADCASTWZm:
2186     if (!OutStreamer->isVerboseAsm())
2187       break;
2188     if (MI->getNumOperands() <= 4)
2189       break;
2190     if (auto *C = getConstantFromPool(*MI, MI->getOperand(4))) {
2191       int NumElts;
2192       switch (MI->getOpcode()) {
2193       default: llvm_unreachable("Invalid opcode");
2194       case X86::VBROADCASTSSrm:    NumElts = 4;  break;
2195       case X86::VBROADCASTSSYrm:   NumElts = 8;  break;
2196       case X86::VBROADCASTSSZ128m: NumElts = 4;  break;
2197       case X86::VBROADCASTSSZ256m: NumElts = 8;  break;
2198       case X86::VBROADCASTSSZm:    NumElts = 16; break;
2199       case X86::VBROADCASTSDYrm:   NumElts = 4;  break;
2200       case X86::VBROADCASTSDZ256m: NumElts = 4;  break;
2201       case X86::VBROADCASTSDZm:    NumElts = 8;  break;
2202       case X86::VPBROADCASTBrm:    NumElts = 16; break;
2203       case X86::VPBROADCASTBYrm:   NumElts = 32; break;
2204       case X86::VPBROADCASTBZ128m: NumElts = 16; break;
2205       case X86::VPBROADCASTBZ256m: NumElts = 32; break;
2206       case X86::VPBROADCASTBZm:    NumElts = 64; break;
2207       case X86::VPBROADCASTDrm:    NumElts = 4;  break;
2208       case X86::VPBROADCASTDYrm:   NumElts = 8;  break;
2209       case X86::VPBROADCASTDZ128m: NumElts = 4;  break;
2210       case X86::VPBROADCASTDZ256m: NumElts = 8;  break;
2211       case X86::VPBROADCASTDZm:    NumElts = 16; break;
2212       case X86::VPBROADCASTQrm:    NumElts = 2;  break;
2213       case X86::VPBROADCASTQYrm:   NumElts = 4;  break;
2214       case X86::VPBROADCASTQZ128m: NumElts = 2;  break;
2215       case X86::VPBROADCASTQZ256m: NumElts = 4;  break;
2216       case X86::VPBROADCASTQZm:    NumElts = 8;  break;
2217       case X86::VPBROADCASTWrm:    NumElts = 8;  break;
2218       case X86::VPBROADCASTWYrm:   NumElts = 16; break;
2219       case X86::VPBROADCASTWZ128m: NumElts = 8;  break;
2220       case X86::VPBROADCASTWZ256m: NumElts = 16; break;
2221       case X86::VPBROADCASTWZm:    NumElts = 32; break;
2222       }
2223
2224       std::string Comment;
2225       raw_string_ostream CS(Comment);
2226       const MachineOperand &DstOp = MI->getOperand(0);
2227       CS << X86ATTInstPrinter::getRegisterName(DstOp.getReg()) << " = ";
2228       CS << "[";
2229       for (int i = 0; i != NumElts; ++i) {
2230         if (i != 0)
2231           CS << ",";
2232         printConstant(C, CS);
2233       }
2234       CS << "]";
2235       OutStreamer->AddComment(CS.str(), !EnablePrintSchedInfo);
2236     }
2237   }
2238
2239   MCInst TmpInst;
2240   MCInstLowering.Lower(MI, TmpInst);
2241   if (MI->getAsmPrinterFlag(MachineInstr::NoSchedComment))
2242     TmpInst.setFlags(TmpInst.getFlags() | X86::NO_SCHED_INFO);
2243
2244   // Stackmap shadows cannot include branch targets, so we can count the bytes
2245   // in a call towards the shadow, but must ensure that the no thread returns
2246   // in to the stackmap shadow.  The only way to achieve this is if the call
2247   // is at the end of the shadow.
2248   if (MI->isCall()) {
2249     // Count then size of the call towards the shadow
2250     SMShadowTracker.count(TmpInst, getSubtargetInfo(), CodeEmitter.get());
2251     // Then flush the shadow so that we fill with nops before the call, not
2252     // after it.
2253     SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo());
2254     // Then emit the call
2255     OutStreamer->EmitInstruction(TmpInst, getSubtargetInfo());
2256     return;
2257   }
2258
2259   EmitAndCountInstruction(TmpInst);
2260 }