]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/IPO/FunctionAttrs.cpp
Merge clang 7.0.1 and several follow-up changes
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / IPO / FunctionAttrs.cpp
1 //===- FunctionAttrs.cpp - Pass which marks functions attributes ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// This file implements interprocedural passes which walk the
12 /// call-graph deducing and/or propagating function attributes.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/Transforms/IPO/FunctionAttrs.h"
17 #include "llvm/ADT/SCCIterator.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/BasicAliasAnalysis.h"
26 #include "llvm/Analysis/CGSCCPassManager.h"
27 #include "llvm/Analysis/CallGraph.h"
28 #include "llvm/Analysis/CallGraphSCCPass.h"
29 #include "llvm/Analysis/CaptureTracking.h"
30 #include "llvm/Analysis/LazyCallGraph.h"
31 #include "llvm/Analysis/MemoryLocation.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/IR/Argument.h"
34 #include "llvm/IR/Attributes.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/CallSite.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/InstIterator.h"
41 #include "llvm/IR/InstrTypes.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/Metadata.h"
45 #include "llvm/IR/PassManager.h"
46 #include "llvm/IR/Type.h"
47 #include "llvm/IR/Use.h"
48 #include "llvm/IR/User.h"
49 #include "llvm/IR/Value.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Compiler.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Transforms/IPO.h"
58 #include <cassert>
59 #include <iterator>
60 #include <map>
61 #include <vector>
62
63 using namespace llvm;
64
65 #define DEBUG_TYPE "functionattrs"
66
67 STATISTIC(NumReadNone, "Number of functions marked readnone");
68 STATISTIC(NumReadOnly, "Number of functions marked readonly");
69 STATISTIC(NumNoCapture, "Number of arguments marked nocapture");
70 STATISTIC(NumReturned, "Number of arguments marked returned");
71 STATISTIC(NumReadNoneArg, "Number of arguments marked readnone");
72 STATISTIC(NumReadOnlyArg, "Number of arguments marked readonly");
73 STATISTIC(NumNoAlias, "Number of function returns marked noalias");
74 STATISTIC(NumNonNullReturn, "Number of function returns marked nonnull");
75 STATISTIC(NumNoRecurse, "Number of functions marked as norecurse");
76 STATISTIC(NumNoUnwind, "Number of functions marked as nounwind");
77
78 // FIXME: This is disabled by default to avoid exposing security vulnerabilities
79 // in C/C++ code compiled by clang:
80 // http://lists.llvm.org/pipermail/cfe-dev/2017-January/052066.html
81 static cl::opt<bool> EnableNonnullArgPropagation(
82     "enable-nonnull-arg-prop", cl::Hidden,
83     cl::desc("Try to propagate nonnull argument attributes from callsites to "
84              "caller functions."));
85
86 static cl::opt<bool> DisableNoUnwindInference(
87     "disable-nounwind-inference", cl::Hidden,
88     cl::desc("Stop inferring nounwind attribute during function-attrs pass"));
89
90 namespace {
91
92 using SCCNodeSet = SmallSetVector<Function *, 8>;
93
94 } // end anonymous namespace
95
96 /// Returns the memory access attribute for function F using AAR for AA results,
97 /// where SCCNodes is the current SCC.
98 ///
99 /// If ThisBody is true, this function may examine the function body and will
100 /// return a result pertaining to this copy of the function. If it is false, the
101 /// result will be based only on AA results for the function declaration; it
102 /// will be assumed that some other (perhaps less optimized) version of the
103 /// function may be selected at link time.
104 static MemoryAccessKind checkFunctionMemoryAccess(Function &F, bool ThisBody,
105                                                   AAResults &AAR,
106                                                   const SCCNodeSet &SCCNodes) {
107   FunctionModRefBehavior MRB = AAR.getModRefBehavior(&F);
108   if (MRB == FMRB_DoesNotAccessMemory)
109     // Already perfect!
110     return MAK_ReadNone;
111
112   if (!ThisBody) {
113     if (AliasAnalysis::onlyReadsMemory(MRB))
114       return MAK_ReadOnly;
115
116     // Conservatively assume it writes to memory.
117     return MAK_MayWrite;
118   }
119
120   // Scan the function body for instructions that may read or write memory.
121   bool ReadsMemory = false;
122   for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
123     Instruction *I = &*II;
124
125     // Some instructions can be ignored even if they read or write memory.
126     // Detect these now, skipping to the next instruction if one is found.
127     CallSite CS(cast<Value>(I));
128     if (CS) {
129       // Ignore calls to functions in the same SCC, as long as the call sites
130       // don't have operand bundles.  Calls with operand bundles are allowed to
131       // have memory effects not described by the memory effects of the call
132       // target.
133       if (!CS.hasOperandBundles() && CS.getCalledFunction() &&
134           SCCNodes.count(CS.getCalledFunction()))
135         continue;
136       FunctionModRefBehavior MRB = AAR.getModRefBehavior(CS);
137       ModRefInfo MRI = createModRefInfo(MRB);
138
139       // If the call doesn't access memory, we're done.
140       if (isNoModRef(MRI))
141         continue;
142
143       if (!AliasAnalysis::onlyAccessesArgPointees(MRB)) {
144         // The call could access any memory. If that includes writes, give up.
145         if (isModSet(MRI))
146           return MAK_MayWrite;
147         // If it reads, note it.
148         if (isRefSet(MRI))
149           ReadsMemory = true;
150         continue;
151       }
152
153       // Check whether all pointer arguments point to local memory, and
154       // ignore calls that only access local memory.
155       for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
156            CI != CE; ++CI) {
157         Value *Arg = *CI;
158         if (!Arg->getType()->isPtrOrPtrVectorTy())
159           continue;
160
161         AAMDNodes AAInfo;
162         I->getAAMetadata(AAInfo);
163         MemoryLocation Loc(Arg, MemoryLocation::UnknownSize, AAInfo);
164
165         // Skip accesses to local or constant memory as they don't impact the
166         // externally visible mod/ref behavior.
167         if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
168           continue;
169
170         if (isModSet(MRI))
171           // Writes non-local memory.  Give up.
172           return MAK_MayWrite;
173         if (isRefSet(MRI))
174           // Ok, it reads non-local memory.
175           ReadsMemory = true;
176       }
177       continue;
178     } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
179       // Ignore non-volatile loads from local memory. (Atomic is okay here.)
180       if (!LI->isVolatile()) {
181         MemoryLocation Loc = MemoryLocation::get(LI);
182         if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
183           continue;
184       }
185     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
186       // Ignore non-volatile stores to local memory. (Atomic is okay here.)
187       if (!SI->isVolatile()) {
188         MemoryLocation Loc = MemoryLocation::get(SI);
189         if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
190           continue;
191       }
192     } else if (VAArgInst *VI = dyn_cast<VAArgInst>(I)) {
193       // Ignore vaargs on local memory.
194       MemoryLocation Loc = MemoryLocation::get(VI);
195       if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
196         continue;
197     }
198
199     // Any remaining instructions need to be taken seriously!  Check if they
200     // read or write memory.
201     if (I->mayWriteToMemory())
202       // Writes memory.  Just give up.
203       return MAK_MayWrite;
204
205     // If this instruction may read memory, remember that.
