]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Target/X86/X86SpeculativeLoadHardening.cpp
Merge clang 7.0.1 and several follow-up changes
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Target / X86 / X86SpeculativeLoadHardening.cpp
1 //====- X86SpeculativeLoadHardening.cpp - A Spectre v1 mitigation ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 ///
11 /// Provide a pass which mitigates speculative execution attacks which operate
12 /// by speculating incorrectly past some predicate (a type check, bounds check,
13 /// or other condition) to reach a load with invalid inputs and leak the data
14 /// accessed by that load using a side channel out of the speculative domain.
15 ///
16 /// For details on the attacks, see the first variant in both the Project Zero
17 /// writeup and the Spectre paper:
18 /// https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
19 /// https://spectreattack.com/spectre.pdf
20 ///
21 //===----------------------------------------------------------------------===//
22
23 #include "X86.h"
24 #include "X86InstrBuilder.h"
25 #include "X86InstrInfo.h"
26 #include "X86Subtarget.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/Optional.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/ScopeExit.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/SparseBitVector.h"
36 #include "llvm/ADT/Statistic.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineConstantPool.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineFunctionPass.h"
41 #include "llvm/CodeGen/MachineInstr.h"
42 #include "llvm/CodeGen/MachineInstrBuilder.h"
43 #include "llvm/CodeGen/MachineModuleInfo.h"
44 #include "llvm/CodeGen/MachineOperand.h"
45 #include "llvm/CodeGen/MachineRegisterInfo.h"
46 #include "llvm/CodeGen/MachineSSAUpdater.h"
47 #include "llvm/CodeGen/TargetInstrInfo.h"
48 #include "llvm/CodeGen/TargetRegisterInfo.h"
49 #include "llvm/CodeGen/TargetSchedule.h"
50 #include "llvm/CodeGen/TargetSubtargetInfo.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/MC/MCSchedule.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <iterator>
60 #include <utility>
61
62 using namespace llvm;
63
64 #define PASS_KEY "x86-speculative-load-hardening"
65 #define DEBUG_TYPE PASS_KEY
66
67 STATISTIC(NumCondBranchesTraced, "Number of conditional branches traced");
68 STATISTIC(NumBranchesUntraced, "Number of branches unable to trace");
69 STATISTIC(NumAddrRegsHardened,
70           "Number of address mode used registers hardaned");
71 STATISTIC(NumPostLoadRegsHardened,
72           "Number of post-load register values hardened");
73 STATISTIC(NumCallsOrJumpsHardened,
74           "Number of calls or jumps requiring extra hardening");
75 STATISTIC(NumInstsInserted, "Number of instructions inserted");
76 STATISTIC(NumLFENCEsInserted, "Number of lfence instructions inserted");
77
78 static cl::opt<bool> HardenEdgesWithLFENCE(
79     PASS_KEY "-lfence",
80     cl::desc(
81         "Use LFENCE along each conditional edge to harden against speculative "
82         "loads rather than conditional movs and poisoned pointers."),
83     cl::init(false), cl::Hidden);
84
85 static cl::opt<bool> EnablePostLoadHardening(
86     PASS_KEY "-post-load",
87     cl::desc("Harden the value loaded *after* it is loaded by "
88              "flushing the loaded bits to 1. This is hard to do "
89              "in general but can be done easily for GPRs."),
90     cl::init(true), cl::Hidden);
91
92 static cl::opt<bool> FenceCallAndRet(
93     PASS_KEY "-fence-call-and-ret",
94     cl::desc("Use a full speculation fence to harden both call and ret edges "
95              "rather than a lighter weight mitigation."),
96     cl::init(false), cl::Hidden);
97
98 static cl::opt<bool> HardenInterprocedurally(
99     PASS_KEY "-ip",
100     cl::desc("Harden interprocedurally by passing our state in and out of "
101              "functions in the high bits of the stack pointer."),
102     cl::init(true), cl::Hidden);
103
104 static cl::opt<bool>
105     HardenLoads(PASS_KEY "-loads",
106                 cl::desc("Sanitize loads from memory. When disable, no "
107                          "significant security is provided."),
108                 cl::init(true), cl::Hidden);
109
110 static cl::opt<bool> HardenIndirectCallsAndJumps(
111     PASS_KEY "-indirect",
112     cl::desc("Harden indirect calls and jumps against using speculatively "
113              "stored attacker controlled addresses. This is designed to "
114              "mitigate Spectre v1.2 style attacks."),
115     cl::init(true), cl::Hidden);
116
117 namespace llvm {
118
119 void initializeX86SpeculativeLoadHardeningPassPass(PassRegistry &);
120
121 } // end namespace llvm
122
123 namespace {
124
125 class X86SpeculativeLoadHardeningPass : public MachineFunctionPass {
126 public:
127   X86SpeculativeLoadHardeningPass() : MachineFunctionPass(ID) {
128     initializeX86SpeculativeLoadHardeningPassPass(
129         *PassRegistry::getPassRegistry());
130   }
131
132   StringRef getPassName() const override {
133     return "X86 speculative load hardening";
134   }
135   bool runOnMachineFunction(MachineFunction &MF) override;
136   void getAnalysisUsage(AnalysisUsage &AU) const override;
137
138   /// Pass identification, replacement for typeid.
139   static char ID;
140
141 private:
142   /// The information about a block's conditional terminators needed to trace
143   /// our predicate state through the exiting edges.
144   struct BlockCondInfo {
145     MachineBasicBlock *MBB;
146
147     // We mostly have one conditional branch, and in extremely rare cases have
148     // two. Three and more are so rare as to be unimportant for compile time.
149     SmallVector<MachineInstr *, 2> CondBrs;
150
151     MachineInstr *UncondBr;
152   };
153
154   /// Manages the predicate state traced through the program.
155   struct PredState {
156     unsigned InitialReg;
157     unsigned PoisonReg;
158
159     const TargetRegisterClass *RC;
160     MachineSSAUpdater SSA;
161
162     PredState(MachineFunction &MF, const TargetRegisterClass *RC)
163         : RC(RC), SSA(MF) {}
164   };
165
166   const X86Subtarget *Subtarget;
167   MachineRegisterInfo *MRI;
168   const X86InstrInfo *TII;
169   const TargetRegisterInfo *TRI;
170
171   Optional<PredState> PS;
172
173   void hardenEdgesWithLFENCE(MachineFunction &MF);
174
175   SmallVector<BlockCondInfo, 16> collectBlockCondInfo(MachineFunction &MF);
176
177   SmallVector<MachineInstr *, 16>
178   tracePredStateThroughCFG(MachineFunction &MF, ArrayRef<BlockCondInfo> Infos);
179
180   void unfoldCallAndJumpLoads(MachineFunction &MF);
181
182   void tracePredStateThroughBlocksAndHarden(MachineFunction &MF);
183
184   unsigned saveEFLAGS(MachineBasicBlock &MBB,
185                       MachineBasicBlock::iterator InsertPt, DebugLoc Loc);
186   void restoreEFLAGS(MachineBasicBlock &MBB,
187                      MachineBasicBlock::iterator InsertPt, DebugLoc Loc,
188                      unsigned OFReg);
189
190   void mergePredStateIntoSP(MachineBasicBlock &MBB,
191                             MachineBasicBlock::iterator InsertPt, DebugLoc Loc,
192                             unsigned PredStateReg);
193   unsigned extractPredStateFromSP(MachineBasicBlock &MBB,
194                                   MachineBasicBlock::iterator InsertPt,
195                                   DebugLoc Loc);
196
197   void
198   hardenLoadAddr(MachineInstr &MI, MachineOperand &BaseMO,
199                  MachineOperand &IndexMO,
200                  SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg);
201   MachineInstr *
202   sinkPostLoadHardenedInst(MachineInstr &MI,
203                            SmallPtrSetImpl<MachineInstr *> &HardenedInstrs);
204   bool canHardenRegister(unsigned Reg);
205   unsigned hardenValueInRegister(unsigned Reg, MachineBasicBlock &MBB,
206                                  MachineBasicBlock::iterator InsertPt,
207                                  DebugLoc Loc);
208   unsigned hardenPostLoad(MachineInstr &MI);
209   void hardenReturnInstr(MachineInstr &MI);
210   void tracePredStateThroughCall(MachineInstr &MI);
211   void hardenIndirectCallOrJumpInstr(
212       MachineInstr &MI,
213       SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg);
214 };
215
216 } // end anonymous namespace
217
218 char X86SpeculativeLoadHardeningPass::ID = 0;
219
220 void X86SpeculativeLoadHardeningPass::getAnalysisUsage(
221     AnalysisUsage &AU) const {
222   MachineFunctionPass::getAnalysisUsage(AU);
223 }
224
225 static MachineBasicBlock &splitEdge(MachineBasicBlock &MBB,
226                                     MachineBasicBlock &Succ, int SuccCount,
227                                     MachineInstr *Br, MachineInstr *&UncondBr,
228                                     const X86InstrInfo &TII) {
229   assert(!Succ.isEHPad() && "Shouldn't get edges to EH pads!");
230
231   MachineFunction &MF = *MBB.getParent();
232
233   MachineBasicBlock &NewMBB = *MF.CreateMachineBasicBlock();
234
235   // We have to insert the new block immediately after the current one as we
236   // don't know what layout-successor relationships the successor has and we
237   // may not be able to (and generally don't want to) try to fix those up.
238   MF.insert(std::next(MachineFunction::iterator(&MBB)), &NewMBB);
239
240   // Update the branch instruction if necessary.
241   if (Br) {
242     assert(Br->getOperand(0).getMBB() == &Succ &&
243            "Didn't start with the right target!");
244     Br->getOperand(0).setMBB(&NewMBB);
245
246     // If this successor was reached through a branch rather than fallthrough,
247     // we might have *broken* fallthrough and so need to inject a new
248     // unconditional branch.
249     if (!UncondBr) {
250       MachineBasicBlock &OldLayoutSucc =
251           *std::next(MachineFunction::iterator(&NewMBB));
252       assert(MBB.isSuccessor(&OldLayoutSucc) &&
253              "Without an unconditional branch, the old layout successor should "
254              "be an actual successor!");
255       auto BrBuilder =
256           BuildMI(&MBB, DebugLoc(), TII.get(X86::JMP_1)).addMBB(&OldLayoutSucc);
257       // Update the unconditional branch now that we've added one.
258       UncondBr = &*BrBuilder;
259     }
260
261     // Insert unconditional "jump Succ" instruction in the new block if
262     // necessary.
263     if (!NewMBB.isLayoutSuccessor(&Succ)) {
264       SmallVector<MachineOperand, 4> Cond;
265       TII.insertBranch(NewMBB, &Succ, nullptr, Cond, Br->getDebugLoc());
266     }
267   } else {
268     assert(!UncondBr &&
269            "Cannot have a branchless successor and an unconditional branch!");
270     assert(NewMBB.isLayoutSuccessor(&Succ) &&
271            "A non-branch successor must have been a layout successor before "
272            "and now is a layout successor of the new block.");
273   }
274
275   // If this is the only edge to the successor, we can just replace it in the
276   // CFG. Otherwise we need to add a new entry in the CFG for the new
277   // successor.
278   if (SuccCount == 1) {
279     MBB.replaceSuccessor(&Succ, &NewMBB);
280   } else {
281     MBB.splitSuccessor(&Succ, &NewMBB);
282   }
283
284   // Hook up the edge from the new basic block to the old successor in the CFG.
285   NewMBB.addSuccessor(&Succ);
286
287   // Fix PHI nodes in Succ so they refer to NewMBB instead of MBB.
288   for (MachineInstr &MI : Succ) {
289     if (!MI.isPHI())
290       break;
291     for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps;
292          OpIdx += 2) {
293       MachineOperand &OpV = MI.getOperand(OpIdx);
294       MachineOperand &OpMBB = MI.getOperand(OpIdx + 1);
295       assert(OpMBB.isMBB() && "Block operand to a PHI is not a block!");
296       if (OpMBB.getMBB() != &MBB)
297         continue;
298
299       // If this is the last edge to the succesor, just replace MBB in the PHI
300       if (SuccCount == 1) {
301         OpMBB.setMBB(&NewMBB);
302         break;
303       }
304
305       // Otherwise, append a new pair of operands for the new incoming edge.
306       MI.addOperand(MF, OpV);
307       MI.addOperand(MF, MachineOperand::CreateMBB(&NewMBB));
308       break;
309     }
310   }
311
312   // Inherit live-ins from the successor
313   for (auto &LI : Succ.liveins())
314     NewMBB.addLiveIn(LI);
315
316   LLVM_DEBUG(dbgs() << "  Split edge from '" << MBB.getName() << "' to '"
317                     << Succ.getName() << "'.\n");
318   return NewMBB;
319 }
320
321 /// Removing duplicate PHI operands to leave the PHI in a canonical and
322 /// predictable form.
