]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Target/X86/X86SpeculativeLoadHardening.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Target / X86 / X86SpeculativeLoadHardening.cpp
1 //====- X86SpeculativeLoadHardening.cpp - A Spectre v1 mitigation ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// Provide a pass which mitigates speculative execution attacks which operate
11 /// by speculating incorrectly past some predicate (a type check, bounds check,
12 /// or other condition) to reach a load with invalid inputs and leak the data
13 /// accessed by that load using a side channel out of the speculative domain.
14 ///
15 /// For details on the attacks, see the first variant in both the Project Zero
16 /// writeup and the Spectre paper:
17 /// https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
18 /// https://spectreattack.com/spectre.pdf
19 ///
20 //===----------------------------------------------------------------------===//
21
22 #include "X86.h"
23 #include "X86InstrBuilder.h"
24 #include "X86InstrInfo.h"
25 #include "X86Subtarget.h"
26 #include "llvm/ADT/ArrayRef.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/Optional.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/ScopeExit.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/SparseBitVector.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/CodeGen/MachineBasicBlock.h"
37 #include "llvm/CodeGen/MachineConstantPool.h"
38 #include "llvm/CodeGen/MachineFunction.h"
39 #include "llvm/CodeGen/MachineFunctionPass.h"
40 #include "llvm/CodeGen/MachineInstr.h"
41 #include "llvm/CodeGen/MachineInstrBuilder.h"
42 #include "llvm/CodeGen/MachineModuleInfo.h"
43 #include "llvm/CodeGen/MachineOperand.h"
44 #include "llvm/CodeGen/MachineRegisterInfo.h"
45 #include "llvm/CodeGen/MachineSSAUpdater.h"
46 #include "llvm/CodeGen/TargetInstrInfo.h"
47 #include "llvm/CodeGen/TargetRegisterInfo.h"
48 #include "llvm/CodeGen/TargetSchedule.h"
49 #include "llvm/CodeGen/TargetSubtargetInfo.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/MC/MCSchedule.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include <algorithm>
57 #include <cassert>
58 #include <iterator>
59 #include <utility>
60
61 using namespace llvm;
62
63 #define PASS_KEY "x86-slh"
64 #define DEBUG_TYPE PASS_KEY
65
66 STATISTIC(NumCondBranchesTraced, "Number of conditional branches traced");
67 STATISTIC(NumBranchesUntraced, "Number of branches unable to trace");
68 STATISTIC(NumAddrRegsHardened,
69           "Number of address mode used registers hardaned");
70 STATISTIC(NumPostLoadRegsHardened,
71           "Number of post-load register values hardened");
72 STATISTIC(NumCallsOrJumpsHardened,
73           "Number of calls or jumps requiring extra hardening");
74 STATISTIC(NumInstsInserted, "Number of instructions inserted");
75 STATISTIC(NumLFENCEsInserted, "Number of lfence instructions inserted");
76
77 static cl::opt<bool> EnableSpeculativeLoadHardening(
78     "x86-speculative-load-hardening",
79     cl::desc("Force enable speculative load hardening"), cl::init(false),
80     cl::Hidden);
81
82 static cl::opt<bool> HardenEdgesWithLFENCE(
83     PASS_KEY "-lfence",
84     cl::desc(
85         "Use LFENCE along each conditional edge to harden against speculative "
86         "loads rather than conditional movs and poisoned pointers."),
87     cl::init(false), cl::Hidden);
88
89 static cl::opt<bool> EnablePostLoadHardening(
90     PASS_KEY "-post-load",
91     cl::desc("Harden the value loaded *after* it is loaded by "
92              "flushing the loaded bits to 1. This is hard to do "
93              "in general but can be done easily for GPRs."),
94     cl::init(true), cl::Hidden);
95
96 static cl::opt<bool> FenceCallAndRet(
97     PASS_KEY "-fence-call-and-ret",
98     cl::desc("Use a full speculation fence to harden both call and ret edges "
99              "rather than a lighter weight mitigation."),
100     cl::init(false), cl::Hidden);
101
102 static cl::opt<bool> HardenInterprocedurally(
103     PASS_KEY "-ip",
104     cl::desc("Harden interprocedurally by passing our state in and out of "
105              "functions in the high bits of the stack pointer."),
106     cl::init(true), cl::Hidden);
107
108 static cl::opt<bool>
109     HardenLoads(PASS_KEY "-loads",
110                 cl::desc("Sanitize loads from memory. When disable, no "
111                          "significant security is provided."),
112                 cl::init(true), cl::Hidden);
113
114 static cl::opt<bool> HardenIndirectCallsAndJumps(
115     PASS_KEY "-indirect",
116     cl::desc("Harden indirect calls and jumps against using speculatively "
117              "stored attacker controlled addresses. This is designed to "
118              "mitigate Spectre v1.2 style attacks."),
119     cl::init(true), cl::Hidden);
120
121 namespace {
122
123 class X86SpeculativeLoadHardeningPass : public MachineFunctionPass {
124 public:
125   X86SpeculativeLoadHardeningPass() : MachineFunctionPass(ID) { }
126
127   StringRef getPassName() const override {
128     return "X86 speculative load hardening";
129   }
130   bool runOnMachineFunction(MachineFunction &MF) override;
131   void getAnalysisUsage(AnalysisUsage &AU) const override;
132
133   /// Pass identification, replacement for typeid.
134   static char ID;
135
136 private:
137   /// The information about a block's conditional terminators needed to trace
138   /// our predicate state through the exiting edges.
139   struct BlockCondInfo {
140     MachineBasicBlock *MBB;
141
142     // We mostly have one conditional branch, and in extremely rare cases have
143     // two. Three and more are so rare as to be unimportant for compile time.
144     SmallVector<MachineInstr *, 2> CondBrs;
145
146     MachineInstr *UncondBr;
147   };
148
149   /// Manages the predicate state traced through the program.
150   struct PredState {
151     unsigned InitialReg;
152     unsigned PoisonReg;
153
154     const TargetRegisterClass *RC;
155     MachineSSAUpdater SSA;
156
157     PredState(MachineFunction &MF, const TargetRegisterClass *RC)
158         : RC(RC), SSA(MF) {}
159   };
160
161   const X86Subtarget *Subtarget;
162   MachineRegisterInfo *MRI;
163   const X86InstrInfo *TII;
164   const TargetRegisterInfo *TRI;
165
166   Optional<PredState> PS;
167
168   void hardenEdgesWithLFENCE(MachineFunction &MF);
169
170   SmallVector<BlockCondInfo, 16> collectBlockCondInfo(MachineFunction &MF);
171
172   SmallVector<MachineInstr *, 16>
173   tracePredStateThroughCFG(MachineFunction &MF, ArrayRef<BlockCondInfo> Infos);
174
175   void unfoldCallAndJumpLoads(MachineFunction &MF);
176
177   SmallVector<MachineInstr *, 16>
178   tracePredStateThroughIndirectBranches(MachineFunction &MF);
179
180   void tracePredStateThroughBlocksAndHarden(MachineFunction &MF);
181
182   unsigned saveEFLAGS(MachineBasicBlock &MBB,
183                       MachineBasicBlock::iterator InsertPt, DebugLoc Loc);
184   void restoreEFLAGS(MachineBasicBlock &MBB,
185                      MachineBasicBlock::iterator InsertPt, DebugLoc Loc,
186                      unsigned OFReg);
187
188   void mergePredStateIntoSP(MachineBasicBlock &MBB,
189                             MachineBasicBlock::iterator InsertPt, DebugLoc Loc,
190                             unsigned PredStateReg);
191   unsigned extractPredStateFromSP(MachineBasicBlock &MBB,
192                                   MachineBasicBlock::iterator InsertPt,
193                                   DebugLoc Loc);
194
195   void
196   hardenLoadAddr(MachineInstr &MI, MachineOperand &BaseMO,
197                  MachineOperand &IndexMO,
198                  SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg);
199   MachineInstr *
200   sinkPostLoadHardenedInst(MachineInstr &MI,
201                            SmallPtrSetImpl<MachineInstr *> &HardenedInstrs);
202   bool canHardenRegister(unsigned Reg);
203   unsigned hardenValueInRegister(unsigned Reg, MachineBasicBlock &MBB,
204                                  MachineBasicBlock::iterator InsertPt,
205                                  DebugLoc Loc);
206   unsigned hardenPostLoad(MachineInstr &MI);
207   void hardenReturnInstr(MachineInstr &MI);
208   void tracePredStateThroughCall(MachineInstr &MI);
209   void hardenIndirectCallOrJumpInstr(
210       MachineInstr &MI,
211       SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg);
212 };
213
214 } // end anonymous namespace
215
216 char X86SpeculativeLoadHardeningPass::ID = 0;
217
218 void X86SpeculativeLoadHardeningPass::getAnalysisUsage(
219     AnalysisUsage &AU) const {
220   MachineFunctionPass::getAnalysisUsage(AU);
221 }
222
223 static MachineBasicBlock &splitEdge(MachineBasicBlock &MBB,
224                                     MachineBasicBlock &Succ, int SuccCount,
225                                     MachineInstr *Br, MachineInstr *&UncondBr,
226                                     const X86InstrInfo &TII) {
227   assert(!Succ.isEHPad() && "Shouldn't get edges to EH pads!");
228
229   MachineFunction &MF = *MBB.getParent();
230
231   MachineBasicBlock &NewMBB = *MF.CreateMachineBasicBlock();
232
233   // We have to insert the new block immediately after the current one as we
234   // don't know what layout-successor relationships the successor has and we
235   // may not be able to (and generally don't want to) try to fix those up.
236   MF.insert(std::next(MachineFunction::iterator(&MBB)), &NewMBB);
237
238   // Update the branch instruction if necessary.
239   if (Br) {
240     assert(Br->getOperand(0).getMBB() == &Succ &&
241            "Didn't start with the right target!");
242     Br->getOperand(0).setMBB(&NewMBB);
243
244     // If this successor was reached through a branch rather than fallthrough,
245     // we might have *broken* fallthrough and so need to inject a new
246     // unconditional branch.
247     if (!UncondBr) {
248       MachineBasicBlock &OldLayoutSucc =
249           *std::next(MachineFunction::iterator(&NewMBB));
250       assert(MBB.isSuccessor(&OldLayoutSucc) &&
251              "Without an unconditional branch, the old layout successor should "
252              "be an actual successor!");
253       auto BrBuilder =
254           BuildMI(&MBB, DebugLoc(), TII.get(X86::JMP_1)).addMBB(&OldLayoutSucc);
255       // Update the unconditional branch now that we've added one.
256       UncondBr = &*BrBuilder;
257     }
258
259     // Insert unconditional "jump Succ" instruction in the new block if
260     // necessary.
261     if (!NewMBB.isLayoutSuccessor(&Succ)) {
262       SmallVector<MachineOperand, 4> Cond;
263       TII.insertBranch(NewMBB, &Succ, nullptr, Cond, Br->getDebugLoc());
264     }
265   } else {
266     assert(!UncondBr &&
267            "Cannot have a branchless successor and an unconditional branch!");
268     assert(NewMBB.isLayoutSuccessor(&Succ) &&
269            "A non-branch successor must have been a layout successor before "
270            "and now is a layout successor of the new block.");
271   }
272
273   // If this is the only edge to the successor, we can just replace it in the
274   // CFG. Otherwise we need to add a new entry in the CFG for the new
275   // successor.
276   if (SuccCount == 1) {
277     MBB.replaceSuccessor(&Succ, &NewMBB);
278   } else {
279     MBB.splitSuccessor(&Succ, &NewMBB);
280   }
281
282   // Hook up the edge from the new basic block to the old successor in the CFG.
283   NewMBB.addSuccessor(&Succ);
284
285   // Fix PHI nodes in Succ so they refer to NewMBB instead of MBB.
286   for (MachineInstr &MI : Succ) {
287     if (!MI.isPHI())
288       break;
289     for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps;
290          OpIdx += 2) {
291       MachineOperand &OpV = MI.getOperand(OpIdx);
292       MachineOperand &OpMBB = MI.getOperand(OpIdx + 1);
293       assert(OpMBB.isMBB() && "Block operand to a PHI is not a block!");
294       if (OpMBB.getMBB() != &MBB)
295         continue;
296
297       // If this is the last edge to the succesor, just replace MBB in the PHI
298       if (SuccCount == 1) {
299         OpMBB.setMBB(&NewMBB);
300         break;
301       }
302
303       // Otherwise, append a new pair of operands for the new incoming edge.
304       MI.addOperand(MF, OpV);
305       MI.addOperand(MF, MachineOperand::CreateMBB(&NewMBB));
306       break;
307     }
308   }
309
310   // Inherit live-ins from the successor
311   for (auto &LI : Succ.liveins())
312     NewMBB.addLiveIn(LI);
313
314   LLVM_DEBUG(dbgs() << "  Split edge from '" << MBB.getName() << "' to '"
315                     << Succ.getName() << "'.\n");
316   return NewMBB;
317 }
318
319 /// Removing duplicate PHI operands to leave the PHI in a canonical and
320 /// predictable form.
321 ///
322 /// FIXME: It's really frustrating that we have to do this, but SSA-form in MIR
323 /// isn't what you might expect. We may have multiple entries in PHI nodes for
324 /// a single predecessor. This makes CFG-updating extremely complex, so here we
325 /// simplify all PHI nodes to a model even simpler than the IR's model: exactly
326 /// one entry per predecessor, regardless of how many edges there are.
327 static void canonicalizePHIOperands(MachineFunction &MF) {
328   SmallPtrSet<MachineBasicBlock *, 4> Preds;
329   SmallVector<int, 4> DupIndices;
330   for (auto &MBB : MF)
331     for (auto &MI : MBB) {
332       if (!MI.isPHI())
333         break;
334
335       // First we scan the operands of the PHI looking for duplicate entries
336       // a particular predecessor. We retain the operand index of each duplicate
337       // entry found.
338       for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps;
339            OpIdx += 2)
340         if (!Preds.insert(MI.getOperand(OpIdx + 1).getMBB()).second)
341           DupIndices.push_back(OpIdx);
342
343       // Now walk the duplicate indices, removing both the block and value. Note
344       // that these are stored as a vector making this element-wise removal
345       // :w
346       // potentially quadratic.
347       //
348       // FIXME: It is really frustrating that we have to use a quadratic
349       // removal algorithm here. There should be a better way, but the use-def
350       // updates required make that impossible using the public API.
351       //
352       // Note that we have to process these backwards so that we don't
353       // invalidate other indices with each removal.
354       while (!DupIndices.empty()) {
355         int OpIdx = DupIndices.pop_back_val();
356         // Remove both the block and value operand, again in reverse order to
357         // preserve indices.
358         MI.RemoveOperand(OpIdx + 1);
359         MI.RemoveOperand(OpIdx);
360       }
361
362       Preds.clear();
363     }
364 }
365
366 /// Helper to scan a function for loads vulnerable to misspeculation that we
367 /// want to harden.
368 ///
369 /// We use this to avoid making changes to functions where there is nothing we
370 /// need to do to harden against misspeculation.
371 static bool hasVulnerableLoad(MachineFunction &MF) {
372   for (MachineBasicBlock &MBB : MF) {
373     for (MachineInstr &MI : MBB) {
374       // Loads within this basic block after an LFENCE are not at risk of
375       // speculatively executing with invalid predicates from prior control
376       // flow. So break out of this block but continue scanning the function.