206     ReadsMemory |= I->mayReadFromMemory();
207   }
208
209   return ReadsMemory ? MAK_ReadOnly : MAK_ReadNone;
210 }
211
212 MemoryAccessKind llvm::computeFunctionBodyMemoryAccess(Function &F,
213                                                        AAResults &AAR) {
214   return checkFunctionMemoryAccess(F, /*ThisBody=*/true, AAR, {});
215 }
216
217 /// Deduce readonly/readnone attributes for the SCC.
218 template <typename AARGetterT>
219 static bool addReadAttrs(const SCCNodeSet &SCCNodes, AARGetterT &&AARGetter) {
220   // Check if any of the functions in the SCC read or write memory.  If they
221   // write memory then they can't be marked readnone or readonly.
222   bool ReadsMemory = false;
223   for (Function *F : SCCNodes) {
224     // Call the callable parameter to look up AA results for this function.
225     AAResults &AAR = AARGetter(*F);
226
227     // Non-exact function definitions may not be selected at link time, and an
228     // alternative version that writes to memory may be selected.  See the
229     // comment on GlobalValue::isDefinitionExact for more details.
230     switch (checkFunctionMemoryAccess(*F, F->hasExactDefinition(),
231                                       AAR, SCCNodes)) {
232     case MAK_MayWrite:
233       return false;
234     case MAK_ReadOnly:
235       ReadsMemory = true;
236       break;
237     case MAK_ReadNone:
238       // Nothing to do!
239       break;
240     }
241   }
242
243   // Success!  Functions in this SCC do not access memory, or only read memory.
244   // Give them the appropriate attribute.
245   bool MadeChange = false;
246   for (Function *F : SCCNodes) {
247     if (F->doesNotAccessMemory())
248       // Already perfect!
249       continue;
250
251     if (F->onlyReadsMemory() && ReadsMemory)
252       // No change.
253       continue;
254
255     MadeChange = true;
256
257     // Clear out any existing attributes.
258     F->removeFnAttr(Attribute::ReadOnly);
259     F->removeFnAttr(Attribute::ReadNone);
260
261     // Add in the new attribute.
262     F->addFnAttr(ReadsMemory ? Attribute::ReadOnly : Attribute::ReadNone);
263
264     if (ReadsMemory)
265       ++NumReadOnly;
266     else
267       ++NumReadNone;
268   }
269
270   return MadeChange;
271 }
272
273 namespace {
274
275 /// For a given pointer Argument, this retains a list of Arguments of functions
276 /// in the same SCC that the pointer data flows into. We use this to build an
277 /// SCC of the arguments.
278 struct ArgumentGraphNode {
279   Argument *Definition;
280   SmallVector<ArgumentGraphNode *, 4> Uses;
281 };
282
283 class ArgumentGraph {
284   // We store pointers to ArgumentGraphNode objects, so it's important that
285   // that they not move around upon insert.
286   using ArgumentMapTy = std::map<Argument *, ArgumentGraphNode>;
287
288   ArgumentMapTy ArgumentMap;
289
290   // There is no root node for the argument graph, in fact:
291   //   void f(int *x, int *y) { if (...) f(x, y); }
292   // is an example where the graph is disconnected. The SCCIterator requires a
293   // single entry point, so we maintain a fake ("synthetic") root node that
294   // uses every node. Because the graph is directed and nothing points into
295   // the root, it will not participate in any SCCs (except for its own).
296   ArgumentGraphNode SyntheticRoot;
297
298 public:
299   ArgumentGraph() { SyntheticRoot.Definition = nullptr; }
300
301   using iterator = SmallVectorImpl<ArgumentGraphNode *>::iterator;
302
303   iterator begin() { return SyntheticRoot.Uses.begin(); }
304   iterator end() { return SyntheticRoot.Uses.end(); }
305   ArgumentGraphNode *getEntryNode() { return &SyntheticRoot; }
306
307   ArgumentGraphNode *operator[](Argument *A) {
308     ArgumentGraphNode &Node = ArgumentMap[A];
309     Node.Definition = A;
310     SyntheticRoot.Uses.push_back(&Node);
311     return &Node;
312   }
313 };
314
315 /// This tracker checks whether callees are in the SCC, and if so it does not
316 /// consider that a capture, instead adding it to the "Uses" list and
317 /// continuing with the analysis.
318 struct ArgumentUsesTracker : public CaptureTracker {
319   ArgumentUsesTracker(const SCCNodeSet &SCCNodes) : SCCNodes(SCCNodes) {}
320
321   void tooManyUses() override { Captured = true; }
322
323   bool captured(const Use *U) override {
324     CallSite CS(U->getUser());
325     if (!CS.getInstruction()) {
326       Captured = true;
327       return true;
328     }
329
330     Function *F = CS.getCalledFunction();
331     if (!F || !F->hasExactDefinition() || !SCCNodes.count(F)) {
332       Captured = true;
333       return true;
334     }
335
336     // Note: the callee and the two successor blocks *follow* the argument
337     // operands.  This means there is no need to adjust UseIndex to account for
338     // these.
339
340     unsigned UseIndex =
341         std::distance(const_cast<const Use *>(CS.arg_begin()), U);
342
343     assert(UseIndex < CS.data_operands_size() &&
344            "Indirect function calls should have been filtered above!");
345
346     if (UseIndex >= CS.getNumArgOperands()) {
347       // Data operand, but not a argument operand -- must be a bundle operand
348       assert(CS.hasOperandBundles() && "Must be!");
349
350       // CaptureTracking told us that we're being captured by an operand bundle
351       // use.  In this case it does not matter if the callee is within our SCC
352       // or not -- we've been captured in some unknown way, and we have to be
353       // conservative.
354       Captured = true;
355       return true;
356     }
357
358     if (UseIndex >= F->arg_size()) {
359       assert(F->isVarArg() && "More params than args in non-varargs call");
360       Captured = true;
361       return true;
362     }
363
364     Uses.push_back(&*std::next(F->arg_begin(), UseIndex));
365     return false;
366   }
367
368   // True only if certainly captured (used outside our SCC).
369   bool Captured = false;
370
371   // Uses within our SCC.
372   SmallVector<Argument *, 4> Uses;
373
374   const SCCNodeSet &SCCNodes;
375 };
376
377 } // end anonymous namespace
378
379 namespace llvm {
380
381 template <> struct GraphTraits<ArgumentGraphNode *> {
382   using NodeRef = ArgumentGraphNode *;
383   using ChildIteratorType = SmallVectorImpl<ArgumentGraphNode *>::iterator;
384
385   static NodeRef getEntryNode(NodeRef A) { return A; }
386   static ChildIteratorType child_begin(NodeRef N) { return N->Uses.begin(); }
387   static ChildIteratorType child_end(NodeRef N) { return N->Uses.end(); }
388 };
389
390 template <>
391 struct GraphTraits<ArgumentGraph *> : public GraphTraits<ArgumentGraphNode *> {
392   static NodeRef getEntryNode(ArgumentGraph *AG) { return AG->getEntryNode(); }
393
394   static ChildIteratorType nodes_begin(ArgumentGraph *AG) {
395     return AG->begin();
396   }
397
398   static ChildIteratorType nodes_end(ArgumentGraph *AG) { return AG->end(); }
399 };
400
401 } // end namespace llvm
402
403 /// Returns Attribute::None, Attribute::ReadOnly or Attribute::ReadNone.
