]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/IPO/FunctionAttrs.cpp
Update clang to release_39 branch r276489, and resolve conflicts.
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / IPO / FunctionAttrs.cpp
1 //===- FunctionAttrs.cpp - Pass which marks functions attributes ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// This file implements interprocedural passes which walk the
12 /// call-graph deducing and/or propagating function attributes.
13 ///
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/Transforms/IPO/FunctionAttrs.h"
17 #include "llvm/Transforms/IPO.h"
18 #include "llvm/ADT/SCCIterator.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/StringSwitch.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/BasicAliasAnalysis.h"
26 #include "llvm/Analysis/CallGraph.h"
27 #include "llvm/Analysis/CallGraphSCCPass.h"
28 #include "llvm/Analysis/CaptureTracking.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/IR/InstIterator.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Analysis/TargetLibraryInfo.h"
38 using namespace llvm;
39
40 #define DEBUG_TYPE "functionattrs"
41
42 STATISTIC(NumReadNone, "Number of functions marked readnone");
43 STATISTIC(NumReadOnly, "Number of functions marked readonly");
44 STATISTIC(NumNoCapture, "Number of arguments marked nocapture");
45 STATISTIC(NumReadNoneArg, "Number of arguments marked readnone");
46 STATISTIC(NumReadOnlyArg, "Number of arguments marked readonly");
47 STATISTIC(NumNoAlias, "Number of function returns marked noalias");
48 STATISTIC(NumNonNullReturn, "Number of function returns marked nonnull");
49 STATISTIC(NumNoRecurse, "Number of functions marked as norecurse");
50
51 namespace {
52 typedef SmallSetVector<Function *, 8> SCCNodeSet;
53 }
54
55 namespace {
56 /// The three kinds of memory access relevant to 'readonly' and
57 /// 'readnone' attributes.
58 enum MemoryAccessKind {
59   MAK_ReadNone = 0,
60   MAK_ReadOnly = 1,
61   MAK_MayWrite = 2
62 };
63 }
64
65 static MemoryAccessKind checkFunctionMemoryAccess(Function &F, AAResults &AAR,
66                                                   const SCCNodeSet &SCCNodes) {
67   FunctionModRefBehavior MRB = AAR.getModRefBehavior(&F);
68   if (MRB == FMRB_DoesNotAccessMemory)
69     // Already perfect!
70     return MAK_ReadNone;
71
72   // Non-exact function definitions may not be selected at link time, and an
73   // alternative version that writes to memory may be selected.  See the comment
74   // on GlobalValue::isDefinitionExact for more details.
75   if (!F.hasExactDefinition()) {
76     if (AliasAnalysis::onlyReadsMemory(MRB))
77       return MAK_ReadOnly;
78
79     // Conservatively assume it writes to memory.
80     return MAK_MayWrite;
81   }
82
83   // Scan the function body for instructions that may read or write memory.
84   bool ReadsMemory = false;
85   for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
86     Instruction *I = &*II;
87
88     // Some instructions can be ignored even if they read or write memory.
89     // Detect these now, skipping to the next instruction if one is found.
90     CallSite CS(cast<Value>(I));
91     if (CS) {
92       // Ignore calls to functions in the same SCC, as long as the call sites
93       // don't have operand bundles.  Calls with operand bundles are allowed to
94       // have memory effects not described by the memory effects of the call
95       // target.
96       if (!CS.hasOperandBundles() && CS.getCalledFunction() &&
97           SCCNodes.count(CS.getCalledFunction()))
98         continue;
99       FunctionModRefBehavior MRB = AAR.getModRefBehavior(CS);
100
101       // If the call doesn't access memory, we're done.
102       if (!(MRB & MRI_ModRef))
103         continue;
104
105       if (!AliasAnalysis::onlyAccessesArgPointees(MRB)) {
106         // The call could access any memory. If that includes writes, give up.
107         if (MRB & MRI_Mod)
108           return MAK_MayWrite;
109         // If it reads, note it.
110         if (MRB & MRI_Ref)
111           ReadsMemory = true;
112         continue;
113       }
114
115       // Check whether all pointer arguments point to local memory, and
116       // ignore calls that only access local memory.
117       for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
118            CI != CE; ++CI) {
119         Value *Arg = *CI;
120         if (!Arg->getType()->isPtrOrPtrVectorTy())
121           continue;
122
123         AAMDNodes AAInfo;
124         I->getAAMetadata(AAInfo);
125         MemoryLocation Loc(Arg, MemoryLocation::UnknownSize, AAInfo);
126
127         // Skip accesses to local or constant memory as they don't impact the
128         // externally visible mod/ref behavior.
129         if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
130           continue;
131
132         if (MRB & MRI_Mod)
133           // Writes non-local memory.  Give up.
134           return MAK_MayWrite;
135         if (MRB & MRI_Ref)
136           // Ok, it reads non-local memory.
137           ReadsMemory = true;
138       }
139       continue;
140     } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
141       // Ignore non-volatile loads from local memory. (Atomic is okay here.)
142       if (!LI->isVolatile()) {
143         MemoryLocation Loc = MemoryLocation::get(LI);
144         if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
145           continue;
146       }
147     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
148       // Ignore non-volatile stores to local memory. (Atomic is okay here.)
149       if (!SI->isVolatile()) {
150         MemoryLocation Loc = MemoryLocation::get(SI);
151         if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
152           continue;
153       }
154     } else if (VAArgInst *VI = dyn_cast<VAArgInst>(I)) {
155       // Ignore vaargs on local memory.
156       MemoryLocation Loc = MemoryLocation::get(VI);
157       if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
158         continue;
159     }
160
161     // Any remaining instructions need to be taken seriously!  Check if they
162     // read or write memory.
