]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Target/X86/X86Subtarget.h
Merge ^/head r337619 through r337645.
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Target / X86 / X86Subtarget.h
1 //===-- X86Subtarget.h - Define Subtarget for the X86 ----------*- C++ -*--===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file declares the X86 specific subclass of TargetSubtargetInfo.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_LIB_TARGET_X86_X86SUBTARGET_H
15 #define LLVM_LIB_TARGET_X86_X86SUBTARGET_H
16
17 #include "X86FrameLowering.h"
18 #include "X86ISelLowering.h"
19 #include "X86InstrInfo.h"
20 #include "X86SelectionDAGInfo.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
24 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
25 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
26 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
27 #include "llvm/CodeGen/TargetSubtargetInfo.h"
28 #include "llvm/IR/CallingConv.h"
29 #include "llvm/Target/TargetMachine.h"
30 #include <climits>
31 #include <memory>
32
33 #define GET_SUBTARGETINFO_HEADER
34 #include "X86GenSubtargetInfo.inc"
35
36 namespace llvm {
37
38 class GlobalValue;
39
40 /// The X86 backend supports a number of different styles of PIC.
41 ///
42 namespace PICStyles {
43
44 enum Style {
45   StubPIC,          // Used on i386-darwin in pic mode.
46   GOT,              // Used on 32 bit elf on when in pic mode.
47   RIPRel,           // Used on X86-64 when in pic mode.
48   None              // Set when not in pic mode.
49 };
50
51 } // end namespace PICStyles
52
53 class X86Subtarget final : public X86GenSubtargetInfo {
54 public:
55   enum X86ProcFamilyEnum {
56     Others,
57     IntelAtom,
58     IntelSLM,
59     IntelGLM,
60     IntelGLP,
61     IntelTRM,
62     IntelHaswell,
63     IntelBroadwell,
64     IntelSkylake,
65     IntelKNL,
66     IntelSKX,
67     IntelCannonlake,
68     IntelIcelakeClient,
69     IntelIcelakeServer,
70   };
71
72 protected:
73   enum X86SSEEnum {
74     NoSSE, SSE1, SSE2, SSE3, SSSE3, SSE41, SSE42, AVX, AVX2, AVX512F
75   };
76
77   enum X863DNowEnum {
78     NoThreeDNow, MMX, ThreeDNow, ThreeDNowA
79   };
80
81   /// X86 processor family: Intel Atom, and others
82   X86ProcFamilyEnum X86ProcFamily = Others;
83
84   /// Which PIC style to use
85   PICStyles::Style PICStyle;
86
87   const TargetMachine &TM;
88
89   /// SSE1, SSE2, SSE3, SSSE3, SSE41, SSE42, or none supported.
90   X86SSEEnum X86SSELevel = NoSSE;
91
92   /// MMX, 3DNow, 3DNow Athlon, or none supported.
93   X863DNowEnum X863DNowLevel = NoThreeDNow;
94
95   /// True if the processor supports X87 instructions.
96   bool HasX87 = false;
97
98   /// True if this processor has NOPL instruction
99   /// (generally pentium pro+).
100   bool HasNOPL = false;
101
102   /// True if this processor has conditional move instructions
103   /// (generally pentium pro+).
104   bool HasCMov = false;
105
106   /// True if the processor supports X86-64 instructions.
107   bool HasX86_64 = false;
108
109   /// True if the processor supports POPCNT.
110   bool HasPOPCNT = false;
111
112   /// True if the processor supports SSE4A instructions.
113   bool HasSSE4A = false;
114
115   /// Target has AES instructions
116   bool HasAES = false;
117   bool HasVAES = false;
118
119   /// Target has FXSAVE/FXRESTOR instructions
120   bool HasFXSR = false;
121
122   /// Target has XSAVE instructions
123   bool HasXSAVE = false;
124
125   /// Target has XSAVEOPT instructions
126   bool HasXSAVEOPT = false;
127
128   /// Target has XSAVEC instructions
129   bool HasXSAVEC = false;
130
131   /// Target has XSAVES instructions
132   bool HasXSAVES = false;
133
134   /// Target has carry-less multiplication
135   bool HasPCLMUL = false;
136   bool HasVPCLMULQDQ = false;
137
138   /// Target has Galois Field Arithmetic instructions
139   bool HasGFNI = false;
140
141   /// Target has 3-operand fused multiply-add
142   bool HasFMA = false;
143
144   /// Target has 4-operand fused multiply-add
145   bool HasFMA4 = false;
146
147   /// Target has XOP instructions
148   bool HasXOP = false;
149
150   /// Target has TBM instructions.