404 static Attribute::AttrKind
405 determinePointerReadAttrs(Argument *A,
406                           const SmallPtrSet<Argument *, 8> &SCCNodes) {
407   SmallVector<Use *, 32> Worklist;
408   SmallPtrSet<Use *, 32> Visited;
409
410   // inalloca arguments are always clobbered by the call.
411   if (A->hasInAllocaAttr())
412     return Attribute::None;
413
414   bool IsRead = false;
415   // We don't need to track IsWritten. If A is written to, return immediately.
416
417   for (Use &U : A->uses()) {
418     Visited.insert(&U);
419     Worklist.push_back(&U);
420   }
421
422   while (!Worklist.empty()) {
423     Use *U = Worklist.pop_back_val();
424     Instruction *I = cast<Instruction>(U->getUser());
425
426     switch (I->getOpcode()) {
427     case Instruction::BitCast:
428     case Instruction::GetElementPtr:
429     case Instruction::PHI:
430     case Instruction::Select:
431     case Instruction::AddrSpaceCast:
432       // The original value is not read/written via this if the new value isn't.
433       for (Use &UU : I->uses())
434         if (Visited.insert(&UU).second)
435           Worklist.push_back(&UU);
436       break;
437
438     case Instruction::Call:
439     case Instruction::Invoke: {
440       bool Captures = true;
441
442       if (I->getType()->isVoidTy())
443         Captures = false;
444
445       auto AddUsersToWorklistIfCapturing = [&] {
446         if (Captures)
447           for (Use &UU : I->uses())
448             if (Visited.insert(&UU).second)
449               Worklist.push_back(&UU);
450       };
451
452       CallSite CS(I);
453       if (CS.doesNotAccessMemory()) {
454         AddUsersToWorklistIfCapturing();
455         continue;
456       }
457
458       Function *F = CS.getCalledFunction();
459       if (!F) {
460         if (CS.onlyReadsMemory()) {
461           IsRead = true;
462           AddUsersToWorklistIfCapturing();
463           continue;
464         }
465         return Attribute::None;
466       }
467
468       // Note: the callee and the two successor blocks *follow* the argument
469       // operands.  This means there is no need to adjust UseIndex to account
470       // for these.
471
472       unsigned UseIndex = std::distance(CS.arg_begin(), U);
473
474       // U cannot be the callee operand use: since we're exploring the
475       // transitive uses of an Argument, having such a use be a callee would
476       // imply the CallSite is an indirect call or invoke; and we'd take the
477       // early exit above.
478       assert(UseIndex < CS.data_operands_size() &&
479              "Data operand use expected!");
480
481       bool IsOperandBundleUse = UseIndex >= CS.getNumArgOperands();
482
483       if (UseIndex >= F->arg_size() && !IsOperandBundleUse) {
484         assert(F->isVarArg() && "More params than args in non-varargs call");
485         return Attribute::None;
486       }
487
488       Captures &= !CS.doesNotCapture(UseIndex);
489
490       // Since the optimizer (by design) cannot see the data flow corresponding
491       // to a operand bundle use, these cannot participate in the optimistic SCC
492       // analysis.  Instead, we model the operand bundle uses as arguments in
493       // call to a function external to the SCC.
494       if (IsOperandBundleUse ||
495           !SCCNodes.count(&*std::next(F->arg_begin(), UseIndex))) {
496
497         // The accessors used on CallSite here do the right thing for calls and
498         // invokes with operand bundles.
499
500         if (!CS.onlyReadsMemory() && !CS.onlyReadsMemory(UseIndex))
501           return Attribute::None;
502         if (!CS.doesNotAccessMemory(UseIndex))
503           IsRead = true;
504       }
505
506       AddUsersToWorklistIfCapturing();
507       break;
508     }
509
510     case Instruction::Load:
511       // A volatile load has side effects beyond what readonly can be relied
512       // upon.
513       if (cast<LoadInst>(I)->isVolatile())
514         return Attribute::None;
515
516       IsRead = true;
517       break;
518
519     case Instruction::ICmp:
520     case Instruction::Ret:
521       break;
522
523     default:
524       return Attribute::None;
525     }
526   }
527
528   return IsRead ? Attribute::ReadOnly : Attribute::ReadNone;
529 }
530
531 /// Deduce returned attributes for the SCC.
532 static bool addArgumentReturnedAttrs(const SCCNodeSet &SCCNodes) {
533   bool Changed = false;
534
535   // Check each function in turn, determining if an argument is always returned.
536   for (Function *F : SCCNodes) {
537     // We can infer and propagate function attributes only when we know that the
538     // definition we'll get at link time is *exactly* the definition we see now.
539     // For more details, see GlobalValue::mayBeDerefined.
540     if (!F->hasExactDefinition())
541       continue;
542
543     if (F->getReturnType()->isVoidTy())
544       continue;
545
546     // There is nothing to do if an argument is already marked as 'returned'.
547     if (llvm::any_of(F->args(),
548                      [](const Argument &Arg) { return Arg.hasReturnedAttr(); }))
549       continue;
550
551     auto FindRetArg = [&]() -> Value * {
552       Value *RetArg = nullptr;
553       for (BasicBlock &BB : *F)
554         if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) {
555           // Note that stripPointerCasts should look through functions with
556           // returned arguments.
557           Value *RetVal = Ret->getReturnValue()->stripPointerCasts();
558           if (!isa<Argument>(RetVal) || RetVal->getType() != F->getReturnType())
559             return nullptr;
560
561           if (!RetArg)
562             RetArg = RetVal;
563           else if (RetArg != RetVal)
564             return nullptr;
565         }
566
567       return RetArg;
568     };
569
570     if (Value *RetArg = FindRetArg()) {
571       auto *A = cast<Argument>(RetArg);
572       A->addAttr(Attribute::Returned);
573       ++NumReturned;
574       Changed = true;
575     }
576   }
577
578   return Changed;
579 }
580
581 /// If a callsite has arguments that are also arguments to the parent function,
582 /// try to propagate attributes from the callsite's arguments to the parent's
583 /// arguments. This may be important because inlining can cause information loss
584 /// when attribute knowledge disappears with the inlined call.
585 static bool addArgumentAttrsFromCallsites(Function &F) {
586   if (!EnableNonnullArgPropagation)
587     return false;
588
589   bool Changed = false;
590
591   // For an argument attribute to transfer from a callsite to the parent, the
592   // call must be guaranteed to execute every time the parent is called.
593   // Conservatively, just check for calls in the entry block that are guaranteed
594   // to execute.
595   // TODO: This could be enhanced by testing if the callsite post-dominates the
596   // entry block or by doing simple forward walks or backward walks to the
597   // callsite.
598   BasicBlock &Entry = F.getEntryBlock();
599   for (Instruction &I : Entry) {
600     if (auto CS = CallSite(&I)) {
601       if (auto *CalledFunc = CS.getCalledFunction()) {
602         for (auto &CSArg : CalledFunc->args()) {
603           if (!CSArg.hasNonNullAttr())
604             continue;
605
606           // If the non-null callsite argument operand is an argument to 'F'
607           // (the caller) and the call is guaranteed to execute, then the value
608           // must be non-null throughout 'F'.