323 ///
324 /// FIXME: It's really frustrating that we have to do this, but SSA-form in MIR
325 /// isn't what you might expect. We may have multiple entries in PHI nodes for
326 /// a single predecessor. This makes CFG-updating extremely complex, so here we
327 /// simplify all PHI nodes to a model even simpler than the IR's model: exactly
328 /// one entry per predecessor, regardless of how many edges there are.
329 static void canonicalizePHIOperands(MachineFunction &MF) {
330   SmallPtrSet<MachineBasicBlock *, 4> Preds;
331   SmallVector<int, 4> DupIndices;
332   for (auto &MBB : MF)
333     for (auto &MI : MBB) {
334       if (!MI.isPHI())
335         break;
336
337       // First we scan the operands of the PHI looking for duplicate entries
338       // a particular predecessor. We retain the operand index of each duplicate
339       // entry found.
340       for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps;
341            OpIdx += 2)
342         if (!Preds.insert(MI.getOperand(OpIdx + 1).getMBB()).second)
343           DupIndices.push_back(OpIdx);
344
345       // Now walk the duplicate indices, removing both the block and value. Note
346       // that these are stored as a vector making this element-wise removal
347       // :w
348       // potentially quadratic.
349       //
350       // FIXME: It is really frustrating that we have to use a quadratic
351       // removal algorithm here. There should be a better way, but the use-def
352       // updates required make that impossible using the public API.
353       //
354       // Note that we have to process these backwards so that we don't
355       // invalidate other indices with each removal.
356       while (!DupIndices.empty()) {
357         int OpIdx = DupIndices.pop_back_val();
358         // Remove both the block and value operand, again in reverse order to
359         // preserve indices.
360         MI.RemoveOperand(OpIdx + 1);
361         MI.RemoveOperand(OpIdx);
362       }
363
364       Preds.clear();
365     }
366 }
367
368 /// Helper to scan a function for loads vulnerable to misspeculation that we
369 /// want to harden.
370 ///
371 /// We use this to avoid making changes to functions where there is nothing we
372 /// need to do to harden against misspeculation.
373 static bool hasVulnerableLoad(MachineFunction &MF) {
374   for (MachineBasicBlock &MBB : MF) {
375     for (MachineInstr &MI : MBB) {
376       // Loads within this basic block after an LFENCE are not at risk of
377       // speculatively executing with invalid predicates from prior control
378       // flow. So break out of this block but continue scanning the function.
379       if (MI.getOpcode() == X86::LFENCE)
380         break;
381
382       // Looking for loads only.
383       if (!MI.mayLoad())
384         continue;
385
386       // An MFENCE is modeled as a load but isn't vulnerable to misspeculation.
387       if (MI.getOpcode() == X86::MFENCE)
388         continue;
389
390       // We found a load.
391       return true;
392     }
393   }
394
395   // No loads found.
396   return false;
397 }
398
399 bool X86SpeculativeLoadHardeningPass::runOnMachineFunction(
400     MachineFunction &MF) {
401   LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName()
402                     << " **********\n");
403
404   Subtarget = &MF.getSubtarget<X86Subtarget>();
405   MRI = &MF.getRegInfo();
406   TII = Subtarget->getInstrInfo();
407   TRI = Subtarget->getRegisterInfo();
408
409   // FIXME: Support for 32-bit.
410   PS.emplace(MF, &X86::GR64_NOSPRegClass);
411
412   if (MF.begin() == MF.end())
413     // Nothing to do for a degenerate empty function...
414     return false;
415
416   // We support an alternative hardening technique based on a debug flag.
417   if (HardenEdgesWithLFENCE) {
418     hardenEdgesWithLFENCE(MF);
419     return true;
420   }
421
422   // Create a dummy debug loc to use for all the generated code here.
423   DebugLoc Loc;
424
425   MachineBasicBlock &Entry = *MF.begin();
426   auto EntryInsertPt = Entry.SkipPHIsLabelsAndDebug(Entry.begin());
427
428   // Do a quick scan to see if we have any checkable loads.
429   bool HasVulnerableLoad = hasVulnerableLoad(MF);
430
431   // See if we have any conditional branching blocks that we will need to trace
432   // predicate state through.
433   SmallVector<BlockCondInfo, 16> Infos = collectBlockCondInfo(MF);
434
435   // If we have no interesting conditions or loads, nothing to do here.
436   if (!HasVulnerableLoad && Infos.empty())
437     return true;
438
439   // The poison value is required to be an all-ones value for many aspects of
440   // this mitigation.
441   const int PoisonVal = -1;
442   PS->PoisonReg = MRI->createVirtualRegister(PS->RC);
443   BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::MOV64ri32), PS->PoisonReg)
444       .addImm(PoisonVal);
445   ++NumInstsInserted;
446
447   // If we have loads being hardened and we've asked for call and ret edges to
448   // get a full fence-based mitigation, inject that fence.
449   if (HasVulnerableLoad && FenceCallAndRet) {
450     // We need to insert an LFENCE at the start of the function to suspend any
451     // incoming misspeculation from the caller. This helps two-fold: the caller
452     // may not have been protected as this code has been, and this code gets to
453     // not take any specific action to protect across calls.
454     // FIXME: We could skip this for functions which unconditionally return
455     // a constant.
456     BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::LFENCE));
457     ++NumInstsInserted;
458     ++NumLFENCEsInserted;
459   }
460
461   // If we guarded the entry with an LFENCE and have no conditionals to protect
462   // in blocks, then we're done.
463   if (FenceCallAndRet && Infos.empty())
464     // We may have changed the function's code at this point to insert fences.
465     return true;
466
467   // For every basic block in the function which can b
468   if (HardenInterprocedurally && !FenceCallAndRet) {
469     // Set up the predicate state by extracting it from the incoming stack
470     // pointer so we pick up any misspeculation in our caller.
471     PS->InitialReg = extractPredStateFromSP(Entry, EntryInsertPt, Loc);
472   } else {
473     // Otherwise, just build the predicate state itself by zeroing a register
474     // as we don't need any initial state.
475     PS->InitialReg = MRI->createVirtualRegister(PS->RC);
476     unsigned PredStateSubReg = MRI->createVirtualRegister(&X86::GR32RegClass);
477     auto ZeroI = BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::MOV32r0),
478                          PredStateSubReg);
479     ++NumInstsInserted;
480     MachineOperand *ZeroEFLAGSDefOp =
481         ZeroI->findRegisterDefOperand(X86::EFLAGS);
482     assert(ZeroEFLAGSDefOp && ZeroEFLAGSDefOp->isImplicit() &&
483            "Must have an implicit def of EFLAGS!");
484     ZeroEFLAGSDefOp->setIsDead(true);
485     BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::SUBREG_TO_REG),
486             PS->InitialReg)
487         .addImm(0)
488         .addReg(PredStateSubReg)
489         .addImm(X86::sub_32bit);
490   }
491
492   // We're going to need to trace predicate state throughout the function's
493   // CFG. Prepare for this by setting up our initial state of PHIs with unique
494   // predecessor entries and all the initial predicate state.
495   canonicalizePHIOperands(MF);
496
497   // Track the updated values in an SSA updater to rewrite into SSA form at the
498   // end.
499   PS->SSA.Initialize(PS->InitialReg);
500   PS->SSA.AddAvailableValue(&Entry, PS->InitialReg);
501
502   // Trace through the CFG.
503   auto CMovs = tracePredStateThroughCFG(MF, Infos);
504
505   // We may also enter basic blocks in this function via exception handling
506   // control flow. Here, if we are hardening interprocedurally, we need to
507   // re-capture the predicate state from the throwing code. In the Itanium ABI,
508   // the throw will always look like a call to __cxa_throw and will have the
509   // predicate state in the stack pointer, so extract fresh predicate state from
510   // the stack pointer and make it available in SSA.
511   // FIXME: Handle non-itanium ABI EH models.
512   if (HardenInterprocedurally) {
513     for (MachineBasicBlock &MBB : MF) {
514       assert(!MBB.isEHScopeEntry() && "Only Itanium ABI EH supported!");
515       assert(!MBB.isEHFuncletEntry() && "Only Itanium ABI EH supported!");
516       assert(!MBB.isCleanupFuncletEntry() && "Only Itanium ABI EH supported!");
517       if (!MBB.isEHPad())
518         continue;
519       PS->SSA.AddAvailableValue(
520           &MBB,
521           extractPredStateFromSP(MBB, MBB.SkipPHIsAndLabels(MBB.begin()), Loc));
522     }
523   }
524
525   // If we are going to harden calls and jumps we need to unfold their memory
526   // operands.
527   if (HardenIndirectCallsAndJumps)
528     unfoldCallAndJumpLoads(MF);
529
530   // Now that we have the predicate state available at the start of each block
531   // in the CFG, trace it through each block, hardening vulnerable instructions
532   // as we go.
533   tracePredStateThroughBlocksAndHarden(MF);
534
535   // Now rewrite all the uses of the pred state using the SSA updater to insert
536   // PHIs connecting the state between blocks along the CFG edges.
537   for (MachineInstr *CMovI : CMovs)
538     for (MachineOperand &Op : CMovI->operands()) {
539       if (!Op.isReg() || Op.getReg() != PS->InitialReg)
540         continue;
541
542       PS->SSA.RewriteUse(Op);
543     }
544
545   LLVM_DEBUG(dbgs() << "Final speculative load hardened function:\n"; MF.dump();
546              dbgs() << "\n"; MF.verify(this));
547   return true;
548 }
549
550 /// Implements the naive hardening approach of putting an LFENCE after every
551 /// potentially mis-predicted control flow construct.
552 ///
553 /// We include this as an alternative mostly for the purpose of comparison. The
554 /// performance impact of this is expected to be extremely severe and not
555 /// practical for any real-world users.
556 void X86SpeculativeLoadHardeningPass::hardenEdgesWithLFENCE(
557     MachineFunction &MF) {
558   // First, we scan the function looking for blocks that are reached along edges
559   // that we might want to harden.
560   SmallSetVector<MachineBasicBlock *, 8> Blocks;
561   for (MachineBasicBlock &MBB : MF) {
562     // If there are no or only one successor, nothing to do here.
563     if (MBB.succ_size() <= 1)
564       continue;
565
566     // Skip blocks unless their terminators start with a branch. Other
567     // terminators don't seem interesting for guarding against misspeculation.
568     auto TermIt = MBB.getFirstTerminator();
569     if (TermIt == MBB.end() || !TermIt->isBranch())
570       continue;
571
572     // Add all the non-EH-pad succossors to the blocks we want to harden. We
573     // skip EH pads because there isn't really a condition of interest on
574     // entering.
575     for (MachineBasicBlock *SuccMBB : MBB.successors())
576       if (!SuccMBB->isEHPad())
577         Blocks.insert(SuccMBB);
578   }
579
580   for (MachineBasicBlock *MBB : Blocks) {
581     auto InsertPt = MBB->SkipPHIsAndLabels(MBB->begin());
582     BuildMI(*MBB, InsertPt, DebugLoc(), TII->get(X86::LFENCE));
583     ++NumInstsInserted;
584     ++NumLFENCEsInserted;
585   }
586 }
587
588 SmallVector<X86SpeculativeLoadHardeningPass::BlockCondInfo, 16>
589 X86SpeculativeLoadHardeningPass::collectBlockCondInfo(MachineFunction &MF) {
590   SmallVector<BlockCondInfo, 16> Infos;
591
592   // Walk the function and build up a summary for each block's conditions that
593   // we need to trace through.
594   for (MachineBasicBlock &MBB : MF) {
595     // If there are no or only one successor, nothing to do here.
596     if (MBB.succ_size() <= 1)
597       continue;
598
599     // We want to reliably handle any conditional branch terminators in the
600     // MBB, so we manually analyze the branch. We can handle all of the
601     // permutations here, including ones that analyze branch cannot.
602     //
603     // The approach is to walk backwards across the terminators, resetting at
604     // any unconditional non-indirect branch, and track all conditional edges
605     // to basic blocks as well as the fallthrough or unconditional successor
606     // edge. For each conditional edge, we track the target and the opposite
607     // condition code in order to inject a "no-op" cmov into that successor
608     // that will harden the predicate. For the fallthrough/unconditional
609     // edge, we inject a separate cmov for each conditional branch with
610     // matching condition codes. This effectively implements an "and" of the
611     // condition flags, even if there isn't a single condition flag that would
612     // directly implement that. We don't bother trying to optimize either of
613     // these cases because if such an optimization is possible, LLVM should
614     // have optimized the conditional *branches* in that way already to reduce
615     // instruction count. This late, we simply assume the minimal number of
616     // branch instructions is being emitted and use that to guide our cmov
617     // insertion.
618
619     BlockCondInfo Info = {&MBB, {}, nullptr};
620
621     // Now walk backwards through the terminators and build up successors they
622     // reach and the conditions.
623     for (MachineInstr &MI : llvm::reverse(MBB)) {
624       // Once we've handled all the terminators, we're done.
625       if (!MI.isTerminator())
626         break;
627
628       // If we see a non-branch terminator, we can't handle anything so bail.