151   bool HasTBM = false;
152
153   /// Target has LWP instructions
154   bool HasLWP = false;
155
156   /// True if the processor has the MOVBE instruction.
157   bool HasMOVBE = false;
158
159   /// True if the processor has the RDRAND instruction.
160   bool HasRDRAND = false;
161
162   /// Processor has 16-bit floating point conversion instructions.
163   bool HasF16C = false;
164
165   /// Processor has FS/GS base insturctions.
166   bool HasFSGSBase = false;
167
168   /// Processor has LZCNT instruction.
169   bool HasLZCNT = false;
170
171   /// Processor has BMI1 instructions.
172   bool HasBMI = false;
173
174   /// Processor has BMI2 instructions.
175   bool HasBMI2 = false;
176
177   /// Processor has VBMI instructions.
178   bool HasVBMI = false;
179
180   /// Processor has VBMI2 instructions.
181   bool HasVBMI2 = false;
182
183   /// Processor has Integer Fused Multiply Add
184   bool HasIFMA = false;
185
186   /// Processor has RTM instructions.
187   bool HasRTM = false;
188
189   /// Processor has ADX instructions.
190   bool HasADX = false;
191
192   /// Processor has SHA instructions.
193   bool HasSHA = false;
194
195   /// Processor has PRFCHW instructions.
196   bool HasPRFCHW = false;
197
198   /// Processor has RDSEED instructions.
199   bool HasRDSEED = false;
200
201   /// Processor has LAHF/SAHF instructions.
202   bool HasLAHFSAHF = false;
203
204   /// Processor has MONITORX/MWAITX instructions.
205   bool HasMWAITX = false;
206
207   /// Processor has Cache Line Zero instruction
208   bool HasCLZERO = false;
209
210   /// Processor has Cache Line Demote instruction
211   bool HasCLDEMOTE = false;
212
213   /// Processor has MOVDIRI instruction (direct store integer).
214   bool HasMOVDIRI = false;
215
216   /// Processor has MOVDIR64B instruction (direct store 64 bytes).
217   bool HasMOVDIR64B = false;
218
219   /// Processor has ptwrite instruction.
220   bool HasPTWRITE = false;
221
222   /// Processor has Prefetch with intent to Write instruction
223   bool HasPREFETCHWT1 = false;
224
225   /// True if SHLD instructions are slow.
226   bool IsSHLDSlow = false;
227
228   /// True if the PMULLD instruction is slow compared to PMULLW/PMULHW and
229   //  PMULUDQ.
230   bool IsPMULLDSlow = false;
231
232   /// True if unaligned memory accesses of 16-bytes are slow.
233   bool IsUAMem16Slow = false;
234
235   /// True if unaligned memory accesses of 32-bytes are slow.
236   bool IsUAMem32Slow = false;
237
238   /// True if SSE operations can have unaligned memory operands.
239   /// This may require setting a configuration bit in the processor.
240   bool HasSSEUnalignedMem = false;
241
242   /// True if this processor has the CMPXCHG16B instruction;
243   /// this is true for most x86-64 chips, but not the first AMD chips.
244   bool HasCmpxchg16b = false;
245
246   /// True if the LEA instruction should be used for adjusting
247   /// the stack pointer. This is an optimization for Intel Atom processors.
248   bool UseLeaForSP = false;
249
250   /// True if POPCNT instruction has a false dependency on the destination register.
251   bool HasPOPCNTFalseDeps = false;
252
253   /// True if LZCNT/TZCNT instructions have a false dependency on the destination register.
254   bool HasLZCNTFalseDeps = false;
255
256   /// True if its preferable to combine to a single shuffle using a variable
257   /// mask over multiple fixed shuffles.
258   bool HasFastVariableShuffle = false;
259
260   /// True if there is no performance penalty to writing only the lower parts
261   /// of a YMM or ZMM register without clearing the upper part.
