]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/IPO/Inliner.cpp
Import tzdata 2018a
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / IPO / Inliner.cpp
1 //===- Inliner.cpp - Code common to all inliners --------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the mechanics required to implement inlining without
11 // missing any calls and updating the call graph.  The decisions of which calls
12 // are profitable to inline are implemented elsewhere.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/Transforms/IPO/Inliner.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/BasicAliasAnalysis.h"
29 #include "llvm/Analysis/BlockFrequencyInfo.h"
30 #include "llvm/Analysis/CGSCCPassManager.h"
31 #include "llvm/Analysis/CallGraph.h"
32 #include "llvm/Analysis/InlineCost.h"
33 #include "llvm/Analysis/LazyCallGraph.h"
34 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
35 #include "llvm/Analysis/ProfileSummaryInfo.h"
36 #include "llvm/Analysis/TargetLibraryInfo.h"
37 #include "llvm/Analysis/TargetTransformInfo.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/BasicBlock.h"
40 #include "llvm/IR/CallSite.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/DiagnosticInfo.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/InstIterator.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/IntrinsicInst.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/PassManager.h"
53 #include "llvm/IR/User.h"
54 #include "llvm/IR/Value.h"
55 #include "llvm/Pass.h"
56 #include "llvm/Support/Casting.h"
57 #include "llvm/Support/CommandLine.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include "llvm/Transforms/Utils/Cloning.h"
61 #include "llvm/Transforms/Utils/ImportedFunctionsInliningStatistics.h"
62 #include "llvm/Transforms/Utils/Local.h"
63 #include "llvm/Transforms/Utils/ModuleUtils.h"
64 #include <algorithm>
65 #include <cassert>
66 #include <functional>
67 #include <tuple>
68 #include <utility>
69 #include <vector>
70
71 using namespace llvm;
72
73 #define DEBUG_TYPE "inline"
74
75 STATISTIC(NumInlined, "Number of functions inlined");
76 STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined");
77 STATISTIC(NumDeleted, "Number of functions deleted because all callers found");
78 STATISTIC(NumMergedAllocas, "Number of allocas merged together");
79
80 // This weirdly named statistic tracks the number of times that, when attempting
81 // to inline a function A into B, we analyze the callers of B in order to see
82 // if those would be more profitable and blocked inline steps.
83 STATISTIC(NumCallerCallersAnalyzed, "Number of caller-callers analyzed");
84
85 /// Flag to disable manual alloca merging.
86 ///
87 /// Merging of allocas was originally done as a stack-size saving technique
88 /// prior to LLVM's code generator having support for stack coloring based on
89 /// lifetime markers. It is now in the process of being removed. To experiment
90 /// with disabling it and relying fully on lifetime marker based stack
91 /// coloring, you can pass this flag to LLVM.
92 static cl::opt<bool>
93     DisableInlinedAllocaMerging("disable-inlined-alloca-merging",
94                                 cl::init(false), cl::Hidden);
95
96 namespace {
97
98 enum class InlinerFunctionImportStatsOpts {
99   No = 0,
100   Basic = 1,
101   Verbose = 2,
102 };
103
104 } // end anonymous namespace
105
106 static cl::opt<InlinerFunctionImportStatsOpts> InlinerFunctionImportStats(
107     "inliner-function-import-stats",
108     cl::init(InlinerFunctionImportStatsOpts::No),
109     cl::values(clEnumValN(InlinerFunctionImportStatsOpts::Basic, "basic",
110                           "basic statistics"),
111                clEnumValN(InlinerFunctionImportStatsOpts::Verbose, "verbose",
112                           "printing of statistics for each inlined function")),
113     cl::Hidden, cl::desc("Enable inliner stats for imported functions"));
114
115 LegacyInlinerBase::LegacyInlinerBase(char &ID) : CallGraphSCCPass(ID) {}
116
117 LegacyInlinerBase::LegacyInlinerBase(char &ID, bool InsertLifetime)
118     : CallGraphSCCPass(ID), InsertLifetime(InsertLifetime) {}
119
120 /// For this class, we declare that we require and preserve the call graph.
121 /// If the derived class implements this method, it should
122 /// always explicitly call the implementation here.
123 void LegacyInlinerBase::getAnalysisUsage(AnalysisUsage &AU) const {
124   AU.addRequired<AssumptionCacheTracker>();
125   AU.addRequired<ProfileSummaryInfoWrapperPass>();
126   AU.addRequired<TargetLibraryInfoWrapperPass>();
127   getAAResultsAnalysisUsage(AU);
128   CallGraphSCCPass::getAnalysisUsage(AU);
129 }
130
131 using InlinedArrayAllocasTy = DenseMap<ArrayType *, std::vector<AllocaInst *>>;
132
133 /// Look at all of the allocas that we inlined through this call site.  If we
134 /// have already inlined other allocas through other calls into this function,
135 /// then we know that they have disjoint lifetimes and that we can merge them.
136 ///
137 /// There are many heuristics possible for merging these allocas, and the
138 /// different options have different tradeoffs.  One thing that we *really*
139 /// don't want to hurt is SRoA: once inlining happens, often allocas are no
140 /// longer address taken and so they can be promoted.
141 ///
142 /// Our "solution" for that is to only merge allocas whose outermost type is an
143 /// array type.  These are usually not promoted because someone is using a
144 /// variable index into them.  These are also often the most important ones to
145 /// merge.
146 ///
147 /// A better solution would be to have real memory lifetime markers in the IR
148 /// and not have the inliner do any merging of allocas at all.  This would
149 /// allow the backend to do proper stack slot coloring of all allocas that
150 /// *actually make it to the backend*, which is really what we want.
151 ///
152 /// Because we don't have this information, we do this simple and useful hack.