629       if (!MI.isBranch()) {
630         Info.CondBrs.clear();
631         break;
632       }
633
634       // If we see an unconditional branch, reset our state, clear any
635       // fallthrough, and set this is the "else" successor.
636       if (MI.getOpcode() == X86::JMP_1) {
637         Info.CondBrs.clear();
638         Info.UncondBr = &MI;
639         continue;
640       }
641
642       // If we get an invalid condition, we have an indirect branch or some
643       // other unanalyzable "fallthrough" case. We model this as a nullptr for
644       // the destination so we can still guard any conditional successors.
645       // Consider code sequences like:
646       // ```
647       //   jCC L1
648       //   jmpq *%rax
649       // ```
650       // We still want to harden the edge to `L1`.
651       if (X86::getCondFromBranchOpc(MI.getOpcode()) == X86::COND_INVALID) {
652         Info.CondBrs.clear();
653         Info.UncondBr = &MI;
654         continue;
655       }
656
657       // We have a vanilla conditional branch, add it to our list.
658       Info.CondBrs.push_back(&MI);
659     }
660     if (Info.CondBrs.empty()) {
661       ++NumBranchesUntraced;
662       LLVM_DEBUG(dbgs() << "WARNING: unable to secure successors of block:\n";
663                  MBB.dump());
664       continue;
665     }
666
667     Infos.push_back(Info);
668   }
669
670   return Infos;
671 }
672
673 /// Trace the predicate state through the CFG, instrumenting each conditional
674 /// branch such that misspeculation through an edge will poison the predicate
675 /// state.
676 ///
677 /// Returns the list of inserted CMov instructions so that they can have their
678 /// uses of the predicate state rewritten into proper SSA form once it is
679 /// complete.
680 SmallVector<MachineInstr *, 16>
681 X86SpeculativeLoadHardeningPass::tracePredStateThroughCFG(
682     MachineFunction &MF, ArrayRef<BlockCondInfo> Infos) {
683   // Collect the inserted cmov instructions so we can rewrite their uses of the
684   // predicate state into SSA form.
685   SmallVector<MachineInstr *, 16> CMovs;
686
687   // Now walk all of the basic blocks looking for ones that end in conditional
688   // jumps where we need to update this register along each edge.
689   for (const BlockCondInfo &Info : Infos) {
690     MachineBasicBlock &MBB = *Info.MBB;
691     const SmallVectorImpl<MachineInstr *> &CondBrs = Info.CondBrs;
692     MachineInstr *UncondBr = Info.UncondBr;
693
694     LLVM_DEBUG(dbgs() << "Tracing predicate through block: " << MBB.getName()
695                       << "\n");
696     ++NumCondBranchesTraced;
697
698     // Compute the non-conditional successor as either the target of any
699     // unconditional branch or the layout successor.
700     MachineBasicBlock *UncondSucc =
701         UncondBr ? (UncondBr->getOpcode() == X86::JMP_1
702                         ? UncondBr->getOperand(0).getMBB()
703                         : nullptr)
704                  : &*std::next(MachineFunction::iterator(&MBB));
705
706     // Count how many edges there are to any given successor.
707     SmallDenseMap<MachineBasicBlock *, int> SuccCounts;
708     if (UncondSucc)
709       ++SuccCounts[UncondSucc];
710     for (auto *CondBr : CondBrs)
711       ++SuccCounts[CondBr->getOperand(0).getMBB()];
712
713     // A lambda to insert cmov instructions into a block checking all of the
714     // condition codes in a sequence.
715     auto BuildCheckingBlockForSuccAndConds =
716         [&](MachineBasicBlock &MBB, MachineBasicBlock &Succ, int SuccCount,
717             MachineInstr *Br, MachineInstr *&UncondBr,
718             ArrayRef<X86::CondCode> Conds) {
719           // First, we split the edge to insert the checking block into a safe
720           // location.
721           auto &CheckingMBB =
722               (SuccCount == 1 && Succ.pred_size() == 1)
723                   ? Succ
724                   : splitEdge(MBB, Succ, SuccCount, Br, UncondBr, *TII);
725
726           bool LiveEFLAGS = Succ.isLiveIn(X86::EFLAGS);
727           if (!LiveEFLAGS)
728             CheckingMBB.addLiveIn(X86::EFLAGS);
729
730           // Now insert the cmovs to implement the checks.
731           auto InsertPt = CheckingMBB.begin();
732           assert((InsertPt == CheckingMBB.end() || !InsertPt->isPHI()) &&
733                  "Should never have a PHI in the initial checking block as it "
734                  "always has a single predecessor!");
735
736           // We will wire each cmov to each other, but need to start with the
737           // incoming pred state.
738           unsigned CurStateReg = PS->InitialReg;
739
740           for (X86::CondCode Cond : Conds) {
741             int PredStateSizeInBytes = TRI->getRegSizeInBits(*PS->RC) / 8;
742             auto CMovOp = X86::getCMovFromCond(Cond, PredStateSizeInBytes);
743
744             unsigned UpdatedStateReg = MRI->createVirtualRegister(PS->RC);
745             // Note that we intentionally use an empty debug location so that
746             // this picks up the preceding location.
747             auto CMovI = BuildMI(CheckingMBB, InsertPt, DebugLoc(),
748                                  TII->get(CMovOp), UpdatedStateReg)
749                              .addReg(CurStateReg)
750                              .addReg(PS->PoisonReg);
751             // If this is the last cmov and the EFLAGS weren't originally
752             // live-in, mark them as killed.
753             if (!LiveEFLAGS && Cond == Conds.back())
754               CMovI->findRegisterUseOperand(X86::EFLAGS)->setIsKill(true);
755
756             ++NumInstsInserted;
757             LLVM_DEBUG(dbgs() << "  Inserting cmov: "; CMovI->dump();
758                        dbgs() << "\n");
759
760             // The first one of the cmovs will be using the top level
761             // `PredStateReg` and need to get rewritten into SSA form.
762             if (CurStateReg == PS->InitialReg)
763               CMovs.push_back(&*CMovI);
764
765             // The next cmov should start from this one's def.
766             CurStateReg = UpdatedStateReg;
767           }
768
769           // And put the last one into the available values for SSA form of our
770           // predicate state.
771           PS->SSA.AddAvailableValue(&CheckingMBB, CurStateReg);
772         };
773
774     std::vector<X86::CondCode> UncondCodeSeq;
775     for (auto *CondBr : CondBrs) {
776       MachineBasicBlock &Succ = *CondBr->getOperand(0).getMBB();
777       int &SuccCount = SuccCounts[&Succ];
778
779       X86::CondCode Cond = X86::getCondFromBranchOpc(CondBr->getOpcode());
780       X86::CondCode InvCond = X86::GetOppositeBranchCondition(Cond);
781       UncondCodeSeq.push_back(Cond);
782
783       BuildCheckingBlockForSuccAndConds(MBB, Succ, SuccCount, CondBr, UncondBr,
784                                         {InvCond});
785
786       // Decrement the successor count now that we've split one of the edges.
787       // We need to keep the count of edges to the successor accurate in order
788       // to know above when to *replace* the successor in the CFG vs. just
789       // adding the new successor.
790       --SuccCount;
791     }
792
793     // Since we may have split edges and changed the number of successors,
794     // normalize the probabilities. This avoids doing it each time we split an
795     // edge.
796     MBB.normalizeSuccProbs();
797
798     // Finally, we need to insert cmovs into the "fallthrough" edge. Here, we
799     // need to intersect the other condition codes. We can do this by just
800     // doing a cmov for each one.
801     if (!UncondSucc)
802       // If we have no fallthrough to protect (perhaps it is an indirect jump?)
803       // just skip this and continue.
804       continue;
805
806     assert(SuccCounts[UncondSucc] == 1 &&
807            "We should never have more than one edge to the unconditional "
808            "successor at this point because every other edge must have been "
809            "split above!");
810
811     // Sort and unique the codes to minimize them.
812     llvm::sort(UncondCodeSeq.begin(), UncondCodeSeq.end());
813     UncondCodeSeq.erase(std::unique(UncondCodeSeq.begin(), UncondCodeSeq.end()),
814                         UncondCodeSeq.end());
815
816     // Build a checking version of the successor.
817     BuildCheckingBlockForSuccAndConds(MBB, *UncondSucc, /*SuccCount*/ 1,
818                                       UncondBr, UncondBr, UncondCodeSeq);
819   }
820
821   return CMovs;
822 }
823
824 /// Compute the register class for the unfolded load.
825 ///
826 /// FIXME: This should probably live in X86InstrInfo, potentially by adding
827 /// a way to unfold into a newly created vreg rather than requiring a register
828 /// input.
829 static const TargetRegisterClass *
830 getRegClassForUnfoldedLoad(MachineFunction &MF, const X86InstrInfo &TII,
831                            unsigned Opcode) {
832   unsigned Index;
833   unsigned UnfoldedOpc = TII.getOpcodeAfterMemoryUnfold(
834       Opcode, /*UnfoldLoad*/ true, /*UnfoldStore*/ false, &Index);
835   const MCInstrDesc &MCID = TII.get(UnfoldedOpc);
836   return TII.getRegClass(MCID, Index, &TII.getRegisterInfo(), MF);
837 }
838
839 void X86SpeculativeLoadHardeningPass::unfoldCallAndJumpLoads(
840     MachineFunction &MF) {
841   for (MachineBasicBlock &MBB : MF)
842     for (auto MII = MBB.instr_begin(), MIE = MBB.instr_end(); MII != MIE;) {
843       // Grab a reference and increment the iterator so we can remove this
844       // instruction if needed without disturbing the iteration.
845       MachineInstr &MI = *MII++;
846
847       // Must either be a call or a branch.
848       if (!MI.isCall() && !MI.isBranch())
849         continue;
850       // We only care about loading variants of these instructions.
851       if (!MI.mayLoad())
852         continue;
853
854       switch (MI.getOpcode()) {
855       default: {
856         LLVM_DEBUG(
857             dbgs() << "ERROR: Found an unexpected loading branch or call "
858                       "instruction:\n";
859             MI.dump(); dbgs() << "\n");
860         report_fatal_error("Unexpected loading branch or call!");
861       }
862
863       case X86::FARCALL16m:
864       case X86::FARCALL32m:
865       case X86::FARCALL64:
866       case X86::FARJMP16m:
867       case X86::FARJMP32m:
868       case X86::FARJMP64:
869         // We cannot mitigate far jumps or calls, but we also don't expect them
870         // to be vulnerable to Spectre v1.2 style attacks.
871         continue;
872
873       case X86::CALL16m:
874       case X86::CALL16m_NT:
875       case X86::CALL32m:
876       case X86::CALL32m_NT:
877       case X86::CALL64m:
878       case X86::CALL64m_NT:
879       case X86::JMP16m:
880       case X86::JMP16m_NT:
881       case X86::JMP32m:
882       case X86::JMP32m_NT:
883       case X86::JMP64m:
884       case X86::JMP64m_NT:
885       case X86::TAILJMPm64:
886       case X86::TAILJMPm64_REX:
887       case X86::TAILJMPm:
888       case X86::TCRETURNmi64:
889       case X86::TCRETURNmi: {
890         // Use the generic unfold logic now that we know we're dealing with
891         // expected instructions.
892         // FIXME: We don't have test coverage for all of these!
893         auto *UnfoldedRC = getRegClassForUnfoldedLoad(MF, *TII, MI.getOpcode());
894         if (!UnfoldedRC) {
895           LLVM_DEBUG(dbgs()
896                          << "ERROR: Unable to unfold load from instruction:\n";
897                      MI.dump(); dbgs() << "\n");
898           report_fatal_error("Unable to unfold load!");
899         }
900         unsigned Reg = MRI->createVirtualRegister(UnfoldedRC);
901         SmallVector<MachineInstr *, 2> NewMIs;
902         // If we were able to compute an unfolded reg class, any failure here
903         // is just a programming error so just assert.
904         bool Unfolded =
905             TII->unfoldMemoryOperand(MF, MI, Reg, /*UnfoldLoad*/ true,
906                                      /*UnfoldStore*/ false, NewMIs);
907         (void)Unfolded;
908         assert(Unfolded &&
909                "Computed unfolded register class but failed to unfold");
910         // Now stitch the new instructions into place and erase the old one.
911         for (auto *NewMI : NewMIs)
912           MBB.insert(MI.getIterator(), NewMI);
913         MI.eraseFromParent();
914         LLVM_DEBUG({
915           dbgs() << "Unfolded load successfully into:\n";
916           for (auto *NewMI : NewMIs) {
917             NewMI->dump();
918             dbgs() << "\n";
919           }
920         });
921         continue;
922       }
923       }
924       llvm_unreachable("Escaped switch with default!");
925     }
926 }
927
928 /// Returns true if the instruction has no behavior (specified or otherwise)
929 /// that is based on the value of any of its register operands
930 ///
931 /// A classical example of something that is inherently not data invariant is an
932 /// indirect jump -- the destination is loaded into icache based on the bits set
933 /// in the jump destination register.