377       if (MI.getOpcode() == X86::LFENCE)
378         break;
379
380       // Looking for loads only.
381       if (!MI.mayLoad())
382         continue;
383
384       // An MFENCE is modeled as a load but isn't vulnerable to misspeculation.
385       if (MI.getOpcode() == X86::MFENCE)
386         continue;
387
388       // We found a load.
389       return true;
390     }
391   }
392
393   // No loads found.
394   return false;
395 }
396
397 bool X86SpeculativeLoadHardeningPass::runOnMachineFunction(
398     MachineFunction &MF) {
399   LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName()
400                     << " **********\n");
401
402   // Only run if this pass is forced enabled or we detect the relevant function
403   // attribute requesting SLH.
404   if (!EnableSpeculativeLoadHardening &&
405       !MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening))
406     return false;
407
408   Subtarget = &MF.getSubtarget<X86Subtarget>();
409   MRI = &MF.getRegInfo();
410   TII = Subtarget->getInstrInfo();
411   TRI = Subtarget->getRegisterInfo();
412
413   // FIXME: Support for 32-bit.
414   PS.emplace(MF, &X86::GR64_NOSPRegClass);
415
416   if (MF.begin() == MF.end())
417     // Nothing to do for a degenerate empty function...
418     return false;
419
420   // We support an alternative hardening technique based on a debug flag.
421   if (HardenEdgesWithLFENCE) {
422     hardenEdgesWithLFENCE(MF);
423     return true;
424   }
425
426   // Create a dummy debug loc to use for all the generated code here.
427   DebugLoc Loc;
428
429   MachineBasicBlock &Entry = *MF.begin();
430   auto EntryInsertPt = Entry.SkipPHIsLabelsAndDebug(Entry.begin());
431
432   // Do a quick scan to see if we have any checkable loads.
433   bool HasVulnerableLoad = hasVulnerableLoad(MF);
434
435   // See if we have any conditional branching blocks that we will need to trace
436   // predicate state through.
437   SmallVector<BlockCondInfo, 16> Infos = collectBlockCondInfo(MF);
438
439   // If we have no interesting conditions or loads, nothing to do here.
440   if (!HasVulnerableLoad && Infos.empty())
441     return true;
442
443   // The poison value is required to be an all-ones value for many aspects of
444   // this mitigation.
445   const int PoisonVal = -1;
446   PS->PoisonReg = MRI->createVirtualRegister(PS->RC);
447   BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::MOV64ri32), PS->PoisonReg)
448       .addImm(PoisonVal);
449   ++NumInstsInserted;
450
451   // If we have loads being hardened and we've asked for call and ret edges to
452   // get a full fence-based mitigation, inject that fence.
453   if (HasVulnerableLoad && FenceCallAndRet) {
454     // We need to insert an LFENCE at the start of the function to suspend any
455     // incoming misspeculation from the caller. This helps two-fold: the caller
456     // may not have been protected as this code has been, and this code gets to
457     // not take any specific action to protect across calls.
458     // FIXME: We could skip this for functions which unconditionally return
459     // a constant.
460     BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::LFENCE));
461     ++NumInstsInserted;
462     ++NumLFENCEsInserted;
463   }
464
465   // If we guarded the entry with an LFENCE and have no conditionals to protect
466   // in blocks, then we're done.
467   if (FenceCallAndRet && Infos.empty())
468     // We may have changed the function's code at this point to insert fences.
469     return true;
470
471   // For every basic block in the function which can b
472   if (HardenInterprocedurally && !FenceCallAndRet) {
473     // Set up the predicate state by extracting it from the incoming stack
474     // pointer so we pick up any misspeculation in our caller.
475     PS->InitialReg = extractPredStateFromSP(Entry, EntryInsertPt, Loc);
476   } else {
477     // Otherwise, just build the predicate state itself by zeroing a register
478     // as we don't need any initial state.
479     PS->InitialReg = MRI->createVirtualRegister(PS->RC);
480     unsigned PredStateSubReg = MRI->createVirtualRegister(&X86::GR32RegClass);
481     auto ZeroI = BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::MOV32r0),
482                          PredStateSubReg);
483     ++NumInstsInserted;
484     MachineOperand *ZeroEFLAGSDefOp =
485         ZeroI->findRegisterDefOperand(X86::EFLAGS);
486     assert(ZeroEFLAGSDefOp && ZeroEFLAGSDefOp->isImplicit() &&
487            "Must have an implicit def of EFLAGS!");
488     ZeroEFLAGSDefOp->setIsDead(true);
489     BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::SUBREG_TO_REG),
490             PS->InitialReg)
491         .addImm(0)
492         .addReg(PredStateSubReg)
493         .addImm(X86::sub_32bit);
494   }
495
496   // We're going to need to trace predicate state throughout the function's
497   // CFG. Prepare for this by setting up our initial state of PHIs with unique
498   // predecessor entries and all the initial predicate state.
499   canonicalizePHIOperands(MF);
500
501   // Track the updated values in an SSA updater to rewrite into SSA form at the
502   // end.
503   PS->SSA.Initialize(PS->InitialReg);
504   PS->SSA.AddAvailableValue(&Entry, PS->InitialReg);
505
506   // Trace through the CFG.
507   auto CMovs = tracePredStateThroughCFG(MF, Infos);
508
509   // We may also enter basic blocks in this function via exception handling
510   // control flow. Here, if we are hardening interprocedurally, we need to
511   // re-capture the predicate state from the throwing code. In the Itanium ABI,
512   // the throw will always look like a call to __cxa_throw and will have the
513   // predicate state in the stack pointer, so extract fresh predicate state from
514   // the stack pointer and make it available in SSA.
515   // FIXME: Handle non-itanium ABI EH models.
516   if (HardenInterprocedurally) {
517     for (MachineBasicBlock &MBB : MF) {
518       assert(!MBB.isEHScopeEntry() && "Only Itanium ABI EH supported!");
519       assert(!MBB.isEHFuncletEntry() && "Only Itanium ABI EH supported!");
520       assert(!MBB.isCleanupFuncletEntry() && "Only Itanium ABI EH supported!");
521       if (!MBB.isEHPad())
522         continue;
523       PS->SSA.AddAvailableValue(
524           &MBB,
525           extractPredStateFromSP(MBB, MBB.SkipPHIsAndLabels(MBB.begin()), Loc));
526     }
527   }
528
529   if (HardenIndirectCallsAndJumps) {
530     // If we are going to harden calls and jumps we need to unfold their memory
531     // operands.
532     unfoldCallAndJumpLoads(MF);
533
534     // Then we trace predicate state through the indirect branches.
535     auto IndirectBrCMovs = tracePredStateThroughIndirectBranches(MF);
536     CMovs.append(IndirectBrCMovs.begin(), IndirectBrCMovs.end());
537   }
538
539   // Now that we have the predicate state available at the start of each block
540   // in the CFG, trace it through each block, hardening vulnerable instructions
541   // as we go.
542   tracePredStateThroughBlocksAndHarden(MF);
543
544   // Now rewrite all the uses of the pred state using the SSA updater to insert
545   // PHIs connecting the state between blocks along the CFG edges.
546   for (MachineInstr *CMovI : CMovs)
547     for (MachineOperand &Op : CMovI->operands()) {
548       if (!Op.isReg() || Op.getReg() != PS->InitialReg)
549         continue;
550
551       PS->SSA.RewriteUse(Op);
552     }
553
554   LLVM_DEBUG(dbgs() << "Final speculative load hardened function:\n"; MF.dump();
555              dbgs() << "\n"; MF.verify(this));
556   return true;
557 }
558
559 /// Implements the naive hardening approach of putting an LFENCE after every
560 /// potentially mis-predicted control flow construct.
561 ///
562 /// We include this as an alternative mostly for the purpose of comparison. The
563 /// performance impact of this is expected to be extremely severe and not
564 /// practical for any real-world users.
565 void X86SpeculativeLoadHardeningPass::hardenEdgesWithLFENCE(
566     MachineFunction &MF) {
567   // First, we scan the function looking for blocks that are reached along edges
568   // that we might want to harden.
569   SmallSetVector<MachineBasicBlock *, 8> Blocks;
570   for (MachineBasicBlock &MBB : MF) {
571     // If there are no or only one successor, nothing to do here.
572     if (MBB.succ_size() <= 1)
573       continue;
574
575     // Skip blocks unless their terminators start with a branch. Other
576     // terminators don't seem interesting for guarding against misspeculation.
577     auto TermIt = MBB.getFirstTerminator();
578     if (TermIt == MBB.end() || !TermIt->isBranch())
579       continue;
580
581     // Add all the non-EH-pad succossors to the blocks we want to harden. We
582     // skip EH pads because there isn't really a condition of interest on
583     // entering.
584     for (MachineBasicBlock *SuccMBB : MBB.successors())
585       if (!SuccMBB->isEHPad())
586         Blocks.insert(SuccMBB);
587   }
588
589   for (MachineBasicBlock *MBB : Blocks) {
590     auto InsertPt = MBB->SkipPHIsAndLabels(MBB->begin());
591     BuildMI(*MBB, InsertPt, DebugLoc(), TII->get(X86::LFENCE));
592     ++NumInstsInserted;
593     ++NumLFENCEsInserted;
594   }
595 }
596
597 SmallVector<X86SpeculativeLoadHardeningPass::BlockCondInfo, 16>
598 X86SpeculativeLoadHardeningPass::collectBlockCondInfo(MachineFunction &MF) {
599   SmallVector<BlockCondInfo, 16> Infos;
600
601   // Walk the function and build up a summary for each block's conditions that
602   // we need to trace through.
603   for (MachineBasicBlock &MBB : MF) {
604     // If there are no or only one successor, nothing to do here.
605     if (MBB.succ_size() <= 1)
606       continue;
607
608     // We want to reliably handle any conditional branch terminators in the
609     // MBB, so we manually analyze the branch. We can handle all of the
610     // permutations here, including ones that analyze branch cannot.
611     //
612     // The approach is to walk backwards across the terminators, resetting at
613     // any unconditional non-indirect branch, and track all conditional edges
614     // to basic blocks as well as the fallthrough or unconditional successor
615     // edge. For each conditional edge, we track the target and the opposite
616     // condition code in order to inject a "no-op" cmov into that successor
617     // that will harden the predicate. For the fallthrough/unconditional
618     // edge, we inject a separate cmov for each conditional branch with
619     // matching condition codes. This effectively implements an "and" of the
620     // condition flags, even if there isn't a single condition flag that would
621     // directly implement that. We don't bother trying to optimize either of
622     // these cases because if such an optimization is possible, LLVM should
623     // have optimized the conditional *branches* in that way already to reduce
624     // instruction count. This late, we simply assume the minimal number of
625     // branch instructions is being emitted and use that to guide our cmov
626     // insertion.
627
628     BlockCondInfo Info = {&MBB, {}, nullptr};
629
630     // Now walk backwards through the terminators and build up successors they
631     // reach and the conditions.
632     for (MachineInstr &MI : llvm::reverse(MBB)) {
633       // Once we've handled all the terminators, we're done.
634       if (!MI.isTerminator())
635         break;
636
637       // If we see a non-branch terminator, we can't handle anything so bail.
638       if (!MI.isBranch()) {
639         Info.CondBrs.clear();
640         break;
641       }
642
643       // If we see an unconditional branch, reset our state, clear any
644       // fallthrough, and set this is the "else" successor.
645       if (MI.getOpcode() == X86::JMP_1) {
646         Info.CondBrs.clear();
647         Info.UncondBr = &MI;
648         continue;
649       }
650
651       // If we get an invalid condition, we have an indirect branch or some
652       // other unanalyzable "fallthrough" case. We model this as a nullptr for
653       // the destination so we can still guard any conditional successors.
654       // Consider code sequences like:
655       // ```
656       //   jCC L1
657       //   jmpq *%rax
658       // ```
659       // We still want to harden the edge to `L1`.
660       if (X86::getCondFromBranch(MI) == X86::COND_INVALID) {
661         Info.CondBrs.clear();
662         Info.UncondBr = &MI;
663         continue;
664       }
665
666       // We have a vanilla conditional branch, add it to our list.
667       Info.CondBrs.push_back(&MI);
668     }
669     if (Info.CondBrs.empty()) {
670       ++NumBranchesUntraced;
671       LLVM_DEBUG(dbgs() << "WARNING: unable to secure successors of block:\n";
672                  MBB.dump());
673       continue;
674     }
675
676     Infos.push_back(Info);
677   }
678
679   return Infos;
680 }
681
682 /// Trace the predicate state through the CFG, instrumenting each conditional
683 /// branch such that misspeculation through an edge will poison the predicate
684 /// state.
685 ///
686 /// Returns the list of inserted CMov instructions so that they can have their
687 /// uses of the predicate state rewritten into proper SSA form once it is
688 /// complete.
689 SmallVector<MachineInstr *, 16>
690 X86SpeculativeLoadHardeningPass::tracePredStateThroughCFG(
691     MachineFunction &MF, ArrayRef<BlockCondInfo> Infos) {
692   // Collect the inserted cmov instructions so we can rewrite their uses of the
693   // predicate state into SSA form.
694   SmallVector<MachineInstr *, 16> CMovs;
695
696   // Now walk all of the basic blocks looking for ones that end in conditional
697   // jumps where we need to update this register along each edge.
698   for (const BlockCondInfo &Info : Infos) {
699     MachineBasicBlock &MBB = *Info.MBB;
700     const SmallVectorImpl<MachineInstr *> &CondBrs = Info.CondBrs;
701     MachineInstr *UncondBr = Info.UncondBr;
702
703     LLVM_DEBUG(dbgs() << "Tracing predicate through block: " << MBB.getName()
704                       << "\n");
705     ++NumCondBranchesTraced;
706
707     // Compute the non-conditional successor as either the target of any
708     // unconditional branch or the layout successor.
709     MachineBasicBlock *UncondSucc =
710         UncondBr ? (UncondBr->getOpcode() == X86::JMP_1
711                         ? UncondBr->getOperand(0).getMBB()
712                         : nullptr)
713                  : &*std::next(MachineFunction::iterator(&MBB));
714
715     // Count how many edges there are to any given successor.
716     SmallDenseMap<MachineBasicBlock *, int> SuccCounts;
717     if (UncondSucc)
718       ++SuccCounts[UncondSucc];
719     for (auto *CondBr : CondBrs)
720       ++SuccCounts[CondBr->getOperand(0).getMBB()];
721
722     // A lambda to insert cmov instructions into a block checking all of the
723     // condition codes in a sequence.
724     auto BuildCheckingBlockForSuccAndConds =
725         [&](MachineBasicBlock &MBB, MachineBasicBlock &Succ, int SuccCount,
726             MachineInstr *Br, MachineInstr *&UncondBr,
727             ArrayRef<X86::CondCode> Conds) {
728           // First, we split the edge to insert the checking block into a safe
729           // location.
730           auto &CheckingMBB =
731               (SuccCount == 1 && Succ.pred_size() == 1)
732                   ? Succ
733                   : splitEdge(MBB, Succ, SuccCount, Br, UncondBr, *TII);
734
735           bool LiveEFLAGS = Succ.isLiveIn(X86::EFLAGS);
736           if (!LiveEFLAGS)
737             CheckingMBB.addLiveIn(X86::EFLAGS);
738
739           // Now insert the cmovs to implement the checks.
740           auto InsertPt = CheckingMBB.begin();
741           assert((InsertPt == CheckingMBB.end() || !InsertPt->isPHI()) &&
742                  "Should never have a PHI in the initial checking block as it "
743                  "always has a single predecessor!");
744
745           // We will wire each cmov to each other, but need to start with the
746           // incoming pred state.