153 static void mergeInlinedArrayAllocas(
154     Function *Caller, InlineFunctionInfo &IFI,
155     InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory) {
156   SmallPtrSet<AllocaInst *, 16> UsedAllocas;
157
158   // When processing our SCC, check to see if CS was inlined from some other
159   // call site.  For example, if we're processing "A" in this code:
160   //   A() { B() }
161   //   B() { x = alloca ... C() }
162   //   C() { y = alloca ... }
163   // Assume that C was not inlined into B initially, and so we're processing A
164   // and decide to inline B into A.  Doing this makes an alloca available for
165   // reuse and makes a callsite (C) available for inlining.  When we process
166   // the C call site we don't want to do any alloca merging between X and Y
167   // because their scopes are not disjoint.  We could make this smarter by
168   // keeping track of the inline history for each alloca in the
169   // InlinedArrayAllocas but this isn't likely to be a significant win.
170   if (InlineHistory != -1) // Only do merging for top-level call sites in SCC.
171     return;
172
173   // Loop over all the allocas we have so far and see if they can be merged with
174   // a previously inlined alloca.  If not, remember that we had it.
175   for (unsigned AllocaNo = 0, e = IFI.StaticAllocas.size(); AllocaNo != e;
176        ++AllocaNo) {
177     AllocaInst *AI = IFI.StaticAllocas[AllocaNo];
178
179     // Don't bother trying to merge array allocations (they will usually be
180     // canonicalized to be an allocation *of* an array), or allocations whose
181     // type is not itself an array (because we're afraid of pessimizing SRoA).
182     ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType());
183     if (!ATy || AI->isArrayAllocation())
184       continue;
185
186     // Get the list of all available allocas for this array type.
187     std::vector<AllocaInst *> &AllocasForType = InlinedArrayAllocas[ATy];
188
189     // Loop over the allocas in AllocasForType to see if we can reuse one.  Note
190     // that we have to be careful not to reuse the same "available" alloca for
191     // multiple different allocas that we just inlined, we use the 'UsedAllocas'
192     // set to keep track of which "available" allocas are being used by this
193     // function.  Also, AllocasForType can be empty of course!
194     bool MergedAwayAlloca = false;
195     for (AllocaInst *AvailableAlloca : AllocasForType) {
196       unsigned Align1 = AI->getAlignment(),
197                Align2 = AvailableAlloca->getAlignment();
198
199       // The available alloca has to be in the right function, not in some other
200       // function in this SCC.
201       if (AvailableAlloca->getParent() != AI->getParent())
202         continue;
203
204       // If the inlined function already uses this alloca then we can't reuse
205       // it.
206       if (!UsedAllocas.insert(AvailableAlloca).second)
207         continue;
208
209       // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare
210       // success!
211       DEBUG(dbgs() << "    ***MERGED ALLOCA: " << *AI
212                    << "\n\t\tINTO: " << *AvailableAlloca << '\n');
213
214       // Move affected dbg.declare calls immediately after the new alloca to
215       // avoid the situation when a dbg.declare precedes its alloca.
216       if (auto *L = LocalAsMetadata::getIfExists(AI))
217         if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
218           for (User *U : MDV->users())
219             if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
220               DDI->moveBefore(AvailableAlloca->getNextNode());
221
222       AI->replaceAllUsesWith(AvailableAlloca);
223
224       if (Align1 != Align2) {
225         if (!Align1 || !Align2) {
226           const DataLayout &DL = Caller->getParent()->getDataLayout();
227           unsigned TypeAlign = DL.getABITypeAlignment(AI->getAllocatedType());
228
229           Align1 = Align1 ? Align1 : TypeAlign;
230           Align2 = Align2 ? Align2 : TypeAlign;
231         }
232
233         if (Align1 > Align2)
234           AvailableAlloca->setAlignment(AI->getAlignment());
235       }
236
237       AI->eraseFromParent();
238       MergedAwayAlloca = true;
239       ++NumMergedAllocas;
240       IFI.StaticAllocas[AllocaNo] = nullptr;
241       break;
242     }
243
244     // If we already nuked the alloca, we're done with it.
245     if (MergedAwayAlloca)
246       continue;
247
248     // If we were unable to merge away the alloca either because there are no
249     // allocas of the right type available or because we reused them all
250     // already, remember that this alloca came from an inlined function and mark
251     // it used so we don't reuse it for other allocas from this inline
252     // operation.
253     AllocasForType.push_back(AI);
254     UsedAllocas.insert(AI);
255   }
256 }
257
258 /// If it is possible to inline the specified call site,
259 /// do so and update the CallGraph for this operation.
260 ///
261 /// This function also does some basic book-keeping to update the IR.  The
262 /// InlinedArrayAllocas map keeps track of any allocas that are already
263 /// available from other functions inlined into the caller.  If we are able to
264 /// inline this call site we attempt to reuse already available allocas or add
265 /// any new allocas to the set if not possible.
266 static bool InlineCallIfPossible(
267     CallSite CS, InlineFunctionInfo &IFI,
268     InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory,
269     bool InsertLifetime, function_ref<AAResults &(Function &)> &AARGetter,
270     ImportedFunctionsInliningStatistics &ImportedFunctionsStats) {
271   Function *Callee = CS.getCalledFunction();
272   Function *Caller = CS.getCaller();
273
274   AAResults &AAR = AARGetter(*Callee);
275
276   // Try to inline the function.  Get the list of static allocas that were
277   // inlined.
278   if (!InlineFunction(CS, IFI, &AAR, InsertLifetime))
279     return false;
280
281   if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
282     ImportedFunctionsStats.recordInline(*Caller, *Callee);
283
284   AttributeFuncs::mergeAttributesForInlining(*Caller, *Callee);
285
286   if (!DisableInlinedAllocaMerging)
287     mergeInlinedArrayAllocas(Caller, IFI, InlinedArrayAllocas, InlineHistory);
288
289   return true;
290 }
291
292 /// Return true if inlining of CS can block the caller from being
293 /// inlined which is proved to be more beneficial. \p IC is the
294 /// estimated inline cost associated with callsite \p CS.