934 ///
935 /// FIXME: This should become part of our instruction tables.
936 static bool isDataInvariant(MachineInstr &MI) {
937   switch (MI.getOpcode()) {
938   default:
939     // By default, assume that the instruction is not data invariant.
940     return false;
941
942     // Some target-independent operations that trivially lower to data-invariant
943     // instructions.
944   case TargetOpcode::COPY:
945   case TargetOpcode::INSERT_SUBREG:
946   case TargetOpcode::SUBREG_TO_REG:
947     return true;
948
949   // On x86 it is believed that imul is constant time w.r.t. the loaded data.
950   // However, they set flags and are perhaps the most surprisingly constant
951   // time operations so we call them out here separately.
952   case X86::IMUL16rr:
953   case X86::IMUL16rri8:
954   case X86::IMUL16rri:
955   case X86::IMUL32rr:
956   case X86::IMUL32rri8:
957   case X86::IMUL32rri:
958   case X86::IMUL64rr:
959   case X86::IMUL64rri32:
960   case X86::IMUL64rri8:
961
962   // Bit scanning and counting instructions that are somewhat surprisingly
963   // constant time as they scan across bits and do other fairly complex
964   // operations like popcnt, but are believed to be constant time on x86.
965   // However, these set flags.
966   case X86::BSF16rr:
967   case X86::BSF32rr:
968   case X86::BSF64rr:
969   case X86::BSR16rr:
970   case X86::BSR32rr:
971   case X86::BSR64rr:
972   case X86::LZCNT16rr:
973   case X86::LZCNT32rr:
974   case X86::LZCNT64rr:
975   case X86::POPCNT16rr:
976   case X86::POPCNT32rr:
977   case X86::POPCNT64rr:
978   case X86::TZCNT16rr:
979   case X86::TZCNT32rr:
980   case X86::TZCNT64rr:
981
982   // Bit manipulation instructions are effectively combinations of basic
983   // arithmetic ops, and should still execute in constant time. These also
984   // set flags.
985   case X86::BLCFILL32rr:
986   case X86::BLCFILL64rr:
987   case X86::BLCI32rr:
988   case X86::BLCI64rr:
989   case X86::BLCIC32rr:
990   case X86::BLCIC64rr:
991   case X86::BLCMSK32rr:
992   case X86::BLCMSK64rr:
993   case X86::BLCS32rr:
994   case X86::BLCS64rr:
995   case X86::BLSFILL32rr:
996   case X86::BLSFILL64rr:
997   case X86::BLSI32rr:
998   case X86::BLSI64rr:
999   case X86::BLSIC32rr:
1000   case X86::BLSIC64rr:
1001   case X86::BLSMSK32rr:
1002   case X86::BLSMSK64rr:
1003   case X86::BLSR32rr:
1004   case X86::BLSR64rr:
1005   case X86::TZMSK32rr:
1006   case X86::TZMSK64rr:
1007
1008   // Bit extracting and clearing instructions should execute in constant time,
1009   // and set flags.
1010   case X86::BEXTR32rr:
1011   case X86::BEXTR64rr:
1012   case X86::BEXTRI32ri:
1013   case X86::BEXTRI64ri:
1014   case X86::BZHI32rr:
1015   case X86::BZHI64rr:
1016
1017   // Shift and rotate.
1018   case X86::ROL8r1:  case X86::ROL16r1:  case X86::ROL32r1:  case X86::ROL64r1:
1019   case X86::ROL8rCL: case X86::ROL16rCL: case X86::ROL32rCL: case X86::ROL64rCL:
1020   case X86::ROL8ri:  case X86::ROL16ri:  case X86::ROL32ri:  case X86::ROL64ri:
1021   case X86::ROR8r1:  case X86::ROR16r1:  case X86::ROR32r1:  case X86::ROR64r1:
1022   case X86::ROR8rCL: case X86::ROR16rCL: case X86::ROR32rCL: case X86::ROR64rCL:
1023   case X86::ROR8ri:  case X86::ROR16ri:  case X86::ROR32ri:  case X86::ROR64ri:
1024   case X86::SAR8r1:  case X86::SAR16r1:  case X86::SAR32r1:  case X86::SAR64r1:
1025   case X86::SAR8rCL: case X86::SAR16rCL: case X86::SAR32rCL: case X86::SAR64rCL:
1026   case X86::SAR8ri:  case X86::SAR16ri:  case X86::SAR32ri:  case X86::SAR64ri:
1027   case X86::SHL8r1:  case X86::SHL16r1:  case X86::SHL32r1:  case X86::SHL64r1:
1028   case X86::SHL8rCL: case X86::SHL16rCL: case X86::SHL32rCL: case X86::SHL64rCL:
1029   case X86::SHL8ri:  case X86::SHL16ri:  case X86::SHL32ri:  case X86::SHL64ri:
1030   case X86::SHR8r1:  case X86::SHR16r1:  case X86::SHR32r1:  case X86::SHR64r1:
1031   case X86::SHR8rCL: case X86::SHR16rCL: case X86::SHR32rCL: case X86::SHR64rCL:
1032   case X86::SHR8ri:  case X86::SHR16ri:  case X86::SHR32ri:  case X86::SHR64ri:
1033   case X86::SHLD16rrCL: case X86::SHLD32rrCL: case X86::SHLD64rrCL:
1034   case X86::SHLD16rri8: case X86::SHLD32rri8: case X86::SHLD64rri8:
1035   case X86::SHRD16rrCL: case X86::SHRD32rrCL: case X86::SHRD64rrCL:
1036   case X86::SHRD16rri8: case X86::SHRD32rri8: case X86::SHRD64rri8:
1037
1038   // Basic arithmetic is constant time on the input but does set flags.
1039   case X86::ADC8rr:   case X86::ADC8ri:
1040   case X86::ADC16rr:  case X86::ADC16ri:   case X86::ADC16ri8:
1041   case X86::ADC32rr:  case X86::ADC32ri:   case X86::ADC32ri8:
1042   case X86::ADC64rr:  case X86::ADC64ri8:  case X86::ADC64ri32:
1043   case X86::ADD8rr:   case X86::ADD8ri:
1044   case X86::ADD16rr:  case X86::ADD16ri:   case X86::ADD16ri8:
1045   case X86::ADD32rr:  case X86::ADD32ri:   case X86::ADD32ri8:
1046   case X86::ADD64rr:  case X86::ADD64ri8:  case X86::ADD64ri32:
1047   case X86::AND8rr:   case X86::AND8ri:
1048   case X86::AND16rr:  case X86::AND16ri:   case X86::AND16ri8:
1049   case X86::AND32rr:  case X86::AND32ri:   case X86::AND32ri8:
1050   case X86::AND64rr:  case X86::AND64ri8:  case X86::AND64ri32:
1051   case X86::OR8rr:    case X86::OR8ri:
1052   case X86::OR16rr:   case X86::OR16ri:    case X86::OR16ri8:
1053   case X86::OR32rr:   case X86::OR32ri:    case X86::OR32ri8:
1054   case X86::OR64rr:   case X86::OR64ri8:   case X86::OR64ri32:
1055   case X86::SBB8rr:   case X86::SBB8ri:
1056   case X86::SBB16rr:  case X86::SBB16ri:   case X86::SBB16ri8:
1057   case X86::SBB32rr:  case X86::SBB32ri:   case X86::SBB32ri8:
1058   case X86::SBB64rr:  case X86::SBB64ri8:  case X86::SBB64ri32:
1059   case X86::SUB8rr:   case X86::SUB8ri:
1060   case X86::SUB16rr:  case X86::SUB16ri:   case X86::SUB16ri8:
1061   case X86::SUB32rr:  case X86::SUB32ri:   case X86::SUB32ri8:
1062   case X86::SUB64rr:  case X86::SUB64ri8:  case X86::SUB64ri32:
1063   case X86::XOR8rr:   case X86::XOR8ri:
1064   case X86::XOR16rr:  case X86::XOR16ri:   case X86::XOR16ri8:
1065   case X86::XOR32rr:  case X86::XOR32ri:   case X86::XOR32ri8:
1066   case X86::XOR64rr:  case X86::XOR64ri8:  case X86::XOR64ri32:
1067   // Arithmetic with just 32-bit and 64-bit variants and no immediates.
1068   case X86::ADCX32rr: case X86::ADCX64rr:
1069   case X86::ADOX32rr: case X86::ADOX64rr:
1070   case X86::ANDN32rr: case X86::ANDN64rr:
1071   // Unary arithmetic operations.
1072   case X86::DEC8r: case X86::DEC16r: case X86::DEC32r: case X86::DEC64r:
1073   case X86::INC8r: case X86::INC16r: case X86::INC32r: case X86::INC64r:
1074   case X86::NEG8r: case X86::NEG16r: case X86::NEG32r: case X86::NEG64r:
1075     // Check whether the EFLAGS implicit-def is dead. We assume that this will
1076     // always find the implicit-def because this code should only be reached
1077     // for instructions that do in fact implicitly def this.
1078     if (!MI.findRegisterDefOperand(X86::EFLAGS)->isDead()) {
1079       // If we would clobber EFLAGS that are used, just bail for now.
1080       LLVM_DEBUG(dbgs() << "    Unable to harden post-load due to EFLAGS: ";
1081                  MI.dump(); dbgs() << "\n");
1082       return false;
1083     }
1084
1085     // Otherwise, fallthrough to handle these the same as instructions that
1086     // don't set EFLAGS.
1087     LLVM_FALLTHROUGH;
1088
1089   // Unlike other arithmetic, NOT doesn't set EFLAGS.
1090   case X86::NOT8r: case X86::NOT16r: case X86::NOT32r: case X86::NOT64r:
1091
1092   // Various move instructions used to zero or sign extend things. Note that we
1093   // intentionally don't support the _NOREX variants as we can't handle that
1094   // register constraint anyways.
1095   case X86::MOVSX16rr8:
1096   case X86::MOVSX32rr8: case X86::MOVSX32rr16:
1097   case X86::MOVSX64rr8: case X86::MOVSX64rr16: case X86::MOVSX64rr32:
1098   case X86::MOVZX16rr8:
1099   case X86::MOVZX32rr8: case X86::MOVZX32rr16:
1100   case X86::MOVZX64rr8: case X86::MOVZX64rr16:
1101   case X86::MOV32rr:
1102
1103   // Arithmetic instructions that are both constant time and don't set flags.
1104   case X86::RORX32ri:
1105   case X86::RORX64ri:
1106   case X86::SARX32rr:
1107   case X86::SARX64rr:
1108   case X86::SHLX32rr:
1109   case X86::SHLX64rr:
1110   case X86::SHRX32rr:
1111   case X86::SHRX64rr:
1112
1113   // LEA doesn't actually access memory, and its arithmetic is constant time.
1114   case X86::LEA16r:
1115   case X86::LEA32r:
1116   case X86::LEA64_32r:
1117   case X86::LEA64r:
1118     return true;
1119   }
1120 }
1121
1122 /// Returns true if the instruction has no behavior (specified or otherwise)
1123 /// that is based on the value loaded from memory or the value of any
1124 /// non-address register operands.
1125 ///
1126 /// For example, if the latency of the instruction is dependent on the
1127 /// particular bits set in any of the registers *or* any of the bits loaded from
1128 /// memory.
1129 ///
1130 /// A classical example of something that is inherently not data invariant is an
1131 /// indirect jump -- the destination is loaded into icache based on the bits set
1132 /// in the jump destination register.
1133 ///
1134 /// FIXME: This should become part of our instruction tables.
1135 static bool isDataInvariantLoad(MachineInstr &MI) {
1136   switch (MI.getOpcode()) {
1137   default:
1138     // By default, assume that the load will immediately leak.
1139     return false;
1140
1141   // On x86 it is believed that imul is constant time w.r.t. the loaded data.
1142   // However, they set flags and are perhaps the most surprisingly constant
1143   // time operations so we call them out here separately.
1144   case X86::IMUL16rm:
1145   case X86::IMUL16rmi8:
1146   case X86::IMUL16rmi:
1147   case X86::IMUL32rm:
1148   case X86::IMUL32rmi8:
1149   case X86::IMUL32rmi:
1150   case X86::IMUL64rm:
1151   case X86::IMUL64rmi32:
1152   case X86::IMUL64rmi8:
1153
1154   // Bit scanning and counting instructions that are somewhat surprisingly
1155   // constant time as they scan across bits and do other fairly complex
1156   // operations like popcnt, but are believed to be constant time on x86.
1157   // However, these set flags.
1158   case X86::BSF16rm:
1159   case X86::BSF32rm:
1160   case X86::BSF64rm:
1161   case X86::BSR16rm:
1162   case X86::BSR32rm:
1163   case X86::BSR64rm:
1164   case X86::LZCNT16rm:
1165   case X86::LZCNT32rm:
1166   case X86::LZCNT64rm:
1167   case X86::POPCNT16rm:
1168   case X86::POPCNT32rm:
1169   case X86::POPCNT64rm:
1170   case X86::TZCNT16rm:
1171   case X86::TZCNT32rm:
1172   case X86::TZCNT64rm:
1173
1174   // Bit manipulation instructions are effectively combinations of basic
1175   // arithmetic ops, and should still execute in constant time. These also
1176   // set flags.