609           auto *FArg = dyn_cast<Argument>(CS.getArgOperand(CSArg.getArgNo()));
610           if (FArg && !FArg->hasNonNullAttr()) {
611             FArg->addAttr(Attribute::NonNull);
612             Changed = true;
613           }
614         }
615       }
616     }
617     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
618       break;
619   }
620
621   return Changed;
622 }
623
624 /// Deduce nocapture attributes for the SCC.
625 static bool addArgumentAttrs(const SCCNodeSet &SCCNodes) {
626   bool Changed = false;
627
628   ArgumentGraph AG;
629
630   // Check each function in turn, determining which pointer arguments are not
631   // captured.
632   for (Function *F : SCCNodes) {
633     // We can infer and propagate function attributes only when we know that the
634     // definition we'll get at link time is *exactly* the definition we see now.
635     // For more details, see GlobalValue::mayBeDerefined.
636     if (!F->hasExactDefinition())
637       continue;
638
639     Changed |= addArgumentAttrsFromCallsites(*F);
640
641     // Functions that are readonly (or readnone) and nounwind and don't return
642     // a value can't capture arguments. Don't analyze them.
643     if (F->onlyReadsMemory() && F->doesNotThrow() &&
644         F->getReturnType()->isVoidTy()) {
645       for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E;
646            ++A) {
647         if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) {
648           A->addAttr(Attribute::NoCapture);
649           ++NumNoCapture;
650           Changed = true;
651         }
652       }
653       continue;
654     }
655
656     for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E;
657          ++A) {
658       if (!A->getType()->isPointerTy())
659         continue;
660       bool HasNonLocalUses = false;
661       if (!A->hasNoCaptureAttr()) {
662         ArgumentUsesTracker Tracker(SCCNodes);
663         PointerMayBeCaptured(&*A, &Tracker);
664         if (!Tracker.Captured) {
665           if (Tracker.Uses.empty()) {
666             // If it's trivially not captured, mark it nocapture now.
667             A->addAttr(Attribute::NoCapture);
668             ++NumNoCapture;
669             Changed = true;
670           } else {
671             // If it's not trivially captured and not trivially not captured,
672             // then it must be calling into another function in our SCC. Save
673             // its particulars for Argument-SCC analysis later.
674             ArgumentGraphNode *Node = AG[&*A];
675             for (Argument *Use : Tracker.Uses) {
676               Node->Uses.push_back(AG[Use]);
677               if (Use != &*A)
678                 HasNonLocalUses = true;
679             }
680           }
681         }
682         // Otherwise, it's captured. Don't bother doing SCC analysis on it.
683       }
684       if (!HasNonLocalUses && !A->onlyReadsMemory()) {
685         // Can we determine that it's readonly/readnone without doing an SCC?
686         // Note that we don't allow any calls at all here, or else our result
687         // will be dependent on the iteration order through the functions in the
688         // SCC.
689         SmallPtrSet<Argument *, 8> Self;
690         Self.insert(&*A);
691         Attribute::AttrKind R = determinePointerReadAttrs(&*A, Self);
692         if (R != Attribute::None) {
693           A->addAttr(R);
694           Changed = true;
695           R == Attribute::ReadOnly ? ++NumReadOnlyArg : ++NumReadNoneArg;
696         }
697       }
698     }
699   }
700
701   // The graph we've collected is partial because we stopped scanning for
702   // argument uses once we solved the argument trivially. These partial nodes
703   // show up as ArgumentGraphNode objects with an empty Uses list, and for
704   // these nodes the final decision about whether they capture has already been
705   // made.  If the definition doesn't have a 'nocapture' attribute by now, it
706   // captures.
707
708   for (scc_iterator<ArgumentGraph *> I = scc_begin(&AG); !I.isAtEnd(); ++I) {
709     const std::vector<ArgumentGraphNode *> &ArgumentSCC = *I;
710     if (ArgumentSCC.size() == 1) {
711       if (!ArgumentSCC[0]->Definition)
712         continue; // synthetic root node
713
714       // eg. "void f(int* x) { if (...) f(x); }"
715       if (ArgumentSCC[0]->Uses.size() == 1 &&
716           ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) {
717         Argument *A = ArgumentSCC[0]->Definition;
718         A->addAttr(Attribute::NoCapture);
719         ++NumNoCapture;
720         Changed = true;
721       }
722       continue;
723     }
724
725     bool SCCCaptured = false;
726     for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end();
727          I != E && !SCCCaptured; ++I) {
728       ArgumentGraphNode *Node = *I;
729       if (Node->Uses.empty()) {
730         if (!Node->Definition->hasNoCaptureAttr())
731           SCCCaptured = true;
732       }
733     }
734     if (SCCCaptured)
735       continue;
736
737     SmallPtrSet<Argument *, 8> ArgumentSCCNodes;
738     // Fill ArgumentSCCNodes with the elements of the ArgumentSCC.  Used for
739     // quickly looking up whether a given Argument is in this ArgumentSCC.
740     for (ArgumentGraphNode *I : ArgumentSCC) {
741       ArgumentSCCNodes.insert(I->Definition);
742     }
743
744     for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end();
745          I != E && !SCCCaptured; ++I) {
746       ArgumentGraphNode *N = *I;
747       for (ArgumentGraphNode *Use : N->Uses) {
748         Argument *A = Use->Definition;
749         if (A->hasNoCaptureAttr() || ArgumentSCCNodes.count(A))
750           continue;
751         SCCCaptured = true;
752         break;
753       }
754     }
755     if (SCCCaptured)
756       continue;
757
758     for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
759       Argument *A = ArgumentSCC[i]->Definition;
760       A->addAttr(Attribute::NoCapture);
761       ++NumNoCapture;
762       Changed = true;
763     }
764
765     // We also want to compute readonly/readnone. With a small number of false
766     // negatives, we can assume that any pointer which is captured isn't going
767     // to be provably readonly or readnone, since by definition we can't
768     // analyze all uses of a captured pointer.
769     //
770     // The false negatives happen when the pointer is captured by a function
771     // that promises readonly/readnone behaviour on the pointer, then the
772     // pointer's lifetime ends before anything that writes to arbitrary memory.
773     // Also, a readonly/readnone pointer may be returned, but returning a
774     // pointer is capturing it.
775
776     Attribute::AttrKind ReadAttr = Attribute::ReadNone;
777     for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
778       Argument *A = ArgumentSCC[i]->Definition;
779       Attribute::AttrKind K = determinePointerReadAttrs(A, ArgumentSCCNodes);
780       if (K == Attribute::ReadNone)
781         continue;
782       if (K == Attribute::ReadOnly) {
783         ReadAttr = Attribute::ReadOnly;
784         continue;
785       }
786       ReadAttr = K;
787       break;
788     }
789
790     if (ReadAttr != Attribute::None) {
791       for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
792         Argument *A = ArgumentSCC[i]->Definition;
793         // Clear out existing readonly/readnone attributes
794         A->removeAttr(Attribute::ReadOnly);
795         A->removeAttr(Attribute::ReadNone);
796         A->addAttr(ReadAttr);
797         ReadAttr == Attribute::ReadOnly ? ++NumReadOnlyArg : ++NumReadNoneArg;
798         Changed = true;
799       }
800     }
801   }
802
803   return Changed;
804 }
805
806 /// Tests whether a function is "malloc-like".