163     if (I->mayWriteToMemory())
164       // Writes memory.  Just give up.
165       return MAK_MayWrite;
166
167     // If this instruction may read memory, remember that.
168     ReadsMemory |= I->mayReadFromMemory();
169   }
170
171   return ReadsMemory ? MAK_ReadOnly : MAK_ReadNone;
172 }
173
174 /// Deduce readonly/readnone attributes for the SCC.
175 template <typename AARGetterT>
176 static bool addReadAttrs(const SCCNodeSet &SCCNodes, AARGetterT AARGetter) {
177   // Check if any of the functions in the SCC read or write memory.  If they
178   // write memory then they can't be marked readnone or readonly.
179   bool ReadsMemory = false;
180   for (Function *F : SCCNodes) {
181     // Call the callable parameter to look up AA results for this function.
182     AAResults &AAR = AARGetter(*F);
183
184     switch (checkFunctionMemoryAccess(*F, AAR, SCCNodes)) {
185     case MAK_MayWrite:
186       return false;
187     case MAK_ReadOnly:
188       ReadsMemory = true;
189       break;
190     case MAK_ReadNone:
191       // Nothing to do!
192       break;
193     }
194   }
195
196   // Success!  Functions in this SCC do not access memory, or only read memory.
197   // Give them the appropriate attribute.
198   bool MadeChange = false;
199   for (Function *F : SCCNodes) {
200     if (F->doesNotAccessMemory())
201       // Already perfect!
202       continue;
203
204     if (F->onlyReadsMemory() && ReadsMemory)
205       // No change.
206       continue;
207
208     MadeChange = true;
209
210     // Clear out any existing attributes.
211     AttrBuilder B;
212     B.addAttribute(Attribute::ReadOnly).addAttribute(Attribute::ReadNone);
213     F->removeAttributes(
214         AttributeSet::FunctionIndex,
215         AttributeSet::get(F->getContext(), AttributeSet::FunctionIndex, B));
216
217     // Add in the new attribute.
218     F->addAttribute(AttributeSet::FunctionIndex,
219                     ReadsMemory ? Attribute::ReadOnly : Attribute::ReadNone);
220
221     if (ReadsMemory)
222       ++NumReadOnly;
223     else
224       ++NumReadNone;
225   }
226
227   return MadeChange;
228 }
229
230 namespace {
231 /// For a given pointer Argument, this retains a list of Arguments of functions
232 /// in the same SCC that the pointer data flows into. We use this to build an
233 /// SCC of the arguments.
234 struct ArgumentGraphNode {
235   Argument *Definition;
236   SmallVector<ArgumentGraphNode *, 4> Uses;
237 };
238
239 class ArgumentGraph {
240   // We store pointers to ArgumentGraphNode objects, so it's important that
241   // that they not move around upon insert.
242   typedef std::map<Argument *, ArgumentGraphNode> ArgumentMapTy;
243
244   ArgumentMapTy ArgumentMap;
245
246   // There is no root node for the argument graph, in fact:
247   //   void f(int *x, int *y) { if (...) f(x, y); }
248   // is an example where the graph is disconnected. The SCCIterator requires a
249   // single entry point, so we maintain a fake ("synthetic") root node that
250   // uses every node. Because the graph is directed and nothing points into
251   // the root, it will not participate in any SCCs (except for its own).
252   ArgumentGraphNode SyntheticRoot;
253
254 public:
255   ArgumentGraph() { SyntheticRoot.Definition = nullptr; }
256
257   typedef SmallVectorImpl<ArgumentGraphNode *>::iterator iterator;
258
259   iterator begin() { return SyntheticRoot.Uses.begin(); }
260   iterator end() { return SyntheticRoot.Uses.end(); }
261   ArgumentGraphNode *getEntryNode() { return &SyntheticRoot; }
262
263   ArgumentGraphNode *operator[](Argument *A) {
264     ArgumentGraphNode &Node = ArgumentMap[A];
265     Node.Definition = A;
266     SyntheticRoot.Uses.push_back(&Node);
267     return &Node;
268   }
269 };
270
271 /// This tracker checks whether callees are in the SCC, and if so it does not
272 /// consider that a capture, instead adding it to the "Uses" list and
273 /// continuing with the analysis.
274 struct ArgumentUsesTracker : public CaptureTracker {
275   ArgumentUsesTracker(const SCCNodeSet &SCCNodes)
276       : Captured(false), SCCNodes(SCCNodes) {}
277
278   void tooManyUses() override { Captured = true; }
279
280   bool captured(const Use *U) override {
281     CallSite CS(U->getUser());
282     if (!CS.getInstruction()) {
283       Captured = true;
284       return true;
285     }
286
287     Function *F = CS.getCalledFunction();
288     if (!F || !F->hasExactDefinition() || !SCCNodes.count(F)) {
289       Captured = true;
290       return true;
291     }
292
293     // Note: the callee and the two successor blocks *follow* the argument
294     // operands.  This means there is no need to adjust UseIndex to account for
295     // these.
296
297     unsigned UseIndex =
298         std::distance(const_cast<const Use *>(CS.arg_begin()), U);
299
300     assert(UseIndex < CS.data_operands_size() &&
301            "Indirect function calls should have been filtered above!");
302
303     if (UseIndex >= CS.getNumArgOperands()) {
304       // Data operand, but not a argument operand -- must be a bundle operand
305       assert(CS.hasOperandBundles() && "Must be!");
306
307       // CaptureTracking told us that we're being captured by an operand bundle
308       // use.  In this case it does not matter if the callee is within our SCC
309       // or not -- we've been captured in some unknown way, and we have to be
310       // conservative.