1177   case X86::BLCFILL32rm:
1178   case X86::BLCFILL64rm:
1179   case X86::BLCI32rm:
1180   case X86::BLCI64rm:
1181   case X86::BLCIC32rm:
1182   case X86::BLCIC64rm:
1183   case X86::BLCMSK32rm:
1184   case X86::BLCMSK64rm:
1185   case X86::BLCS32rm:
1186   case X86::BLCS64rm:
1187   case X86::BLSFILL32rm:
1188   case X86::BLSFILL64rm:
1189   case X86::BLSI32rm:
1190   case X86::BLSI64rm:
1191   case X86::BLSIC32rm:
1192   case X86::BLSIC64rm:
1193   case X86::BLSMSK32rm:
1194   case X86::BLSMSK64rm:
1195   case X86::BLSR32rm:
1196   case X86::BLSR64rm:
1197   case X86::TZMSK32rm:
1198   case X86::TZMSK64rm:
1199
1200   // Bit extracting and clearing instructions should execute in constant time,
1201   // and set flags.
1202   case X86::BEXTR32rm:
1203   case X86::BEXTR64rm:
1204   case X86::BEXTRI32mi:
1205   case X86::BEXTRI64mi:
1206   case X86::BZHI32rm:
1207   case X86::BZHI64rm:
1208
1209   // Basic arithmetic is constant time on the input but does set flags.
1210   case X86::ADC8rm:
1211   case X86::ADC16rm:
1212   case X86::ADC32rm:
1213   case X86::ADC64rm:
1214   case X86::ADCX32rm:
1215   case X86::ADCX64rm:
1216   case X86::ADD8rm:
1217   case X86::ADD16rm:
1218   case X86::ADD32rm:
1219   case X86::ADD64rm:
1220   case X86::ADOX32rm:
1221   case X86::ADOX64rm:
1222   case X86::AND8rm:
1223   case X86::AND16rm:
1224   case X86::AND32rm:
1225   case X86::AND64rm:
1226   case X86::ANDN32rm:
1227   case X86::ANDN64rm:
1228   case X86::OR8rm:
1229   case X86::OR16rm:
1230   case X86::OR32rm:
1231   case X86::OR64rm:
1232   case X86::SBB8rm:
1233   case X86::SBB16rm:
1234   case X86::SBB32rm:
1235   case X86::SBB64rm:
1236   case X86::SUB8rm:
1237   case X86::SUB16rm:
1238   case X86::SUB32rm:
1239   case X86::SUB64rm:
1240   case X86::XOR8rm:
1241   case X86::XOR16rm:
1242   case X86::XOR32rm:
1243   case X86::XOR64rm:
1244     // Check whether the EFLAGS implicit-def is dead. We assume that this will
1245     // always find the implicit-def because this code should only be reached
1246     // for instructions that do in fact implicitly def this.
1247     if (!MI.findRegisterDefOperand(X86::EFLAGS)->isDead()) {
1248       // If we would clobber EFLAGS that are used, just bail for now.
1249       LLVM_DEBUG(dbgs() << "    Unable to harden post-load due to EFLAGS: ";
1250                  MI.dump(); dbgs() << "\n");
1251       return false;
1252     }
1253
1254     // Otherwise, fallthrough to handle these the same as instructions that
1255     // don't set EFLAGS.
1256     LLVM_FALLTHROUGH;
1257
1258   // Integer multiply w/o affecting flags is still believed to be constant
1259   // time on x86. Called out separately as this is among the most surprising
1260   // instructions to exhibit that behavior.
1261   case X86::MULX32rm:
1262   case X86::MULX64rm:
1263
1264   // Arithmetic instructions that are both constant time and don't set flags.
1265   case X86::RORX32mi:
1266   case X86::RORX64mi:
1267   case X86::SARX32rm:
1268   case X86::SARX64rm:
1269   case X86::SHLX32rm:
1270   case X86::SHLX64rm:
1271   case X86::SHRX32rm:
1272   case X86::SHRX64rm:
1273
1274   // Conversions are believed to be constant time and don't set flags.
1275   case X86::CVTTSD2SI64rm: case X86::VCVTTSD2SI64rm: case X86::VCVTTSD2SI64Zrm:
1276   case X86::CVTTSD2SIrm:   case X86::VCVTTSD2SIrm:   case X86::VCVTTSD2SIZrm:
1277   case X86::CVTTSS2SI64rm: case X86::VCVTTSS2SI64rm: case X86::VCVTTSS2SI64Zrm:
1278   case X86::CVTTSS2SIrm:   case X86::VCVTTSS2SIrm:   case X86::VCVTTSS2SIZrm:
1279   case X86::CVTSI2SDrm:    case X86::VCVTSI2SDrm:    case X86::VCVTSI2SDZrm:
1280   case X86::CVTSI2SSrm:    case X86::VCVTSI2SSrm:    case X86::VCVTSI2SSZrm:
1281   case X86::CVTSI642SDrm:  case X86::VCVTSI642SDrm:  case X86::VCVTSI642SDZrm:
1282   case X86::CVTSI642SSrm:  case X86::VCVTSI642SSrm:  case X86::VCVTSI642SSZrm:
1283   case X86::CVTSS2SDrm:    case X86::VCVTSS2SDrm:    case X86::VCVTSS2SDZrm:
1284   case X86::CVTSD2SSrm:    case X86::VCVTSD2SSrm:    case X86::VCVTSD2SSZrm:
1285   // AVX512 added unsigned integer conversions.
1286   case X86::VCVTTSD2USI64Zrm:
1287   case X86::VCVTTSD2USIZrm:
1288   case X86::VCVTTSS2USI64Zrm:
1289   case X86::VCVTTSS2USIZrm:
1290   case X86::VCVTUSI2SDZrm:
1291   case X86::VCVTUSI642SDZrm:
1292   case X86::VCVTUSI2SSZrm:
1293   case X86::VCVTUSI642SSZrm:
1294
1295   // Loads to register don't set flags.
1296   case X86::MOV8rm:
1297   case X86::MOV8rm_NOREX:
1298   case X86::MOV16rm:
1299   case X86::MOV32rm:
1300   case X86::MOV64rm:
1301   case X86::MOVSX16rm8:
1302   case X86::MOVSX32rm16:
1303   case X86::MOVSX32rm8:
1304   case X86::MOVSX32rm8_NOREX:
1305   case X86::MOVSX64rm16:
1306   case X86::MOVSX64rm32:
1307   case X86::MOVSX64rm8:
1308   case X86::MOVZX16rm8:
1309   case X86::MOVZX32rm16:
1310   case X86::MOVZX32rm8:
1311   case X86::MOVZX32rm8_NOREX:
1312   case X86::MOVZX64rm16:
1313   case X86::MOVZX64rm8:
1314     return true;
1315   }
1316 }
1317
1318 static bool isEFLAGSLive(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
1319                          const TargetRegisterInfo &TRI) {
1320   // Check if EFLAGS are alive by seeing if there is a def of them or they
1321   // live-in, and then seeing if that def is in turn used.
1322   for (MachineInstr &MI : llvm::reverse(llvm::make_range(MBB.begin(), I))) {
1323     if (MachineOperand *DefOp = MI.findRegisterDefOperand(X86::EFLAGS)) {
1324       // If the def is dead, then EFLAGS is not live.
1325       if (DefOp->isDead())
1326         return false;
1327
1328       // Otherwise we've def'ed it, and it is live.
1329       return true;
1330     }
1331     // While at this instruction, also check if we use and kill EFLAGS
1332     // which means it isn't live.
1333     if (MI.killsRegister(X86::EFLAGS, &TRI))
1334       return false;
1335   }
1336
1337   // If we didn't find anything conclusive (neither definitely alive or
1338   // definitely dead) return whether it lives into the block.
1339   return MBB.isLiveIn(X86::EFLAGS);
1340 }
1341
1342 /// Trace the predicate state through each of the blocks in the function,
1343 /// hardening everything necessary along the way.
1344 ///
1345 /// We call this routine once the initial predicate state has been established
1346 /// for each basic block in the function in the SSA updater. This routine traces
1347 /// it through the instructions within each basic block, and for non-returning
1348 /// blocks informs the SSA updater about the final state that lives out of the
1349 /// block. Along the way, it hardens any vulnerable instruction using the
1350 /// currently valid predicate state. We have to do these two things together
1351 /// because the SSA updater only works across blocks. Within a block, we track
1352 /// the current predicate state directly and update it as it changes.
1353 ///
1354 /// This operates in two passes over each block. First, we analyze the loads in
1355 /// the block to determine which strategy will be used to harden them: hardening
1356 /// the address or hardening the loaded value when loaded into a register
1357 /// amenable to hardening. We have to process these first because the two
1358 /// strategies may interact -- later hardening may change what strategy we wish
1359 /// to use. We also will analyze data dependencies between loads and avoid
1360 /// hardening those loads that are data dependent on a load with a hardened
1361 /// address. We also skip hardening loads already behind an LFENCE as that is
1362 /// sufficient to harden them against misspeculation.
1363 ///
1364 /// Second, we actively trace the predicate state through the block, applying
1365 /// the hardening steps we determined necessary in the first pass as we go.
1366 ///
1367 /// These two passes are applied to each basic block. We operate one block at a
1368 /// time to simplify reasoning about reachability and sequencing.
1369 void X86SpeculativeLoadHardeningPass::tracePredStateThroughBlocksAndHarden(
1370     MachineFunction &MF) {
1371   SmallPtrSet<MachineInstr *, 16> HardenPostLoad;
1372   SmallPtrSet<MachineInstr *, 16> HardenLoadAddr;
1373
1374   SmallSet<unsigned, 16> HardenedAddrRegs;
1375
1376   SmallDenseMap<unsigned, unsigned, 32> AddrRegToHardenedReg;
1377
1378   // Track the set of load-dependent registers through the basic block. Because
1379   // the values of these registers have an existing data dependency on a loaded
1380   // value which we would have checked, we can omit any checks on them.
1381   SparseBitVector<> LoadDepRegs;
1382
1383   for (MachineBasicBlock &MBB : MF) {
1384     // The first pass over the block: collect all the loads which can have their
1385     // loaded value hardened and all the loads that instead need their address
1386     // hardened. During this walk we propagate load dependence for address
1387     // hardened loads and also look for LFENCE to stop hardening wherever
1388     // possible. When deciding whether or not to harden the loaded value or not,
1389     // we check to see if any registers used in the address will have been
1390     // hardened at this point and if so, harden any remaining address registers
1391     // as that often successfully re-uses hardened addresses and minimizes
1392     // instructions.
1393     //
1394     // FIXME: We should consider an aggressive mode where we continue to keep as
1395     // many loads value hardened even when some address register hardening would
1396     // be free (due to reuse).
1397     //
1398     // Note that we only need this pass if we are actually hardening loads.
1399     if (HardenLoads)
1400       for (MachineInstr &MI : MBB) {
1401         // We naively assume that all def'ed registers of an instruction have
1402         // a data dependency on all of their operands.
1403         // FIXME: Do a more careful analysis of x86 to build a conservative
1404         // model here.
1405         if (llvm::any_of(MI.uses(), [&](MachineOperand &Op) {
1406               return Op.isReg() && LoadDepRegs.test(Op.getReg());
1407             }))
1408           for (MachineOperand &Def : MI.defs())
1409             if (Def.isReg())
1410               LoadDepRegs.set(Def.getReg());
1411
1412         // Both Intel and AMD are guiding that they will change the semantics of
1413         // LFENCE to be a speculation barrier, so if we see an LFENCE, there is
1414         // no more need to guard things in this block.
1415         if (MI.getOpcode() == X86::LFENCE)
1416           break;
1417
1418         // If this instruction cannot load, nothing to do.
1419         if (!MI.mayLoad())
1420           continue;
1421
1422         // Some instructions which "load" are trivially safe or unimportant.
1423         if (MI.getOpcode() == X86::MFENCE)
1424           continue;
1425
1426         // Extract the memory operand information about this instruction.
1427         // FIXME: This doesn't handle loading pseudo instructions which we often
1428         // could handle with similarly generic logic. We probably need to add an
1429         // MI-layer routine similar to the MC-layer one we use here which maps
1430         // pseudos much like this maps real instructions.
1431         const MCInstrDesc &Desc = MI.getDesc();
1432         int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags);
1433         if (MemRefBeginIdx < 0) {
1434           LLVM_DEBUG(dbgs()
1435                          << "WARNING: unable to harden loading instruction: ";
1436                      MI.dump());
1437           continue;
1438         }
1439
1440         MemRefBeginIdx += X86II::getOperandBias(Desc);
1441
1442         MachineOperand &BaseMO =
1443             MI.getOperand(MemRefBeginIdx + X86::AddrBaseReg);
1444         MachineOperand &IndexMO =
1445             MI.getOperand(MemRefBeginIdx + X86::AddrIndexReg);
1446
1447         // If we have at least one (non-frame-index, non-RIP) register operand,
1448         // and neither operand is load-dependent, we need to check the load.