807 ///
808 /// A function is "malloc-like" if it returns either null or a pointer that
809 /// doesn't alias any other pointer visible to the caller.
810 static bool isFunctionMallocLike(Function *F, const SCCNodeSet &SCCNodes) {
811   SmallSetVector<Value *, 8> FlowsToReturn;
812   for (BasicBlock &BB : *F)
813     if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator()))
814       FlowsToReturn.insert(Ret->getReturnValue());
815
816   for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
817     Value *RetVal = FlowsToReturn[i];
818
819     if (Constant *C = dyn_cast<Constant>(RetVal)) {
820       if (!C->isNullValue() && !isa<UndefValue>(C))
821         return false;
822
823       continue;
824     }
825
826     if (isa<Argument>(RetVal))
827       return false;
828
829     if (Instruction *RVI = dyn_cast<Instruction>(RetVal))
830       switch (RVI->getOpcode()) {
831       // Extend the analysis by looking upwards.
832       case Instruction::BitCast:
833       case Instruction::GetElementPtr:
834       case Instruction::AddrSpaceCast:
835         FlowsToReturn.insert(RVI->getOperand(0));
836         continue;
837       case Instruction::Select: {
838         SelectInst *SI = cast<SelectInst>(RVI);
839         FlowsToReturn.insert(SI->getTrueValue());
840         FlowsToReturn.insert(SI->getFalseValue());
841         continue;
842       }
843       case Instruction::PHI: {
844         PHINode *PN = cast<PHINode>(RVI);
845         for (Value *IncValue : PN->incoming_values())
846           FlowsToReturn.insert(IncValue);
847         continue;
848       }
849
850       // Check whether the pointer came from an allocation.
851       case Instruction::Alloca:
852         break;
853       case Instruction::Call:
854       case Instruction::Invoke: {
855         CallSite CS(RVI);
856         if (CS.hasRetAttr(Attribute::NoAlias))
857           break;
858         if (CS.getCalledFunction() && SCCNodes.count(CS.getCalledFunction()))
859           break;
860         LLVM_FALLTHROUGH;
861       }
862       default:
863         return false; // Did not come from an allocation.
864       }
865
866     if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false))
867       return false;
868   }
869
870   return true;
871 }
872
873 /// Deduce noalias attributes for the SCC.
874 static bool addNoAliasAttrs(const SCCNodeSet &SCCNodes) {
875   // Check each function in turn, determining which functions return noalias
876   // pointers.
877   for (Function *F : SCCNodes) {
878     // Already noalias.
879     if (F->returnDoesNotAlias())
880       continue;
881
882     // We can infer and propagate function attributes only when we know that the
883     // definition we'll get at link time is *exactly* the definition we see now.
884     // For more details, see GlobalValue::mayBeDerefined.
885     if (!F->hasExactDefinition())
886       return false;
887
888     // We annotate noalias return values, which are only applicable to
889     // pointer types.
890     if (!F->getReturnType()->isPointerTy())
891       continue;
892
893     if (!isFunctionMallocLike(F, SCCNodes))
894       return false;
895   }
896
897   bool MadeChange = false;
898   for (Function *F : SCCNodes) {
899     if (F->returnDoesNotAlias() ||
900         !F->getReturnType()->isPointerTy())
901       continue;
902
903     F->setReturnDoesNotAlias();
904     ++NumNoAlias;
905     MadeChange = true;
906   }
907
908   return MadeChange;
909 }
910
911 /// Tests whether this function is known to not return null.
912 ///
913 /// Requires that the function returns a pointer.
914 ///
915 /// Returns true if it believes the function will not return a null, and sets
916 /// \p Speculative based on whether the returned conclusion is a speculative
917 /// conclusion due to SCC calls.
918 static bool isReturnNonNull(Function *F, const SCCNodeSet &SCCNodes,
919                             bool &Speculative) {
920   assert(F->getReturnType()->isPointerTy() &&
921          "nonnull only meaningful on pointer types");
922   Speculative = false;
923
924   SmallSetVector<Value *, 8> FlowsToReturn;
925   for (BasicBlock &BB : *F)
926     if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator()))
927       FlowsToReturn.insert(Ret->getReturnValue());
928
929   auto &DL = F->getParent()->getDataLayout();
930
931   for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
932     Value *RetVal = FlowsToReturn[i];
933
934     // If this value is locally known to be non-null, we're good
935     if (isKnownNonZero(RetVal, DL))
936       continue;
937
938     // Otherwise, we need to look upwards since we can't make any local
939     // conclusions.
940     Instruction *RVI = dyn_cast<Instruction>(RetVal);
941     if (!RVI)
942       return false;
943     switch (RVI->getOpcode()) {
944     // Extend the analysis by looking upwards.
945     case Instruction::BitCast:
946     case Instruction::GetElementPtr:
947     case Instruction::AddrSpaceCast:
948       FlowsToReturn.insert(RVI->getOperand(0));
949       continue;
950     case Instruction::Select: {
951       SelectInst *SI = cast<SelectInst>(RVI);
952       FlowsToReturn.insert(SI->getTrueValue());
953       FlowsToReturn.insert(SI->getFalseValue());
954       continue;
955     }
956     case Instruction::PHI: {
957       PHINode *PN = cast<PHINode>(RVI);
958       for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
959         FlowsToReturn.insert(PN->getIncomingValue(i));
960       continue;
961     }
962     case Instruction::Call:
963     case Instruction::Invoke: {
964       CallSite CS(RVI);
965       Function *Callee = CS.getCalledFunction();
966       // A call to a node within the SCC is assumed to return null until
967       // proven otherwise
968       if (Callee && SCCNodes.count(Callee)) {
969         Speculative = true;
970         continue;
971       }
972       return false;
973     }
974     default:
975       return false; // Unknown source, may be null
976     };
977     llvm_unreachable("should have either continued or returned");
978   }
979
980   return true;
981 }
982
983 /// Deduce nonnull attributes for the SCC.
984 static bool addNonNullAttrs(const SCCNodeSet &SCCNodes) {
985   // Speculative that all functions in the SCC return only nonnull
986   // pointers.  We may refute this as we analyze functions.
987   bool SCCReturnsNonNull = true;
988
989   bool MadeChange = false;
990
991   // Check each function in turn, determining which functions return nonnull
992   // pointers.
993   for (Function *F : SCCNodes) {
994     // Already nonnull.
995     if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
996                                         Attribute::NonNull))
997       continue;
998
999     // We can infer and propagate function attributes only when we know that the
1000     // definition we'll get at link time is *exactly* the definition we see now.
1001     // For more details, see GlobalValue::mayBeDerefined.
1002     if (!F->hasExactDefinition())
1003       return false;
1004
1005     // We annotate nonnull return values, which are only applicable to
1006     // pointer types.
1007     if (!F->getReturnType()->isPointerTy())
1008       continue;
1009
1010     bool Speculative = false;
1011     if (isReturnNonNull(F, SCCNodes, Speculative)) {
1012       if (!Speculative) {
1013         // Mark the function eagerly since we may discover a function
1014         // which prevents us from speculating about the entire SCC
1015         LLVM_DEBUG(dbgs() << "Eagerly marking " << F->getName()
1016                           << " as nonnull\n");
1017         F->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull);
1018         ++NumNonNullReturn;
1019         MadeChange = true;
1020       }
1021       continue;
1022     }
1023     // At least one function returns something which could be null, can't
1024     // speculate any more.