747           unsigned CurStateReg = PS->InitialReg;
748
749           for (X86::CondCode Cond : Conds) {
750             int PredStateSizeInBytes = TRI->getRegSizeInBits(*PS->RC) / 8;
751             auto CMovOp = X86::getCMovOpcode(PredStateSizeInBytes);
752
753             unsigned UpdatedStateReg = MRI->createVirtualRegister(PS->RC);
754             // Note that we intentionally use an empty debug location so that
755             // this picks up the preceding location.
756             auto CMovI = BuildMI(CheckingMBB, InsertPt, DebugLoc(),
757                                  TII->get(CMovOp), UpdatedStateReg)
758                              .addReg(CurStateReg)
759                              .addReg(PS->PoisonReg)
760                              .addImm(Cond);
761             // If this is the last cmov and the EFLAGS weren't originally
762             // live-in, mark them as killed.
763             if (!LiveEFLAGS && Cond == Conds.back())
764               CMovI->findRegisterUseOperand(X86::EFLAGS)->setIsKill(true);
765
766             ++NumInstsInserted;
767             LLVM_DEBUG(dbgs() << "  Inserting cmov: "; CMovI->dump();
768                        dbgs() << "\n");
769
770             // The first one of the cmovs will be using the top level
771             // `PredStateReg` and need to get rewritten into SSA form.
772             if (CurStateReg == PS->InitialReg)
773               CMovs.push_back(&*CMovI);
774
775             // The next cmov should start from this one's def.
776             CurStateReg = UpdatedStateReg;
777           }
778
779           // And put the last one into the available values for SSA form of our
780           // predicate state.
781           PS->SSA.AddAvailableValue(&CheckingMBB, CurStateReg);
782         };
783
784     std::vector<X86::CondCode> UncondCodeSeq;
785     for (auto *CondBr : CondBrs) {
786       MachineBasicBlock &Succ = *CondBr->getOperand(0).getMBB();
787       int &SuccCount = SuccCounts[&Succ];
788
789       X86::CondCode Cond = X86::getCondFromBranch(*CondBr);
790       X86::CondCode InvCond = X86::GetOppositeBranchCondition(Cond);
791       UncondCodeSeq.push_back(Cond);
792
793       BuildCheckingBlockForSuccAndConds(MBB, Succ, SuccCount, CondBr, UncondBr,
794                                         {InvCond});
795
796       // Decrement the successor count now that we've split one of the edges.
797       // We need to keep the count of edges to the successor accurate in order
798       // to know above when to *replace* the successor in the CFG vs. just
799       // adding the new successor.
800       --SuccCount;
801     }
802
803     // Since we may have split edges and changed the number of successors,
804     // normalize the probabilities. This avoids doing it each time we split an
805     // edge.
806     MBB.normalizeSuccProbs();
807
808     // Finally, we need to insert cmovs into the "fallthrough" edge. Here, we
809     // need to intersect the other condition codes. We can do this by just
810     // doing a cmov for each one.
811     if (!UncondSucc)
812       // If we have no fallthrough to protect (perhaps it is an indirect jump?)
813       // just skip this and continue.
814       continue;
815
816     assert(SuccCounts[UncondSucc] == 1 &&
817            "We should never have more than one edge to the unconditional "
818            "successor at this point because every other edge must have been "
819            "split above!");
820
821     // Sort and unique the codes to minimize them.
822     llvm::sort(UncondCodeSeq);
823     UncondCodeSeq.erase(std::unique(UncondCodeSeq.begin(), UncondCodeSeq.end()),
824                         UncondCodeSeq.end());
825
826     // Build a checking version of the successor.
827     BuildCheckingBlockForSuccAndConds(MBB, *UncondSucc, /*SuccCount*/ 1,
828                                       UncondBr, UncondBr, UncondCodeSeq);
829   }
830
831   return CMovs;
832 }
833
834 /// Compute the register class for the unfolded load.
835 ///
836 /// FIXME: This should probably live in X86InstrInfo, potentially by adding
837 /// a way to unfold into a newly created vreg rather than requiring a register
838 /// input.
839 static const TargetRegisterClass *
840 getRegClassForUnfoldedLoad(MachineFunction &MF, const X86InstrInfo &TII,
841                            unsigned Opcode) {
842   unsigned Index;
843   unsigned UnfoldedOpc = TII.getOpcodeAfterMemoryUnfold(
844       Opcode, /*UnfoldLoad*/ true, /*UnfoldStore*/ false, &Index);
845   const MCInstrDesc &MCID = TII.get(UnfoldedOpc);
846   return TII.getRegClass(MCID, Index, &TII.getRegisterInfo(), MF);
847 }
848
849 void X86SpeculativeLoadHardeningPass::unfoldCallAndJumpLoads(
850     MachineFunction &MF) {
851   for (MachineBasicBlock &MBB : MF)
852     for (auto MII = MBB.instr_begin(), MIE = MBB.instr_end(); MII != MIE;) {
853       // Grab a reference and increment the iterator so we can remove this
854       // instruction if needed without disturbing the iteration.
855       MachineInstr &MI = *MII++;
856
857       // Must either be a call or a branch.
858       if (!MI.isCall() && !MI.isBranch())
859         continue;
860       // We only care about loading variants of these instructions.
861       if (!MI.mayLoad())
862         continue;
863
864       switch (MI.getOpcode()) {
865       default: {
866         LLVM_DEBUG(
867             dbgs() << "ERROR: Found an unexpected loading branch or call "
868                       "instruction:\n";
869             MI.dump(); dbgs() << "\n");
870         report_fatal_error("Unexpected loading branch or call!");
871       }
872
873       case X86::FARCALL16m:
874       case X86::FARCALL32m:
875       case X86::FARCALL64:
876       case X86::FARJMP16m:
877       case X86::FARJMP32m:
878       case X86::FARJMP64:
879         // We cannot mitigate far jumps or calls, but we also don't expect them
880         // to be vulnerable to Spectre v1.2 style attacks.
881         continue;
882
883       case X86::CALL16m:
884       case X86::CALL16m_NT:
885       case X86::CALL32m:
886       case X86::CALL32m_NT:
887       case X86::CALL64m:
888       case X86::CALL64m_NT:
889       case X86::JMP16m:
890       case X86::JMP16m_NT:
891       case X86::JMP32m:
892       case X86::JMP32m_NT:
893       case X86::JMP64m:
894       case X86::JMP64m_NT:
895       case X86::TAILJMPm64:
896       case X86::TAILJMPm64_REX:
897       case X86::TAILJMPm:
898       case X86::TCRETURNmi64:
899       case X86::TCRETURNmi: {
900         // Use the generic unfold logic now that we know we're dealing with
901         // expected instructions.
902         // FIXME: We don't have test coverage for all of these!
903         auto *UnfoldedRC = getRegClassForUnfoldedLoad(MF, *TII, MI.getOpcode());
904         if (!UnfoldedRC) {
905           LLVM_DEBUG(dbgs()
906                          << "ERROR: Unable to unfold load from instruction:\n";
907                      MI.dump(); dbgs() << "\n");
908           report_fatal_error("Unable to unfold load!");
909         }
910         unsigned Reg = MRI->createVirtualRegister(UnfoldedRC);
911         SmallVector<MachineInstr *, 2> NewMIs;
912         // If we were able to compute an unfolded reg class, any failure here
913         // is just a programming error so just assert.
914         bool Unfolded =
915             TII->unfoldMemoryOperand(MF, MI, Reg, /*UnfoldLoad*/ true,
916                                      /*UnfoldStore*/ false, NewMIs);
917         (void)Unfolded;
918         assert(Unfolded &&
919                "Computed unfolded register class but failed to unfold");
920         // Now stitch the new instructions into place and erase the old one.
921         for (auto *NewMI : NewMIs)
922           MBB.insert(MI.getIterator(), NewMI);
923         MI.eraseFromParent();
924         LLVM_DEBUG({
925           dbgs() << "Unfolded load successfully into:\n";
926           for (auto *NewMI : NewMIs) {
927             NewMI->dump();
928             dbgs() << "\n";
929           }
930         });
931         continue;
932       }
933       }
934       llvm_unreachable("Escaped switch with default!");
935     }
936 }
937
938 /// Trace the predicate state through indirect branches, instrumenting them to
939 /// poison the state if a target is reached that does not match the expected
940 /// target.
941 ///
942 /// This is designed to mitigate Spectre variant 1 attacks where an indirect
943 /// branch is trained to predict a particular target and then mispredicts that
944 /// target in a way that can leak data. Despite using an indirect branch, this
945 /// is really a variant 1 style attack: it does not steer execution to an
946 /// arbitrary or attacker controlled address, and it does not require any
947 /// special code executing next to the victim. This attack can also be mitigated
948 /// through retpolines, but those require either replacing indirect branches
949 /// with conditional direct branches or lowering them through a device that
950 /// blocks speculation. This mitigation can replace these retpoline-style
951 /// mitigations for jump tables and other indirect branches within a function
952 /// when variant 2 isn't a risk while allowing limited speculation. Indirect
953 /// calls, however, cannot be mitigated through this technique without changing
954 /// the ABI in a fundamental way.
955 SmallVector<MachineInstr *, 16>
956 X86SpeculativeLoadHardeningPass::tracePredStateThroughIndirectBranches(
957     MachineFunction &MF) {
958   // We use the SSAUpdater to insert PHI nodes for the target addresses of
959   // indirect branches. We don't actually need the full power of the SSA updater
960   // in this particular case as we always have immediately available values, but
961   // this avoids us having to re-implement the PHI construction logic.
962   MachineSSAUpdater TargetAddrSSA(MF);
963   TargetAddrSSA.Initialize(MRI->createVirtualRegister(&X86::GR64RegClass));
964
965   // Track which blocks were terminated with an indirect branch.
966   SmallPtrSet<MachineBasicBlock *, 4> IndirectTerminatedMBBs;
967
968   // We need to know what blocks end up reached via indirect branches. We
969   // expect this to be a subset of those whose address is taken and so track it
970   // directly via the CFG.
971   SmallPtrSet<MachineBasicBlock *, 4> IndirectTargetMBBs;
972
973   // Walk all the blocks which end in an indirect branch and make the
974   // target address available.
975   for (MachineBasicBlock &MBB : MF) {
976     // Find the last terminator.
977     auto MII = MBB.instr_rbegin();
978     while (MII != MBB.instr_rend() && MII->isDebugInstr())
979       ++MII;
980     if (MII == MBB.instr_rend())
981       continue;
982     MachineInstr &TI = *MII;
983     if (!TI.isTerminator() || !TI.isBranch())
984       // No terminator or non-branch terminator.
985       continue;
986
987     unsigned TargetReg;
988
989     switch (TI.getOpcode()) {
990     default:
991       // Direct branch or conditional branch (leading to fallthrough).
992       continue;
993
994     case X86::FARJMP16m:
995     case X86::FARJMP32m:
996     case X86::FARJMP64:
997       // We cannot mitigate far jumps or calls, but we also don't expect them
998       // to be vulnerable to Spectre v1.2 or v2 (self trained) style attacks.
999       continue;
1000
1001     case X86::JMP16m:
1002     case X86::JMP16m_NT:
1003     case X86::JMP32m:
1004     case X86::JMP32m_NT:
1005     case X86::JMP64m:
1006     case X86::JMP64m_NT:
1007       // Mostly as documentation.
1008       report_fatal_error("Memory operand jumps should have been unfolded!");
1009
1010     case X86::JMP16r:
1011       report_fatal_error(
1012           "Support for 16-bit indirect branches is not implemented.");
1013     case X86::JMP32r:
1014       report_fatal_error(
1015           "Support for 32-bit indirect branches is not implemented.");
1016
1017     case X86::JMP64r:
1018       TargetReg = TI.getOperand(0).getReg();
1019     }
1020
1021     // We have definitely found an indirect  branch. Verify that there are no
1022     // preceding conditional branches as we don't yet support that.
1023     if (llvm::any_of(MBB.terminators(), [&](MachineInstr &OtherTI) {
1024           return !OtherTI.isDebugInstr() && &OtherTI != &TI;
1025         })) {
1026       LLVM_DEBUG({
1027         dbgs() << "ERROR: Found other terminators in a block with an indirect "
1028                   "branch! This is not yet supported! Terminator sequence:\n";
1029         for (MachineInstr &MI : MBB.terminators()) {
1030           MI.dump();
1031           dbgs() << '\n';
1032         }
1033       });
1034       report_fatal_error("Unimplemented terminator sequence!");
1035     }
1036
1037     // Make the target register an available value for this block.
1038     TargetAddrSSA.AddAvailableValue(&MBB, TargetReg);
1039     IndirectTerminatedMBBs.insert(&MBB);
1040
1041     // Add all the successors to our target candidates.
1042     for (MachineBasicBlock *Succ : MBB.successors())
1043       IndirectTargetMBBs.insert(Succ);
1044   }
1045
1046   // Keep track of the cmov instructions we insert so we can return them.
1047   SmallVector<MachineInstr *, 16> CMovs;
1048
1049   // If we didn't find any indirect branches with targets, nothing to do here.
1050   if (IndirectTargetMBBs.empty())
1051     return CMovs;
1052
1053   // We found indirect branches and targets that need to be instrumented to
1054   // harden loads within them. Walk the blocks of the function (to get a stable
1055   // ordering) and instrument each target of an indirect branch.
1056   for (MachineBasicBlock &MBB : MF) {
1057     // Skip the blocks that aren't candidate targets.
1058     if (!IndirectTargetMBBs.count(&MBB))
1059       continue;
1060
1061     // We don't expect EH pads to ever be reached via an indirect branch. If
1062     // this is desired for some reason, we could simply skip them here rather
1063     // than asserting.
1064     assert(!MBB.isEHPad() &&
1065            "Unexpected EH pad as target of an indirect branch!");
1066
1067     // We should never end up threading EFLAGS into a block to harden
1068     // conditional jumps as there would be an additional successor via the
1069     // indirect branch. As a consequence, all such edges would be split before
1070     // reaching here, and the inserted block will handle the EFLAGS-based
1071     // hardening.
1072     assert(!MBB.isLiveIn(X86::EFLAGS) &&
1073            "Cannot check within a block that already has live-in EFLAGS!");
1074
1075     // We can't handle having non-indirect edges into this block unless this is
1076     // the only successor and we can synthesize the necessary target address.
1077     for (MachineBasicBlock *Pred : MBB.predecessors()) {
1078       // If we've already handled this by extracting the target directly,
1079       // nothing to do.
1080       if (IndirectTerminatedMBBs.count(Pred))
1081         continue;
1082
1083       // Otherwise, we have to be the only successor. We generally expect this
1084       // to be true as conditional branches should have had a critical edge
1085       // split already. We don't however need to worry about EH pad successors
1086       // as they'll happily ignore the target and their hardening strategy is
1087       // resilient to all ways in which they could be reached speculatively.
1088       if (!llvm::all_of(Pred->successors(), [&](MachineBasicBlock *Succ) {
1089             return Succ->isEHPad() || Succ == &MBB;
1090           })) {
1091         LLVM_DEBUG({
1092           dbgs() << "ERROR: Found conditional entry to target of indirect "
1093                     "branch!\n";
1094           Pred->dump();
1095           MBB.dump();
1096         });
1097         report_fatal_error("Cannot harden a conditional entry to a target of "
1098                            "an indirect branch!");
1099       }
1100
1101       // Now we need to compute the address of this block and install it as a
1102       // synthetic target in the predecessor. We do this at the bottom of the
1103       // predecessor.