1449         unsigned BaseReg = 0, IndexReg = 0;
1450         if (!BaseMO.isFI() && BaseMO.getReg() != X86::RIP &&
1451             BaseMO.getReg() != X86::NoRegister)
1452           BaseReg = BaseMO.getReg();
1453         if (IndexMO.getReg() != X86::NoRegister)
1454           IndexReg = IndexMO.getReg();
1455
1456         if (!BaseReg && !IndexReg)
1457           // No register operands!
1458           continue;
1459
1460         // If any register operand is dependent, this load is dependent and we
1461         // needn't check it.
1462         // FIXME: Is this true in the case where we are hardening loads after
1463         // they complete? Unclear, need to investigate.
1464         if ((BaseReg && LoadDepRegs.test(BaseReg)) ||
1465             (IndexReg && LoadDepRegs.test(IndexReg)))
1466           continue;
1467
1468         // If post-load hardening is enabled, this load is compatible with
1469         // post-load hardening, and we aren't already going to harden one of the
1470         // address registers, queue it up to be hardened post-load. Notably,
1471         // even once hardened this won't introduce a useful dependency that
1472         // could prune out subsequent loads.
1473         if (EnablePostLoadHardening && isDataInvariantLoad(MI) &&
1474             MI.getDesc().getNumDefs() == 1 && MI.getOperand(0).isReg() &&
1475             canHardenRegister(MI.getOperand(0).getReg()) &&
1476             !HardenedAddrRegs.count(BaseReg) &&
1477             !HardenedAddrRegs.count(IndexReg)) {
1478           HardenPostLoad.insert(&MI);
1479           HardenedAddrRegs.insert(MI.getOperand(0).getReg());
1480           continue;
1481         }
1482
1483         // Record this instruction for address hardening and record its register
1484         // operands as being address-hardened.
1485         HardenLoadAddr.insert(&MI);
1486         if (BaseReg)
1487           HardenedAddrRegs.insert(BaseReg);
1488         if (IndexReg)
1489           HardenedAddrRegs.insert(IndexReg);
1490
1491         for (MachineOperand &Def : MI.defs())
1492           if (Def.isReg())
1493             LoadDepRegs.set(Def.getReg());
1494       }
1495
1496     // Now re-walk the instructions in the basic block, and apply whichever
1497     // hardening strategy we have elected. Note that we do this in a second
1498     // pass specifically so that we have the complete set of instructions for
1499     // which we will do post-load hardening and can defer it in certain
1500     // circumstances.
1501     //
1502     // FIXME: This could probably be made even more effective by doing it
1503     // across the entire function. Rather than just walking the flat list
1504     // backwards here, we could walk the function in PO and each block bottom
1505     // up, allowing us to in some cases sink hardening across block blocks. As
1506     // long as the in-block predicate state is used at the eventual hardening
1507     // site, this remains safe.
1508     for (MachineInstr &MI : MBB) {
1509       if (HardenLoads) {
1510         // We cannot both require hardening the def of a load and its address.
1511         assert(!(HardenLoadAddr.count(&MI) && HardenPostLoad.count(&MI)) &&
1512                "Requested to harden both the address and def of a load!");
1513
1514         // Check if this is a load whose address needs to be hardened.
1515         if (HardenLoadAddr.erase(&MI)) {
1516           const MCInstrDesc &Desc = MI.getDesc();
1517           int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags);
1518           assert(MemRefBeginIdx >= 0 && "Cannot have an invalid index here!");
1519
1520           MemRefBeginIdx += X86II::getOperandBias(Desc);
1521
1522           MachineOperand &BaseMO =
1523               MI.getOperand(MemRefBeginIdx + X86::AddrBaseReg);
1524           MachineOperand &IndexMO =
1525               MI.getOperand(MemRefBeginIdx + X86::AddrIndexReg);
1526           hardenLoadAddr(MI, BaseMO, IndexMO, AddrRegToHardenedReg);
1527           continue;
1528         }
1529
1530         // Test if this instruction is one of our post load instructions (and
1531         // remove it from the set if so).
1532         if (HardenPostLoad.erase(&MI)) {
1533           assert(!MI.isCall() && "Must not try to post-load harden a call!");
1534
1535           // If this is a data-invariant load, we want to try and sink any
1536           // hardening as far as possible.
1537           if (isDataInvariantLoad(MI)) {
1538             // Sink the instruction we'll need to harden as far as we can down
1539             // the graph.
1540             MachineInstr *SunkMI = sinkPostLoadHardenedInst(MI, HardenPostLoad);
1541
1542             // If we managed to sink this instruction, update everything so we
1543             // harden that instruction when we reach it in the instruction
1544             // sequence.
1545             if (SunkMI != &MI) {
1546               // If in sinking there was no instruction needing to be hardened,
1547               // we're done.
1548               if (!SunkMI)
1549                 continue;
1550
1551               // Otherwise, add this to the set of defs we harden.
1552               HardenPostLoad.insert(SunkMI);
1553               continue;
1554             }
1555           }
1556
1557           unsigned HardenedReg = hardenPostLoad(MI);
1558
1559           // Mark the resulting hardened register as such so we don't re-harden.
1560           AddrRegToHardenedReg[HardenedReg] = HardenedReg;
1561
1562           continue;
1563         }
1564
1565         // Check for an indirect call or branch that may need its input hardened
1566         // even if we couldn't find the specific load used, or were able to
1567         // avoid hardening it for some reason. Note that here we cannot break
1568         // out afterward as we may still need to handle any call aspect of this
1569         // instruction.
1570         if ((MI.isCall() || MI.isBranch()) && HardenIndirectCallsAndJumps)
1571           hardenIndirectCallOrJumpInstr(MI, AddrRegToHardenedReg);
1572       }
1573
1574       // After we finish hardening loads we handle interprocedural hardening if
1575       // enabled and relevant for this instruction.
1576       if (!HardenInterprocedurally)
1577         continue;
1578       if (!MI.isCall() && !MI.isReturn())
1579         continue;
1580
1581       // If this is a direct return (IE, not a tail call) just directly harden
1582       // it.
1583       if (MI.isReturn() && !MI.isCall()) {
1584         hardenReturnInstr(MI);
1585         continue;
1586       }
1587
1588       // Otherwise we have a call. We need to handle transferring the predicate
1589       // state into a call and recovering it after the call returns unless this
1590       // is a tail call.
1591       assert(MI.isCall() && "Should only reach here for calls!");
1592       tracePredStateThroughCall(MI);
1593     }
1594
1595     HardenPostLoad.clear();
1596     HardenLoadAddr.clear();
1597     HardenedAddrRegs.clear();
1598     AddrRegToHardenedReg.clear();
1599
1600     // Currently, we only track data-dependent loads within a basic block.
1601     // FIXME: We should see if this is necessary or if we could be more
1602     // aggressive here without opening up attack avenues.
1603     LoadDepRegs.clear();
1604   }
1605 }
1606
1607 /// Save EFLAGS into the returned GPR. This can in turn be restored with
1608 /// `restoreEFLAGS`.
1609 ///
1610 /// Note that LLVM can only lower very simple patterns of saved and restored
1611 /// EFLAGS registers. The restore should always be within the same basic block
1612 /// as the save so that no PHI nodes are inserted.
1613 unsigned X86SpeculativeLoadHardeningPass::saveEFLAGS(
1614     MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt,
1615     DebugLoc Loc) {
1616   // FIXME: Hard coding this to a 32-bit register class seems weird, but matches
1617   // what instruction selection does.
1618   unsigned Reg = MRI->createVirtualRegister(&X86::GR32RegClass);
1619   // We directly copy the FLAGS register and rely on later lowering to clean
1620   // this up into the appropriate setCC instructions.
1621   BuildMI(MBB, InsertPt, Loc, TII->get(X86::COPY), Reg).addReg(X86::EFLAGS);
1622   ++NumInstsInserted;
1623   return Reg;
1624 }
1625
1626 /// Restore EFLAGS from the provided GPR. This should be produced by
1627 /// `saveEFLAGS`.
1628 ///
1629 /// This must be done within the same basic block as the save in order to
1630 /// reliably lower.
1631 void X86SpeculativeLoadHardeningPass::restoreEFLAGS(
1632     MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, DebugLoc Loc,
1633     unsigned Reg) {
1634   BuildMI(MBB, InsertPt, Loc, TII->get(X86::COPY), X86::EFLAGS).addReg(Reg);
1635   ++NumInstsInserted;
1636 }
1637
1638 /// Takes the current predicate state (in a register) and merges it into the
1639 /// stack pointer. The state is essentially a single bit, but we merge this in
1640 /// a way that won't form non-canonical pointers and also will be preserved
1641 /// across normal stack adjustments.
1642 void X86SpeculativeLoadHardeningPass::mergePredStateIntoSP(
1643     MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, DebugLoc Loc,
1644     unsigned PredStateReg) {
1645   unsigned TmpReg = MRI->createVirtualRegister(PS->RC);
1646   // FIXME: This hard codes a shift distance based on the number of bits needed
1647   // to stay canonical on 64-bit. We should compute this somehow and support
1648   // 32-bit as part of that.
1649   auto ShiftI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::SHL64ri), TmpReg)
1650                     .addReg(PredStateReg, RegState::Kill)
1651                     .addImm(47);
1652   ShiftI->addRegisterDead(X86::EFLAGS, TRI);
1653   ++NumInstsInserted;
1654   auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::OR64rr), X86::RSP)
1655                  .addReg(X86::RSP)
1656                  .addReg(TmpReg, RegState::Kill);
1657   OrI->addRegisterDead(X86::EFLAGS, TRI);
1658   ++NumInstsInserted;
1659 }
1660
1661 /// Extracts the predicate state stored in the high bits of the stack pointer.
1662 unsigned X86SpeculativeLoadHardeningPass::extractPredStateFromSP(
1663     MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt,
1664     DebugLoc Loc) {
1665   unsigned PredStateReg = MRI->createVirtualRegister(PS->RC);
1666   unsigned TmpReg = MRI->createVirtualRegister(PS->RC);
1667
1668   // We know that the stack pointer will have any preserved predicate state in
1669   // its high bit. We just want to smear this across the other bits. Turns out,
1670   // this is exactly what an arithmetic right shift does.
1671   BuildMI(MBB, InsertPt, Loc, TII->get(TargetOpcode::COPY), TmpReg)
1672       .addReg(X86::RSP);
1673   auto ShiftI =
1674       BuildMI(MBB, InsertPt, Loc, TII->get(X86::SAR64ri), PredStateReg)
1675           .addReg(TmpReg, RegState::Kill)
1676           .addImm(TRI->getRegSizeInBits(*PS->RC) - 1);
1677   ShiftI->addRegisterDead(X86::EFLAGS, TRI);
1678   ++NumInstsInserted;
1679
1680   return PredStateReg;
1681 }
1682
1683 void X86SpeculativeLoadHardeningPass::hardenLoadAddr(
1684     MachineInstr &MI, MachineOperand &BaseMO, MachineOperand &IndexMO,
1685     SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg) {
1686   MachineBasicBlock &MBB = *MI.getParent();
1687   DebugLoc Loc = MI.getDebugLoc();
1688
1689   // Check if EFLAGS are alive by seeing if there is a def of them or they
1690   // live-in, and then seeing if that def is in turn used.
1691   bool EFLAGSLive = isEFLAGSLive(MBB, MI.getIterator(), *TRI);
1692
1693   SmallVector<MachineOperand *, 2> HardenOpRegs;
1694
1695   if (BaseMO.isFI()) {
1696     // A frame index is never a dynamically controllable load, so only
1697     // harden it if we're covering fixed address loads as well.
1698     LLVM_DEBUG(
1699         dbgs() << "  Skipping hardening base of explicit stack frame load: ";
1700         MI.dump(); dbgs() << "\n");
1701   } else if (BaseMO.getReg() == X86::RIP ||
1702              BaseMO.getReg() == X86::NoRegister) {
1703     // For both RIP-relative addressed loads or absolute loads, we cannot
1704     // meaningfully harden them because the address being loaded has no
1705     // dynamic component.
1706     //
1707     // FIXME: When using a segment base (like TLS does) we end up with the
1708     // dynamic address being the base plus -1 because we can't mutate the
1709     // segment register here. This allows the signed 32-bit offset to point at
1710     // valid segment-relative addresses and load them successfully.