295 /// \p TotalSecondaryCost will be set to the estimated cost of inlining the
296 /// caller if \p CS is suppressed for inlining.
297 static bool
298 shouldBeDeferred(Function *Caller, CallSite CS, InlineCost IC,
299                  int &TotalSecondaryCost,
300                  function_ref<InlineCost(CallSite CS)> GetInlineCost) {
301   // For now we only handle local or inline functions.
302   if (!Caller->hasLocalLinkage() && !Caller->hasLinkOnceODRLinkage())
303     return false;
304   // Try to detect the case where the current inlining candidate caller (call
305   // it B) is a static or linkonce-ODR function and is an inlining candidate
306   // elsewhere, and the current candidate callee (call it C) is large enough
307   // that inlining it into B would make B too big to inline later. In these
308   // circumstances it may be best not to inline C into B, but to inline B into
309   // its callers.
310   //
311   // This only applies to static and linkonce-ODR functions because those are
312   // expected to be available for inlining in the translation units where they
313   // are used. Thus we will always have the opportunity to make local inlining
314   // decisions. Importantly the linkonce-ODR linkage covers inline functions
315   // and templates in C++.
316   //
317   // FIXME: All of this logic should be sunk into getInlineCost. It relies on
318   // the internal implementation of the inline cost metrics rather than
319   // treating them as truly abstract units etc.
320   TotalSecondaryCost = 0;
321   // The candidate cost to be imposed upon the current function.
322   int CandidateCost = IC.getCost() - 1;
323   // This bool tracks what happens if we do NOT inline C into B.
324   bool callerWillBeRemoved = Caller->hasLocalLinkage();
325   // This bool tracks what happens if we DO inline C into B.
326   bool inliningPreventsSomeOuterInline = false;
327   for (User *U : Caller->users()) {
328     CallSite CS2(U);
329
330     // If this isn't a call to Caller (it could be some other sort
331     // of reference) skip it.  Such references will prevent the caller
332     // from being removed.
333     if (!CS2 || CS2.getCalledFunction() != Caller) {
334       callerWillBeRemoved = false;
335       continue;
336     }
337
338     InlineCost IC2 = GetInlineCost(CS2);
339     ++NumCallerCallersAnalyzed;
340     if (!IC2) {
341       callerWillBeRemoved = false;
342       continue;
343     }
344     if (IC2.isAlways())
345       continue;
346
347     // See if inlining of the original callsite would erase the cost delta of
348     // this callsite. We subtract off the penalty for the call instruction,
349     // which we would be deleting.
350     if (IC2.getCostDelta() <= CandidateCost) {
351       inliningPreventsSomeOuterInline = true;
352       TotalSecondaryCost += IC2.getCost();
353     }
354   }
355   // If all outer calls to Caller would get inlined, the cost for the last
356   // one is set very low by getInlineCost, in anticipation that Caller will
357   // be removed entirely.  We did not account for this above unless there
358   // is only one caller of Caller.
359   if (callerWillBeRemoved && !Caller->hasOneUse())
360     TotalSecondaryCost -= InlineConstants::LastCallToStaticBonus;
361
362   if (inliningPreventsSomeOuterInline && TotalSecondaryCost < IC.getCost())
363     return true;
364
365   return false;
366 }
367
368 /// Return the cost only if the inliner should attempt to inline at the given
369 /// CallSite. If we return the cost, we will emit an optimisation remark later
370 /// using that cost, so we won't do so from this function.
371 static Optional<InlineCost>
372 shouldInline(CallSite CS, function_ref<InlineCost(CallSite CS)> GetInlineCost,
373              OptimizationRemarkEmitter &ORE) {
374   using namespace ore;
375
376   InlineCost IC = GetInlineCost(CS);
377   Instruction *Call = CS.getInstruction();
378   Function *Callee = CS.getCalledFunction();
379   Function *Caller = CS.getCaller();
380
381   if (IC.isAlways()) {
382     DEBUG(dbgs() << "    Inlining: cost=always"
383                  << ", Call: " << *CS.getInstruction() << "\n");
384     return IC;
385   }
386
387   if (IC.isNever()) {
388     DEBUG(dbgs() << "    NOT Inlining: cost=never"
389                  << ", Call: " << *CS.getInstruction() << "\n");
390     ORE.emit([&]() {
391       return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", Call)
392              << NV("Callee", Callee) << " not inlined into "
393              << NV("Caller", Caller)
394              << " because it should never be inlined (cost=never)";
395     });
396     return None;
397   }
398
399   if (!IC) {
400     DEBUG(dbgs() << "    NOT Inlining: cost=" << IC.getCost()
401                  << ", thres=" << IC.getThreshold()
402                  << ", Call: " << *CS.getInstruction() << "\n");
403     ORE.emit([&]() {
404       return OptimizationRemarkMissed(DEBUG_TYPE, "TooCostly", Call)
405              << NV("Callee", Callee) << " not inlined into "
406              << NV("Caller", Caller) << " because too costly to inline (cost="
407              << NV("Cost", IC.getCost())
408              << ", threshold=" << NV("Threshold", IC.getThreshold()) << ")";
409     });
410     return None;
411   }
412
413   int TotalSecondaryCost = 0;
414   if (shouldBeDeferred(Caller, CS, IC, TotalSecondaryCost, GetInlineCost)) {
415     DEBUG(dbgs() << "    NOT Inlining: " << *CS.getInstruction()
416                  << " Cost = " << IC.getCost()
417                  << ", outer Cost = " << TotalSecondaryCost << '\n');
418     ORE.emit([&]() {
419       return OptimizationRemarkMissed(DEBUG_TYPE, "IncreaseCostInOtherContexts",
420                                       Call)
421              << "Not inlining. Cost of inlining " << NV("Callee", Callee)
422              << " increases the cost of inlining " << NV("Caller", Caller)
423              << " in other contexts";
424     });
425
426     // IC does not bool() to false, so get an InlineCost that will.