1025     SCCReturnsNonNull = false;
1026   }
1027
1028   if (SCCReturnsNonNull) {
1029     for (Function *F : SCCNodes) {
1030       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1031                                           Attribute::NonNull) ||
1032           !F->getReturnType()->isPointerTy())
1033         continue;
1034
1035       LLVM_DEBUG(dbgs() << "SCC marking " << F->getName() << " as nonnull\n");
1036       F->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull);
1037       ++NumNonNullReturn;
1038       MadeChange = true;
1039     }
1040   }
1041
1042   return MadeChange;
1043 }
1044
1045 namespace {
1046
1047 /// Collects a set of attribute inference requests and performs them all in one
1048 /// go on a single SCC Node. Inference involves scanning function bodies
1049 /// looking for instructions that violate attribute assumptions.
1050 /// As soon as all the bodies are fine we are free to set the attribute.
1051 /// Customization of inference for individual attributes is performed by
1052 /// providing a handful of predicates for each attribute.
1053 class AttributeInferer {
1054 public:
1055   /// Describes a request for inference of a single attribute.
1056   struct InferenceDescriptor {
1057
1058     /// Returns true if this function does not have to be handled.
1059     /// General intent for this predicate is to provide an optimization
1060     /// for functions that do not need this attribute inference at all
1061     /// (say, for functions that already have the attribute).
1062     std::function<bool(const Function &)> SkipFunction;
1063
1064     /// Returns true if this instruction violates attribute assumptions.
1065     std::function<bool(Instruction &)> InstrBreaksAttribute;
1066
1067     /// Sets the inferred attribute for this function.
1068     std::function<void(Function &)> SetAttribute;
1069
1070     /// Attribute we derive.
1071     Attribute::AttrKind AKind;
1072
1073     /// If true, only "exact" definitions can be used to infer this attribute.
1074     /// See GlobalValue::isDefinitionExact.
1075     bool RequiresExactDefinition;
1076
1077     InferenceDescriptor(Attribute::AttrKind AK,
1078                         std::function<bool(const Function &)> SkipFunc,
1079                         std::function<bool(Instruction &)> InstrScan,
1080                         std::function<void(Function &)> SetAttr,
1081                         bool ReqExactDef)
1082         : SkipFunction(SkipFunc), InstrBreaksAttribute(InstrScan),
1083           SetAttribute(SetAttr), AKind(AK),
1084           RequiresExactDefinition(ReqExactDef) {}
1085   };
1086
1087 private:
1088   SmallVector<InferenceDescriptor, 4> InferenceDescriptors;
1089
1090 public:
1091   void registerAttrInference(InferenceDescriptor AttrInference) {
1092     InferenceDescriptors.push_back(AttrInference);
1093   }
1094
1095   bool run(const SCCNodeSet &SCCNodes);
1096 };
1097
1098 /// Perform all the requested attribute inference actions according to the
1099 /// attribute predicates stored before.
1100 bool AttributeInferer::run(const SCCNodeSet &SCCNodes) {
1101   SmallVector<InferenceDescriptor, 4> InferInSCC = InferenceDescriptors;
1102   // Go through all the functions in SCC and check corresponding attribute
1103   // assumptions for each of them. Attributes that are invalid for this SCC
1104   // will be removed from InferInSCC.
1105   for (Function *F : SCCNodes) {
1106
1107     // No attributes whose assumptions are still valid - done.
1108     if (InferInSCC.empty())
1109       return false;
1110
1111     // Check if our attributes ever need scanning/can be scanned.
1112     llvm::erase_if(InferInSCC, [F](const InferenceDescriptor &ID) {
1113       if (ID.SkipFunction(*F))
1114         return false;
1115
1116       // Remove from further inference (invalidate) when visiting a function
1117       // that has no instructions to scan/has an unsuitable definition.
1118       return F->isDeclaration() ||
1119              (ID.RequiresExactDefinition && !F->hasExactDefinition());
1120     });
1121
1122     // For each attribute still in InferInSCC that doesn't explicitly skip F,
1123     // set up the F instructions scan to verify assumptions of the attribute.
1124     SmallVector<InferenceDescriptor, 4> InferInThisFunc;
1125     llvm::copy_if(
1126         InferInSCC, std::back_inserter(InferInThisFunc),
1127         [F](const InferenceDescriptor &ID) { return !ID.SkipFunction(*F); });
1128
1129     if (InferInThisFunc.empty())
1130       continue;
1131
1132     // Start instruction scan.
1133     for (Instruction &I : instructions(*F)) {
1134       llvm::erase_if(InferInThisFunc, [&](const InferenceDescriptor &ID) {
1135         if (!ID.InstrBreaksAttribute(I))
1136           return false;
1137         // Remove attribute from further inference on any other functions
1138         // because attribute assumptions have just been violated.
1139         llvm::erase_if(InferInSCC, [&ID](const InferenceDescriptor &D) {
1140           return D.AKind == ID.AKind;
1141         });
1142         // Remove attribute from the rest of current instruction scan.
1143         return true;
1144       });
1145
1146       if (InferInThisFunc.empty())
1147         break;
1148     }
1149   }
1150
1151   if (InferInSCC.empty())
1152     return false;
1153
1154   bool Changed = false;
1155   for (Function *F : SCCNodes)
1156     // At this point InferInSCC contains only functions that were either:
1157     //   - explicitly skipped from scan/inference, or
1158     //   - verified to have no instructions that break attribute assumptions.
1159     // Hence we just go and force the attribute for all non-skipped functions.
1160     for (auto &ID : InferInSCC) {
1161       if (ID.SkipFunction(*F))
1162         continue;
1163       Changed = true;
1164       ID.SetAttribute(*F);
1165     }
1166   return Changed;
1167 }
1168
1169 } // end anonymous namespace
1170
1171 /// Helper for non-Convergent inference predicate InstrBreaksAttribute.
1172 static bool InstrBreaksNonConvergent(Instruction &I,
1173                                      const SCCNodeSet &SCCNodes) {
1174   const CallSite CS(&I);
1175   // Breaks non-convergent assumption if CS is a convergent call to a function
1176   // not in the SCC.
1177   return CS && CS.isConvergent() && SCCNodes.count(CS.getCalledFunction()) == 0;
1178 }
1179
1180 /// Helper for NoUnwind inference predicate InstrBreaksAttribute.
1181 static bool InstrBreaksNonThrowing(Instruction &I, const SCCNodeSet &SCCNodes) {
1182   if (!I.mayThrow())
1183     return false;
1184   if (const auto *CI = dyn_cast<CallInst>(&I)) {
1185     if (Function *Callee = CI->getCalledFunction()) {
1186       // I is a may-throw call to a function inside our SCC. This doesn't
1187       // invalidate our current working assumption that the SCC is no-throw; we
1188       // just have to scan that other function.
1189       if (SCCNodes.count(Callee) > 0)
1190         return false;
1191     }
1192   }
1193   return true;
1194 }
1195
1196 /// Infer attributes from all functions in the SCC by scanning every
1197 /// instruction for compliance to the attribute assumptions. Currently it
1198 /// does:
1199 ///   - removal of Convergent attribute
1200 ///   - addition of NoUnwind attribute
1201 ///
1202 /// Returns true if any changes to function attributes were made.