1711     LLVM_DEBUG(
1712         dbgs() << "  Cannot harden base of "
1713                << (BaseMO.getReg() == X86::RIP ? "RIP-relative" : "no-base")
1714                << " address in a load!");
1715   } else {
1716     assert(BaseMO.isReg() &&
1717            "Only allowed to have a frame index or register base.");
1718     HardenOpRegs.push_back(&BaseMO);
1719   }
1720
1721   if (IndexMO.getReg() != X86::NoRegister &&
1722       (HardenOpRegs.empty() ||
1723        HardenOpRegs.front()->getReg() != IndexMO.getReg()))
1724     HardenOpRegs.push_back(&IndexMO);
1725
1726   assert((HardenOpRegs.size() == 1 || HardenOpRegs.size() == 2) &&
1727          "Should have exactly one or two registers to harden!");
1728   assert((HardenOpRegs.size() == 1 ||
1729           HardenOpRegs[0]->getReg() != HardenOpRegs[1]->getReg()) &&
1730          "Should not have two of the same registers!");
1731
1732   // Remove any registers that have alreaded been checked.
1733   llvm::erase_if(HardenOpRegs, [&](MachineOperand *Op) {
1734     // See if this operand's register has already been checked.
1735     auto It = AddrRegToHardenedReg.find(Op->getReg());
1736     if (It == AddrRegToHardenedReg.end())
1737       // Not checked, so retain this one.
1738       return false;
1739
1740     // Otherwise, we can directly update this operand and remove it.
1741     Op->setReg(It->second);
1742     return true;
1743   });
1744   // If there are none left, we're done.
1745   if (HardenOpRegs.empty())
1746     return;
1747
1748   // Compute the current predicate state.
1749   unsigned StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB);
1750
1751   auto InsertPt = MI.getIterator();
1752
1753   // If EFLAGS are live and we don't have access to instructions that avoid
1754   // clobbering EFLAGS we need to save and restore them. This in turn makes
1755   // the EFLAGS no longer live.
1756   unsigned FlagsReg = 0;
1757   if (EFLAGSLive && !Subtarget->hasBMI2()) {
1758     EFLAGSLive = false;
1759     FlagsReg = saveEFLAGS(MBB, InsertPt, Loc);
1760   }
1761
1762   for (MachineOperand *Op : HardenOpRegs) {
1763     unsigned OpReg = Op->getReg();
1764     auto *OpRC = MRI->getRegClass(OpReg);
1765     unsigned TmpReg = MRI->createVirtualRegister(OpRC);
1766
1767     // If this is a vector register, we'll need somewhat custom logic to handle
1768     // hardening it.
1769     if (!Subtarget->hasVLX() && (OpRC->hasSuperClassEq(&X86::VR128RegClass) ||
1770                                  OpRC->hasSuperClassEq(&X86::VR256RegClass))) {
1771       assert(Subtarget->hasAVX2() && "AVX2-specific register classes!");
1772       bool Is128Bit = OpRC->hasSuperClassEq(&X86::VR128RegClass);
1773
1774       // Move our state into a vector register.
1775       // FIXME: We could skip this at the cost of longer encodings with AVX-512
1776       // but that doesn't seem likely worth it.
1777       unsigned VStateReg = MRI->createVirtualRegister(&X86::VR128RegClass);
1778       auto MovI =
1779           BuildMI(MBB, InsertPt, Loc, TII->get(X86::VMOV64toPQIrr), VStateReg)
1780               .addReg(StateReg);
1781       (void)MovI;
1782       ++NumInstsInserted;
1783       LLVM_DEBUG(dbgs() << "  Inserting mov: "; MovI->dump(); dbgs() << "\n");
1784
1785       // Broadcast it across the vector register.
1786       unsigned VBStateReg = MRI->createVirtualRegister(OpRC);
1787       auto BroadcastI = BuildMI(MBB, InsertPt, Loc,
1788                                 TII->get(Is128Bit ? X86::VPBROADCASTQrr
1789                                                   : X86::VPBROADCASTQYrr),
1790                                 VBStateReg)
1791                             .addReg(VStateReg);
1792       (void)BroadcastI;
1793       ++NumInstsInserted;
1794       LLVM_DEBUG(dbgs() << "  Inserting broadcast: "; BroadcastI->dump();
1795                  dbgs() << "\n");
1796
1797       // Merge our potential poison state into the value with a vector or.
1798       auto OrI =
1799           BuildMI(MBB, InsertPt, Loc,
1800                   TII->get(Is128Bit ? X86::VPORrr : X86::VPORYrr), TmpReg)
1801               .addReg(VBStateReg)
1802               .addReg(OpReg);
1803       (void)OrI;
1804       ++NumInstsInserted;
1805       LLVM_DEBUG(dbgs() << "  Inserting or: "; OrI->dump(); dbgs() << "\n");
1806     } else if (OpRC->hasSuperClassEq(&X86::VR128XRegClass) ||
1807                OpRC->hasSuperClassEq(&X86::VR256XRegClass) ||
1808                OpRC->hasSuperClassEq(&X86::VR512RegClass)) {
1809       assert(Subtarget->hasAVX512() && "AVX512-specific register classes!");
1810       bool Is128Bit = OpRC->hasSuperClassEq(&X86::VR128XRegClass);
1811       bool Is256Bit = OpRC->hasSuperClassEq(&X86::VR256XRegClass);
1812       if (Is128Bit || Is256Bit)
1813         assert(Subtarget->hasVLX() && "AVX512VL-specific register classes!");
1814
1815       // Broadcast our state into a vector register.
1816       unsigned VStateReg = MRI->createVirtualRegister(OpRC);
1817       unsigned BroadcastOp =
1818           Is128Bit ? X86::VPBROADCASTQrZ128r
1819                    : Is256Bit ? X86::VPBROADCASTQrZ256r : X86::VPBROADCASTQrZr;
1820       auto BroadcastI =
1821           BuildMI(MBB, InsertPt, Loc, TII->get(BroadcastOp), VStateReg)
1822               .addReg(StateReg);
1823       (void)BroadcastI;
1824       ++NumInstsInserted;
1825       LLVM_DEBUG(dbgs() << "  Inserting broadcast: "; BroadcastI->dump();
1826                  dbgs() << "\n");
1827
1828       // Merge our potential poison state into the value with a vector or.
1829       unsigned OrOp = Is128Bit ? X86::VPORQZ128rr
1830                                : Is256Bit ? X86::VPORQZ256rr : X86::VPORQZrr;
1831       auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(OrOp), TmpReg)
1832                      .addReg(VStateReg)
1833                      .addReg(OpReg);
1834       (void)OrI;
1835       ++NumInstsInserted;
1836       LLVM_DEBUG(dbgs() << "  Inserting or: "; OrI->dump(); dbgs() << "\n");
1837     } else {
1838       // FIXME: Need to support GR32 here for 32-bit code.
1839       assert(OpRC->hasSuperClassEq(&X86::GR64RegClass) &&
1840              "Not a supported register class for address hardening!");
1841
1842       if (!EFLAGSLive) {
1843         // Merge our potential poison state into the value with an or.
1844         auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::OR64rr), TmpReg)
1845                        .addReg(StateReg)
1846                        .addReg(OpReg);
1847         OrI->addRegisterDead(X86::EFLAGS, TRI);
1848         ++NumInstsInserted;
1849         LLVM_DEBUG(dbgs() << "  Inserting or: "; OrI->dump(); dbgs() << "\n");
1850       } else {
1851         // We need to avoid touching EFLAGS so shift out all but the least
1852         // significant bit using the instruction that doesn't update flags.
1853         auto ShiftI =
1854             BuildMI(MBB, InsertPt, Loc, TII->get(X86::SHRX64rr), TmpReg)
1855                 .addReg(OpReg)
1856                 .addReg(StateReg);
1857         (void)ShiftI;
1858         ++NumInstsInserted;
1859         LLVM_DEBUG(dbgs() << "  Inserting shrx: "; ShiftI->dump();
1860                    dbgs() << "\n");
1861       }
1862     }
1863
1864     // Record this register as checked and update the operand.
1865     assert(!AddrRegToHardenedReg.count(Op->getReg()) &&
1866            "Should not have checked this register yet!");
1867     AddrRegToHardenedReg[Op->getReg()] = TmpReg;
1868     Op->setReg(TmpReg);
1869     ++NumAddrRegsHardened;
1870   }
1871
1872   // And restore the flags if needed.
1873   if (FlagsReg)
1874     restoreEFLAGS(MBB, InsertPt, Loc, FlagsReg);
1875 }
1876
1877 MachineInstr *X86SpeculativeLoadHardeningPass::sinkPostLoadHardenedInst(
1878     MachineInstr &InitialMI, SmallPtrSetImpl<MachineInstr *> &HardenedInstrs) {
1879   assert(isDataInvariantLoad(InitialMI) &&
1880          "Cannot get here with a non-invariant load!");
1881
1882   // See if we can sink hardening the loaded value.
1883   auto SinkCheckToSingleUse =
1884       [&](MachineInstr &MI) -> Optional<MachineInstr *> {
1885     unsigned DefReg = MI.getOperand(0).getReg();
1886
1887     // We need to find a single use which we can sink the check. We can
1888     // primarily do this because many uses may already end up checked on their
1889     // own.
1890     MachineInstr *SingleUseMI = nullptr;
1891     for (MachineInstr &UseMI : MRI->use_instructions(DefReg)) {
1892       // If we're already going to harden this use, it is data invariant and
1893       // within our block.
1894       if (HardenedInstrs.count(&UseMI)) {
1895         if (!isDataInvariantLoad(UseMI)) {
1896           // If we've already decided to harden a non-load, we must have sunk
1897           // some other post-load hardened instruction to it and it must itself
1898           // be data-invariant.
1899           assert(isDataInvariant(UseMI) &&
1900                  "Data variant instruction being hardened!");
1901           continue;
1902         }
1903
1904         // Otherwise, this is a load and the load component can't be data
1905         // invariant so check how this register is being used.
1906         const MCInstrDesc &Desc = UseMI.getDesc();
1907         int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags);
1908         assert(MemRefBeginIdx >= 0 &&
1909                "Should always have mem references here!");
1910         MemRefBeginIdx += X86II::getOperandBias(Desc);
1911
1912         MachineOperand &BaseMO =
1913             UseMI.getOperand(MemRefBeginIdx + X86::AddrBaseReg);
1914         MachineOperand &IndexMO =
1915             UseMI.getOperand(MemRefBeginIdx + X86::AddrIndexReg);
1916         if ((BaseMO.isReg() && BaseMO.getReg() == DefReg) ||
1917             (IndexMO.isReg() && IndexMO.getReg() == DefReg))
1918           // The load uses the register as part of its address making it not
1919           // invariant.
1920           return {};
1921
1922         continue;
1923       }
1924
1925       if (SingleUseMI)
1926         // We already have a single use, this would make two. Bail.
1927         return {};
1928
1929       // If this single use isn't data invariant, isn't in this block, or has
1930       // interfering EFLAGS, we can't sink the hardening to it.
1931       if (!isDataInvariant(UseMI) || UseMI.getParent() != MI.getParent())
1932         return {};
1933
1934       // If this instruction defines multiple registers bail as we won't harden
1935       // all of them.
1936       if (UseMI.getDesc().getNumDefs() > 1)
1937         return {};
1938
1939       // If this register isn't a virtual register we can't walk uses of sanely,
1940       // just bail. Also check that its register class is one of the ones we
1941       // can harden.
1942       unsigned UseDefReg = UseMI.getOperand(0).getReg();
1943       if (!TRI->isVirtualRegister(UseDefReg) ||
1944           !canHardenRegister(UseDefReg))
1945         return {};
1946
1947       SingleUseMI = &UseMI;
1948     }
1949
1950     // If SingleUseMI is still null, there is no use that needs its own
1951     // checking. Otherwise, it is the single use that needs checking.
1952     return {SingleUseMI};
1953   };
1954
1955   MachineInstr *MI = &InitialMI;
1956   while (Optional<MachineInstr *> SingleUse = SinkCheckToSingleUse(*MI)) {
1957     // Update which MI we're checking now.
1958     MI = *SingleUse;
1959     if (!MI)
1960       break;
1961   }
1962
1963   return MI;
1964 }
1965
1966 bool X86SpeculativeLoadHardeningPass::canHardenRegister(unsigned Reg) {
1967   auto *RC = MRI->getRegClass(Reg);
1968   int RegBytes = TRI->getRegSizeInBits(*RC) / 8;
1969   if (RegBytes > 8)
1970     // We don't support post-load hardening of vectors.
1971     return false;
1972
1973   // If this register class is explicitly constrained to a class that doesn't
1974   // require REX prefix, we may not be able to satisfy that constraint when
1975   // emitting the hardening instructions, so bail out here.
1976   // FIXME: This seems like a pretty lame hack. The way this comes up is when we
1977   // end up both with a NOREX and REX-only register as operands to the hardening
1978   // instructions. It would be better to fix that code to handle this situation
1979   // rather than hack around it in this way.