262   bool HasFastPartialYMMorZMMWrite = false;
263
264   /// True if there is no performance penalty for writing NOPs with up to
265   /// 11 bytes.
266   bool HasFast11ByteNOP = false;
267
268   /// True if there is no performance penalty for writing NOPs with up to
269   /// 15 bytes.
270   bool HasFast15ByteNOP = false;
271
272   /// True if gather is reasonably fast. This is true for Skylake client and
273   /// all AVX-512 CPUs.
274   bool HasFastGather = false;
275
276   /// True if hardware SQRTSS instruction is at least as fast (latency) as
277   /// RSQRTSS followed by a Newton-Raphson iteration.
278   bool HasFastScalarFSQRT = false;
279
280   /// True if hardware SQRTPS/VSQRTPS instructions are at least as fast
281   /// (throughput) as RSQRTPS/VRSQRTPS followed by a Newton-Raphson iteration.
282   bool HasFastVectorFSQRT = false;
283
284   /// True if 8-bit divisions are significantly faster than
285   /// 32-bit divisions and should be used when possible.
286   bool HasSlowDivide32 = false;
287
288   /// True if 32-bit divides are significantly faster than
289   /// 64-bit divisions and should be used when possible.
290   bool HasSlowDivide64 = false;
291
292   /// True if LZCNT instruction is fast.
293   bool HasFastLZCNT = false;
294
295   /// True if SHLD based rotate is fast.
296   bool HasFastSHLDRotate = false;
297
298   /// True if the processor supports macrofusion.
299   bool HasMacroFusion = false;
300
301   /// True if the processor has enhanced REP MOVSB/STOSB.
302   bool HasERMSB = false;
303
304   /// True if the short functions should be padded to prevent
305   /// a stall when returning too early.
306   bool PadShortFunctions = false;
307
308   /// True if two memory operand instructions should use a temporary register
309   /// instead.
310   bool SlowTwoMemOps = false;
311
312   /// True if the LEA instruction inputs have to be ready at address generation
313   /// (AG) time.
314   bool LEAUsesAG = false;
315
316   /// True if the LEA instruction with certain arguments is slow
317   bool SlowLEA = false;
318
319   /// True if the LEA instruction has all three source operands: base, index,
320   /// and offset or if the LEA instruction uses base and index registers where
321   /// the base is EBP, RBP,or R13
322   bool Slow3OpsLEA = false;
323
324   /// True if INC and DEC instructions are slow when writing to flags
325   bool SlowIncDec = false;
326
327   /// Processor has AVX-512 PreFetch Instructions
328   bool HasPFI = false;
329
330   /// Processor has AVX-512 Exponential and Reciprocal Instructions
331   bool HasERI = false;
332
333   /// Processor has AVX-512 Conflict Detection Instructions
334   bool HasCDI = false;
335
336   /// Processor has AVX-512 population count Instructions
337   bool HasVPOPCNTDQ = false;
338
339   /// Processor has AVX-512 Doubleword and Quadword instructions
340   bool HasDQI = false;
341
342   /// Processor has AVX-512 Byte and Word instructions
343   bool HasBWI = false;
344
345   /// Processor has AVX-512 Vector Length eXtenstions
346   bool HasVLX = false;
347
348   /// Processor has PKU extenstions
349   bool HasPKU = false;
350
351   /// Processor has AVX-512 Vector Neural Network Instructions
352   bool HasVNNI = false;
353
354   /// Processor has AVX-512 Bit Algorithms instructions
355   bool HasBITALG = false;
356
357   /// Processor supports MPX - Memory Protection Extensions
358   bool HasMPX = false;
359
360   /// Processor supports CET SHSTK - Control-Flow Enforcement Technology
361   /// using Shadow Stack
362   bool HasSHSTK = false;
363
364   /// Processor supports Invalidate Process-Context Identifier
365   bool HasINVPCID = false;
366
367   /// Processor has Software Guard Extensions
368   bool HasSGX = false;
369
370   /// Processor supports Flush Cache Line instruction
371   bool HasCLFLUSHOPT = false;
372
373   /// Processor supports Cache Line Write Back instruction
374   bool HasCLWB = false;
375
376   /// Processor supports Write Back No Invalidate instruction
377   bool HasWBNOINVD = false;
378
379   /// Processor support RDPID instruction
380   bool HasRDPID = false;
381
382   /// Processor supports WaitPKG instructions
383   bool HasWAITPKG = false;
384
385   /// Processor supports PCONFIG instruction
386   bool HasPCONFIG = false;
387
388   /// Use a retpoline thunk rather than indirect calls to block speculative
389   /// execution.