1203 static bool inferAttrsFromFunctionBodies(const SCCNodeSet &SCCNodes) {
1204
1205   AttributeInferer AI;
1206
1207   // Request to remove the convergent attribute from all functions in the SCC
1208   // if every callsite within the SCC is not convergent (except for calls
1209   // to functions within the SCC).
1210   // Note: Removal of the attr from the callsites will happen in
1211   // InstCombineCalls separately.
1212   AI.registerAttrInference(AttributeInferer::InferenceDescriptor{
1213       Attribute::Convergent,
1214       // Skip non-convergent functions.
1215       [](const Function &F) { return !F.isConvergent(); },
1216       // Instructions that break non-convergent assumption.
1217       [SCCNodes](Instruction &I) {
1218         return InstrBreaksNonConvergent(I, SCCNodes);
1219       },
1220       [](Function &F) {
1221         LLVM_DEBUG(dbgs() << "Removing convergent attr from fn " << F.getName()
1222                           << "\n");
1223         F.setNotConvergent();
1224       },
1225       /* RequiresExactDefinition= */ false});
1226
1227   if (!DisableNoUnwindInference)
1228     // Request to infer nounwind attribute for all the functions in the SCC if
1229     // every callsite within the SCC is not throwing (except for calls to
1230     // functions within the SCC). Note that nounwind attribute suffers from
1231     // derefinement - results may change depending on how functions are
1232     // optimized. Thus it can be inferred only from exact definitions.
1233     AI.registerAttrInference(AttributeInferer::InferenceDescriptor{
1234         Attribute::NoUnwind,
1235         // Skip non-throwing functions.
1236         [](const Function &F) { return F.doesNotThrow(); },
1237         // Instructions that break non-throwing assumption.
1238         [SCCNodes](Instruction &I) {
1239           return InstrBreaksNonThrowing(I, SCCNodes);
1240         },
1241         [](Function &F) {
1242           LLVM_DEBUG(dbgs()
1243                      << "Adding nounwind attr to fn " << F.getName() << "\n");
1244           F.setDoesNotThrow();
1245           ++NumNoUnwind;
1246         },
1247         /* RequiresExactDefinition= */ true});
1248
1249   // Perform all the requested attribute inference actions.
1250   return AI.run(SCCNodes);
1251 }
1252
1253 static bool setDoesNotRecurse(Function &F) {
1254   if (F.doesNotRecurse())
1255     return false;
1256   F.setDoesNotRecurse();
1257   ++NumNoRecurse;
1258   return true;
1259 }
1260
1261 static bool addNoRecurseAttrs(const SCCNodeSet &SCCNodes) {
1262   // Try and identify functions that do not recurse.
1263
1264   // If the SCC contains multiple nodes we know for sure there is recursion.
1265   if (SCCNodes.size() != 1)
1266     return false;
1267
1268   Function *F = *SCCNodes.begin();
1269   if (!F || F->isDeclaration() || F->doesNotRecurse())
1270     return false;
1271
1272   // If all of the calls in F are identifiable and are to norecurse functions, F
1273   // is norecurse. This check also detects self-recursion as F is not currently
1274   // marked norecurse, so any called from F to F will not be marked norecurse.
1275   for (Instruction &I : instructions(*F))
1276     if (auto CS = CallSite(&I)) {
1277       Function *Callee = CS.getCalledFunction();
1278       if (!Callee || Callee == F || !Callee->doesNotRecurse())
1279         // Function calls a potentially recursive function.
1280         return false;
1281     }
1282
1283   // Every call was to a non-recursive function other than this function, and
1284   // we have no indirect recursion as the SCC size is one. This function cannot
1285   // recurse.
1286   return setDoesNotRecurse(*F);
1287 }
1288
1289 PreservedAnalyses PostOrderFunctionAttrsPass::run(LazyCallGraph::SCC &C,
1290                                                   CGSCCAnalysisManager &AM,
1291                                                   LazyCallGraph &CG,
1292                                                   CGSCCUpdateResult &) {
1293   FunctionAnalysisManager &FAM =
1294       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
1295
1296   // We pass a lambda into functions to wire them up to the analysis manager
1297   // for getting function analyses.
1298   auto AARGetter = [&](Function &F) -> AAResults & {
1299     return FAM.getResult<AAManager>(F);
1300   };
1301
1302   // Fill SCCNodes with the elements of the SCC. Also track whether there are
1303   // any external or opt-none nodes that will prevent us from optimizing any
1304   // part of the SCC.
1305   SCCNodeSet SCCNodes;
1306   bool HasUnknownCall = false;
1307   for (LazyCallGraph::Node &N : C) {
1308     Function &F = N.getFunction();
1309     if (F.hasFnAttribute(Attribute::OptimizeNone) ||
1310         F.hasFnAttribute(Attribute::Naked)) {
1311       // Treat any function we're trying not to optimize as if it were an
1312       // indirect call and omit it from the node set used below.
1313       HasUnknownCall = true;
1314       continue;
1315     }
1316     // Track whether any functions in this SCC have an unknown call edge.
1317     // Note: if this is ever a performance hit, we can common it with
1318     // subsequent routines which also do scans over the instructions of the
1319     // function.
1320     if (!HasUnknownCall)
1321       for (Instruction &I : instructions(F))
1322         if (auto CS = CallSite(&I))
1323           if (!CS.getCalledFunction()) {
1324             HasUnknownCall = true;
1325             break;
1326           }
1327
1328     SCCNodes.insert(&F);
1329   }
1330
1331   bool Changed = false;
1332   Changed |= addArgumentReturnedAttrs(SCCNodes);
1333   Changed |= addReadAttrs(SCCNodes, AARGetter);
1334   Changed |= addArgumentAttrs(SCCNodes);
1335
1336   // If we have no external nodes participating in the SCC, we can deduce some
1337   // more precise attributes as well.
1338   if (!HasUnknownCall) {
1339     Changed |= addNoAliasAttrs(SCCNodes);
1340     Changed |= addNonNullAttrs(SCCNodes);
1341     Changed |= inferAttrsFromFunctionBodies(SCCNodes);
1342     Changed |= addNoRecurseAttrs(SCCNodes);
1343   }
1344
1345   return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
1346 }
1347
1348 namespace {
1349
1350 struct PostOrderFunctionAttrsLegacyPass : public CallGraphSCCPass {
1351   // Pass identification, replacement for typeid
1352   static char ID;
1353
1354   PostOrderFunctionAttrsLegacyPass() : CallGraphSCCPass(ID) {
1355     initializePostOrderFunctionAttrsLegacyPassPass(
1356         *PassRegistry::getPassRegistry());
1357   }
1358
1359   bool runOnSCC(CallGraphSCC &SCC) override;
1360
1361   void getAnalysisUsage(AnalysisUsage &AU) const override {
1362     AU.setPreservesCFG();
1363     AU.addRequired<AssumptionCacheTracker>();
1364     getAAResultsAnalysisUsage(AU);
1365     CallGraphSCCPass::getAnalysisUsage(AU);
1366   }
1367 };
1368
1369 } // end anonymous namespace
1370
1371 char PostOrderFunctionAttrsLegacyPass::ID = 0;
1372 INITIALIZE_PASS_BEGIN(PostOrderFunctionAttrsLegacyPass, "functionattrs",
1373                       "Deduce function attributes", false, false)
1374 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1375 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1376 INITIALIZE_PASS_END(PostOrderFunctionAttrsLegacyPass, "functionattrs",
1377                     "Deduce function attributes", false, false)
1378
1379 Pass *llvm::createPostOrderFunctionAttrsLegacyPass() {
1380   return new PostOrderFunctionAttrsLegacyPass();
1381 }
1382
1383 template <typename AARGetterT>
1384 static bool runImpl(CallGraphSCC &SCC, AARGetterT AARGetter) {
1385   bool Changed = false;
1386
1387   // Fill SCCNodes with the elements of the SCC. Used for quickly looking up
1388   // whether a given CallGraphNode is in this SCC. Also track whether there are
1389   // any external or opt-none nodes that will prevent us from optimizing any
1390   // part of the SCC.