311       Captured = true;
312       return true;
313     }
314
315     if (UseIndex >= F->arg_size()) {
316       assert(F->isVarArg() && "More params than args in non-varargs call");
317       Captured = true;
318       return true;
319     }
320
321     Uses.push_back(&*std::next(F->arg_begin(), UseIndex));
322     return false;
323   }
324
325   bool Captured; // True only if certainly captured (used outside our SCC).
326   SmallVector<Argument *, 4> Uses; // Uses within our SCC.
327
328   const SCCNodeSet &SCCNodes;
329 };
330 }
331
332 namespace llvm {
333 template <> struct GraphTraits<ArgumentGraphNode *> {
334   typedef ArgumentGraphNode NodeType;
335   typedef SmallVectorImpl<ArgumentGraphNode *>::iterator ChildIteratorType;
336
337   static inline NodeType *getEntryNode(NodeType *A) { return A; }
338   static inline ChildIteratorType child_begin(NodeType *N) {
339     return N->Uses.begin();
340   }
341   static inline ChildIteratorType child_end(NodeType *N) {
342     return N->Uses.end();
343   }
344 };
345 template <>
346 struct GraphTraits<ArgumentGraph *> : public GraphTraits<ArgumentGraphNode *> {
347   static NodeType *getEntryNode(ArgumentGraph *AG) {
348     return AG->getEntryNode();
349   }
350   static ChildIteratorType nodes_begin(ArgumentGraph *AG) {
351     return AG->begin();
352   }
353   static ChildIteratorType nodes_end(ArgumentGraph *AG) { return AG->end(); }
354 };
355 }
356
357 /// Returns Attribute::None, Attribute::ReadOnly or Attribute::ReadNone.
358 static Attribute::AttrKind
359 determinePointerReadAttrs(Argument *A,
360                           const SmallPtrSet<Argument *, 8> &SCCNodes) {
361
362   SmallVector<Use *, 32> Worklist;
363   SmallSet<Use *, 32> Visited;
364
365   // inalloca arguments are always clobbered by the call.
366   if (A->hasInAllocaAttr())
367     return Attribute::None;
368
369   bool IsRead = false;
370   // We don't need to track IsWritten. If A is written to, return immediately.
371
372   for (Use &U : A->uses()) {
373     Visited.insert(&U);
374     Worklist.push_back(&U);
375   }
376
377   while (!Worklist.empty()) {
378     Use *U = Worklist.pop_back_val();
379     Instruction *I = cast<Instruction>(U->getUser());
380
381     switch (I->getOpcode()) {
382     case Instruction::BitCast:
383     case Instruction::GetElementPtr:
384     case Instruction::PHI:
385     case Instruction::Select:
386     case Instruction::AddrSpaceCast:
387       // The original value is not read/written via this if the new value isn't.
388       for (Use &UU : I->uses())
389         if (Visited.insert(&UU).second)
390           Worklist.push_back(&UU);
391       break;
392
393     case Instruction::Call:
394     case Instruction::Invoke: {
395       bool Captures = true;
396
397       if (I->getType()->isVoidTy())
398         Captures = false;
399
400       auto AddUsersToWorklistIfCapturing = [&] {
401         if (Captures)
402           for (Use &UU : I->uses())
403             if (Visited.insert(&UU).second)
404               Worklist.push_back(&UU);
405       };
406
407       CallSite CS(I);
408       if (CS.doesNotAccessMemory()) {
409         AddUsersToWorklistIfCapturing();
410         continue;
411       }
412
413       Function *F = CS.getCalledFunction();
414       if (!F) {
415         if (CS.onlyReadsMemory()) {
416           IsRead = true;
417           AddUsersToWorklistIfCapturing();
418           continue;
419         }
420         return Attribute::None;
421       }
422
423       // Note: the callee and the two successor blocks *follow* the argument
424       // operands.  This means there is no need to adjust UseIndex to account
425       // for these.
426
427       unsigned UseIndex = std::distance(CS.arg_begin(), U);
428
429       // U cannot be the callee operand use: since we're exploring the
430       // transitive uses of an Argument, having such a use be a callee would
431       // imply the CallSite is an indirect call or invoke; and we'd take the
432       // early exit above.
433       assert(UseIndex < CS.data_operands_size() &&
434              "Data operand use expected!");
435
436       bool IsOperandBundleUse = UseIndex >= CS.getNumArgOperands();
437
438       if (UseIndex >= F->arg_size() && !IsOperandBundleUse) {
439         assert(F->isVarArg() && "More params than args in non-varargs call");
440         return Attribute::None;
441       }
442
443       Captures &= !CS.doesNotCapture(UseIndex);
444
445       // Since the optimizer (by design) cannot see the data flow corresponding
446       // to a operand bundle use, these cannot participate in the optimistic SCC
447       // analysis.  Instead, we model the operand bundle uses as arguments in
448       // call to a function external to the SCC.
449       if (!SCCNodes.count(&*std::next(F->arg_begin(), UseIndex)) ||
450           IsOperandBundleUse) {
451
452         // The accessors used on CallSite here do the right thing for calls and
453         // invokes with operand bundles.
454
455         if (!CS.onlyReadsMemory() && !CS.onlyReadsMemory(UseIndex))
456           return Attribute::None;
457         if (!CS.doesNotAccessMemory(UseIndex))
458           IsRead = true;
459       }
460
461       AddUsersToWorklistIfCapturing();
462       break;
463     }
464
465     case Instruction::Load:
466       // A volatile load has side effects beyond what readonly can be relied
467       // upon.
468       if (cast<LoadInst>(I)->isVolatile())
469         return Attribute::None;
470
471       IsRead = true;
472       break;
473
474     case Instruction::ICmp:
475     case Instruction::Ret:
476       break;
477
478     default:
479       return Attribute::None;
480     }
481   }
482
483   return IsRead ? Attribute::ReadOnly : Attribute::ReadNone;
484 }
485
486 /// Deduce nocapture attributes for the SCC.