390   bool UseRetpoline = false;
391
392   /// When using a retpoline thunk, call an externally provided thunk rather
393   /// than emitting one inside the compiler.
394   bool UseRetpolineExternalThunk = false;
395
396   /// Use software floating point for code generation.
397   bool UseSoftFloat = false;
398
399   /// The minimum alignment known to hold of the stack frame on
400   /// entry to the function and which must be maintained by every function.
401   unsigned stackAlignment = 4;
402
403   /// Max. memset / memcpy size that is turned into rep/movs, rep/stos ops.
404   ///
405   // FIXME: this is a known good value for Yonah. How about others?
406   unsigned MaxInlineSizeThreshold = 128;
407
408   /// Indicates target prefers 256 bit instructions.
409   bool Prefer256Bit = false;
410
411   /// What processor and OS we're targeting.
412   Triple TargetTriple;
413
414   /// GlobalISel related APIs.
415   std::unique_ptr<CallLowering> CallLoweringInfo;
416   std::unique_ptr<LegalizerInfo> Legalizer;
417   std::unique_ptr<RegisterBankInfo> RegBankInfo;
418   std::unique_ptr<InstructionSelector> InstSelector;
419
420 private:
421   /// Override the stack alignment.
422   unsigned StackAlignOverride;
423
424   /// Preferred vector width from function attribute.
425   unsigned PreferVectorWidthOverride;
426
427   /// Resolved preferred vector width from function attribute and subtarget
428   /// features.
429   unsigned PreferVectorWidth = UINT32_MAX;
430
431   /// Required vector width from function attribute.
432   unsigned RequiredVectorWidth;
433
434   /// True if compiling for 64-bit, false for 16-bit or 32-bit.
435   bool In64BitMode;
436
437   /// True if compiling for 32-bit, false for 16-bit or 64-bit.
438   bool In32BitMode;
439
440   /// True if compiling for 16-bit, false for 32-bit or 64-bit.
441   bool In16BitMode;
442
443   /// Contains the Overhead of gather\scatter instructions
444   int GatherOverhead = 1024;
445   int ScatterOverhead = 1024;
446
447   X86SelectionDAGInfo TSInfo;
448   // Ordering here is important. X86InstrInfo initializes X86RegisterInfo which
449   // X86TargetLowering needs.
450   X86InstrInfo InstrInfo;
451   X86TargetLowering TLInfo;
452   X86FrameLowering FrameLowering;
453
454 public:
455   /// This constructor initializes the data members to match that
456   /// of the specified triple.
457   ///
458   X86Subtarget(const Triple &TT, StringRef CPU, StringRef FS,
459                const X86TargetMachine &TM, unsigned StackAlignOverride,
460                unsigned PreferVectorWidthOverride,
461                unsigned RequiredVectorWidth);
462
463   const X86TargetLowering *getTargetLowering() const override {
464     return &TLInfo;
465   }
466
467   const X86InstrInfo *getInstrInfo() const override { return &InstrInfo; }
468
469   const X86FrameLowering *getFrameLowering() const override {
470     return &FrameLowering;
471   }
472
473   const X86SelectionDAGInfo *getSelectionDAGInfo() const override {
474     return &TSInfo;
475   }
476
477   const X86RegisterInfo *getRegisterInfo() const override {
478     return &getInstrInfo()->getRegisterInfo();
479   }
480
481   /// Returns the minimum alignment known to hold of the
482   /// stack frame on entry to the function and which must be maintained by every
483   /// function for this subtarget.
484   unsigned getStackAlignment() const { return stackAlignment; }
485
486   /// Returns the maximum memset / memcpy size
487   /// that still makes it profitable to inline the call.
488   unsigned getMaxInlineSizeThreshold() const { return MaxInlineSizeThreshold; }
489
490   /// ParseSubtargetFeatures - Parses features string setting specified
491   /// subtarget options.  Definition of function is auto generated by tblgen.