427     // This will not be inspected to make an error message.
428     return None;
429   }
430
431   DEBUG(dbgs() << "    Inlining: cost=" << IC.getCost()
432                << ", thres=" << IC.getThreshold()
433                << ", Call: " << *CS.getInstruction() << '\n');
434   return IC;
435 }
436
437 /// Return true if the specified inline history ID
438 /// indicates an inline history that includes the specified function.
439 static bool InlineHistoryIncludes(
440     Function *F, int InlineHistoryID,
441     const SmallVectorImpl<std::pair<Function *, int>> &InlineHistory) {
442   while (InlineHistoryID != -1) {
443     assert(unsigned(InlineHistoryID) < InlineHistory.size() &&
444            "Invalid inline history ID");
445     if (InlineHistory[InlineHistoryID].first == F)
446       return true;
447     InlineHistoryID = InlineHistory[InlineHistoryID].second;
448   }
449   return false;
450 }
451
452 bool LegacyInlinerBase::doInitialization(CallGraph &CG) {
453   if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
454     ImportedFunctionsStats.setModuleInfo(CG.getModule());
455   return false; // No changes to CallGraph.
456 }
457
458 bool LegacyInlinerBase::runOnSCC(CallGraphSCC &SCC) {
459   if (skipSCC(SCC))
460     return false;
461   return inlineCalls(SCC);
462 }
463
464 static bool
465 inlineCallsImpl(CallGraphSCC &SCC, CallGraph &CG,
466                 std::function<AssumptionCache &(Function &)> GetAssumptionCache,
467                 ProfileSummaryInfo *PSI, TargetLibraryInfo &TLI,
468                 bool InsertLifetime,
469                 function_ref<InlineCost(CallSite CS)> GetInlineCost,
470                 function_ref<AAResults &(Function &)> AARGetter,
471                 ImportedFunctionsInliningStatistics &ImportedFunctionsStats) {
472   SmallPtrSet<Function *, 8> SCCFunctions;
473   DEBUG(dbgs() << "Inliner visiting SCC:");
474   for (CallGraphNode *Node : SCC) {
475     Function *F = Node->getFunction();
476     if (F)
477       SCCFunctions.insert(F);
478     DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE"));
479   }
480
481   // Scan through and identify all call sites ahead of time so that we only
482   // inline call sites in the original functions, not call sites that result
483   // from inlining other functions.
484   SmallVector<std::pair<CallSite, int>, 16> CallSites;
485
486   // When inlining a callee produces new call sites, we want to keep track of
487   // the fact that they were inlined from the callee.  This allows us to avoid
488   // infinite inlining in some obscure cases.  To represent this, we use an
489   // index into the InlineHistory vector.
490   SmallVector<std::pair<Function *, int>, 8> InlineHistory;
491
492   for (CallGraphNode *Node : SCC) {
493     Function *F = Node->getFunction();
494     if (!F || F->isDeclaration())
495       continue;
496
497     OptimizationRemarkEmitter ORE(F);
498     for (BasicBlock &BB : *F)
499       for (Instruction &I : BB) {
500         CallSite CS(cast<Value>(&I));
501         // If this isn't a call, or it is a call to an intrinsic, it can
502         // never be inlined.
503         if (!CS || isa<IntrinsicInst>(I))
504           continue;
505
506         // If this is a direct call to an external function, we can never inline
507         // it.  If it is an indirect call, inlining may resolve it to be a
508         // direct call, so we keep it.
509         if (Function *Callee = CS.getCalledFunction())
510           if (Callee->isDeclaration()) {
511             using namespace ore;
512
513             ORE.emit([&]() {
514               return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I)
515                      << NV("Callee", Callee) << " will not be inlined into "
516                      << NV("Caller", CS.getCaller())
517                      << " because its definition is unavailable"
518                      << setIsVerbose();
519             });
520             continue;
521           }
522
523         CallSites.push_back(std::make_pair(CS, -1));
524       }
525   }
526
527   DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n");
528
529   // If there are no calls in this function, exit early.
530   if (CallSites.empty())
531     return false;
532
533   // Now that we have all of the call sites, move the ones to functions in the
534   // current SCC to the end of the list.
535   unsigned FirstCallInSCC = CallSites.size();
536   for (unsigned i = 0; i < FirstCallInSCC; ++i)
537     if (Function *F = CallSites[i].first.getCalledFunction())
538       if (SCCFunctions.count(F))
539         std::swap(CallSites[i--], CallSites[--FirstCallInSCC]);
540
541   InlinedArrayAllocasTy InlinedArrayAllocas;
542   InlineFunctionInfo InlineInfo(&CG, &GetAssumptionCache, PSI);
543
544   // Now that we have all of the call sites, loop over them and inline them if
545   // it looks profitable to do so.
546   bool Changed = false;
547   bool LocalChange;
548   do {
549     LocalChange = false;
550     // Iterate over the outer loop because inlining functions can cause indirect
551     // calls to become direct calls.
552     // CallSites may be modified inside so ranged for loop can not be used.
553     for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) {
554       CallSite CS = CallSites[CSi].first;
555
556       Function *Caller = CS.getCaller();
557       Function *Callee = CS.getCalledFunction();
558
559       // We can only inline direct calls to non-declarations.
560       if (!Callee || Callee->isDeclaration())
561         continue;
562
563       Instruction *Instr = CS.getInstruction();
564
565       bool IsTriviallyDead = isInstructionTriviallyDead(Instr, &TLI);
566
567       int InlineHistoryID;
568       if (!IsTriviallyDead) {
569         // If this call site was obtained by inlining another function, verify
570         // that the include path for the function did not include the callee
571         // itself.  If so, we'd be recursively inlining the same function,
572         // which would provide the same callsites, which would cause us to
573         // infinitely inline.
574         InlineHistoryID = CallSites[CSi].second;
575         if (InlineHistoryID != -1 &&
576             InlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory))
577           continue;
578       }
579
580       // FIXME for new PM: because of the old PM we currently generate ORE and
581       // in turn BFI on demand.  With the new PM, the ORE dependency should
582       // just become a regular analysis dependency.