487 static bool addArgumentAttrs(const SCCNodeSet &SCCNodes) {
488   bool Changed = false;
489
490   ArgumentGraph AG;
491
492   AttrBuilder B;
493   B.addAttribute(Attribute::NoCapture);
494
495   // Check each function in turn, determining which pointer arguments are not
496   // captured.
497   for (Function *F : SCCNodes) {
498     // We can infer and propagate function attributes only when we know that the
499     // definition we'll get at link time is *exactly* the definition we see now.
500     // For more details, see GlobalValue::mayBeDerefined.
501     if (!F->hasExactDefinition())
502       continue;
503
504     // Functions that are readonly (or readnone) and nounwind and don't return
505     // a value can't capture arguments. Don't analyze them.
506     if (F->onlyReadsMemory() && F->doesNotThrow() &&
507         F->getReturnType()->isVoidTy()) {
508       for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E;
509            ++A) {
510         if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) {
511           A->addAttr(AttributeSet::get(F->getContext(), A->getArgNo() + 1, B));
512           ++NumNoCapture;
513           Changed = true;
514         }
515       }
516       continue;
517     }
518
519     for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E;
520          ++A) {
521       if (!A->getType()->isPointerTy())
522         continue;
523       bool HasNonLocalUses = false;
524       if (!A->hasNoCaptureAttr()) {
525         ArgumentUsesTracker Tracker(SCCNodes);
526         PointerMayBeCaptured(&*A, &Tracker);
527         if (!Tracker.Captured) {
528           if (Tracker.Uses.empty()) {
529             // If it's trivially not captured, mark it nocapture now.
530             A->addAttr(
531                 AttributeSet::get(F->getContext(), A->getArgNo() + 1, B));
532             ++NumNoCapture;
533             Changed = true;
534           } else {
535             // If it's not trivially captured and not trivially not captured,
536             // then it must be calling into another function in our SCC. Save
537             // its particulars for Argument-SCC analysis later.
538             ArgumentGraphNode *Node = AG[&*A];
539             for (Argument *Use : Tracker.Uses) {
540               Node->Uses.push_back(AG[Use]);
541               if (Use != &*A)
542                 HasNonLocalUses = true;
543             }
544           }
545         }
546         // Otherwise, it's captured. Don't bother doing SCC analysis on it.
547       }
548       if (!HasNonLocalUses && !A->onlyReadsMemory()) {
549         // Can we determine that it's readonly/readnone without doing an SCC?
550         // Note that we don't allow any calls at all here, or else our result
551         // will be dependent on the iteration order through the functions in the
552         // SCC.
553         SmallPtrSet<Argument *, 8> Self;
554         Self.insert(&*A);
555         Attribute::AttrKind R = determinePointerReadAttrs(&*A, Self);
556         if (R != Attribute::None) {
557           AttrBuilder B;
558           B.addAttribute(R);
559           A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B));
560           Changed = true;
561           R == Attribute::ReadOnly ? ++NumReadOnlyArg : ++NumReadNoneArg;
562         }
563       }
564     }
565   }
566
567   // The graph we've collected is partial because we stopped scanning for
568   // argument uses once we solved the argument trivially. These partial nodes
569   // show up as ArgumentGraphNode objects with an empty Uses list, and for
570   // these nodes the final decision about whether they capture has already been
571   // made.  If the definition doesn't have a 'nocapture' attribute by now, it
572   // captures.
573
574   for (scc_iterator<ArgumentGraph *> I = scc_begin(&AG); !I.isAtEnd(); ++I) {
575     const std::vector<ArgumentGraphNode *> &ArgumentSCC = *I;
576     if (ArgumentSCC.size() == 1) {
577       if (!ArgumentSCC[0]->Definition)
578         continue; // synthetic root node
579
580       // eg. "void f(int* x) { if (...) f(x); }"
581       if (ArgumentSCC[0]->Uses.size() == 1 &&
582           ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) {
583         Argument *A = ArgumentSCC[0]->Definition;
584         A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B));
585         ++NumNoCapture;
586         Changed = true;
587       }
588       continue;
589     }
590
591     bool SCCCaptured = false;
592     for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end();
593          I != E && !SCCCaptured; ++I) {
594       ArgumentGraphNode *Node = *I;
595       if (Node->Uses.empty()) {
596         if (!Node->Definition->hasNoCaptureAttr())
597           SCCCaptured = true;
598       }
599     }
600     if (SCCCaptured)
601       continue;
602
603     SmallPtrSet<Argument *, 8> ArgumentSCCNodes;
604     // Fill ArgumentSCCNodes with the elements of the ArgumentSCC.  Used for
605     // quickly looking up whether a given Argument is in this ArgumentSCC.
606     for (ArgumentGraphNode *I : ArgumentSCC) {
607       ArgumentSCCNodes.insert(I->Definition);
608     }
609
610     for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end();
611          I != E && !SCCCaptured; ++I) {
612       ArgumentGraphNode *N = *I;
613       for (ArgumentGraphNode *Use : N->Uses) {
614         Argument *A = Use->Definition;
615         if (A->hasNoCaptureAttr() || ArgumentSCCNodes.count(A))
616           continue;
617         SCCCaptured = true;
618         break;
619       }
620     }
621     if (SCCCaptured)
622       continue;
623
624     for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
625       Argument *A = ArgumentSCC[i]->Definition;
626       A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B));
627       ++NumNoCapture;
628       Changed = true;
629     }
630
631     // We also want to compute readonly/readnone. With a small number of false
632     // negatives, we can assume that any pointer which is captured isn't going
633     // to be provably readonly or readnone, since by definition we can't
634     // analyze all uses of a captured pointer.