1391   SCCNodeSet SCCNodes;
1392   bool ExternalNode = false;
1393   for (CallGraphNode *I : SCC) {
1394     Function *F = I->getFunction();
1395     if (!F || F->hasFnAttribute(Attribute::OptimizeNone) ||
1396         F->hasFnAttribute(Attribute::Naked)) {
1397       // External node or function we're trying not to optimize - we both avoid
1398       // transform them and avoid leveraging information they provide.
1399       ExternalNode = true;
1400       continue;
1401     }
1402
1403     SCCNodes.insert(F);
1404   }
1405
1406   // Skip it if the SCC only contains optnone functions.
1407   if (SCCNodes.empty())
1408     return Changed;
1409
1410   Changed |= addArgumentReturnedAttrs(SCCNodes);
1411   Changed |= addReadAttrs(SCCNodes, AARGetter);
1412   Changed |= addArgumentAttrs(SCCNodes);
1413
1414   // If we have no external nodes participating in the SCC, we can deduce some
1415   // more precise attributes as well.
1416   if (!ExternalNode) {
1417     Changed |= addNoAliasAttrs(SCCNodes);
1418     Changed |= addNonNullAttrs(SCCNodes);
1419     Changed |= inferAttrsFromFunctionBodies(SCCNodes);
1420     Changed |= addNoRecurseAttrs(SCCNodes);
1421   }
1422
1423   return Changed;
1424 }
1425
1426 bool PostOrderFunctionAttrsLegacyPass::runOnSCC(CallGraphSCC &SCC) {
1427   if (skipSCC(SCC))
1428     return false;
1429   return runImpl(SCC, LegacyAARGetter(*this));
1430 }
1431
1432 namespace {
1433
1434 struct ReversePostOrderFunctionAttrsLegacyPass : public ModulePass {
1435   // Pass identification, replacement for typeid
1436   static char ID;
1437
1438   ReversePostOrderFunctionAttrsLegacyPass() : ModulePass(ID) {
1439     initializeReversePostOrderFunctionAttrsLegacyPassPass(
1440         *PassRegistry::getPassRegistry());
1441   }
1442
1443   bool runOnModule(Module &M) override;
1444
1445   void getAnalysisUsage(AnalysisUsage &AU) const override {
1446     AU.setPreservesCFG();
1447     AU.addRequired<CallGraphWrapperPass>();
1448     AU.addPreserved<CallGraphWrapperPass>();
1449   }
1450 };
1451
1452 } // end anonymous namespace
1453
1454 char ReversePostOrderFunctionAttrsLegacyPass::ID = 0;
1455
1456 INITIALIZE_PASS_BEGIN(ReversePostOrderFunctionAttrsLegacyPass, "rpo-functionattrs",
1457                       "Deduce function attributes in RPO", false, false)
1458 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1459 INITIALIZE_PASS_END(ReversePostOrderFunctionAttrsLegacyPass, "rpo-functionattrs",
1460                     "Deduce function attributes in RPO", false, false)
1461
1462 Pass *llvm::createReversePostOrderFunctionAttrsPass() {
1463   return new ReversePostOrderFunctionAttrsLegacyPass();
1464 }
1465
1466 static bool addNoRecurseAttrsTopDown(Function &F) {
1467   // We check the preconditions for the function prior to calling this to avoid
1468   // the cost of building up a reversible post-order list. We assert them here
1469   // to make sure none of the invariants this relies on were violated.
1470   assert(!F.isDeclaration() && "Cannot deduce norecurse without a definition!");
1471   assert(!F.doesNotRecurse() &&
1472          "This function has already been deduced as norecurs!");
1473   assert(F.hasInternalLinkage() &&
1474          "Can only do top-down deduction for internal linkage functions!");
1475
1476   // If F is internal and all of its uses are calls from a non-recursive
1477   // functions, then none of its calls could in fact recurse without going
1478   // through a function marked norecurse, and so we can mark this function too
1479   // as norecurse. Note that the uses must actually be calls -- otherwise
1480   // a pointer to this function could be returned from a norecurse function but
1481   // this function could be recursively (indirectly) called. Note that this
1482   // also detects if F is directly recursive as F is not yet marked as
1483   // a norecurse function.
1484   for (auto *U : F.users()) {
1485     auto *I = dyn_cast<Instruction>(U);
1486     if (!I)
1487       return false;
1488     CallSite CS(I);
1489     if (!CS || !CS.getParent()->getParent()->doesNotRecurse())
1490       return false;
1491   }
1492   return setDoesNotRecurse(F);
1493 }
1494
1495 static bool deduceFunctionAttributeInRPO(Module &M, CallGraph &CG) {
1496   // We only have a post-order SCC traversal (because SCCs are inherently
1497   // discovered in post-order), so we accumulate them in a vector and then walk
1498   // it in reverse. This is simpler than using the RPO iterator infrastructure
1499   // because we need to combine SCC detection and the PO walk of the call
1500   // graph. We can also cheat egregiously because we're primarily interested in
1501   // synthesizing norecurse and so we can only save the singular SCCs as SCCs
1502   // with multiple functions in them will clearly be recursive.
1503   SmallVector<Function *, 16> Worklist;
1504   for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
1505     if (I->size() != 1)
1506       continue;
1507
1508     Function *F = I->front()->getFunction();
1509     if (F && !F->isDeclaration() && !F->doesNotRecurse() &&
1510         F->hasInternalLinkage())
1511       Worklist.push_back(F);
1512   }
1513
1514   bool Changed = false;
1515   for (auto *F : llvm::reverse(Worklist))
1516     Changed |= addNoRecurseAttrsTopDown(*F);
1517
1518   return Changed;
1519 }
1520
1521 bool ReversePostOrderFunctionAttrsLegacyPass::runOnModule(Module &M) {
1522   if (skipModule(M))
1523     return false;
1524
1525   auto &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
1526
1527   return deduceFunctionAttributeInRPO(M, CG);
1528 }
1529
1530 PreservedAnalyses
1531 ReversePostOrderFunctionAttrsPass::run(Module &M, ModuleAnalysisManager &AM) {
1532   auto &CG = AM.getResult<CallGraphAnalysis>(M);
1533
1534   if (!deduceFunctionAttributeInRPO(M, CG))
1535     return PreservedAnalyses::all();
1536
1537   PreservedAnalyses PA;
1538   PA.preserve<CallGraphAnalysis>();
1539   return PA;
1540 }