583       OptimizationRemarkEmitter ORE(Caller);
584
585       Optional<InlineCost> OIC = shouldInline(CS, GetInlineCost, ORE);
586       // If the policy determines that we should inline this function,
587       // delete the call instead.
588       if (!OIC)
589         continue;
590
591       // If this call site is dead and it is to a readonly function, we should
592       // just delete the call instead of trying to inline it, regardless of
593       // size.  This happens because IPSCCP propagates the result out of the
594       // call and then we're left with the dead call.
595       if (IsTriviallyDead) {
596         DEBUG(dbgs() << "    -> Deleting dead call: " << *Instr << "\n");
597         // Update the call graph by deleting the edge from Callee to Caller.
598         CG[Caller]->removeCallEdgeFor(CS);
599         Instr->eraseFromParent();
600         ++NumCallsDeleted;
601       } else {
602         // Get DebugLoc to report. CS will be invalid after Inliner.
603         DebugLoc DLoc = CS->getDebugLoc();
604         BasicBlock *Block = CS.getParent();
605
606         // Attempt to inline the function.
607         using namespace ore;
608
609         if (!InlineCallIfPossible(CS, InlineInfo, InlinedArrayAllocas,
610                                   InlineHistoryID, InsertLifetime, AARGetter,
611                                   ImportedFunctionsStats)) {
612           ORE.emit([&]() {
613             return OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc,
614                                             Block)
615                    << NV("Callee", Callee) << " will not be inlined into "
616                    << NV("Caller", Caller);
617           });
618           continue;
619         }
620         ++NumInlined;
621
622         ORE.emit([&]() {
623           bool AlwaysInline = OIC->isAlways();
624           StringRef RemarkName = AlwaysInline ? "AlwaysInline" : "Inlined";
625           OptimizationRemark R(DEBUG_TYPE, RemarkName, DLoc, Block);
626           R << NV("Callee", Callee) << " inlined into ";
627           R << NV("Caller", Caller);
628           if (AlwaysInline)
629             R << " with cost=always";
630           else {
631             R << " with cost=" << NV("Cost", OIC->getCost());
632             R << " (threshold=" << NV("Threshold", OIC->getThreshold());
633             R << ")";
634           }
635           return R;
636         });
637
638         // If inlining this function gave us any new call sites, throw them
639         // onto our worklist to process.  They are useful inline candidates.
640         if (!InlineInfo.InlinedCalls.empty()) {
641           // Create a new inline history entry for this, so that we remember
642           // that these new callsites came about due to inlining Callee.
643           int NewHistoryID = InlineHistory.size();
644           InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID));
645
646           for (Value *Ptr : InlineInfo.InlinedCalls)
647             CallSites.push_back(std::make_pair(CallSite(Ptr), NewHistoryID));
648         }
649       }
650
651       // If we inlined or deleted the last possible call site to the function,
652       // delete the function body now.
653       if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() &&
654           // TODO: Can remove if in SCC now.
655           !SCCFunctions.count(Callee) &&
656           // The function may be apparently dead, but if there are indirect
657           // callgraph references to the node, we cannot delete it yet, this
658           // could invalidate the CGSCC iterator.
659           CG[Callee]->getNumReferences() == 0) {
660         DEBUG(dbgs() << "    -> Deleting dead function: " << Callee->getName()
661                      << "\n");
662         CallGraphNode *CalleeNode = CG[Callee];
663
664         // Remove any call graph edges from the callee to its callees.
665         CalleeNode->removeAllCalledFunctions();
666
667         // Removing the node for callee from the call graph and delete it.
668         delete CG.removeFunctionFromModule(CalleeNode);
669         ++NumDeleted;
670       }
671
672       // Remove this call site from the list.  If possible, use
673       // swap/pop_back for efficiency, but do not use it if doing so would
674       // move a call site to a function in this SCC before the
675       // 'FirstCallInSCC' barrier.
676       if (SCC.isSingular()) {
677         CallSites[CSi] = CallSites.back();
678         CallSites.pop_back();
679       } else {
680         CallSites.erase(CallSites.begin() + CSi);
681       }
682       --CSi;
683
684       Changed = true;
685       LocalChange = true;
686     }
687   } while (LocalChange);
688
689   return Changed;
690 }
691
692 bool LegacyInlinerBase::inlineCalls(CallGraphSCC &SCC) {
693   CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
694   ACT = &getAnalysis<AssumptionCacheTracker>();
695   PSI = getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
696   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
697   auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
698     return ACT->getAssumptionCache(F);
699   };
700   return inlineCallsImpl(SCC, CG, GetAssumptionCache, PSI, TLI, InsertLifetime,
701                          [this](CallSite CS) { return getInlineCost(CS); },
702                          LegacyAARGetter(*this), ImportedFunctionsStats);
703 }
704
705 /// Remove now-dead linkonce functions at the end of
706 /// processing to avoid breaking the SCC traversal.
707 bool LegacyInlinerBase::doFinalization(CallGraph &CG) {
708   if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
709     ImportedFunctionsStats.dump(InlinerFunctionImportStats ==
710                                 InlinerFunctionImportStatsOpts::Verbose);
711   return removeDeadFunctions(CG);
712 }
713
714 /// Remove dead functions that are not included in DNR (Do Not Remove) list.
715 bool LegacyInlinerBase::removeDeadFunctions(CallGraph &CG,
716                                             bool AlwaysInlineOnly) {
717   SmallVector<CallGraphNode *, 16> FunctionsToRemove;
718   SmallVector<Function *, 16> DeadFunctionsInComdats;
719
720   auto RemoveCGN = [&](CallGraphNode *CGN) {
721     // Remove any call graph edges from the function to its callees.