635     //
636     // The false negatives happen when the pointer is captured by a function
637     // that promises readonly/readnone behaviour on the pointer, then the
638     // pointer's lifetime ends before anything that writes to arbitrary memory.
639     // Also, a readonly/readnone pointer may be returned, but returning a
640     // pointer is capturing it.
641
642     Attribute::AttrKind ReadAttr = Attribute::ReadNone;
643     for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
644       Argument *A = ArgumentSCC[i]->Definition;
645       Attribute::AttrKind K = determinePointerReadAttrs(A, ArgumentSCCNodes);
646       if (K == Attribute::ReadNone)
647         continue;
648       if (K == Attribute::ReadOnly) {
649         ReadAttr = Attribute::ReadOnly;
650         continue;
651       }
652       ReadAttr = K;
653       break;
654     }
655
656     if (ReadAttr != Attribute::None) {
657       AttrBuilder B, R;
658       B.addAttribute(ReadAttr);
659       R.addAttribute(Attribute::ReadOnly).addAttribute(Attribute::ReadNone);
660       for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
661         Argument *A = ArgumentSCC[i]->Definition;
662         // Clear out existing readonly/readnone attributes
663         A->removeAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, R));
664         A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B));
665         ReadAttr == Attribute::ReadOnly ? ++NumReadOnlyArg : ++NumReadNoneArg;
666         Changed = true;
667       }
668     }
669   }
670
671   return Changed;
672 }
673
674 /// Tests whether a function is "malloc-like".
675 ///
676 /// A function is "malloc-like" if it returns either null or a pointer that
677 /// doesn't alias any other pointer visible to the caller.
678 static bool isFunctionMallocLike(Function *F, const SCCNodeSet &SCCNodes) {
679   SmallSetVector<Value *, 8> FlowsToReturn;
680   for (BasicBlock &BB : *F)
681     if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator()))
682       FlowsToReturn.insert(Ret->getReturnValue());
683
684   for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
685     Value *RetVal = FlowsToReturn[i];
686
687     if (Constant *C = dyn_cast<Constant>(RetVal)) {
688       if (!C->isNullValue() && !isa<UndefValue>(C))
689         return false;
690
691       continue;
692     }
693
694     if (isa<Argument>(RetVal))
695       return false;
696
697     if (Instruction *RVI = dyn_cast<Instruction>(RetVal))
698       switch (RVI->getOpcode()) {
699       // Extend the analysis by looking upwards.
700       case Instruction::BitCast:
701       case Instruction::GetElementPtr:
702       case Instruction::AddrSpaceCast:
703         FlowsToReturn.insert(RVI->getOperand(0));
704         continue;
705       case Instruction::Select: {
706         SelectInst *SI = cast<SelectInst>(RVI);
707         FlowsToReturn.insert(SI->getTrueValue());
708         FlowsToReturn.insert(SI->getFalseValue());
709         continue;
710       }
711       case Instruction::PHI: {
712         PHINode *PN = cast<PHINode>(RVI);
713         for (Value *IncValue : PN->incoming_values())
714           FlowsToReturn.insert(IncValue);
715         continue;
716       }
717
718       // Check whether the pointer came from an allocation.
719       case Instruction::Alloca:
720         break;
721       case Instruction::Call:
722       case Instruction::Invoke: {
723         CallSite CS(RVI);
724         if (CS.paramHasAttr(0, Attribute::NoAlias))
725           break;
726         if (CS.getCalledFunction() && SCCNodes.count(CS.getCalledFunction()))
727           break;
728       } // fall-through
729       default:
730         return false; // Did not come from an allocation.
731       }
732
733     if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false))
734       return false;
735   }
736
737   return true;
738 }
739
740 /// Deduce noalias attributes for the SCC.
741 static bool addNoAliasAttrs(const SCCNodeSet &SCCNodes) {
742   // Check each function in turn, determining which functions return noalias
743   // pointers.
744   for (Function *F : SCCNodes) {
745     // Already noalias.
746     if (F->doesNotAlias(0))
747       continue;
748
749     // We can infer and propagate function attributes only when we know that the
750     // definition we'll get at link time is *exactly* the definition we see now.
751     // For more details, see GlobalValue::mayBeDerefined.
752     if (!F->hasExactDefinition())
753       return false;
754
755     // We annotate noalias return values, which are only applicable to
756     // pointer types.
757     if (!F->getReturnType()->isPointerTy())
758       continue;
759
760     if (!isFunctionMallocLike(F, SCCNodes))
761       return false;
762   }
763
764   bool MadeChange = false;
765   for (Function *F : SCCNodes) {
766     if (F->doesNotAlias(0) || !F->getReturnType()->isPointerTy())
767       continue;
768
769     F->setDoesNotAlias(0);
770     ++NumNoAlias;
771     MadeChange = true;
772   }
773
774   return MadeChange;
775 }
776
777 /// Tests whether this function is known to not return null.
778 ///
779 /// Requires that the function returns a pointer.
780 ///
781 /// Returns true if it believes the function will not return a null, and sets
782 /// \p Speculative based on whether the returned conclusion is a speculative
783 /// conclusion due to SCC calls.
784 static bool isReturnNonNull(Function *F, const SCCNodeSet &SCCNodes,
785                             bool &Speculative) {
786   assert(F->getReturnType()->isPointerTy() &&
787          "nonnull only meaningful on pointer types");
788   Speculative = false;
789
790   SmallSetVector<Value *, 8> FlowsToReturn;
791   for (BasicBlock &BB : *F)
792     if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator()))
793       FlowsToReturn.insert(Ret->getReturnValue());
794
795   for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
796     Value *RetVal = FlowsToReturn[i];
797
798     // If this value is locally known to be non-null, we're good
799     if (isKnownNonNull(RetVal))
800       continue;
801
802     // Otherwise, we need to look upwards since we can't make any local
803     // conclusions.