492   void ParseSubtargetFeatures(StringRef CPU, StringRef FS);
493
494   /// Methods used by Global ISel
495   const CallLowering *getCallLowering() const override;
496   const InstructionSelector *getInstructionSelector() const override;
497   const LegalizerInfo *getLegalizerInfo() const override;
498   const RegisterBankInfo *getRegBankInfo() const override;
499
500 private:
501   /// Initialize the full set of dependencies so we can use an initializer
502   /// list for X86Subtarget.
503   X86Subtarget &initializeSubtargetDependencies(StringRef CPU, StringRef FS);
504   void initSubtargetFeatures(StringRef CPU, StringRef FS);
505
506 public:
507   /// Is this x86_64? (disregarding specific ABI / programming model)
508   bool is64Bit() const {
509     return In64BitMode;
510   }
511
512   bool is32Bit() const {
513     return In32BitMode;
514   }
515
516   bool is16Bit() const {
517     return In16BitMode;
518   }
519
520   /// Is this x86_64 with the ILP32 programming model (x32 ABI)?
521   bool isTarget64BitILP32() const {
522     return In64BitMode && (TargetTriple.getEnvironment() == Triple::GNUX32 ||
523                            TargetTriple.isOSNaCl());
524   }
525
526   /// Is this x86_64 with the LP64 programming model (standard AMD64, no x32)?
527   bool isTarget64BitLP64() const {
528     return In64BitMode && (TargetTriple.getEnvironment() != Triple::GNUX32 &&
529                            !TargetTriple.isOSNaCl());
530   }
531
532   PICStyles::Style getPICStyle() const { return PICStyle; }
533   void setPICStyle(PICStyles::Style Style)  { PICStyle = Style; }
534
535   bool hasX87() const { return HasX87; }
536   bool hasNOPL() const { return HasNOPL; }
537   bool hasCMov() const { return HasCMov; }
538   bool hasSSE1() const { return X86SSELevel >= SSE1; }
539   bool hasSSE2() const { return X86SSELevel >= SSE2; }
540   bool hasSSE3() const { return X86SSELevel >= SSE3; }
541   bool hasSSSE3() const { return X86SSELevel >= SSSE3; }
542   bool hasSSE41() const { return X86SSELevel >= SSE41; }
543   bool hasSSE42() const { return X86SSELevel >= SSE42; }
544   bool hasAVX() const { return X86SSELevel >= AVX; }
545   bool hasAVX2() const { return X86SSELevel >= AVX2; }
546   bool hasAVX512() const { return X86SSELevel >= AVX512F; }
547   bool hasInt256() const { return hasAVX2(); }
548   bool hasSSE4A() const { return HasSSE4A; }
549   bool hasMMX() const { return X863DNowLevel >= MMX; }
550   bool has3DNow() const { return X863DNowLevel >= ThreeDNow; }
551   bool has3DNowA() const { return X863DNowLevel >= ThreeDNowA; }
552   bool hasPOPCNT() const { return HasPOPCNT; }
553   bool hasAES() const { return HasAES; }
554   bool hasVAES() const { return HasVAES; }
555   bool hasFXSR() const { return HasFXSR; }
556   bool hasXSAVE() const { return HasXSAVE; }
557   bool hasXSAVEOPT() const { return HasXSAVEOPT; }
558   bool hasXSAVEC() const { return HasXSAVEC; }
559   bool hasXSAVES() const { return HasXSAVES; }
560   bool hasPCLMUL() const { return HasPCLMUL; }
561   bool hasVPCLMULQDQ() const { return HasVPCLMULQDQ; }
562   bool hasGFNI() const { return HasGFNI; }
563   // Prefer FMA4 to FMA - its better for commutation/memory folding and
564   // has equal or better performance on all supported targets.