1104       auto InsertPt = Pred->getFirstTerminator();
1105       unsigned TargetReg = MRI->createVirtualRegister(&X86::GR64RegClass);
1106       if (MF.getTarget().getCodeModel() == CodeModel::Small &&
1107           !Subtarget->isPositionIndependent()) {
1108         // Directly materialize it into an immediate.
1109         auto AddrI = BuildMI(*Pred, InsertPt, DebugLoc(),
1110                              TII->get(X86::MOV64ri32), TargetReg)
1111                          .addMBB(&MBB);
1112         ++NumInstsInserted;
1113         (void)AddrI;
1114         LLVM_DEBUG(dbgs() << "  Inserting mov: "; AddrI->dump();
1115                    dbgs() << "\n");
1116       } else {
1117         auto AddrI = BuildMI(*Pred, InsertPt, DebugLoc(), TII->get(X86::LEA64r),
1118                              TargetReg)
1119                          .addReg(/*Base*/ X86::RIP)
1120                          .addImm(/*Scale*/ 1)
1121                          .addReg(/*Index*/ 0)
1122                          .addMBB(&MBB)
1123                          .addReg(/*Segment*/ 0);
1124         ++NumInstsInserted;
1125         (void)AddrI;
1126         LLVM_DEBUG(dbgs() << "  Inserting lea: "; AddrI->dump();
1127                    dbgs() << "\n");
1128       }
1129       // And make this available.
1130       TargetAddrSSA.AddAvailableValue(Pred, TargetReg);
1131     }
1132
1133     // Materialize the needed SSA value of the target. Note that we need the
1134     // middle of the block as this block might at the bottom have an indirect
1135     // branch back to itself. We can do this here because at this point, every
1136     // predecessor of this block has an available value. This is basically just
1137     // automating the construction of a PHI node for this target.
1138     unsigned TargetReg = TargetAddrSSA.GetValueInMiddleOfBlock(&MBB);
1139
1140     // Insert a comparison of the incoming target register with this block's
1141     // address. This also requires us to mark the block as having its address
1142     // taken explicitly.
1143     MBB.setHasAddressTaken();
1144     auto InsertPt = MBB.SkipPHIsLabelsAndDebug(MBB.begin());
1145     if (MF.getTarget().getCodeModel() == CodeModel::Small &&
1146         !Subtarget->isPositionIndependent()) {
1147       // Check directly against a relocated immediate when we can.
1148       auto CheckI = BuildMI(MBB, InsertPt, DebugLoc(), TII->get(X86::CMP64ri32))
1149                         .addReg(TargetReg, RegState::Kill)
1150                         .addMBB(&MBB);
1151       ++NumInstsInserted;
1152       (void)CheckI;
1153       LLVM_DEBUG(dbgs() << "  Inserting cmp: "; CheckI->dump(); dbgs() << "\n");
1154     } else {
1155       // Otherwise compute the address into a register first.
1156       unsigned AddrReg = MRI->createVirtualRegister(&X86::GR64RegClass);
1157       auto AddrI =
1158           BuildMI(MBB, InsertPt, DebugLoc(), TII->get(X86::LEA64r), AddrReg)
1159               .addReg(/*Base*/ X86::RIP)
1160               .addImm(/*Scale*/ 1)
1161               .addReg(/*Index*/ 0)
1162               .addMBB(&MBB)
1163               .addReg(/*Segment*/ 0);
1164       ++NumInstsInserted;
1165       (void)AddrI;
1166       LLVM_DEBUG(dbgs() << "  Inserting lea: "; AddrI->dump(); dbgs() << "\n");
1167       auto CheckI = BuildMI(MBB, InsertPt, DebugLoc(), TII->get(X86::CMP64rr))
1168                         .addReg(TargetReg, RegState::Kill)
1169                         .addReg(AddrReg, RegState::Kill);
1170       ++NumInstsInserted;
1171       (void)CheckI;
1172       LLVM_DEBUG(dbgs() << "  Inserting cmp: "; CheckI->dump(); dbgs() << "\n");
1173     }
1174
1175     // Now cmov over the predicate if the comparison wasn't equal.
1176     int PredStateSizeInBytes = TRI->getRegSizeInBits(*PS->RC) / 8;
1177     auto CMovOp = X86::getCMovOpcode(PredStateSizeInBytes);
1178     unsigned UpdatedStateReg = MRI->createVirtualRegister(PS->RC);
1179     auto CMovI =
1180         BuildMI(MBB, InsertPt, DebugLoc(), TII->get(CMovOp), UpdatedStateReg)
1181             .addReg(PS->InitialReg)
1182             .addReg(PS->PoisonReg)
1183             .addImm(X86::COND_NE);
1184     CMovI->findRegisterUseOperand(X86::EFLAGS)->setIsKill(true);
1185     ++NumInstsInserted;
1186     LLVM_DEBUG(dbgs() << "  Inserting cmov: "; CMovI->dump(); dbgs() << "\n");
1187     CMovs.push_back(&*CMovI);
1188
1189     // And put the new value into the available values for SSA form of our
1190     // predicate state.
1191     PS->SSA.AddAvailableValue(&MBB, UpdatedStateReg);
1192   }
1193
1194   // Return all the newly inserted cmov instructions of the predicate state.
1195   return CMovs;
1196 }
1197
1198 /// Returns true if the instruction has no behavior (specified or otherwise)
1199 /// that is based on the value of any of its register operands
1200 ///
1201 /// A classical example of something that is inherently not data invariant is an
1202 /// indirect jump -- the destination is loaded into icache based on the bits set
1203 /// in the jump destination register.
1204 ///
1205 /// FIXME: This should become part of our instruction tables.
1206 static bool isDataInvariant(MachineInstr &MI) {
1207   switch (MI.getOpcode()) {
1208   default:
1209     // By default, assume that the instruction is not data invariant.
1210     return false;
1211
1212     // Some target-independent operations that trivially lower to data-invariant
1213     // instructions.
1214   case TargetOpcode::COPY:
1215   case TargetOpcode::INSERT_SUBREG:
1216   case TargetOpcode::SUBREG_TO_REG:
1217     return true;
1218
1219   // On x86 it is believed that imul is constant time w.r.t. the loaded data.
1220   // However, they set flags and are perhaps the most surprisingly constant
1221   // time operations so we call them out here separately.
1222   case X86::IMUL16rr:
1223   case X86::IMUL16rri8:
1224   case X86::IMUL16rri:
1225   case X86::IMUL32rr:
1226   case X86::IMUL32rri8:
1227   case X86::IMUL32rri:
1228   case X86::IMUL64rr:
1229   case X86::IMUL64rri32:
1230   case X86::IMUL64rri8:
1231
1232   // Bit scanning and counting instructions that are somewhat surprisingly
1233   // constant time as they scan across bits and do other fairly complex
1234   // operations like popcnt, but are believed to be constant time on x86.
1235   // However, these set flags.
1236   case X86::BSF16rr:
1237   case X86::BSF32rr:
1238   case X86::BSF64rr:
1239   case X86::BSR16rr:
1240   case X86::BSR32rr:
1241   case X86::BSR64rr:
1242   case X86::LZCNT16rr:
1243   case X86::LZCNT32rr:
1244   case X86::LZCNT64rr:
1245   case X86::POPCNT16rr:
1246   case X86::POPCNT32rr:
1247   case X86::POPCNT64rr:
1248   case X86::TZCNT16rr:
1249   case X86::TZCNT32rr:
1250   case X86::TZCNT64rr:
1251
1252   // Bit manipulation instructions are effectively combinations of basic
1253   // arithmetic ops, and should still execute in constant time. These also
1254   // set flags.
1255   case X86::BLCFILL32rr:
1256   case X86::BLCFILL64rr:
1257   case X86::BLCI32rr:
1258   case X86::BLCI64rr:
1259   case X86::BLCIC32rr:
1260   case X86::BLCIC64rr:
1261   case X86::BLCMSK32rr:
1262   case X86::BLCMSK64rr:
1263   case X86::BLCS32rr:
1264   case X86::BLCS64rr:
1265   case X86::BLSFILL32rr:
1266   case X86::BLSFILL64rr:
1267   case X86::BLSI32rr:
1268   case X86::BLSI64rr:
1269   case X86::BLSIC32rr:
1270   case X86::BLSIC64rr:
1271   case X86::BLSMSK32rr:
1272   case X86::BLSMSK64rr:
1273   case X86::BLSR32rr:
1274   case X86::BLSR64rr:
1275   case X86::TZMSK32rr:
1276   case X86::TZMSK64rr:
1277
1278   // Bit extracting and clearing instructions should execute in constant time,
1279   // and set flags.
1280   case X86::BEXTR32rr:
1281   case X86::BEXTR64rr:
1282   case X86::BEXTRI32ri:
1283   case X86::BEXTRI64ri:
1284   case X86::BZHI32rr:
1285   case X86::BZHI64rr:
1286
1287   // Shift and rotate.
1288   case X86::ROL8r1:  case X86::ROL16r1:  case X86::ROL32r1:  case X86::ROL64r1:
1289   case X86::ROL8rCL: case X86::ROL16rCL: case X86::ROL32rCL: case X86::ROL64rCL:
1290   case X86::ROL8ri:  case X86::ROL16ri:  case X86::ROL32ri:  case X86::ROL64ri:
1291   case X86::ROR8r1:  case X86::ROR16r1:  case X86::ROR32r1:  case X86::ROR64r1:
1292   case X86::ROR8rCL: case X86::ROR16rCL: case X86::ROR32rCL: case X86::ROR64rCL:
1293   case X86::ROR8ri:  case X86::ROR16ri:  case X86::ROR32ri:  case X86::ROR64ri:
1294   case X86::SAR8r1:  case X86::SAR16r1:  case X86::SAR32r1:  case X86::SAR64r1:
1295   case X86::SAR8rCL: case X86::SAR16rCL: case X86::SAR32rCL: case X86::SAR64rCL:
1296   case X86::SAR8ri:  case X86::SAR16ri:  case X86::SAR32ri:  case X86::SAR64ri:
1297   case X86::SHL8r1:  case X86::SHL16r1:  case X86::SHL32r1:  case X86::SHL64r1:
1298   case X86::SHL8rCL: case X86::SHL16rCL: case X86::SHL32rCL: case X86::SHL64rCL:
1299   case X86::SHL8ri:  case X86::SHL16ri:  case X86::SHL32ri:  case X86::SHL64ri:
1300   case X86::SHR8r1:  case X86::SHR16r1:  case X86::SHR32r1:  case X86::SHR64r1:
1301   case X86::SHR8rCL: case X86::SHR16rCL: case X86::SHR32rCL: case X86::SHR64rCL:
1302   case X86::SHR8ri:  case X86::SHR16ri:  case X86::SHR32ri:  case X86::SHR64ri:
1303   case X86::SHLD16rrCL: case X86::SHLD32rrCL: case X86::SHLD64rrCL:
1304   case X86::SHLD16rri8: case X86::SHLD32rri8: case X86::SHLD64rri8:
1305   case X86::SHRD16rrCL: case X86::SHRD32rrCL: case X86::SHRD64rrCL:
1306   case X86::SHRD16rri8: case X86::SHRD32rri8: case X86::SHRD64rri8:
1307
1308   // Basic arithmetic is constant time on the input but does set flags.
1309   case X86::ADC8rr:   case X86::ADC8ri:
1310   case X86::ADC16rr:  case X86::ADC16ri:   case X86::ADC16ri8:
1311   case X86::ADC32rr:  case X86::ADC32ri:   case X86::ADC32ri8:
1312   case X86::ADC64rr:  case X86::ADC64ri8:  case X86::ADC64ri32:
1313   case X86::ADD8rr:   case X86::ADD8ri:
1314   case X86::ADD16rr:  case X86::ADD16ri:   case X86::ADD16ri8:
1315   case X86::ADD32rr:  case X86::ADD32ri:   case X86::ADD32ri8:
1316   case X86::ADD64rr:  case X86::ADD64ri8:  case X86::ADD64ri32:
1317   case X86::AND8rr:   case X86::AND8ri:
1318   case X86::AND16rr:  case X86::AND16ri:   case X86::AND16ri8:
1319   case X86::AND32rr:  case X86::AND32ri:   case X86::AND32ri8:
1320   case X86::AND64rr:  case X86::AND64ri8:  case X86::AND64ri32:
1321   case X86::OR8rr:    case X86::OR8ri:
1322   case X86::OR16rr:   case X86::OR16ri:    case X86::OR16ri8:
1323   case X86::OR32rr:   case X86::OR32ri:    case X86::OR32ri8:
1324   case X86::OR64rr:   case X86::OR64ri8:   case X86::OR64ri32:
1325   case X86::SBB8rr:   case X86::SBB8ri:
1326   case X86::SBB16rr:  case X86::SBB16ri:   case X86::SBB16ri8:
1327   case X86::SBB32rr:  case X86::SBB32ri:   case X86::SBB32ri8:
1328   case X86::SBB64rr:  case X86::SBB64ri8:  case X86::SBB64ri32:
1329   case X86::SUB8rr:   case X86::SUB8ri:
1330   case X86::SUB16rr:  case X86::SUB16ri:   case X86::SUB16ri8:
1331   case X86::SUB32rr:  case X86::SUB32ri:   case X86::SUB32ri8:
1332   case X86::SUB64rr:  case X86::SUB64ri8:  case X86::SUB64ri32:
1333   case X86::XOR8rr:   case X86::XOR8ri:
1334   case X86::XOR16rr:  case X86::XOR16ri:   case X86::XOR16ri8:
1335   case X86::XOR32rr:  case X86::XOR32ri:   case X86::XOR32ri8:
1336   case X86::XOR64rr:  case X86::XOR64ri8:  case X86::XOR64ri32:
1337   // Arithmetic with just 32-bit and 64-bit variants and no immediates.
1338   case X86::ADCX32rr: case X86::ADCX64rr:
1339   case X86::ADOX32rr: case X86::ADOX64rr:
1340   case X86::ANDN32rr: case X86::ANDN64rr:
1341   // Unary arithmetic operations.
1342   case X86::DEC8r: case X86::DEC16r: case X86::DEC32r: case X86::DEC64r:
1343   case X86::INC8r: case X86::INC16r: case X86::INC32r: case X86::INC64r:
1344   case X86::NEG8r: case X86::NEG16r: case X86::NEG32r: case X86::NEG64r:
1345     // Check whether the EFLAGS implicit-def is dead. We assume that this will
1346     // always find the implicit-def because this code should only be reached
1347     // for instructions that do in fact implicitly def this.
1348     if (!MI.findRegisterDefOperand(X86::EFLAGS)->isDead()) {
1349       // If we would clobber EFLAGS that are used, just bail for now.
1350       LLVM_DEBUG(dbgs() << "    Unable to harden post-load due to EFLAGS: ";
1351                  MI.dump(); dbgs() << "\n");
1352       return false;
1353     }
1354
1355     // Otherwise, fallthrough to handle these the same as instructions that
1356     // don't set EFLAGS.
1357     LLVM_FALLTHROUGH;
1358
1359   // Unlike other arithmetic, NOT doesn't set EFLAGS.