804     Instruction *RVI = dyn_cast<Instruction>(RetVal);
805     if (!RVI)
806       return false;
807     switch (RVI->getOpcode()) {
808     // Extend the analysis by looking upwards.
809     case Instruction::BitCast:
810     case Instruction::GetElementPtr:
811     case Instruction::AddrSpaceCast:
812       FlowsToReturn.insert(RVI->getOperand(0));
813       continue;
814     case Instruction::Select: {
815       SelectInst *SI = cast<SelectInst>(RVI);
816       FlowsToReturn.insert(SI->getTrueValue());
817       FlowsToReturn.insert(SI->getFalseValue());
818       continue;
819     }
820     case Instruction::PHI: {
821       PHINode *PN = cast<PHINode>(RVI);
822       for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
823         FlowsToReturn.insert(PN->getIncomingValue(i));
824       continue;
825     }
826     case Instruction::Call:
827     case Instruction::Invoke: {
828       CallSite CS(RVI);
829       Function *Callee = CS.getCalledFunction();
830       // A call to a node within the SCC is assumed to return null until
831       // proven otherwise
832       if (Callee && SCCNodes.count(Callee)) {
833         Speculative = true;
834         continue;
835       }
836       return false;
837     }
838     default:
839       return false; // Unknown source, may be null
840     };
841     llvm_unreachable("should have either continued or returned");
842   }
843
844   return true;
845 }
846
847 /// Deduce nonnull attributes for the SCC.
848 static bool addNonNullAttrs(const SCCNodeSet &SCCNodes) {
849   // Speculative that all functions in the SCC return only nonnull
850   // pointers.  We may refute this as we analyze functions.
851   bool SCCReturnsNonNull = true;
852
853   bool MadeChange = false;
854
855   // Check each function in turn, determining which functions return nonnull
856   // pointers.
857   for (Function *F : SCCNodes) {
858     // Already nonnull.
859     if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
860                                         Attribute::NonNull))
861       continue;
862
863     // We can infer and propagate function attributes only when we know that the
864     // definition we'll get at link time is *exactly* the definition we see now.
865     // For more details, see GlobalValue::mayBeDerefined.
866     if (!F->hasExactDefinition())
867       return false;
868
869     // We annotate nonnull return values, which are only applicable to
870     // pointer types.
871     if (!F->getReturnType()->isPointerTy())
872       continue;
873
874     bool Speculative = false;
875     if (isReturnNonNull(F, SCCNodes, Speculative)) {
876       if (!Speculative) {
877         // Mark the function eagerly since we may discover a function
878         // which prevents us from speculating about the entire SCC
879         DEBUG(dbgs() << "Eagerly marking " << F->getName() << " as nonnull\n");
880         F->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull);
881         ++NumNonNullReturn;
882         MadeChange = true;
883       }
884       continue;
885     }
886     // At least one function returns something which could be null, can't
887     // speculate any more.
888     SCCReturnsNonNull = false;
889   }
890
891   if (SCCReturnsNonNull) {
892     for (Function *F : SCCNodes) {
893       if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
894                                           Attribute::NonNull) ||
895           !F->getReturnType()->isPointerTy())
896         continue;
897
898       DEBUG(dbgs() << "SCC marking " << F->getName() << " as nonnull\n");
899       F->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull);
900       ++NumNonNullReturn;
901       MadeChange = true;
902     }
903   }
904
905   return MadeChange;
906 }
907
908 /// Remove the convergent attribute from all functions in the SCC if every
909 /// callsite within the SCC is not convergent (except for calls to functions
910 /// within the SCC).  Returns true if changes were made.
911 static bool removeConvergentAttrs(const SCCNodeSet &SCCNodes) {
912   // For every function in SCC, ensure that either
913   //  * it is not convergent, or
914   //  * we can remove its convergent attribute.
915   bool HasConvergentFn = false;
916   for (Function *F : SCCNodes) {
917     if (!F->isConvergent()) continue;
918     HasConvergentFn = true;
919
920     // Can't remove convergent from function declarations.
921     if (F->isDeclaration()) return false;
922
923     // Can't remove convergent if any of our functions has a convergent call to a
924     // function not in the SCC.
925     for (Instruction &I : instructions(*F)) {
926       CallSite CS(&I);
927       // Bail if CS is a convergent call to a function not in the SCC.
928       if (CS && CS.isConvergent() &&
929           SCCNodes.count(CS.getCalledFunction()) == 0)
930         return false;
931     }
932   }
933
934   // If the SCC doesn't have any convergent functions, we have nothing to do.
935   if (!HasConvergentFn) return false;
936
937   // If we got here, all of the calls the SCC makes to functions not in the SCC
938   // are non-convergent.  Therefore all of the SCC's functions can also be made
939   // non-convergent.  We'll remove the attr from the callsites in
940   // InstCombineCalls.
941   for (Function *F : SCCNodes) {
942     if (!F->isConvergent()) continue;
943
944     DEBUG(dbgs() << "Removing convergent attr from fn " << F->getName()
945                  << "\n");
946     F->setNotConvergent();
947   }
948   return true;
949 }
950
951 static bool setDoesNotRecurse(Function &F) {
952   if (F.doesNotRecurse())
953     return false;
954   F.setDoesNotRecurse();
955   ++NumNoRecurse;
956   return true;
957 }
958
959 static bool addNoRecurseAttrs(const SCCNodeSet &SCCNodes) {
960   // Try and identify functions that do not recurse.
961
962   // If the SCC contains multiple nodes we know for sure there is recursion.