565   bool hasFMA() const { return HasFMA; }
566   bool hasFMA4() const { return HasFMA4; }
567   bool hasAnyFMA() const { return hasFMA() || hasFMA4(); }
568   bool hasXOP() const { return HasXOP; }
569   bool hasTBM() const { return HasTBM; }
570   bool hasLWP() const { return HasLWP; }
571   bool hasMOVBE() const { return HasMOVBE; }
572   bool hasRDRAND() const { return HasRDRAND; }
573   bool hasF16C() const { return HasF16C; }
574   bool hasFSGSBase() const { return HasFSGSBase; }
575   bool hasLZCNT() const { return HasLZCNT; }
576   bool hasBMI() const { return HasBMI; }
577   bool hasBMI2() const { return HasBMI2; }
578   bool hasVBMI() const { return HasVBMI; }
579   bool hasVBMI2() const { return HasVBMI2; }
580   bool hasIFMA() const { return HasIFMA; }
581   bool hasRTM() const { return HasRTM; }
582   bool hasADX() const { return HasADX; }
583   bool hasSHA() const { return HasSHA; }
584   bool hasPRFCHW() const { return HasPRFCHW || HasPREFETCHWT1; }
585   bool hasPREFETCHWT1() const { return HasPREFETCHWT1; }
586   bool hasSSEPrefetch() const {
587     // We implicitly enable these when we have a write prefix supporting cache
588     // level OR if we have prfchw, but don't already have a read prefetch from
589     // 3dnow.
590     return hasSSE1() || (hasPRFCHW() && !has3DNow()) || hasPREFETCHWT1();
591   }
592   bool hasRDSEED() const { return HasRDSEED; }
593   bool hasLAHFSAHF() const { return HasLAHFSAHF; }
594   bool hasMWAITX() const { return HasMWAITX; }
595   bool hasCLZERO() const { return HasCLZERO; }
596   bool hasCLDEMOTE() const { return HasCLDEMOTE; }
597   bool hasMOVDIRI() const { return HasMOVDIRI; }
598   bool hasMOVDIR64B() const { return HasMOVDIR64B; }
599   bool hasPTWRITE() const { return HasPTWRITE; }
600   bool isSHLDSlow() const { return IsSHLDSlow; }
601   bool isPMULLDSlow() const { return IsPMULLDSlow; }
602   bool isUnalignedMem16Slow() const { return IsUAMem16Slow; }
603   bool isUnalignedMem32Slow() const { return IsUAMem32Slow; }
604   int getGatherOverhead() const { return GatherOverhead; }
605   int getScatterOverhead() const { return ScatterOverhead; }
606   bool hasSSEUnalignedMem() const { return HasSSEUnalignedMem; }
607   bool hasCmpxchg16b() const { return HasCmpxchg16b; }
608   bool useLeaForSP() const { return UseLeaForSP; }
609   bool hasPOPCNTFalseDeps() const { return HasPOPCNTFalseDeps; }
610   bool hasLZCNTFalseDeps() const { return HasLZCNTFalseDeps; }
611   bool hasFastVariableShuffle() const {
612     return HasFastVariableShuffle;
613   }
614   bool hasFastPartialYMMorZMMWrite() const {
615     return HasFastPartialYMMorZMMWrite;
616   }
617   bool hasFastGather() const { return HasFastGather; }
618   bool hasFastScalarFSQRT() const { return HasFastScalarFSQRT; }
619   bool hasFastVectorFSQRT() const { return HasFastVectorFSQRT; }
620   bool hasFastLZCNT() const { return HasFastLZCNT; }
621   bool hasFastSHLDRotate() const { return HasFastSHLDRotate; }
622   bool hasMacroFusion() const { return HasMacroFusion; }
623   bool hasERMSB() const { return HasERMSB; }
624   bool hasSlowDivide32() const { return HasSlowDivide32; }
625   bool hasSlowDivide64() const { return HasSlowDivide64; }
626   bool padShortFunctions() const { return PadShortFunctions; }
627   bool slowTwoMemOps() const { return SlowTwoMemOps; }
628   bool LEAusesAG() const { return LEAUsesAG; }
629   bool slowLEA() const { return SlowLEA; }
630   bool slow3OpsLEA() const { return Slow3OpsLEA; }
631   bool slowIncDec() const { return SlowIncDec; }
632   bool hasCDI() const { return HasCDI; }
633   bool hasVPOPCNTDQ() const { return HasVPOPCNTDQ; }
634   bool hasPFI() const { return HasPFI; }
635   bool hasERI() const { return HasERI; }
636   bool hasDQI() const { return HasDQI; }
637   bool hasBWI() const { return HasBWI; }
638   bool hasVLX() const { return HasVLX; }
639   bool hasPKU() const { return HasPKU; }
640   bool hasVNNI() const { return HasVNNI; }
641   bool hasBITALG() const { return HasBITALG; }
642   bool hasMPX() const { return HasMPX; }
643   bool hasSHSTK() const { return HasSHSTK; }
644   bool hasCLFLUSHOPT() const { return HasCLFLUSHOPT; }
645   bool hasCLWB() const { return HasCLWB; }
646   bool hasWBNOINVD() const { return HasWBNOINVD; }
647   bool hasRDPID() const { return HasRDPID; }
648   bool hasWAITPKG() const { return HasWAITPKG; }
649   bool hasPCONFIG() const { return HasPCONFIG; }
650   bool hasSGX() const { return HasSGX; }
651   bool hasINVPCID() const { return HasINVPCID; }
652   bool useRetpoline() const { return UseRetpoline; }
653   bool useRetpolineExternalThunk() const { return UseRetpolineExternalThunk; }
654
655   unsigned getPreferVectorWidth() const { return PreferVectorWidth; }
656   unsigned getRequiredVectorWidth() const { return RequiredVectorWidth; }
657
658   // Helper functions to determine when we should allow widening to 512-bit
659   // during codegen.