1360   case X86::NOT8r: case X86::NOT16r: case X86::NOT32r: case X86::NOT64r:
1361
1362   // Various move instructions used to zero or sign extend things. Note that we
1363   // intentionally don't support the _NOREX variants as we can't handle that
1364   // register constraint anyways.
1365   case X86::MOVSX16rr8:
1366   case X86::MOVSX32rr8: case X86::MOVSX32rr16:
1367   case X86::MOVSX64rr8: case X86::MOVSX64rr16: case X86::MOVSX64rr32:
1368   case X86::MOVZX16rr8:
1369   case X86::MOVZX32rr8: case X86::MOVZX32rr16:
1370   case X86::MOVZX64rr8: case X86::MOVZX64rr16:
1371   case X86::MOV32rr:
1372
1373   // Arithmetic instructions that are both constant time and don't set flags.
1374   case X86::RORX32ri:
1375   case X86::RORX64ri:
1376   case X86::SARX32rr:
1377   case X86::SARX64rr:
1378   case X86::SHLX32rr:
1379   case X86::SHLX64rr:
1380   case X86::SHRX32rr:
1381   case X86::SHRX64rr:
1382
1383   // LEA doesn't actually access memory, and its arithmetic is constant time.
1384   case X86::LEA16r:
1385   case X86::LEA32r:
1386   case X86::LEA64_32r:
1387   case X86::LEA64r:
1388     return true;
1389   }
1390 }
1391
1392 /// Returns true if the instruction has no behavior (specified or otherwise)
1393 /// that is based on the value loaded from memory or the value of any
1394 /// non-address register operands.
1395 ///
1396 /// For example, if the latency of the instruction is dependent on the
1397 /// particular bits set in any of the registers *or* any of the bits loaded from
1398 /// memory.
1399 ///
1400 /// A classical example of something that is inherently not data invariant is an
1401 /// indirect jump -- the destination is loaded into icache based on the bits set
1402 /// in the jump destination register.
1403 ///
1404 /// FIXME: This should become part of our instruction tables.
1405 static bool isDataInvariantLoad(MachineInstr &MI) {
1406   switch (MI.getOpcode()) {
1407   default:
1408     // By default, assume that the load will immediately leak.
1409     return false;
1410
1411   // On x86 it is believed that imul is constant time w.r.t. the loaded data.
1412   // However, they set flags and are perhaps the most surprisingly constant
1413   // time operations so we call them out here separately.
1414   case X86::IMUL16rm:
1415   case X86::IMUL16rmi8:
1416   case X86::IMUL16rmi:
1417   case X86::IMUL32rm:
1418   case X86::IMUL32rmi8:
1419   case X86::IMUL32rmi:
1420   case X86::IMUL64rm:
1421   case X86::IMUL64rmi32:
1422   case X86::IMUL64rmi8:
1423
1424   // Bit scanning and counting instructions that are somewhat surprisingly
1425   // constant time as they scan across bits and do other fairly complex
1426   // operations like popcnt, but are believed to be constant time on x86.
1427   // However, these set flags.
1428   case X86::BSF16rm:
1429   case X86::BSF32rm:
1430   case X86::BSF64rm:
1431   case X86::BSR16rm:
1432   case X86::BSR32rm:
1433   case X86::BSR64rm:
1434   case X86::LZCNT16rm:
1435   case X86::LZCNT32rm:
1436   case X86::LZCNT64rm:
1437   case X86::POPCNT16rm:
1438   case X86::POPCNT32rm:
1439   case X86::POPCNT64rm:
1440   case X86::TZCNT16rm:
1441   case X86::TZCNT32rm:
1442   case X86::TZCNT64rm:
1443
1444   // Bit manipulation instructions are effectively combinations of basic
1445   // arithmetic ops, and should still execute in constant time. These also
1446   // set flags.
1447   case X86::BLCFILL32rm:
1448   case X86::BLCFILL64rm:
1449   case X86::BLCI32rm:
1450   case X86::BLCI64rm:
1451   case X86::BLCIC32rm:
1452   case X86::BLCIC64rm:
1453   case X86::BLCMSK32rm:
1454   case X86::BLCMSK64rm:
1455   case X86::BLCS32rm:
1456   case X86::BLCS64rm:
1457   case X86::BLSFILL32rm:
1458   case X86::BLSFILL64rm:
1459   case X86::BLSI32rm:
1460   case X86::BLSI64rm:
1461   case X86::BLSIC32rm:
1462   case X86::BLSIC64rm:
1463   case X86::BLSMSK32rm:
1464   case X86::BLSMSK64rm:
1465   case X86::BLSR32rm:
1466   case X86::BLSR64rm:
1467   case X86::TZMSK32rm:
1468   case X86::TZMSK64rm:
1469
1470   // Bit extracting and clearing instructions should execute in constant time,
1471   // and set flags.
1472   case X86::BEXTR32rm:
1473   case X86::BEXTR64rm:
1474   case X86::BEXTRI32mi:
1475   case X86::BEXTRI64mi:
1476   case X86::BZHI32rm:
1477   case X86::BZHI64rm:
1478
1479   // Basic arithmetic is constant time on the input but does set flags.
1480   case X86::ADC8rm:
1481   case X86::ADC16rm:
1482   case X86::ADC32rm:
1483   case X86::ADC64rm:
1484   case X86::ADCX32rm:
1485   case X86::ADCX64rm:
1486   case X86::ADD8rm:
1487   case X86::ADD16rm:
1488   case X86::ADD32rm:
1489   case X86::ADD64rm:
1490   case X86::ADOX32rm:
1491   case X86::ADOX64rm:
1492   case X86::AND8rm:
1493   case X86::AND16rm:
1494   case X86::AND32rm:
1495   case X86::AND64rm:
1496   case X86::ANDN32rm:
1497   case X86::ANDN64rm:
1498   case X86::OR8rm:
1499   case X86::OR16rm:
1500   case X86::OR32rm:
1501   case X86::OR64rm:
1502   case X86::SBB8rm:
1503   case X86::SBB16rm:
1504   case X86::SBB32rm:
1505   case X86::SBB64rm:
1506   case X86::SUB8rm:
1507   case X86::SUB16rm:
1508   case X86::SUB32rm:
1509   case X86::SUB64rm:
1510   case X86::XOR8rm:
1511   case X86::XOR16rm:
1512   case X86::XOR32rm:
1513   case X86::XOR64rm:
1514     // Check whether the EFLAGS implicit-def is dead. We assume that this will
1515     // always find the implicit-def because this code should only be reached
1516     // for instructions that do in fact implicitly def this.
1517     if (!MI.findRegisterDefOperand(X86::EFLAGS)->isDead()) {
1518       // If we would clobber EFLAGS that are used, just bail for now.
1519       LLVM_DEBUG(dbgs() << "    Unable to harden post-load due to EFLAGS: ";
1520                  MI.dump(); dbgs() << "\n");
1521       return false;
1522     }
1523
1524     // Otherwise, fallthrough to handle these the same as instructions that
1525     // don't set EFLAGS.
1526     LLVM_FALLTHROUGH;
1527
1528   // Integer multiply w/o affecting flags is still believed to be constant
1529   // time on x86. Called out separately as this is among the most surprising
1530   // instructions to exhibit that behavior.
1531   case X86::MULX32rm:
1532   case X86::MULX64rm:
1533
1534   // Arithmetic instructions that are both constant time and don't set flags.
1535   case X86::RORX32mi:
1536   case X86::RORX64mi:
1537   case X86::SARX32rm:
1538   case X86::SARX64rm:
1539   case X86::SHLX32rm:
1540   case X86::SHLX64rm:
1541   case X86::SHRX32rm:
1542   case X86::SHRX64rm:
1543
1544   // Conversions are believed to be constant time and don't set flags.
1545   case X86::CVTTSD2SI64rm: case X86::VCVTTSD2SI64rm: case X86::VCVTTSD2SI64Zrm:
1546   case X86::CVTTSD2SIrm:   case X86::VCVTTSD2SIrm:   case X86::VCVTTSD2SIZrm:
1547   case X86::CVTTSS2SI64rm: case X86::VCVTTSS2SI64rm: case X86::VCVTTSS2SI64Zrm:
1548   case X86::CVTTSS2SIrm:   case X86::VCVTTSS2SIrm:   case X86::VCVTTSS2SIZrm:
1549   case X86::CVTSI2SDrm:    case X86::VCVTSI2SDrm:    case X86::VCVTSI2SDZrm:
1550   case X86::CVTSI2SSrm:    case X86::VCVTSI2SSrm:    case X86::VCVTSI2SSZrm:
1551   case X86::CVTSI642SDrm:  case X86::VCVTSI642SDrm:  case X86::VCVTSI642SDZrm:
1552   case X86::CVTSI642SSrm:  case X86::VCVTSI642SSrm:  case X86::VCVTSI642SSZrm:
1553   case X86::CVTSS2SDrm:    case X86::VCVTSS2SDrm:    case X86::VCVTSS2SDZrm:
1554   case X86::CVTSD2SSrm:    case X86::VCVTSD2SSrm:    case X86::VCVTSD2SSZrm:
1555   // AVX512 added unsigned integer conversions.
1556   case X86::VCVTTSD2USI64Zrm:
1557   case X86::VCVTTSD2USIZrm:
1558   case X86::VCVTTSS2USI64Zrm:
1559   case X86::VCVTTSS2USIZrm:
1560   case X86::VCVTUSI2SDZrm:
1561   case X86::VCVTUSI642SDZrm:
1562   case X86::VCVTUSI2SSZrm:
1563   case X86::VCVTUSI642SSZrm:
1564
1565   // Loads to register don't set flags.
1566   case X86::MOV8rm:
1567   case X86::MOV8rm_NOREX:
1568   case X86::MOV16rm:
1569   case X86::MOV32rm:
1570   case X86::MOV64rm:
1571   case X86::MOVSX16rm8:
1572   case X86::MOVSX32rm16:
1573   case X86::MOVSX32rm8:
1574   case X86::MOVSX32rm8_NOREX:
1575   case X86::MOVSX64rm16:
1576   case X86::MOVSX64rm32:
1577   case X86::MOVSX64rm8:
1578   case X86::MOVZX16rm8:
1579   case X86::MOVZX32rm16:
1580   case X86::MOVZX32rm8:
1581   case X86::MOVZX32rm8_NOREX:
1582   case X86::MOVZX64rm16:
1583   case X86::MOVZX64rm8:
1584     return true;
1585   }
1586 }
1587
1588 static bool isEFLAGSLive(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
1589                          const TargetRegisterInfo &TRI) {
1590   // Check if EFLAGS are alive by seeing if there is a def of them or they
1591   // live-in, and then seeing if that def is in turn used.
1592   for (MachineInstr &MI : llvm::reverse(llvm::make_range(MBB.begin(), I))) {
1593     if (MachineOperand *DefOp = MI.findRegisterDefOperand(X86::EFLAGS)) {
1594       // If the def is dead, then EFLAGS is not live.
1595       if (DefOp->isDead())
1596         return false;
1597
1598       // Otherwise we've def'ed it, and it is live.
1599       return true;
1600     }
1601     // While at this instruction, also check if we use and kill EFLAGS
1602     // which means it isn't live.
1603     if (MI.killsRegister(X86::EFLAGS, &TRI))
1604       return false;
1605   }
1606
1607   // If we didn't find anything conclusive (neither definitely alive or
1608   // definitely dead) return whether it lives into the block.
1609   return MBB.isLiveIn(X86::EFLAGS);
1610 }
1611
1612 /// Trace the predicate state through each of the blocks in the function,
1613 /// hardening everything necessary along the way.
1614 ///
1615 /// We call this routine once the initial predicate state has been established
1616 /// for each basic block in the function in the SSA updater. This routine traces
1617 /// it through the instructions within each basic block, and for non-returning
1618 /// blocks informs the SSA updater about the final state that lives out of the
1619 /// block. Along the way, it hardens any vulnerable instruction using the
1620 /// currently valid predicate state. We have to do these two things together
1621 /// because the SSA updater only works across blocks. Within a block, we track
1622 /// the current predicate state directly and update it as it changes.
1623 ///
1624 /// This operates in two passes over each block. First, we analyze the loads in
1625 /// the block to determine which strategy will be used to harden them: hardening
1626 /// the address or hardening the loaded value when loaded into a register
1627 /// amenable to hardening. We have to process these first because the two
1628 /// strategies may interact -- later hardening may change what strategy we wish
1629 /// to use. We also will analyze data dependencies between loads and avoid
1630 /// hardening those loads that are data dependent on a load with a hardened
1631 /// address. We also skip hardening loads already behind an LFENCE as that is
1632 /// sufficient to harden them against misspeculation.
1633 ///
1634 /// Second, we actively trace the predicate state through the block, applying
1635 /// the hardening steps we determined necessary in the first pass as we go.
1636 ///
1637 /// These two passes are applied to each basic block. We operate one block at a
1638 /// time to simplify reasoning about reachability and sequencing.
1639 void X86SpeculativeLoadHardeningPass::tracePredStateThroughBlocksAndHarden(
1640     MachineFunction &MF) {
1641   SmallPtrSet<MachineInstr *, 16> HardenPostLoad;
1642   SmallPtrSet<MachineInstr *, 16> HardenLoadAddr;
1643
1644   SmallSet<unsigned, 16> HardenedAddrRegs;
1645
1646   SmallDenseMap<unsigned, unsigned, 32> AddrRegToHardenedReg;
1647
1648   // Track the set of load-dependent registers through the basic block. Because
1649   // the values of these registers have an existing data dependency on a loaded
1650   // value which we would have checked, we can omit any checks on them.
1651   SparseBitVector<> LoadDepRegs;
1652
1653   for (MachineBasicBlock &MBB : MF) {
1654     // The first pass over the block: collect all the loads which can have their
1655     // loaded value hardened and all the loads that instead need their address
1656     // hardened. During this walk we propagate load dependence for address
1657     // hardened loads and also look for LFENCE to stop hardening wherever
1658     // possible. When deciding whether or not to harden the loaded value or not,
1659     // we check to see if any registers used in the address will have been
1660     // hardened at this point and if so, harden any remaining address registers
1661     // as that often successfully re-uses hardened addresses and minimizes
1662     // instructions.
1663     //
1664     // FIXME: We should consider an aggressive mode where we continue to keep as
1665     // many loads value hardened even when some address register hardening would
1666     // be free (due to reuse).
1667     //
1668     // Note that we only need this pass if we are actually hardening loads.
1669     if (HardenLoads)
1670       for (MachineInstr &MI : MBB) {
1671         // We naively assume that all def'ed registers of an instruction have
1672         // a data dependency on all of their operands.
1673         // FIXME: Do a more careful analysis of x86 to build a conservative
1674         // model here.
1675         if (llvm::any_of(MI.uses(), [&](MachineOperand &Op) {
1676               return Op.isReg() && LoadDepRegs.test(Op.getReg());
1677             }))
1678           for (MachineOperand &Def : MI.defs())
1679             if (Def.isReg())
1680               LoadDepRegs.set(Def.getReg());
1681
1682         // Both Intel and AMD are guiding that they will change the semantics of
1683         // LFENCE to be a speculation barrier, so if we see an LFENCE, there is
1684         // no more need to guard things in this block.
1685         if (MI.getOpcode() == X86::LFENCE)
1686           break;
1687
1688         // If this instruction cannot load, nothing to do.
1689         if (!MI.mayLoad())
1690           continue;
1691
1692         // Some instructions which "load" are trivially safe or unimportant.