963   if (SCCNodes.size() != 1)
964     return false;
965
966   Function *F = *SCCNodes.begin();
967   if (!F || F->isDeclaration() || F->doesNotRecurse())
968     return false;
969
970   // If all of the calls in F are identifiable and are to norecurse functions, F
971   // is norecurse. This check also detects self-recursion as F is not currently
972   // marked norecurse, so any called from F to F will not be marked norecurse.
973   for (Instruction &I : instructions(*F))
974     if (auto CS = CallSite(&I)) {
975       Function *Callee = CS.getCalledFunction();
976       if (!Callee || Callee == F || !Callee->doesNotRecurse())
977         // Function calls a potentially recursive function.
978         return false;
979     }
980
981   // Every call was to a non-recursive function other than this function, and
982   // we have no indirect recursion as the SCC size is one. This function cannot
983   // recurse.
984   return setDoesNotRecurse(*F);
985 }
986
987 PreservedAnalyses PostOrderFunctionAttrsPass::run(LazyCallGraph::SCC &C,
988                                                   CGSCCAnalysisManager &AM) {
989   FunctionAnalysisManager &FAM =
990       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C).getManager();
991
992   // We pass a lambda into functions to wire them up to the analysis manager
993   // for getting function analyses.
994   auto AARGetter = [&](Function &F) -> AAResults & {
995     return FAM.getResult<AAManager>(F);
996   };
997
998   // Fill SCCNodes with the elements of the SCC. Also track whether there are
999   // any external or opt-none nodes that will prevent us from optimizing any
1000   // part of the SCC.
1001   SCCNodeSet SCCNodes;
1002   bool HasUnknownCall = false;
1003   for (LazyCallGraph::Node &N : C) {
1004     Function &F = N.getFunction();
1005     if (F.hasFnAttribute(Attribute::OptimizeNone)) {
1006       // Treat any function we're trying not to optimize as if it were an
1007       // indirect call and omit it from the node set used below.
1008       HasUnknownCall = true;
1009       continue;
1010     }
1011     // Track whether any functions in this SCC have an unknown call edge.
1012     // Note: if this is ever a performance hit, we can common it with
1013     // subsequent routines which also do scans over the instructions of the
1014     // function.
1015     if (!HasUnknownCall)
1016       for (Instruction &I : instructions(F))
1017         if (auto CS = CallSite(&I))
1018           if (!CS.getCalledFunction()) {
1019             HasUnknownCall = true;
1020             break;
1021           }
1022
1023     SCCNodes.insert(&F);
1024   }
1025
1026   bool Changed = false;
1027   Changed |= addReadAttrs(SCCNodes, AARGetter);
1028   Changed |= addArgumentAttrs(SCCNodes);
1029
1030   // If we have no external nodes participating in the SCC, we can deduce some
1031   // more precise attributes as well.
1032   if (!HasUnknownCall) {
1033     Changed |= addNoAliasAttrs(SCCNodes);
1034     Changed |= addNonNullAttrs(SCCNodes);
1035     Changed |= removeConvergentAttrs(SCCNodes);
1036     Changed |= addNoRecurseAttrs(SCCNodes);
1037   }
1038
1039   return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
1040 }
1041
1042 namespace {
1043 struct PostOrderFunctionAttrsLegacyPass : public CallGraphSCCPass {
1044   static char ID; // Pass identification, replacement for typeid
1045   PostOrderFunctionAttrsLegacyPass() : CallGraphSCCPass(ID) {
1046     initializePostOrderFunctionAttrsLegacyPassPass(*PassRegistry::getPassRegistry());
1047   }
1048
1049   bool runOnSCC(CallGraphSCC &SCC) override;
1050
1051   void getAnalysisUsage(AnalysisUsage &AU) const override {
1052     AU.setPreservesCFG();
1053     AU.addRequired<AssumptionCacheTracker>();
1054     getAAResultsAnalysisUsage(AU);
1055     CallGraphSCCPass::getAnalysisUsage(AU);
1056   }
1057 };
1058 }
1059
1060 char PostOrderFunctionAttrsLegacyPass::ID = 0;
1061 INITIALIZE_PASS_BEGIN(PostOrderFunctionAttrsLegacyPass, "functionattrs",
1062                       "Deduce function attributes", false, false)
1063 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1064 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1065 INITIALIZE_PASS_END(PostOrderFunctionAttrsLegacyPass, "functionattrs",
1066                     "Deduce function attributes", false, false)
1067
1068 Pass *llvm::createPostOrderFunctionAttrsLegacyPass() { return new PostOrderFunctionAttrsLegacyPass(); }
1069
1070 template <typename AARGetterT>
1071 static bool runImpl(CallGraphSCC &SCC, AARGetterT AARGetter) {
1072   bool Changed = false;
1073
1074   // Fill SCCNodes with the elements of the SCC. Used for quickly looking up
1075   // whether a given CallGraphNode is in this SCC. Also track whether there are
1076   // any external or opt-none nodes that will prevent us from optimizing any
1077   // part of the SCC.
1078   SCCNodeSet SCCNodes;
1079   bool ExternalNode = false;
1080   for (CallGraphNode *I : SCC) {
1081     Function *F = I->getFunction();
1082     if (!F || F->hasFnAttribute(Attribute::OptimizeNone)) {
1083       // External node or function we're trying not to optimize - we both avoid
1084       // transform them and avoid leveraging information they provide.
1085       ExternalNode = true;
1086       continue;
1087     }
1088
1089     SCCNodes.insert(F);
1090   }
1091
1092   Changed |= addReadAttrs(SCCNodes, AARGetter);
1093   Changed |= addArgumentAttrs(SCCNodes);
1094
1095   // If we have no external nodes participating in the SCC, we can deduce some
1096   // more precise attributes as well.