660   // TODO: Currently we're always allowing widening on CPUs without VLX,
661   // because for many cases we don't have a better option.
662   bool canExtendTo512DQ() const {
663     return hasAVX512() && (!hasVLX() || getPreferVectorWidth() >= 512);
664   }
665   bool canExtendTo512BW() const  {
666     return hasBWI() && canExtendTo512DQ();
667   }
668
669   // If there are no 512-bit vectors and we prefer not to use 512-bit registers,
670   // disable them in the legalizer.
671   bool useAVX512Regs() const {
672     return hasAVX512() && (canExtendTo512DQ() || RequiredVectorWidth > 256);
673   }
674
675   bool useBWIRegs() const {
676     return hasBWI() && useAVX512Regs();
677   }
678
679   bool isXRaySupported() const override { return is64Bit(); }
680
681   X86ProcFamilyEnum getProcFamily() const { return X86ProcFamily; }
682
683   /// TODO: to be removed later and replaced with suitable properties
684   bool isAtom() const { return X86ProcFamily == IntelAtom; }
685   bool isSLM() const { return X86ProcFamily == IntelSLM; }
686   bool isGLM() const {
687     return X86ProcFamily == IntelGLM ||
688            X86ProcFamily == IntelGLP ||
689            X86ProcFamily == IntelTRM;
690   }
691   bool useSoftFloat() const { return UseSoftFloat; }
692
693   /// Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
694   /// no-sse2). There isn't any reason to disable it if the target processor
695   /// supports it.
696   bool hasMFence() const { return hasSSE2() || is64Bit(); }
697
698   const Triple &getTargetTriple() const { return TargetTriple; }
699
700   bool isTargetDarwin() const { return TargetTriple.isOSDarwin(); }
701   bool isTargetFreeBSD() const { return TargetTriple.isOSFreeBSD(); }
702   bool isTargetDragonFly() const { return TargetTriple.isOSDragonFly(); }
703   bool isTargetSolaris() const { return TargetTriple.isOSSolaris(); }
704   bool isTargetPS4() const { return TargetTriple.isPS4CPU(); }
705
706   bool isTargetELF() const { return TargetTriple.isOSBinFormatELF(); }
707   bool isTargetCOFF() const { return TargetTriple.isOSBinFormatCOFF(); }
708   bool isTargetMachO() const { return TargetTriple.isOSBinFormatMachO(); }
709
710   bool isTargetLinux() const { return TargetTriple.isOSLinux(); }
711   bool isTargetKFreeBSD() const { return TargetTriple.isOSKFreeBSD(); }
712   bool isTargetGlibc() const { return TargetTriple.isOSGlibc(); }
713   bool isTargetAndroid() const { return TargetTriple.isAndroid(); }
714   bool isTargetNaCl() const { return TargetTriple.isOSNaCl(); }
715   bool isTargetNaCl32() const { return isTargetNaCl() && !is64Bit(); }
716   bool isTargetNaCl64() const { return isTargetNaCl() && is64Bit(); }
717   bool isTargetMCU() const { return TargetTriple.isOSIAMCU(); }
718   bool isTargetFuchsia() const { return TargetTriple.isOSFuchsia(); }
719
720   bool isTargetWindowsMSVC() const {
721     return TargetTriple.isWindowsMSVCEnvironment();
722   }
723
724   bool isTargetKnownWindowsMSVC() const {
725     return TargetTriple.isKnownWindowsMSVCEnvironment();
726   }
727
728   bool isTargetWindowsCoreCLR() const {
729     return TargetTriple.isWindowsCoreCLREnvironment();
730   }
731
732   bool isTargetWindowsCygwin() const {
733     return TargetTriple.isWindowsCygwinEnvironment();
734   }
735
736   bool isTargetWindowsGNU() const {
737     return TargetTriple.isWindowsGNUEnvironment();
738   }
739
740   bool isTargetWindowsItanium() const {