722     CGN->removeAllCalledFunctions();
723
724     // Remove any edges from the external node to the function's call graph
725     // node.  These edges might have been made irrelegant due to
726     // optimization of the program.
727     CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN);
728
729     // Removing the node for callee from the call graph and delete it.
730     FunctionsToRemove.push_back(CGN);
731   };
732
733   // Scan for all of the functions, looking for ones that should now be removed
734   // from the program.  Insert the dead ones in the FunctionsToRemove set.
735   for (const auto &I : CG) {
736     CallGraphNode *CGN = I.second.get();
737     Function *F = CGN->getFunction();
738     if (!F || F->isDeclaration())
739       continue;
740
741     // Handle the case when this function is called and we only want to care
742     // about always-inline functions. This is a bit of a hack to share code
743     // between here and the InlineAlways pass.
744     if (AlwaysInlineOnly && !F->hasFnAttribute(Attribute::AlwaysInline))
745       continue;
746
747     // If the only remaining users of the function are dead constants, remove
748     // them.
749     F->removeDeadConstantUsers();
750
751     if (!F->isDefTriviallyDead())
752       continue;
753
754     // It is unsafe to drop a function with discardable linkage from a COMDAT
755     // without also dropping the other members of the COMDAT.
756     // The inliner doesn't visit non-function entities which are in COMDAT
757     // groups so it is unsafe to do so *unless* the linkage is local.
758     if (!F->hasLocalLinkage()) {
759       if (F->hasComdat()) {
760         DeadFunctionsInComdats.push_back(F);
761         continue;
762       }
763     }
764
765     RemoveCGN(CGN);
766   }
767   if (!DeadFunctionsInComdats.empty()) {
768     // Filter out the functions whose comdats remain alive.
769     filterDeadComdatFunctions(CG.getModule(), DeadFunctionsInComdats);
770     // Remove the rest.
771     for (Function *F : DeadFunctionsInComdats)
772       RemoveCGN(CG[F]);
773   }
774
775   if (FunctionsToRemove.empty())
776     return false;
777
778   // Now that we know which functions to delete, do so.  We didn't want to do
779   // this inline, because that would invalidate our CallGraph::iterator
780   // objects. :(
781   //
782   // Note that it doesn't matter that we are iterating over a non-stable order
783   // here to do this, it doesn't matter which order the functions are deleted
784   // in.
785   array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end());
786   FunctionsToRemove.erase(
787       std::unique(FunctionsToRemove.begin(), FunctionsToRemove.end()),
788       FunctionsToRemove.end());
789   for (CallGraphNode *CGN : FunctionsToRemove) {
790     delete CG.removeFunctionFromModule(CGN);
791     ++NumDeleted;
792   }
793   return true;
794 }
795
796 PreservedAnalyses InlinerPass::run(LazyCallGraph::SCC &InitialC,
797                                    CGSCCAnalysisManager &AM, LazyCallGraph &CG,
798                                    CGSCCUpdateResult &UR) {
799   const ModuleAnalysisManager &MAM =
800       AM.getResult<ModuleAnalysisManagerCGSCCProxy>(InitialC, CG).getManager();
801   bool Changed = false;
802
803   assert(InitialC.size() > 0 && "Cannot handle an empty SCC!");
804   Module &M = *InitialC.begin()->getFunction().getParent();
805   ProfileSummaryInfo *PSI = MAM.getCachedResult<ProfileSummaryAnalysis>(M);
806
807   // We use a single common worklist for calls across the entire SCC. We
808   // process these in-order and append new calls introduced during inlining to
809   // the end.
810   //
811   // Note that this particular order of processing is actually critical to
812   // avoid very bad behaviors. Consider *highly connected* call graphs where
813   // each function contains a small amonut of code and a couple of calls to
814   // other functions. Because the LLVM inliner is fundamentally a bottom-up
815   // inliner, it can handle gracefully the fact that these all appear to be
816   // reasonable inlining candidates as it will flatten things until they become
817   // too big to inline, and then move on and flatten another batch.
818   //
819   // However, when processing call edges *within* an SCC we cannot rely on this
820   // bottom-up behavior. As a consequence, with heavily connected *SCCs* of
821   // functions we can end up incrementally inlining N calls into each of
822   // N functions because each incremental inlining decision looks good and we
823   // don't have a topological ordering to prevent explosions.
824   //
825   // To compensate for this, we don't process transitive edges made immediate
826   // by inlining until we've done one pass of inlining across the entire SCC.
827   // Large, highly connected SCCs still lead to some amount of code bloat in
828   // this model, but it is uniformly spread across all the functions in the SCC
829   // and eventually they all become too large to inline, rather than
830   // incrementally maknig a single function grow in a super linear fashion.
831   SmallVector<std::pair<CallSite, int>, 16> Calls;
832
833   // Populate the initial list of calls in this SCC.
834   for (auto &N : InitialC) {
835     // We want to generally process call sites top-down in order for
836     // simplifications stemming from replacing the call with the returned value
837     // after inlining to be visible to subsequent inlining decisions.
838     // FIXME: Using instructions sequence is a really bad way to do this.
839     // Instead we should do an actual RPO walk of the function body.
840     for (Instruction &I : instructions(N.getFunction()))
841       if (auto CS = CallSite(&I))
842         if (Function *Callee = CS.getCalledFunction())
843           if (!Callee->isDeclaration())
844             Calls.push_back({CS, -1});
845   }
846   if (Calls.empty())
847     return PreservedAnalyses::all();
848
849   // Capture updatable variables for the current SCC and RefSCC.
850   auto *C = &InitialC;
851   auto *RC = &C->getOuterRefSCC();
852
853   // When inlining a callee produces new call sites, we want to keep track of
854   // the fact that they were inlined from the callee.  This allows us to avoid
855   // infinite inlining in some obscure cases.  To represent this, we use an
856   // index into the InlineHistory vector.
857   SmallVector<std::pair<Function *, int>, 16> InlineHistory;
858
859   // Track a set vector of inlined callees so that we can augment the caller
860   // with all of their edges in the call graph before pruning out the ones that
861   // got simplified away.