1980   const TargetRegisterClass *NOREXRegClasses[] = {
1981       &X86::GR8_NOREXRegClass, &X86::GR16_NOREXRegClass,
1982       &X86::GR32_NOREXRegClass, &X86::GR64_NOREXRegClass};
1983   if (RC == NOREXRegClasses[Log2_32(RegBytes)])
1984     return false;
1985
1986   const TargetRegisterClass *GPRRegClasses[] = {
1987       &X86::GR8RegClass, &X86::GR16RegClass, &X86::GR32RegClass,
1988       &X86::GR64RegClass};
1989   return RC->hasSuperClassEq(GPRRegClasses[Log2_32(RegBytes)]);
1990 }
1991
1992 /// Harden a value in a register.
1993 ///
1994 /// This is the low-level logic to fully harden a value sitting in a register
1995 /// against leaking during speculative execution.
1996 ///
1997 /// Unlike hardening an address that is used by a load, this routine is required
1998 /// to hide *all* incoming bits in the register.
1999 ///
2000 /// `Reg` must be a virtual register. Currently, it is required to be a GPR no
2001 /// larger than the predicate state register. FIXME: We should support vector
2002 /// registers here by broadcasting the predicate state.
2003 ///
2004 /// The new, hardened virtual register is returned. It will have the same
2005 /// register class as `Reg`.
2006 unsigned X86SpeculativeLoadHardeningPass::hardenValueInRegister(
2007     unsigned Reg, MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt,
2008     DebugLoc Loc) {
2009   assert(canHardenRegister(Reg) && "Cannot harden this register!");
2010   assert(TRI->isVirtualRegister(Reg) && "Cannot harden a physical register!");
2011
2012   auto *RC = MRI->getRegClass(Reg);
2013   int Bytes = TRI->getRegSizeInBits(*RC) / 8;
2014
2015   unsigned StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB);
2016
2017   // FIXME: Need to teach this about 32-bit mode.
2018   if (Bytes != 8) {
2019     unsigned SubRegImms[] = {X86::sub_8bit, X86::sub_16bit, X86::sub_32bit};
2020     unsigned SubRegImm = SubRegImms[Log2_32(Bytes)];
2021     unsigned NarrowStateReg = MRI->createVirtualRegister(RC);
2022     BuildMI(MBB, InsertPt, Loc, TII->get(TargetOpcode::COPY), NarrowStateReg)
2023         .addReg(StateReg, 0, SubRegImm);
2024     StateReg = NarrowStateReg;
2025   }
2026
2027   unsigned FlagsReg = 0;
2028   if (isEFLAGSLive(MBB, InsertPt, *TRI))
2029     FlagsReg = saveEFLAGS(MBB, InsertPt, Loc);
2030
2031   unsigned NewReg = MRI->createVirtualRegister(RC);
2032   unsigned OrOpCodes[] = {X86::OR8rr, X86::OR16rr, X86::OR32rr, X86::OR64rr};
2033   unsigned OrOpCode = OrOpCodes[Log2_32(Bytes)];
2034   auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(OrOpCode), NewReg)
2035                  .addReg(StateReg)
2036                  .addReg(Reg);
2037   OrI->addRegisterDead(X86::EFLAGS, TRI);
2038   ++NumInstsInserted;
2039   LLVM_DEBUG(dbgs() << "  Inserting or: "; OrI->dump(); dbgs() << "\n");
2040
2041   if (FlagsReg)
2042     restoreEFLAGS(MBB, InsertPt, Loc, FlagsReg);
2043
2044   return NewReg;
2045 }
2046
2047 /// Harden a load by hardening the loaded value in the defined register.
2048 ///
2049 /// We can harden a non-leaking load into a register without touching the
2050 /// address by just hiding all of the loaded bits during misspeculation. We use
2051 /// an `or` instruction to do this because we set up our poison value as all
2052 /// ones. And the goal is just for the loaded bits to not be exposed to
2053 /// execution and coercing them to one is sufficient.
2054 ///
2055 /// Returns the newly hardened register.
2056 unsigned X86SpeculativeLoadHardeningPass::hardenPostLoad(MachineInstr &MI) {
2057   MachineBasicBlock &MBB = *MI.getParent();
2058   DebugLoc Loc = MI.getDebugLoc();
2059
2060   auto &DefOp = MI.getOperand(0);
2061   unsigned OldDefReg = DefOp.getReg();
2062   auto *DefRC = MRI->getRegClass(OldDefReg);
2063
2064   // Because we want to completely replace the uses of this def'ed value with
2065   // the hardened value, create a dedicated new register that will only be used
2066   // to communicate the unhardened value to the hardening.
2067   unsigned UnhardenedReg = MRI->createVirtualRegister(DefRC);
2068   DefOp.setReg(UnhardenedReg);
2069
2070   // Now harden this register's value, getting a hardened reg that is safe to
2071   // use. Note that we insert the instructions to compute this *after* the
2072   // defining instruction, not before it.
2073   unsigned HardenedReg = hardenValueInRegister(
2074       UnhardenedReg, MBB, std::next(MI.getIterator()), Loc);
2075
2076   // Finally, replace the old register (which now only has the uses of the
2077   // original def) with the hardened register.
2078   MRI->replaceRegWith(/*FromReg*/ OldDefReg, /*ToReg*/ HardenedReg);
2079
2080   ++NumPostLoadRegsHardened;
2081   return HardenedReg;
2082 }
2083
2084 /// Harden a return instruction.
2085 ///
2086 /// Returns implicitly perform a load which we need to harden. Without hardening
2087 /// this load, an attacker my speculatively write over the return address to
2088 /// steer speculation of the return to an attacker controlled address. This is
2089 /// called Spectre v1.1 or Bounds Check Bypass Store (BCBS) and is described in
2090 /// this paper:
2091 /// https://people.csail.mit.edu/vlk/spectre11.pdf
2092 ///
2093 /// We can harden this by introducing an LFENCE that will delay any load of the
2094 /// return address until prior instructions have retired (and thus are not being
2095 /// speculated), or we can harden the address used by the implicit load: the
2096 /// stack pointer.
2097 ///
2098 /// If we are not using an LFENCE, hardening the stack pointer has an additional
2099 /// benefit: it allows us to pass the predicate state accumulated in this
2100 /// function back to the caller. In the absence of a BCBS attack on the return,
2101 /// the caller will typically be resumed and speculatively executed due to the
2102 /// Return Stack Buffer (RSB) prediction which is very accurate and has a high
2103 /// priority. It is possible that some code from the caller will be executed
2104 /// speculatively even during a BCBS-attacked return until the steering takes
2105 /// effect. Whenever this happens, the caller can recover the (poisoned)
2106 /// predicate state from the stack pointer and continue to harden loads.
2107 void X86SpeculativeLoadHardeningPass::hardenReturnInstr(MachineInstr &MI) {
2108   MachineBasicBlock &MBB = *MI.getParent();
2109   DebugLoc Loc = MI.getDebugLoc();
2110   auto InsertPt = MI.getIterator();
2111
2112   if (FenceCallAndRet) {
2113     // Simply forcibly block speculation of loads out of the function by using
2114     // an LFENCE. This is potentially a heavy-weight mitigation strategy, but
2115     // should be secure, is simple from an ABI perspective, and the cost can be
2116     // minimized through inlining.
2117     //
2118     // FIXME: We should investigate ways to establish a strong data-dependency
2119     // on the return. However, poisoning the stack pointer is unlikely to work
2120     // because the return is *predicted* rather than relying on the load of the
2121     // return address to actually resolve.
2122     BuildMI(MBB, InsertPt, Loc, TII->get(X86::LFENCE));
2123     ++NumInstsInserted;
2124     ++NumLFENCEsInserted;
2125     return;
2126   }
2127
2128   // Take our predicate state, shift it to the high 17 bits (so that we keep
2129   // pointers canonical) and merge it into RSP. This will allow the caller to
2130   // extract it when we return (speculatively).
2131   mergePredStateIntoSP(MBB, InsertPt, Loc, PS->SSA.GetValueAtEndOfBlock(&MBB));
2132 }
2133
2134 /// Trace the predicate state through a call.
2135 ///
2136 /// There are several layers of this needed to handle the full complexity of
2137 /// calls.
2138 ///
2139 /// First, we need to send the predicate state into the called function. We do
2140 /// this by merging it into the high bits of the stack pointer.
2141 ///
2142 /// For tail calls, this is all we need to do.
2143 ///
2144 /// For calls where we might return to control flow, we further need to extract
2145 /// the predicate state built up within that function from the high bits of the
2146 /// stack pointer, and make that the newly available predicate state.
2147 void X86SpeculativeLoadHardeningPass::tracePredStateThroughCall(
2148     MachineInstr &MI) {
2149   MachineBasicBlock &MBB = *MI.getParent();
2150   auto InsertPt = MI.getIterator();
2151   DebugLoc Loc = MI.getDebugLoc();
2152
2153   // First, we transfer the predicate state into the called function by merging
2154   // it into the stack pointer. This will kill the current def of the state.
2155   unsigned StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB);
2156   mergePredStateIntoSP(MBB, InsertPt, Loc, StateReg);
2157
2158   // If this call is also a return, it is a tail call and we don't need anything
2159   // else to handle it so just continue.
2160   // FIXME: We should also handle noreturn calls.
2161   if (MI.isReturn())
2162     return;
2163
2164   // We need to step past the call and recover the predicate state from SP after
2165   // the return, and make this new state available.
2166   ++InsertPt;
2167   unsigned NewStateReg = extractPredStateFromSP(MBB, InsertPt, Loc);
2168   PS->SSA.AddAvailableValue(&MBB, NewStateReg);
2169 }
2170
2171 /// An attacker may speculatively store over a value that is then speculatively
2172 /// loaded and used as the target of an indirect call or jump instruction. This
2173 /// is called Spectre v1.2 or Bounds Check Bypass Store (BCBS) and is described
2174 /// in this paper:
2175 /// https://people.csail.mit.edu/vlk/spectre11.pdf
2176 ///
2177 /// When this happens, the speculative execution of the call or jump will end up
2178 /// being steered to this attacker controlled address. While most such loads
2179 /// will be adequately hardened already, we want to ensure that they are
2180 /// definitively treated as needing post-load hardening. While address hardening
2181 /// is sufficient to prevent secret data from leaking to the attacker, it may
2182 /// not be sufficient to prevent an attacker from steering speculative
2183 /// execution. We forcibly unfolded all relevant loads above and so will always
2184 /// have an opportunity to post-load harden here, we just need to scan for cases
2185 /// not already flagged and add them.
2186 void X86SpeculativeLoadHardeningPass::hardenIndirectCallOrJumpInstr(
2187     MachineInstr &MI,
2188     SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg) {
2189   switch (MI.getOpcode()) {
2190   case X86::FARCALL16m:
2191   case X86::FARCALL32m:
2192   case X86::FARCALL64:
2193   case X86::FARJMP16m:
2194   case X86::FARJMP32m:
2195   case X86::FARJMP64:
2196     // We don't need to harden either far calls or far jumps as they are
2197     // safe from Spectre.
2198     return;
2199
2200   default:
2201     break;
2202   }
2203
2204   // We should never see a loading instruction at this point, as those should
2205   // have been unfolded.
2206   assert(!MI.mayLoad() && "Found a lingering loading instruction!");
2207
2208   // If the first operand isn't a register, this is a branch or call
2209   // instruction with an immediate operand which doesn't need to be hardened.
2210   if (!MI.getOperand(0).isReg())
2211     return;
2212
2213   // For all of these, the target register is the first operand of the
2214   // instruction.
2215   auto &TargetOp = MI.getOperand(0);
2216   unsigned OldTargetReg = TargetOp.getReg();
2217
2218   // Try to lookup a hardened version of this register. We retain a reference
2219   // here as we want to update the map to track any newly computed hardened
2220   // register.
2221   unsigned &HardenedTargetReg = AddrRegToHardenedReg[OldTargetReg];
2222
2223   // If we don't have a hardened register yet, compute one. Otherwise, just use
2224   // the already hardened register.
2225   //
2226   // FIXME: It is a little suspect that we use partially hardened registers that
2227   // only feed addresses. The complexity of partial hardening with SHRX
2228   // continues to pile up. Should definitively measure its value and consider
2229   // eliminating it.
2230   if (!HardenedTargetReg)
2231     HardenedTargetReg = hardenValueInRegister(
2232         OldTargetReg, *MI.getParent(), MI.getIterator(), MI.getDebugLoc());
2233
2234   // Set the target operand to the hardened register.
2235   TargetOp.setReg(HardenedTargetReg);
2236
2237   ++NumCallsOrJumpsHardened;
2238 }
2239
2240 INITIALIZE_PASS_BEGIN(X86SpeculativeLoadHardeningPass, DEBUG_TYPE,
2241                       "X86 speculative load hardener", false, false)
2242 INITIALIZE_PASS_END(X86SpeculativeLoadHardeningPass, DEBUG_TYPE,
2243                     "X86 speculative load hardener", false, false)
2244
2245 FunctionPass *llvm::createX86SpeculativeLoadHardeningPass() {
2246   return new X86SpeculativeLoadHardeningPass();
2247 }