1693         if (MI.getOpcode() == X86::MFENCE)
1694           continue;
1695
1696         // Extract the memory operand information about this instruction.
1697         // FIXME: This doesn't handle loading pseudo instructions which we often
1698         // could handle with similarly generic logic. We probably need to add an
1699         // MI-layer routine similar to the MC-layer one we use here which maps
1700         // pseudos much like this maps real instructions.
1701         const MCInstrDesc &Desc = MI.getDesc();
1702         int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags);
1703         if (MemRefBeginIdx < 0) {
1704           LLVM_DEBUG(dbgs()
1705                          << "WARNING: unable to harden loading instruction: ";
1706                      MI.dump());
1707           continue;
1708         }
1709
1710         MemRefBeginIdx += X86II::getOperandBias(Desc);
1711
1712         MachineOperand &BaseMO =
1713             MI.getOperand(MemRefBeginIdx + X86::AddrBaseReg);
1714         MachineOperand &IndexMO =
1715             MI.getOperand(MemRefBeginIdx + X86::AddrIndexReg);
1716
1717         // If we have at least one (non-frame-index, non-RIP) register operand,
1718         // and neither operand is load-dependent, we need to check the load.
1719         unsigned BaseReg = 0, IndexReg = 0;
1720         if (!BaseMO.isFI() && BaseMO.getReg() != X86::RIP &&
1721             BaseMO.getReg() != X86::NoRegister)
1722           BaseReg = BaseMO.getReg();
1723         if (IndexMO.getReg() != X86::NoRegister)
1724           IndexReg = IndexMO.getReg();
1725
1726         if (!BaseReg && !IndexReg)
1727           // No register operands!
1728           continue;
1729
1730         // If any register operand is dependent, this load is dependent and we
1731         // needn't check it.
1732         // FIXME: Is this true in the case where we are hardening loads after
1733         // they complete? Unclear, need to investigate.
1734         if ((BaseReg && LoadDepRegs.test(BaseReg)) ||
1735             (IndexReg && LoadDepRegs.test(IndexReg)))
1736           continue;
1737
1738         // If post-load hardening is enabled, this load is compatible with
1739         // post-load hardening, and we aren't already going to harden one of the
1740         // address registers, queue it up to be hardened post-load. Notably,
1741         // even once hardened this won't introduce a useful dependency that
1742         // could prune out subsequent loads.
1743         if (EnablePostLoadHardening && isDataInvariantLoad(MI) &&
1744             MI.getDesc().getNumDefs() == 1 && MI.getOperand(0).isReg() &&
1745             canHardenRegister(MI.getOperand(0).getReg()) &&
1746             !HardenedAddrRegs.count(BaseReg) &&
1747             !HardenedAddrRegs.count(IndexReg)) {
1748           HardenPostLoad.insert(&MI);
1749           HardenedAddrRegs.insert(MI.getOperand(0).getReg());
1750           continue;
1751         }
1752
1753         // Record this instruction for address hardening and record its register
1754         // operands as being address-hardened.
1755         HardenLoadAddr.insert(&MI);
1756         if (BaseReg)
1757           HardenedAddrRegs.insert(BaseReg);
1758         if (IndexReg)
1759           HardenedAddrRegs.insert(IndexReg);
1760
1761         for (MachineOperand &Def : MI.defs())
1762           if (Def.isReg())
1763             LoadDepRegs.set(Def.getReg());
1764       }
1765
1766     // Now re-walk the instructions in the basic block, and apply whichever
1767     // hardening strategy we have elected. Note that we do this in a second
1768     // pass specifically so that we have the complete set of instructions for
1769     // which we will do post-load hardening and can defer it in certain
1770     // circumstances.
1771     for (MachineInstr &MI : MBB) {
1772       if (HardenLoads) {
1773         // We cannot both require hardening the def of a load and its address.
1774         assert(!(HardenLoadAddr.count(&MI) && HardenPostLoad.count(&MI)) &&
1775                "Requested to harden both the address and def of a load!");
1776
1777         // Check if this is a load whose address needs to be hardened.
1778         if (HardenLoadAddr.erase(&MI)) {
1779           const MCInstrDesc &Desc = MI.getDesc();
1780           int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags);
1781           assert(MemRefBeginIdx >= 0 && "Cannot have an invalid index here!");
1782
1783           MemRefBeginIdx += X86II::getOperandBias(Desc);
1784
1785           MachineOperand &BaseMO =
1786               MI.getOperand(MemRefBeginIdx + X86::AddrBaseReg);
1787           MachineOperand &IndexMO =
1788               MI.getOperand(MemRefBeginIdx + X86::AddrIndexReg);
1789           hardenLoadAddr(MI, BaseMO, IndexMO, AddrRegToHardenedReg);
1790           continue;
1791         }
1792
1793         // Test if this instruction is one of our post load instructions (and
1794         // remove it from the set if so).
1795         if (HardenPostLoad.erase(&MI)) {
1796           assert(!MI.isCall() && "Must not try to post-load harden a call!");
1797
1798           // If this is a data-invariant load, we want to try and sink any
1799           // hardening as far as possible.
1800           if (isDataInvariantLoad(MI)) {
1801             // Sink the instruction we'll need to harden as far as we can down
1802             // the graph.
1803             MachineInstr *SunkMI = sinkPostLoadHardenedInst(MI, HardenPostLoad);
1804
1805             // If we managed to sink this instruction, update everything so we
1806             // harden that instruction when we reach it in the instruction
1807             // sequence.
1808             if (SunkMI != &MI) {
1809               // If in sinking there was no instruction needing to be hardened,
1810               // we're done.
1811               if (!SunkMI)
1812                 continue;
1813
1814               // Otherwise, add this to the set of defs we harden.
1815               HardenPostLoad.insert(SunkMI);
1816               continue;
1817             }
1818           }
1819
1820           unsigned HardenedReg = hardenPostLoad(MI);
1821
1822           // Mark the resulting hardened register as such so we don't re-harden.
1823           AddrRegToHardenedReg[HardenedReg] = HardenedReg;
1824
1825           continue;
1826         }
1827
1828         // Check for an indirect call or branch that may need its input hardened
1829         // even if we couldn't find the specific load used, or were able to
1830         // avoid hardening it for some reason. Note that here we cannot break
1831         // out afterward as we may still need to handle any call aspect of this
1832         // instruction.
1833         if ((MI.isCall() || MI.isBranch()) && HardenIndirectCallsAndJumps)
1834           hardenIndirectCallOrJumpInstr(MI, AddrRegToHardenedReg);
1835       }
1836
1837       // After we finish hardening loads we handle interprocedural hardening if
1838       // enabled and relevant for this instruction.
1839       if (!HardenInterprocedurally)
1840         continue;
1841       if (!MI.isCall() && !MI.isReturn())
1842         continue;
1843
1844       // If this is a direct return (IE, not a tail call) just directly harden
1845       // it.
1846       if (MI.isReturn() && !MI.isCall()) {
1847         hardenReturnInstr(MI);
1848         continue;
1849       }
1850
1851       // Otherwise we have a call. We need to handle transferring the predicate
1852       // state into a call and recovering it after the call returns (unless this
1853       // is a tail call).
1854       assert(MI.isCall() && "Should only reach here for calls!");
1855       tracePredStateThroughCall(MI);
1856     }
1857
1858     HardenPostLoad.clear();
1859     HardenLoadAddr.clear();
1860     HardenedAddrRegs.clear();
1861     AddrRegToHardenedReg.clear();
1862
1863     // Currently, we only track data-dependent loads within a basic block.
1864     // FIXME: We should see if this is necessary or if we could be more
1865     // aggressive here without opening up attack avenues.
1866     LoadDepRegs.clear();
1867   }
1868 }
1869
1870 /// Save EFLAGS into the returned GPR. This can in turn be restored with
1871 /// `restoreEFLAGS`.
1872 ///
1873 /// Note that LLVM can only lower very simple patterns of saved and restored
1874 /// EFLAGS registers. The restore should always be within the same basic block
1875 /// as the save so that no PHI nodes are inserted.
1876 unsigned X86SpeculativeLoadHardeningPass::saveEFLAGS(
1877     MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt,
1878     DebugLoc Loc) {
1879   // FIXME: Hard coding this to a 32-bit register class seems weird, but matches
1880   // what instruction selection does.
1881   unsigned Reg = MRI->createVirtualRegister(&X86::GR32RegClass);
1882   // We directly copy the FLAGS register and rely on later lowering to clean
1883   // this up into the appropriate setCC instructions.
1884   BuildMI(MBB, InsertPt, Loc, TII->get(X86::COPY), Reg).addReg(X86::EFLAGS);
1885   ++NumInstsInserted;
1886   return Reg;
1887 }
1888
1889 /// Restore EFLAGS from the provided GPR. This should be produced by
1890 /// `saveEFLAGS`.
1891 ///
1892 /// This must be done within the same basic block as the save in order to
1893 /// reliably lower.
1894 void X86SpeculativeLoadHardeningPass::restoreEFLAGS(
1895     MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, DebugLoc Loc,
1896     unsigned Reg) {
1897   BuildMI(MBB, InsertPt, Loc, TII->get(X86::COPY), X86::EFLAGS).addReg(Reg);
1898   ++NumInstsInserted;
1899 }
1900
1901 /// Takes the current predicate state (in a register) and merges it into the
1902 /// stack pointer. The state is essentially a single bit, but we merge this in
1903 /// a way that won't form non-canonical pointers and also will be preserved
1904 /// across normal stack adjustments.
1905 void X86SpeculativeLoadHardeningPass::mergePredStateIntoSP(
1906     MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, DebugLoc Loc,
1907     unsigned PredStateReg) {
1908   unsigned TmpReg = MRI->createVirtualRegister(PS->RC);
1909   // FIXME: This hard codes a shift distance based on the number of bits needed
1910   // to stay canonical on 64-bit. We should compute this somehow and support
1911   // 32-bit as part of that.
1912   auto ShiftI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::SHL64ri), TmpReg)
1913                     .addReg(PredStateReg, RegState::Kill)
1914                     .addImm(47);
1915   ShiftI->addRegisterDead(X86::EFLAGS, TRI);
1916   ++NumInstsInserted;
1917   auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::OR64rr), X86::RSP)
1918                  .addReg(X86::RSP)
1919                  .addReg(TmpReg, RegState::Kill);
1920   OrI->addRegisterDead(X86::EFLAGS, TRI);
1921   ++NumInstsInserted;
1922 }
1923
1924 /// Extracts the predicate state stored in the high bits of the stack pointer.
1925 unsigned X86SpeculativeLoadHardeningPass::extractPredStateFromSP(
1926     MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt,
1927     DebugLoc Loc) {
1928   unsigned PredStateReg = MRI->createVirtualRegister(PS->RC);
1929   unsigned TmpReg = MRI->createVirtualRegister(PS->RC);
1930
1931   // We know that the stack pointer will have any preserved predicate state in
1932   // its high bit. We just want to smear this across the other bits. Turns out,
1933   // this is exactly what an arithmetic right shift does.
1934   BuildMI(MBB, InsertPt, Loc, TII->get(TargetOpcode::COPY), TmpReg)
1935       .addReg(X86::RSP);
1936   auto ShiftI =
1937       BuildMI(MBB, InsertPt, Loc, TII->get(X86::SAR64ri), PredStateReg)
1938           .addReg(TmpReg, RegState::Kill)
1939           .addImm(TRI->getRegSizeInBits(*PS->RC) - 1);
1940   ShiftI->addRegisterDead(X86::EFLAGS, TRI);
1941   ++NumInstsInserted;
1942
1943   return PredStateReg;
1944 }
1945
1946 void X86SpeculativeLoadHardeningPass::hardenLoadAddr(
1947     MachineInstr &MI, MachineOperand &BaseMO, MachineOperand &IndexMO,
1948     SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg) {
1949   MachineBasicBlock &MBB = *MI.getParent();
1950   DebugLoc Loc = MI.getDebugLoc();
1951
1952   // Check if EFLAGS are alive by seeing if there is a def of them or they
1953   // live-in, and then seeing if that def is in turn used.
1954   bool EFLAGSLive = isEFLAGSLive(MBB, MI.getIterator(), *TRI);
1955
1956   SmallVector<MachineOperand *, 2> HardenOpRegs;
1957
1958   if (BaseMO.isFI()) {
1959     // A frame index is never a dynamically controllable load, so only
1960     // harden it if we're covering fixed address loads as well.
1961     LLVM_DEBUG(
1962         dbgs() << "  Skipping hardening base of explicit stack frame load: ";
1963         MI.dump(); dbgs() << "\n");
1964   } else if (BaseMO.getReg() == X86::RSP) {
1965     // Some idempotent atomic operations are lowered directly to a locked
1966     // OR with 0 to the top of stack(or slightly offset from top) which uses an
1967     // explicit RSP register as the base.
1968     assert(IndexMO.getReg() == X86::NoRegister &&
1969            "Explicit RSP access with dynamic index!");
1970     LLVM_DEBUG(
1971         dbgs() << "  Cannot harden base of explicit RSP offset in a load!");
1972   } else if (BaseMO.getReg() == X86::RIP ||
1973              BaseMO.getReg() == X86::NoRegister) {
1974     // For both RIP-relative addressed loads or absolute loads, we cannot
1975     // meaningfully harden them because the address being loaded has no
1976     // dynamic component.
1977     //
1978     // FIXME: When using a segment base (like TLS does) we end up with the
1979     // dynamic address being the base plus -1 because we can't mutate the
1980     // segment register here. This allows the signed 32-bit offset to point at
1981     // valid segment-relative addresses and load them successfully.
1982     LLVM_DEBUG(
1983         dbgs() << "  Cannot harden base of "
1984                << (BaseMO.getReg() == X86::RIP ? "RIP-relative" : "no-base")
1985                << " address in a load!");
1986   } else {
1987     assert(BaseMO.isReg() &&
1988            "Only allowed to have a frame index or register base.");
1989     HardenOpRegs.push_back(&BaseMO);
1990   }
1991
1992   if (IndexMO.getReg() != X86::NoRegister &&
1993       (HardenOpRegs.empty() ||
1994        HardenOpRegs.front()->getReg() != IndexMO.getReg()))
1995     HardenOpRegs.push_back(&IndexMO);
1996
1997   assert((HardenOpRegs.size() == 1 || HardenOpRegs.size() == 2) &&
1998          "Should have exactly one or two registers to harden!");
1999   assert((HardenOpRegs.size() == 1 ||
2000           HardenOpRegs[0]->getReg() != HardenOpRegs[1]->getReg()) &&
2001          "Should not have two of the same registers!");
2002
2003   // Remove any registers that have alreaded been checked.
2004   llvm::erase_if(HardenOpRegs, [&](MachineOperand *Op) {
2005     // See if this operand's register has already been checked.
2006     auto It = AddrRegToHardenedReg.find(Op->getReg());
2007     if (It == AddrRegToHardenedReg.end())
2008       // Not checked, so retain this one.
2009       return false;
2010
2011     // Otherwise, we can directly update this operand and remove it.
2012     Op->setReg(It->second);
2013     return true;
2014   });
2015   // If there are none left, we're done.
2016   if (HardenOpRegs.empty())
2017     return;
2018
2019   // Compute the current predicate state.
2020   unsigned StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB);
2021
2022   auto InsertPt = MI.getIterator();
2023
2024   // If EFLAGS are live and we don't have access to instructions that avoid
2025   // clobbering EFLAGS we need to save and restore them. This in turn makes
2026   // the EFLAGS no longer live.