1097   if (!ExternalNode) {
1098     Changed |= addNoAliasAttrs(SCCNodes);
1099     Changed |= addNonNullAttrs(SCCNodes);
1100     Changed |= removeConvergentAttrs(SCCNodes);
1101     Changed |= addNoRecurseAttrs(SCCNodes);
1102   }
1103
1104   return Changed;
1105 }
1106
1107 bool PostOrderFunctionAttrsLegacyPass::runOnSCC(CallGraphSCC &SCC) {
1108   if (skipSCC(SCC))
1109     return false;
1110
1111   // We compute dedicated AA results for each function in the SCC as needed. We
1112   // use a lambda referencing external objects so that they live long enough to
1113   // be queried, but we re-use them each time.
1114   Optional<BasicAAResult> BAR;
1115   Optional<AAResults> AAR;
1116   auto AARGetter = [&](Function &F) -> AAResults & {
1117     BAR.emplace(createLegacyPMBasicAAResult(*this, F));
1118     AAR.emplace(createLegacyPMAAResults(*this, F, *BAR));
1119     return *AAR;
1120   };
1121
1122   return runImpl(SCC, AARGetter);
1123 }
1124
1125 namespace {
1126 struct ReversePostOrderFunctionAttrsLegacyPass : public ModulePass {
1127   static char ID; // Pass identification, replacement for typeid
1128   ReversePostOrderFunctionAttrsLegacyPass() : ModulePass(ID) {
1129     initializeReversePostOrderFunctionAttrsLegacyPassPass(*PassRegistry::getPassRegistry());
1130   }
1131
1132   bool runOnModule(Module &M) override;
1133
1134   void getAnalysisUsage(AnalysisUsage &AU) const override {
1135     AU.setPreservesCFG();
1136     AU.addRequired<CallGraphWrapperPass>();
1137     AU.addPreserved<CallGraphWrapperPass>();
1138   }
1139 };
1140 }
1141
1142 char ReversePostOrderFunctionAttrsLegacyPass::ID = 0;
1143 INITIALIZE_PASS_BEGIN(ReversePostOrderFunctionAttrsLegacyPass, "rpo-functionattrs",
1144                       "Deduce function attributes in RPO", false, false)
1145 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1146 INITIALIZE_PASS_END(ReversePostOrderFunctionAttrsLegacyPass, "rpo-functionattrs",
1147                     "Deduce function attributes in RPO", false, false)
1148
1149 Pass *llvm::createReversePostOrderFunctionAttrsPass() {
1150   return new ReversePostOrderFunctionAttrsLegacyPass();
1151 }
1152
1153 static bool addNoRecurseAttrsTopDown(Function &F) {
1154   // We check the preconditions for the function prior to calling this to avoid
1155   // the cost of building up a reversible post-order list. We assert them here
1156   // to make sure none of the invariants this relies on were violated.
1157   assert(!F.isDeclaration() && "Cannot deduce norecurse without a definition!");
1158   assert(!F.doesNotRecurse() &&
1159          "This function has already been deduced as norecurs!");
1160   assert(F.hasInternalLinkage() &&
1161          "Can only do top-down deduction for internal linkage functions!");
1162
1163   // If F is internal and all of its uses are calls from a non-recursive
1164   // functions, then none of its calls could in fact recurse without going
1165   // through a function marked norecurse, and so we can mark this function too
1166   // as norecurse. Note that the uses must actually be calls -- otherwise
1167   // a pointer to this function could be returned from a norecurse function but
1168   // this function could be recursively (indirectly) called. Note that this
1169   // also detects if F is directly recursive as F is not yet marked as
1170   // a norecurse function.
1171   for (auto *U : F.users()) {
1172     auto *I = dyn_cast<Instruction>(U);
1173     if (!I)
1174       return false;
1175     CallSite CS(I);
1176     if (!CS || !CS.getParent()->getParent()->doesNotRecurse())
1177       return false;
1178   }
1179   return setDoesNotRecurse(F);
1180 }
1181
1182 static bool deduceFunctionAttributeInRPO(Module &M, CallGraph &CG) {
1183   // We only have a post-order SCC traversal (because SCCs are inherently
1184   // discovered in post-order), so we accumulate them in a vector and then walk
1185   // it in reverse. This is simpler than using the RPO iterator infrastructure
1186   // because we need to combine SCC detection and the PO walk of the call
1187   // graph. We can also cheat egregiously because we're primarily interested in
1188   // synthesizing norecurse and so we can only save the singular SCCs as SCCs
1189   // with multiple functions in them will clearly be recursive.
1190   SmallVector<Function *, 16> Worklist;
1191   for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
1192     if (I->size() != 1)
1193       continue;
1194
1195     Function *F = I->front()->getFunction();
1196     if (F && !F->isDeclaration() && !F->doesNotRecurse() &&
1197         F->hasInternalLinkage())
1198       Worklist.push_back(F);
1199   }
1200
1201   bool Changed = false;
1202   for (auto *F : reverse(Worklist))
1203     Changed |= addNoRecurseAttrsTopDown(*F);
1204
1205   return Changed;
1206 }
1207
1208 bool ReversePostOrderFunctionAttrsLegacyPass::runOnModule(Module &M) {
1209   if (skipModule(M))
1210     return false;
1211
1212   auto &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
1213
1214   return deduceFunctionAttributeInRPO(M, CG);
1215 }
1216
1217 PreservedAnalyses
1218 ReversePostOrderFunctionAttrsPass::run(Module &M, AnalysisManager<Module> &AM) {
1219   auto &CG = AM.getResult<CallGraphAnalysis>(M);
1220
1221   bool Changed = deduceFunctionAttributeInRPO(M, CG);
1222   if (!Changed)
1223     return PreservedAnalyses::all();
1224   PreservedAnalyses PA;
1225   PA.preserve<CallGraphAnalysis>();
1226   return PA;
1227 }