862   SmallSetVector<Function *, 4> InlinedCallees;
863
864   // Track the dead functions to delete once finished with inlining calls. We
865   // defer deleting these to make it easier to handle the call graph updates.
866   SmallVector<Function *, 4> DeadFunctions;
867
868   // Loop forward over all of the calls. Note that we cannot cache the size as
869   // inlining can introduce new calls that need to be processed.
870   for (int i = 0; i < (int)Calls.size(); ++i) {
871     // We expect the calls to typically be batched with sequences of calls that
872     // have the same caller, so we first set up some shared infrastructure for
873     // this caller. We also do any pruning we can at this layer on the caller
874     // alone.
875     Function &F = *Calls[i].first.getCaller();
876     LazyCallGraph::Node &N = *CG.lookup(F);
877     if (CG.lookupSCC(N) != C)
878       continue;
879     if (F.hasFnAttribute(Attribute::OptimizeNone))
880       continue;
881
882     DEBUG(dbgs() << "Inlining calls in: " << F.getName() << "\n");
883
884     // Get a FunctionAnalysisManager via a proxy for this particular node. We
885     // do this each time we visit a node as the SCC may have changed and as
886     // we're going to mutate this particular function we want to make sure the
887     // proxy is in place to forward any invalidation events. We can use the
888     // manager we get here for looking up results for functions other than this
889     // node however because those functions aren't going to be mutated by this
890     // pass.
891     FunctionAnalysisManager &FAM =
892         AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG)
893             .getManager();
894
895     // Get the remarks emission analysis for the caller.
896     auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
897
898     std::function<AssumptionCache &(Function &)> GetAssumptionCache =
899         [&](Function &F) -> AssumptionCache & {
900       return FAM.getResult<AssumptionAnalysis>(F);
901     };
902     auto GetBFI = [&](Function &F) -> BlockFrequencyInfo & {
903       return FAM.getResult<BlockFrequencyAnalysis>(F);
904     };
905
906     auto GetInlineCost = [&](CallSite CS) {
907       Function &Callee = *CS.getCalledFunction();
908       auto &CalleeTTI = FAM.getResult<TargetIRAnalysis>(Callee);
909       return getInlineCost(CS, Params, CalleeTTI, GetAssumptionCache, {GetBFI},
910                            PSI, &ORE);
911     };
912
913     // Now process as many calls as we have within this caller in the sequnece.
914     // We bail out as soon as the caller has to change so we can update the
915     // call graph and prepare the context of that new caller.
916     bool DidInline = false;
917     for (; i < (int)Calls.size() && Calls[i].first.getCaller() == &F; ++i) {
918       int InlineHistoryID;
919       CallSite CS;
920       std::tie(CS, InlineHistoryID) = Calls[i];
921       Function &Callee = *CS.getCalledFunction();
922
923       if (InlineHistoryID != -1 &&
924           InlineHistoryIncludes(&Callee, InlineHistoryID, InlineHistory))
925         continue;
926
927       // Check if this inlining may repeat breaking an SCC apart that has
928       // already been split once before. In that case, inlining here may
929       // trigger infinite inlining, much like is prevented within the inliner
930       // itself by the InlineHistory above, but spread across CGSCC iterations
931       // and thus hidden from the full inline history.
932       if (CG.lookupSCC(*CG.lookup(Callee)) == C &&
933           UR.InlinedInternalEdges.count({&N, C})) {
934         DEBUG(dbgs() << "Skipping inlining internal SCC edge from a node "
935                         "previously split out of this SCC by inlining: "
936                      << F.getName() << " -> " << Callee.getName() << "\n");
937         continue;
938       }
939
940       Optional<InlineCost> OIC = shouldInline(CS, GetInlineCost, ORE);
941       // Check whether we want to inline this callsite.
942       if (!OIC)
943         continue;
944
945       // Setup the data structure used to plumb customization into the
946       // `InlineFunction` routine.
947       InlineFunctionInfo IFI(
948           /*cg=*/nullptr, &GetAssumptionCache, PSI,
949           &FAM.getResult<BlockFrequencyAnalysis>(*(CS.getCaller())),
950           &FAM.getResult<BlockFrequencyAnalysis>(Callee));
951
952       // Get DebugLoc to report. CS will be invalid after Inliner.
953       DebugLoc DLoc = CS->getDebugLoc();
954       BasicBlock *Block = CS.getParent();
955
956       using namespace ore;
957
958       if (!InlineFunction(CS, IFI)) {
959         ORE.emit([&]() {
960           return OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc, Block)
961                  << NV("Callee", &Callee) << " will not be inlined into "
962                  << NV("Caller", &F);
963         });
964         continue;
965       }
966       DidInline = true;
967       InlinedCallees.insert(&Callee);
968
969       ORE.emit([&]() {
970         bool AlwaysInline = OIC->isAlways();
971         StringRef RemarkName = AlwaysInline ? "AlwaysInline" : "Inlined";
972         OptimizationRemark R(DEBUG_TYPE, RemarkName, DLoc, Block);
973         R << NV("Callee", &Callee) << " inlined into ";
974         R << NV("Caller", &F);
975         if (AlwaysInline)
976           R << " with cost=always";
977         else {
978           R << " with cost=" << NV("Cost", OIC->getCost());
979           R << " (threshold=" << NV("Threshold", OIC->getThreshold());
980           R << ")";
981         }
982         return R;
983       });
984
985       // Add any new callsites to defined functions to the worklist.
986       if (!IFI.InlinedCallSites.empty()) {
987         int NewHistoryID = InlineHistory.size();
988         InlineHistory.push_back({&Callee, InlineHistoryID});
989         for (CallSite &CS : reverse(IFI.InlinedCallSites))
990           if (Function *NewCallee = CS.getCalledFunction())
991             if (!NewCallee->isDeclaration())
992               Calls.push_back({CS, NewHistoryID});
993       }
994
995       // Merge the attributes based on the inlining.