2027   unsigned FlagsReg = 0;
2028   if (EFLAGSLive && !Subtarget->hasBMI2()) {
2029     EFLAGSLive = false;
2030     FlagsReg = saveEFLAGS(MBB, InsertPt, Loc);
2031   }
2032
2033   for (MachineOperand *Op : HardenOpRegs) {
2034     unsigned OpReg = Op->getReg();
2035     auto *OpRC = MRI->getRegClass(OpReg);
2036     unsigned TmpReg = MRI->createVirtualRegister(OpRC);
2037
2038     // If this is a vector register, we'll need somewhat custom logic to handle
2039     // hardening it.
2040     if (!Subtarget->hasVLX() && (OpRC->hasSuperClassEq(&X86::VR128RegClass) ||
2041                                  OpRC->hasSuperClassEq(&X86::VR256RegClass))) {
2042       assert(Subtarget->hasAVX2() && "AVX2-specific register classes!");
2043       bool Is128Bit = OpRC->hasSuperClassEq(&X86::VR128RegClass);
2044
2045       // Move our state into a vector register.
2046       // FIXME: We could skip this at the cost of longer encodings with AVX-512
2047       // but that doesn't seem likely worth it.
2048       unsigned VStateReg = MRI->createVirtualRegister(&X86::VR128RegClass);
2049       auto MovI =
2050           BuildMI(MBB, InsertPt, Loc, TII->get(X86::VMOV64toPQIrr), VStateReg)
2051               .addReg(StateReg);
2052       (void)MovI;
2053       ++NumInstsInserted;
2054       LLVM_DEBUG(dbgs() << "  Inserting mov: "; MovI->dump(); dbgs() << "\n");
2055
2056       // Broadcast it across the vector register.
2057       unsigned VBStateReg = MRI->createVirtualRegister(OpRC);
2058       auto BroadcastI = BuildMI(MBB, InsertPt, Loc,
2059                                 TII->get(Is128Bit ? X86::VPBROADCASTQrr
2060                                                   : X86::VPBROADCASTQYrr),
2061                                 VBStateReg)
2062                             .addReg(VStateReg);
2063       (void)BroadcastI;
2064       ++NumInstsInserted;
2065       LLVM_DEBUG(dbgs() << "  Inserting broadcast: "; BroadcastI->dump();
2066                  dbgs() << "\n");
2067
2068       // Merge our potential poison state into the value with a vector or.
2069       auto OrI =
2070           BuildMI(MBB, InsertPt, Loc,
2071                   TII->get(Is128Bit ? X86::VPORrr : X86::VPORYrr), TmpReg)
2072               .addReg(VBStateReg)
2073               .addReg(OpReg);
2074       (void)OrI;
2075       ++NumInstsInserted;
2076       LLVM_DEBUG(dbgs() << "  Inserting or: "; OrI->dump(); dbgs() << "\n");
2077     } else if (OpRC->hasSuperClassEq(&X86::VR128XRegClass) ||
2078                OpRC->hasSuperClassEq(&X86::VR256XRegClass) ||
2079                OpRC->hasSuperClassEq(&X86::VR512RegClass)) {
2080       assert(Subtarget->hasAVX512() && "AVX512-specific register classes!");
2081       bool Is128Bit = OpRC->hasSuperClassEq(&X86::VR128XRegClass);
2082       bool Is256Bit = OpRC->hasSuperClassEq(&X86::VR256XRegClass);
2083       if (Is128Bit || Is256Bit)
2084         assert(Subtarget->hasVLX() && "AVX512VL-specific register classes!");
2085
2086       // Broadcast our state into a vector register.
2087       unsigned VStateReg = MRI->createVirtualRegister(OpRC);
2088       unsigned BroadcastOp =
2089           Is128Bit ? X86::VPBROADCASTQrZ128r
2090                    : Is256Bit ? X86::VPBROADCASTQrZ256r : X86::VPBROADCASTQrZr;
2091       auto BroadcastI =
2092           BuildMI(MBB, InsertPt, Loc, TII->get(BroadcastOp), VStateReg)
2093               .addReg(StateReg);
2094       (void)BroadcastI;
2095       ++NumInstsInserted;
2096       LLVM_DEBUG(dbgs() << "  Inserting broadcast: "; BroadcastI->dump();
2097                  dbgs() << "\n");
2098
2099       // Merge our potential poison state into the value with a vector or.
2100       unsigned OrOp = Is128Bit ? X86::VPORQZ128rr
2101                                : Is256Bit ? X86::VPORQZ256rr : X86::VPORQZrr;
2102       auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(OrOp), TmpReg)
2103                      .addReg(VStateReg)
2104                      .addReg(OpReg);
2105       (void)OrI;
2106       ++NumInstsInserted;
2107       LLVM_DEBUG(dbgs() << "  Inserting or: "; OrI->dump(); dbgs() << "\n");
2108     } else {
2109       // FIXME: Need to support GR32 here for 32-bit code.
2110       assert(OpRC->hasSuperClassEq(&X86::GR64RegClass) &&
2111              "Not a supported register class for address hardening!");
2112
2113       if (!EFLAGSLive) {
2114         // Merge our potential poison state into the value with an or.
2115         auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::OR64rr), TmpReg)
2116                        .addReg(StateReg)
2117                        .addReg(OpReg);
2118         OrI->addRegisterDead(X86::EFLAGS, TRI);
2119         ++NumInstsInserted;
2120         LLVM_DEBUG(dbgs() << "  Inserting or: "; OrI->dump(); dbgs() << "\n");
2121       } else {
2122         // We need to avoid touching EFLAGS so shift out all but the least
2123         // significant bit using the instruction that doesn't update flags.
2124         auto ShiftI =
2125             BuildMI(MBB, InsertPt, Loc, TII->get(X86::SHRX64rr), TmpReg)
2126                 .addReg(OpReg)
2127                 .addReg(StateReg);
2128         (void)ShiftI;
2129         ++NumInstsInserted;
2130         LLVM_DEBUG(dbgs() << "  Inserting shrx: "; ShiftI->dump();
2131                    dbgs() << "\n");
2132       }
2133     }
2134
2135     // Record this register as checked and update the operand.
2136     assert(!AddrRegToHardenedReg.count(Op->getReg()) &&
2137            "Should not have checked this register yet!");
2138     AddrRegToHardenedReg[Op->getReg()] = TmpReg;
2139     Op->setReg(TmpReg);
2140     ++NumAddrRegsHardened;
2141   }
2142
2143   // And restore the flags if needed.
2144   if (FlagsReg)
2145     restoreEFLAGS(MBB, InsertPt, Loc, FlagsReg);
2146 }
2147
2148 MachineInstr *X86SpeculativeLoadHardeningPass::sinkPostLoadHardenedInst(
2149     MachineInstr &InitialMI, SmallPtrSetImpl<MachineInstr *> &HardenedInstrs) {
2150   assert(isDataInvariantLoad(InitialMI) &&
2151          "Cannot get here with a non-invariant load!");
2152
2153   // See if we can sink hardening the loaded value.
2154   auto SinkCheckToSingleUse =
2155       [&](MachineInstr &MI) -> Optional<MachineInstr *> {
2156     unsigned DefReg = MI.getOperand(0).getReg();
2157
2158     // We need to find a single use which we can sink the check. We can
2159     // primarily do this because many uses may already end up checked on their
2160     // own.
2161     MachineInstr *SingleUseMI = nullptr;
2162     for (MachineInstr &UseMI : MRI->use_instructions(DefReg)) {
2163       // If we're already going to harden this use, it is data invariant and
2164       // within our block.
2165       if (HardenedInstrs.count(&UseMI)) {
2166         if (!isDataInvariantLoad(UseMI)) {
2167           // If we've already decided to harden a non-load, we must have sunk
2168           // some other post-load hardened instruction to it and it must itself
2169           // be data-invariant.
2170           assert(isDataInvariant(UseMI) &&
2171                  "Data variant instruction being hardened!");
2172           continue;
2173         }
2174
2175         // Otherwise, this is a load and the load component can't be data
2176         // invariant so check how this register is being used.
2177         const MCInstrDesc &Desc = UseMI.getDesc();
2178         int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags);
2179         assert(MemRefBeginIdx >= 0 &&
2180                "Should always have mem references here!");
2181         MemRefBeginIdx += X86II::getOperandBias(Desc);
2182
2183         MachineOperand &BaseMO =
2184             UseMI.getOperand(MemRefBeginIdx + X86::AddrBaseReg);
2185         MachineOperand &IndexMO =
2186             UseMI.getOperand(MemRefBeginIdx + X86::AddrIndexReg);
2187         if ((BaseMO.isReg() && BaseMO.getReg() == DefReg) ||
2188             (IndexMO.isReg() && IndexMO.getReg() == DefReg))
2189           // The load uses the register as part of its address making it not
2190           // invariant.
2191           return {};
2192
2193         continue;
2194       }
2195
2196       if (SingleUseMI)
2197         // We already have a single use, this would make two. Bail.
2198         return {};
2199
2200       // If this single use isn't data invariant, isn't in this block, or has
2201       // interfering EFLAGS, we can't sink the hardening to it.
2202       if (!isDataInvariant(UseMI) || UseMI.getParent() != MI.getParent())
2203         return {};
2204
2205       // If this instruction defines multiple registers bail as we won't harden
2206       // all of them.
2207       if (UseMI.getDesc().getNumDefs() > 1)
2208         return {};
2209
2210       // If this register isn't a virtual register we can't walk uses of sanely,
2211       // just bail. Also check that its register class is one of the ones we
2212       // can harden.
2213       unsigned UseDefReg = UseMI.getOperand(0).getReg();
2214       if (!TRI->isVirtualRegister(UseDefReg) ||
2215           !canHardenRegister(UseDefReg))
2216         return {};
2217
2218       SingleUseMI = &UseMI;
2219     }
2220
2221     // If SingleUseMI is still null, there is no use that needs its own
2222     // checking. Otherwise, it is the single use that needs checking.
2223     return {SingleUseMI};
2224   };
2225
2226   MachineInstr *MI = &InitialMI;
2227   while (Optional<MachineInstr *> SingleUse = SinkCheckToSingleUse(*MI)) {
2228     // Update which MI we're checking now.
2229     MI = *SingleUse;
2230     if (!MI)
2231       break;
2232   }
2233
2234   return MI;
2235 }
2236
2237 bool X86SpeculativeLoadHardeningPass::canHardenRegister(unsigned Reg) {
2238   auto *RC = MRI->getRegClass(Reg);
2239   int RegBytes = TRI->getRegSizeInBits(*RC) / 8;
2240   if (RegBytes > 8)
2241     // We don't support post-load hardening of vectors.
2242     return false;
2243
2244   // If this register class is explicitly constrained to a class that doesn't
2245   // require REX prefix, we may not be able to satisfy that constraint when
2246   // emitting the hardening instructions, so bail out here.
2247   // FIXME: This seems like a pretty lame hack. The way this comes up is when we
2248   // end up both with a NOREX and REX-only register as operands to the hardening
2249   // instructions. It would be better to fix that code to handle this situation
2250   // rather than hack around it in this way.
2251   const TargetRegisterClass *NOREXRegClasses[] = {
2252       &X86::GR8_NOREXRegClass, &X86::GR16_NOREXRegClass,
2253       &X86::GR32_NOREXRegClass, &X86::GR64_NOREXRegClass};
2254   if (RC == NOREXRegClasses[Log2_32(RegBytes)])
2255     return false;
2256
2257   const TargetRegisterClass *GPRRegClasses[] = {
2258       &X86::GR8RegClass, &X86::GR16RegClass, &X86::GR32RegClass,
2259       &X86::GR64RegClass};
2260   return RC->hasSuperClassEq(GPRRegClasses[Log2_32(RegBytes)]);
2261 }
2262
2263 /// Harden a value in a register.
2264 ///
2265 /// This is the low-level logic to fully harden a value sitting in a register
2266 /// against leaking during speculative execution.
2267 ///
2268 /// Unlike hardening an address that is used by a load, this routine is required
2269 /// to hide *all* incoming bits in the register.
2270 ///
2271 /// `Reg` must be a virtual register. Currently, it is required to be a GPR no
2272 /// larger than the predicate state register. FIXME: We should support vector
2273 /// registers here by broadcasting the predicate state.
2274 ///
2275 /// The new, hardened virtual register is returned. It will have the same
2276 /// register class as `Reg`.
2277 unsigned X86SpeculativeLoadHardeningPass::hardenValueInRegister(
2278     unsigned Reg, MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt,
2279     DebugLoc Loc) {
2280   assert(canHardenRegister(Reg) && "Cannot harden this register!");
2281   assert(TRI->isVirtualRegister(Reg) && "Cannot harden a physical register!");
2282
2283   auto *RC = MRI->getRegClass(Reg);
2284   int Bytes = TRI->getRegSizeInBits(*RC) / 8;
2285
2286   unsigned StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB);
2287
2288   // FIXME: Need to teach this about 32-bit mode.
2289   if (Bytes != 8) {
2290     unsigned SubRegImms[] = {X86::sub_8bit, X86::sub_16bit, X86::sub_32bit};
2291     unsigned SubRegImm = SubRegImms[Log2_32(Bytes)];
2292     unsigned NarrowStateReg = MRI->createVirtualRegister(RC);
2293     BuildMI(MBB, InsertPt, Loc, TII->get(TargetOpcode::COPY), NarrowStateReg)
2294         .addReg(StateReg, 0, SubRegImm);
2295     StateReg = NarrowStateReg;
2296   }
2297
2298   unsigned FlagsReg = 0;
2299   if (isEFLAGSLive(MBB, InsertPt, *TRI))
2300     FlagsReg = saveEFLAGS(MBB, InsertPt, Loc);
2301
2302   unsigned NewReg = MRI->createVirtualRegister(RC);
2303   unsigned OrOpCodes[] = {X86::OR8rr, X86::OR16rr, X86::OR32rr, X86::OR64rr};
2304   unsigned OrOpCode = OrOpCodes[Log2_32(Bytes)];
2305   auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(OrOpCode), NewReg)
2306                  .addReg(StateReg)
2307                  .addReg(Reg);
2308   OrI->addRegisterDead(X86::EFLAGS, TRI);
2309   ++NumInstsInserted;
2310   LLVM_DEBUG(dbgs() << "  Inserting or: "; OrI->dump(); dbgs() << "\n");
2311
2312   if (FlagsReg)
2313     restoreEFLAGS(MBB, InsertPt, Loc, FlagsReg);
2314
2315   return NewReg;
2316 }
2317
2318 /// Harden a load by hardening the loaded value in the defined register.
2319 ///
2320 /// We can harden a non-leaking load into a register without touching the
2321 /// address by just hiding all of the loaded bits during misspeculation. We use
2322 /// an `or` instruction to do this because we set up our poison value as all
2323 /// ones. And the goal is just for the loaded bits to not be exposed to
2324 /// execution and coercing them to one is sufficient.
2325 ///
2326 /// Returns the newly hardened register.
2327 unsigned X86SpeculativeLoadHardeningPass::hardenPostLoad(MachineInstr &MI) {
2328   MachineBasicBlock &MBB = *MI.getParent();
2329   DebugLoc Loc = MI.getDebugLoc();
2330
2331   auto &DefOp = MI.getOperand(0);
2332   unsigned OldDefReg = DefOp.getReg();
2333   auto *DefRC = MRI->getRegClass(OldDefReg);
2334
2335   // Because we want to completely replace the uses of this def'ed value with
2336   // the hardened value, create a dedicated new register that will only be used
2337   // to communicate the unhardened value to the hardening.