741     return TargetTriple.isWindowsItaniumEnvironment();
742   }
743
744   bool isTargetCygMing() const { return TargetTriple.isOSCygMing(); }
745
746   bool isOSWindows() const { return TargetTriple.isOSWindows(); }
747
748   bool isTargetWin64() const { return In64BitMode && isOSWindows(); }
749
750   bool isTargetWin32() const { return !In64BitMode && isOSWindows(); }
751
752   bool isPICStyleGOT() const { return PICStyle == PICStyles::GOT; }
753   bool isPICStyleRIPRel() const { return PICStyle == PICStyles::RIPRel; }
754
755   bool isPICStyleStubPIC() const {
756     return PICStyle == PICStyles::StubPIC;
757   }
758
759   bool isPositionIndependent() const { return TM.isPositionIndependent(); }
760
761   bool isCallingConvWin64(CallingConv::ID CC) const {
762     switch (CC) {
763     // On Win64, all these conventions just use the default convention.
764     case CallingConv::C:
765     case CallingConv::Fast:
766     case CallingConv::Swift:
767     case CallingConv::X86_FastCall:
768     case CallingConv::X86_StdCall:
769     case CallingConv::X86_ThisCall:
770     case CallingConv::X86_VectorCall:
771     case CallingConv::Intel_OCL_BI:
772       return isTargetWin64();
773     // This convention allows using the Win64 convention on other targets.
774     case CallingConv::Win64:
775       return true;
776     // This convention allows using the SysV convention on Windows targets.
777     case CallingConv::X86_64_SysV:
778       return false;
779     // Otherwise, who knows what this is.
780     default:
781       return false;
782     }
783   }
784
785   /// Classify a global variable reference for the current subtarget according
786   /// to how we should reference it in a non-pcrel context.
787   unsigned char classifyLocalReference(const GlobalValue *GV) const;
788
789   unsigned char classifyGlobalReference(const GlobalValue *GV,
790                                         const Module &M) const;
791   unsigned char classifyGlobalReference(const GlobalValue *GV) const;
792
793   /// Classify a global function reference for the current subtarget.
794   unsigned char classifyGlobalFunctionReference(const GlobalValue *GV,
795                                                 const Module &M) const;
796   unsigned char classifyGlobalFunctionReference(const GlobalValue *GV) const;
797
798   /// Classify a blockaddress reference for the current subtarget according to
799   /// how we should reference it in a non-pcrel context.
800   unsigned char classifyBlockAddressReference() const;
801
802   /// Return true if the subtarget allows calls to immediate address.
803   bool isLegalToCallImmediateAddr() const;
804
805   /// If we are using retpolines, we need to expand indirectbr to avoid it
806   /// lowering to an actual indirect jump.
807   bool enableIndirectBrExpand() const override { return useRetpoline(); }
808
809   /// Enable the MachineScheduler pass for all X86 subtargets.
810   bool enableMachineScheduler() const override { return true; }
811
812   // TODO: Update the regression tests and return true.
813   bool supportPrintSchedInfo() const override { return false; }
814
815   bool enableEarlyIfConversion() const override;
816
817   AntiDepBreakMode getAntiDepBreakMode() const override {
818     return TargetSubtargetInfo::ANTIDEP_CRITICAL;
819   }
820
821   bool enableAdvancedRASplitCost() const override { return true; }
822 };
823
824 } // end namespace llvm
825
826 #endif // LLVM_LIB_TARGET_X86_X86SUBTARGET_H