996       AttributeFuncs::mergeAttributesForInlining(F, Callee);
997
998       // For local functions, check whether this makes the callee trivially
999       // dead. In that case, we can drop the body of the function eagerly
1000       // which may reduce the number of callers of other functions to one,
1001       // changing inline cost thresholds.
1002       if (Callee.hasLocalLinkage()) {
1003         // To check this we also need to nuke any dead constant uses (perhaps
1004         // made dead by this operation on other functions).
1005         Callee.removeDeadConstantUsers();
1006         if (Callee.use_empty() && !CG.isLibFunction(Callee)) {
1007           Calls.erase(
1008               std::remove_if(Calls.begin() + i + 1, Calls.end(),
1009                              [&Callee](const std::pair<CallSite, int> &Call) {
1010                                return Call.first.getCaller() == &Callee;
1011                              }),
1012               Calls.end());
1013           // Clear the body and queue the function itself for deletion when we
1014           // finish inlining and call graph updates.
1015           // Note that after this point, it is an error to do anything other
1016           // than use the callee's address or delete it.
1017           Callee.dropAllReferences();
1018           assert(find(DeadFunctions, &Callee) == DeadFunctions.end() &&
1019                  "Cannot put cause a function to become dead twice!");
1020           DeadFunctions.push_back(&Callee);
1021         }
1022       }
1023     }
1024
1025     // Back the call index up by one to put us in a good position to go around
1026     // the outer loop.
1027     --i;
1028
1029     if (!DidInline)
1030       continue;
1031     Changed = true;
1032
1033     // Add all the inlined callees' edges as ref edges to the caller. These are
1034     // by definition trivial edges as we always have *some* transitive ref edge
1035     // chain. While in some cases these edges are direct calls inside the
1036     // callee, they have to be modeled in the inliner as reference edges as
1037     // there may be a reference edge anywhere along the chain from the current
1038     // caller to the callee that causes the whole thing to appear like
1039     // a (transitive) reference edge that will require promotion to a call edge
1040     // below.
1041     for (Function *InlinedCallee : InlinedCallees) {
1042       LazyCallGraph::Node &CalleeN = *CG.lookup(*InlinedCallee);
1043       for (LazyCallGraph::Edge &E : *CalleeN)
1044         RC->insertTrivialRefEdge(N, E.getNode());
1045     }
1046
1047     // At this point, since we have made changes we have at least removed
1048     // a call instruction. However, in the process we do some incremental
1049     // simplification of the surrounding code. This simplification can
1050     // essentially do all of the same things as a function pass and we can
1051     // re-use the exact same logic for updating the call graph to reflect the
1052     // change.
1053     LazyCallGraph::SCC *OldC = C;
1054     C = &updateCGAndAnalysisManagerForFunctionPass(CG, *C, N, AM, UR);
1055     DEBUG(dbgs() << "Updated inlining SCC: " << *C << "\n");
1056     RC = &C->getOuterRefSCC();
1057
1058     // If this causes an SCC to split apart into multiple smaller SCCs, there
1059     // is a subtle risk we need to prepare for. Other transformations may
1060     // expose an "infinite inlining" opportunity later, and because of the SCC
1061     // mutation, we will revisit this function and potentially re-inline. If we
1062     // do, and that re-inlining also has the potentially to mutate the SCC
1063     // structure, the infinite inlining problem can manifest through infinite
1064     // SCC splits and merges. To avoid this, we capture the originating caller
1065     // node and the SCC containing the call edge. This is a slight over
1066     // approximation of the possible inlining decisions that must be avoided,
1067     // but is relatively efficient to store.
1068     // FIXME: This seems like a very heavyweight way of retaining the inline
1069     // history, we should look for a more efficient way of tracking it.
1070     if (C != OldC && llvm::any_of(InlinedCallees, [&](Function *Callee) {
1071           return CG.lookupSCC(*CG.lookup(*Callee)) == OldC;
1072         })) {
1073       DEBUG(dbgs() << "Inlined an internal call edge and split an SCC, "
1074                       "retaining this to avoid infinite inlining.\n");
1075       UR.InlinedInternalEdges.insert({&N, OldC});
1076     }
1077     InlinedCallees.clear();
1078   }
1079
1080   // Now that we've finished inlining all of the calls across this SCC, delete
1081   // all of the trivially dead functions, updating the call graph and the CGSCC
1082   // pass manager in the process.
1083   //
1084   // Note that this walks a pointer set which has non-deterministic order but
1085   // that is OK as all we do is delete things and add pointers to unordered
1086   // sets.
1087   for (Function *DeadF : DeadFunctions) {
1088     // Get the necessary information out of the call graph and nuke the
1089     // function there. Also, cclear out any cached analyses.
1090     auto &DeadC = *CG.lookupSCC(*CG.lookup(*DeadF));
1091     FunctionAnalysisManager &FAM =
1092         AM.getResult<FunctionAnalysisManagerCGSCCProxy>(DeadC, CG)
1093             .getManager();
1094     FAM.clear(*DeadF, DeadF->getName());
1095     AM.clear(DeadC, DeadC.getName());
1096     auto &DeadRC = DeadC.getOuterRefSCC();
1097     CG.removeDeadFunction(*DeadF);
1098
1099     // Mark the relevant parts of the call graph as invalid so we don't visit
1100     // them.
1101     UR.InvalidatedSCCs.insert(&DeadC);
1102     UR.InvalidatedRefSCCs.insert(&DeadRC);
1103
1104     // And delete the actual function from the module.
1105     M.getFunctionList().erase(DeadF);
1106   }
1107
1108   if (!Changed)
1109     return PreservedAnalyses::all();
1110
1111   // Even if we change the IR, we update the core CGSCC data structures and so
1112   // can preserve the proxy to the function analysis manager.
1113   PreservedAnalyses PA;
1114   PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
1115   return PA;
1116 }