2338   unsigned UnhardenedReg = MRI->createVirtualRegister(DefRC);
2339   DefOp.setReg(UnhardenedReg);
2340
2341   // Now harden this register's value, getting a hardened reg that is safe to
2342   // use. Note that we insert the instructions to compute this *after* the
2343   // defining instruction, not before it.
2344   unsigned HardenedReg = hardenValueInRegister(
2345       UnhardenedReg, MBB, std::next(MI.getIterator()), Loc);
2346
2347   // Finally, replace the old register (which now only has the uses of the
2348   // original def) with the hardened register.
2349   MRI->replaceRegWith(/*FromReg*/ OldDefReg, /*ToReg*/ HardenedReg);
2350
2351   ++NumPostLoadRegsHardened;
2352   return HardenedReg;
2353 }
2354
2355 /// Harden a return instruction.
2356 ///
2357 /// Returns implicitly perform a load which we need to harden. Without hardening
2358 /// this load, an attacker my speculatively write over the return address to
2359 /// steer speculation of the return to an attacker controlled address. This is
2360 /// called Spectre v1.1 or Bounds Check Bypass Store (BCBS) and is described in
2361 /// this paper:
2362 /// https://people.csail.mit.edu/vlk/spectre11.pdf
2363 ///
2364 /// We can harden this by introducing an LFENCE that will delay any load of the
2365 /// return address until prior instructions have retired (and thus are not being
2366 /// speculated), or we can harden the address used by the implicit load: the
2367 /// stack pointer.
2368 ///
2369 /// If we are not using an LFENCE, hardening the stack pointer has an additional
2370 /// benefit: it allows us to pass the predicate state accumulated in this
2371 /// function back to the caller. In the absence of a BCBS attack on the return,
2372 /// the caller will typically be resumed and speculatively executed due to the
2373 /// Return Stack Buffer (RSB) prediction which is very accurate and has a high
2374 /// priority. It is possible that some code from the caller will be executed
2375 /// speculatively even during a BCBS-attacked return until the steering takes
2376 /// effect. Whenever this happens, the caller can recover the (poisoned)
2377 /// predicate state from the stack pointer and continue to harden loads.
2378 void X86SpeculativeLoadHardeningPass::hardenReturnInstr(MachineInstr &MI) {
2379   MachineBasicBlock &MBB = *MI.getParent();
2380   DebugLoc Loc = MI.getDebugLoc();
2381   auto InsertPt = MI.getIterator();
2382
2383   if (FenceCallAndRet)
2384     // No need to fence here as we'll fence at the return site itself. That
2385     // handles more cases than we can handle here.
2386     return;
2387
2388   // Take our predicate state, shift it to the high 17 bits (so that we keep
2389   // pointers canonical) and merge it into RSP. This will allow the caller to
2390   // extract it when we return (speculatively).
2391   mergePredStateIntoSP(MBB, InsertPt, Loc, PS->SSA.GetValueAtEndOfBlock(&MBB));
2392 }
2393
2394 /// Trace the predicate state through a call.
2395 ///
2396 /// There are several layers of this needed to handle the full complexity of
2397 /// calls.
2398 ///
2399 /// First, we need to send the predicate state into the called function. We do
2400 /// this by merging it into the high bits of the stack pointer.
2401 ///
2402 /// For tail calls, this is all we need to do.
2403 ///
2404 /// For calls where we might return and resume the control flow, we need to
2405 /// extract the predicate state from the high bits of the stack pointer after
2406 /// control returns from the called function.
2407 ///
2408 /// We also need to verify that we intended to return to this location in the
2409 /// code. An attacker might arrange for the processor to mispredict the return
2410 /// to this valid but incorrect return address in the program rather than the
2411 /// correct one. See the paper on this attack, called "ret2spec" by the
2412 /// researchers, here:
2413 /// https://christian-rossow.de/publications/ret2spec-ccs2018.pdf
2414 ///
2415 /// The way we verify that we returned to the correct location is by preserving
2416 /// the expected return address across the call. One technique involves taking
2417 /// advantage of the red-zone to load the return address from `8(%rsp)` where it
2418 /// was left by the RET instruction when it popped `%rsp`. Alternatively, we can
2419 /// directly save the address into a register that will be preserved across the
2420 /// call. We compare this intended return address against the address
2421 /// immediately following the call (the observed return address). If these
2422 /// mismatch, we have detected misspeculation and can poison our predicate
2423 /// state.
2424 void X86SpeculativeLoadHardeningPass::tracePredStateThroughCall(
2425     MachineInstr &MI) {
2426   MachineBasicBlock &MBB = *MI.getParent();
2427   MachineFunction &MF = *MBB.getParent();
2428   auto InsertPt = MI.getIterator();
2429   DebugLoc Loc = MI.getDebugLoc();
2430
2431   if (FenceCallAndRet) {
2432     if (MI.isReturn())
2433       // Tail call, we don't return to this function.
2434       // FIXME: We should also handle noreturn calls.
2435       return;
2436
2437     // We don't need to fence before the call because the function should fence
2438     // in its entry. However, we do need to fence after the call returns.
2439     // Fencing before the return doesn't correctly handle cases where the return
2440     // itself is mispredicted.
2441     BuildMI(MBB, std::next(InsertPt), Loc, TII->get(X86::LFENCE));
2442     ++NumInstsInserted;
2443     ++NumLFENCEsInserted;
2444     return;
2445   }
2446
2447   // First, we transfer the predicate state into the called function by merging
2448   // it into the stack pointer. This will kill the current def of the state.
2449   unsigned StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB);
2450   mergePredStateIntoSP(MBB, InsertPt, Loc, StateReg);
2451
2452   // If this call is also a return, it is a tail call and we don't need anything
2453   // else to handle it so just return. Also, if there are no further
2454   // instructions and no successors, this call does not return so we can also
2455   // bail.
2456   if (MI.isReturn() || (std::next(InsertPt) == MBB.end() && MBB.succ_empty()))
2457     return;
2458
2459   // Create a symbol to track the return address and attach it to the call
2460   // machine instruction. We will lower extra symbols attached to call
2461   // instructions as label immediately following the call.
2462   MCSymbol *RetSymbol =
2463       MF.getContext().createTempSymbol("slh_ret_addr",
2464                                        /*AlwaysAddSuffix*/ true);
2465   MI.setPostInstrSymbol(MF, RetSymbol);
2466
2467   const TargetRegisterClass *AddrRC = &X86::GR64RegClass;
2468   unsigned ExpectedRetAddrReg = 0;
2469
2470   // If we have no red zones or if the function returns twice (possibly without
2471   // using the `ret` instruction) like setjmp, we need to save the expected
2472   // return address prior to the call.
2473   if (!Subtarget->getFrameLowering()->has128ByteRedZone(MF) ||
2474       MF.exposesReturnsTwice()) {
2475     // If we don't have red zones, we need to compute the expected return
2476     // address prior to the call and store it in a register that lives across
2477     // the call.
2478     //
2479     // In some ways, this is doubly satisfying as a mitigation because it will
2480     // also successfully detect stack smashing bugs in some cases (typically,
2481     // when a callee-saved register is used and the callee doesn't push it onto
2482     // the stack). But that isn't our primary goal, so we only use it as
2483     // a fallback.
2484     //
2485     // FIXME: It isn't clear that this is reliable in the face of
2486     // rematerialization in the register allocator. We somehow need to force
2487     // that to not occur for this particular instruction, and instead to spill
2488     // or otherwise preserve the value computed *prior* to the call.
2489     //
2490     // FIXME: It is even less clear why MachineCSE can't just fold this when we
2491     // end up having to use identical instructions both before and after the
2492     // call to feed the comparison.
2493     ExpectedRetAddrReg = MRI->createVirtualRegister(AddrRC);
2494     if (MF.getTarget().getCodeModel() == CodeModel::Small &&
2495         !Subtarget->isPositionIndependent()) {
2496       BuildMI(MBB, InsertPt, Loc, TII->get(X86::MOV64ri32), ExpectedRetAddrReg)
2497           .addSym(RetSymbol);
2498     } else {
2499       BuildMI(MBB, InsertPt, Loc, TII->get(X86::LEA64r), ExpectedRetAddrReg)
2500           .addReg(/*Base*/ X86::RIP)
2501           .addImm(/*Scale*/ 1)
2502           .addReg(/*Index*/ 0)
2503           .addSym(RetSymbol)
2504           .addReg(/*Segment*/ 0);
2505     }
2506   }
2507
2508   // Step past the call to handle when it returns.
2509   ++InsertPt;
2510
2511   // If we didn't pre-compute the expected return address into a register, then
2512   // red zones are enabled and the return address is still available on the
2513   // stack immediately after the call. As the very first instruction, we load it
2514   // into a register.
2515   if (!ExpectedRetAddrReg) {
2516     ExpectedRetAddrReg = MRI->createVirtualRegister(AddrRC);
2517     BuildMI(MBB, InsertPt, Loc, TII->get(X86::MOV64rm), ExpectedRetAddrReg)
2518         .addReg(/*Base*/ X86::RSP)
2519         .addImm(/*Scale*/ 1)
2520         .addReg(/*Index*/ 0)
2521         .addImm(/*Displacement*/ -8) // The stack pointer has been popped, so
2522                                      // the return address is 8-bytes past it.
2523         .addReg(/*Segment*/ 0);
2524   }
2525
2526   // Now we extract the callee's predicate state from the stack pointer.
2527   unsigned NewStateReg = extractPredStateFromSP(MBB, InsertPt, Loc);
2528
2529   // Test the expected return address against our actual address. If we can
2530   // form this basic block's address as an immediate, this is easy. Otherwise
2531   // we compute it.
2532   if (MF.getTarget().getCodeModel() == CodeModel::Small &&
2533       !Subtarget->isPositionIndependent()) {
2534     // FIXME: Could we fold this with the load? It would require careful EFLAGS
2535     // management.
2536     BuildMI(MBB, InsertPt, Loc, TII->get(X86::CMP64ri32))
2537         .addReg(ExpectedRetAddrReg, RegState::Kill)
2538         .addSym(RetSymbol);
2539   } else {
2540     unsigned ActualRetAddrReg = MRI->createVirtualRegister(AddrRC);
2541     BuildMI(MBB, InsertPt, Loc, TII->get(X86::LEA64r), ActualRetAddrReg)
2542         .addReg(/*Base*/ X86::RIP)
2543         .addImm(/*Scale*/ 1)
2544         .addReg(/*Index*/ 0)
2545         .addSym(RetSymbol)
2546         .addReg(/*Segment*/ 0);
2547     BuildMI(MBB, InsertPt, Loc, TII->get(X86::CMP64rr))
2548         .addReg(ExpectedRetAddrReg, RegState::Kill)
2549         .addReg(ActualRetAddrReg, RegState::Kill);
2550   }
2551
2552   // Now conditionally update the predicate state we just extracted if we ended
2553   // up at a different return address than expected.
2554   int PredStateSizeInBytes = TRI->getRegSizeInBits(*PS->RC) / 8;
2555   auto CMovOp = X86::getCMovOpcode(PredStateSizeInBytes);
2556
2557   unsigned UpdatedStateReg = MRI->createVirtualRegister(PS->RC);
2558   auto CMovI = BuildMI(MBB, InsertPt, Loc, TII->get(CMovOp), UpdatedStateReg)
2559                    .addReg(NewStateReg, RegState::Kill)
2560                    .addReg(PS->PoisonReg)
2561                    .addImm(X86::COND_NE);
2562   CMovI->findRegisterUseOperand(X86::EFLAGS)->setIsKill(true);
2563   ++NumInstsInserted;
2564   LLVM_DEBUG(dbgs() << "  Inserting cmov: "; CMovI->dump(); dbgs() << "\n");
2565
2566   PS->SSA.AddAvailableValue(&MBB, UpdatedStateReg);
2567 }
2568
2569 /// An attacker may speculatively store over a value that is then speculatively
2570 /// loaded and used as the target of an indirect call or jump instruction. This
2571 /// is called Spectre v1.2 or Bounds Check Bypass Store (BCBS) and is described
2572 /// in this paper:
2573 /// https://people.csail.mit.edu/vlk/spectre11.pdf
2574 ///
2575 /// When this happens, the speculative execution of the call or jump will end up
2576 /// being steered to this attacker controlled address. While most such loads
2577 /// will be adequately hardened already, we want to ensure that they are
2578 /// definitively treated as needing post-load hardening. While address hardening
2579 /// is sufficient to prevent secret data from leaking to the attacker, it may
2580 /// not be sufficient to prevent an attacker from steering speculative
2581 /// execution. We forcibly unfolded all relevant loads above and so will always
2582 /// have an opportunity to post-load harden here, we just need to scan for cases
2583 /// not already flagged and add them.
2584 void X86SpeculativeLoadHardeningPass::hardenIndirectCallOrJumpInstr(
2585     MachineInstr &MI,
2586     SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg) {
2587   switch (MI.getOpcode()) {
2588   case X86::FARCALL16m:
2589   case X86::FARCALL32m:
2590   case X86::FARCALL64:
2591   case X86::FARJMP16m:
2592   case X86::FARJMP32m:
2593   case X86::FARJMP64:
2594     // We don't need to harden either far calls or far jumps as they are
2595     // safe from Spectre.
2596     return;
2597
2598   default:
2599     break;
2600   }
2601
2602   // We should never see a loading instruction at this point, as those should
2603   // have been unfolded.
2604   assert(!MI.mayLoad() && "Found a lingering loading instruction!");
2605
2606   // If the first operand isn't a register, this is a branch or call
2607   // instruction with an immediate operand which doesn't need to be hardened.
2608   if (!MI.getOperand(0).isReg())
2609     return;
2610
2611   // For all of these, the target register is the first operand of the
2612   // instruction.
2613   auto &TargetOp = MI.getOperand(0);
2614   unsigned OldTargetReg = TargetOp.getReg();
2615
2616   // Try to lookup a hardened version of this register. We retain a reference
2617   // here as we want to update the map to track any newly computed hardened
2618   // register.
2619   unsigned &HardenedTargetReg = AddrRegToHardenedReg[OldTargetReg];
2620
2621   // If we don't have a hardened register yet, compute one. Otherwise, just use
2622   // the already hardened register.
2623   //
2624   // FIXME: It is a little suspect that we use partially hardened registers that
2625   // only feed addresses. The complexity of partial hardening with SHRX
2626   // continues to pile up. Should definitively measure its value and consider
2627   // eliminating it.
2628   if (!HardenedTargetReg)
2629     HardenedTargetReg = hardenValueInRegister(
2630         OldTargetReg, *MI.getParent(), MI.getIterator(), MI.getDebugLoc());
2631
2632   // Set the target operand to the hardened register.
2633   TargetOp.setReg(HardenedTargetReg);
2634
2635   ++NumCallsOrJumpsHardened;
2636 }
2637
2638 INITIALIZE_PASS_BEGIN(X86SpeculativeLoadHardeningPass, PASS_KEY,
2639                       "X86 speculative load hardener", false, false)
2640 INITIALIZE_PASS_END(X86SpeculativeLoadHardeningPass, PASS_KEY,
2641                     "X86 speculative load hardener", false, false)
2642
2643 FunctionPass *llvm::createX86SpeculativeLoadHardeningPass() {
2644   return new X86SpeculativeLoadHardeningPass();
2645 }