]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/IPO/PartialInlining.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / IPO / PartialInlining.cpp
1 //===- PartialInlining.cpp - Inline parts of functions --------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs partial inlining, typically by inlining an if statement
11 // that surrounds the body of the function.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Transforms/IPO/PartialInlining.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/InlineCost.h"
26 #include "llvm/Analysis/LoopInfo.h"
27 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
28 #include "llvm/Analysis/ProfileSummaryInfo.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/TargetTransformInfo.h"
31 #include "llvm/IR/Attributes.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/CFG.h"
34 #include "llvm/IR/CallSite.h"
35 #include "llvm/IR/DebugLoc.h"
36 #include "llvm/IR/DiagnosticInfo.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/InstrTypes.h"
40 #include "llvm/IR/Instruction.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/IntrinsicInst.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/User.h"
46 #include "llvm/Pass.h"
47 #include "llvm/Support/BlockFrequency.h"
48 #include "llvm/Support/BranchProbability.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Transforms/IPO.h"
53 #include "llvm/Transforms/Utils/Cloning.h"
54 #include "llvm/Transforms/Utils/CodeExtractor.h"
55 #include "llvm/Transforms/Utils/ValueMapper.h"
56 #include <algorithm>
57 #include <cassert>
58 #include <cstdint>
59 #include <functional>
60 #include <iterator>
61 #include <memory>
62 #include <tuple>
63 #include <vector>
64
65 using namespace llvm;
66
67 #define DEBUG_TYPE "partial-inlining"
68
69 STATISTIC(NumPartialInlined,
70           "Number of callsites functions partially inlined into.");
71 STATISTIC(NumColdOutlinePartialInlined, "Number of times functions with "
72                                         "cold outlined regions were partially "
73                                         "inlined into its caller(s).");
74 STATISTIC(NumColdRegionsFound,
75            "Number of cold single entry/exit regions found.");
76 STATISTIC(NumColdRegionsOutlined,
77            "Number of cold single entry/exit regions outlined.");
78
79 // Command line option to disable partial-inlining. The default is false:
80 static cl::opt<bool>
81     DisablePartialInlining("disable-partial-inlining", cl::init(false),
82                            cl::Hidden, cl::desc("Disable partial inlining"));
83 // Command line option to disable multi-region partial-inlining. The default is
84 // false:
85 static cl::opt<bool> DisableMultiRegionPartialInline(
86     "disable-mr-partial-inlining", cl::init(false), cl::Hidden,
87     cl::desc("Disable multi-region partial inlining"));
88
89 // Command line option to force outlining in regions with live exit variables.
90 // The default is false:
91 static cl::opt<bool>
92     ForceLiveExit("pi-force-live-exit-outline", cl::init(false), cl::Hidden,
93                cl::desc("Force outline regions with live exits"));
94
95 // Command line option to enable marking outline functions with Cold Calling
96 // Convention. The default is false:
97 static cl::opt<bool>
98     MarkOutlinedColdCC("pi-mark-coldcc", cl::init(false), cl::Hidden,
99                        cl::desc("Mark outline function calls with ColdCC"));
100
101 #ifndef NDEBUG
102 // Command line option to debug partial-inlining. The default is none:
103 static cl::opt<bool> TracePartialInlining("trace-partial-inlining",
104                                           cl::init(false), cl::Hidden,
105                                           cl::desc("Trace partial inlining."));
106 #endif
107
108 // This is an option used by testing:
109 static cl::opt<bool> SkipCostAnalysis("skip-partial-inlining-cost-analysis",
110                                       cl::init(false), cl::ZeroOrMore,
111                                       cl::ReallyHidden,
112                                       cl::desc("Skip Cost Analysis"));
113 // Used to determine if a cold region is worth outlining based on
114 // its inlining cost compared to the original function.  Default is set at 10%.
115 // ie. if the cold region reduces the inlining cost of the original function by
116 // at least 10%.
117 static cl::opt<float> MinRegionSizeRatio(
118     "min-region-size-ratio", cl::init(0.1), cl::Hidden,
119     cl::desc("Minimum ratio comparing relative sizes of each "
120              "outline candidate and original function"));
121 // Used to tune the minimum number of execution counts needed in the predecessor
122 // block to the cold edge. ie. confidence interval.
123 static cl::opt<unsigned>
124     MinBlockCounterExecution("min-block-execution", cl::init(100), cl::Hidden,
125                              cl::desc("Minimum block executions to consider "
126                                       "its BranchProbabilityInfo valid"));
127 // Used to determine when an edge is considered cold. Default is set to 10%. ie.
128 // if the branch probability is 10% or less, then it is deemed as 'cold'.
129 static cl::opt<float> ColdBranchRatio(
130     "cold-branch-ratio", cl::init(0.1), cl::Hidden,
131     cl::desc("Minimum BranchProbability to consider a region cold."));
132
133 static cl::opt<unsigned> MaxNumInlineBlocks(
134     "max-num-inline-blocks", cl::init(5), cl::Hidden,
135     cl::desc("Max number of blocks to be partially inlined"));
136
137 // Command line option to set the maximum number of partial inlining allowed
138 // for the module. The default value of -1 means no limit.
139 static cl::opt<int> MaxNumPartialInlining(
140     "max-partial-inlining", cl::init(-1), cl::Hidden, cl::ZeroOrMore,
141     cl::desc("Max number of partial inlining. The default is unlimited"));
142
143 // Used only when PGO or user annotated branch data is absent. It is
144 // the least value that is used to weigh the outline region. If BFI
145 // produces larger value, the BFI value will be used.
146 static cl::opt<int>
147     OutlineRegionFreqPercent("outline-region-freq-percent", cl::init(75),
148                              cl::Hidden, cl::ZeroOrMore,
149                              cl::desc("Relative frequency of outline region to "
150                                       "the entry block"));
151
152 static cl::opt<unsigned> ExtraOutliningPenalty(
153     "partial-inlining-extra-penalty", cl::init(0), cl::Hidden,
154     cl::desc("A debug option to add additional penalty to the computed one."));
155
156 namespace {
157
158 struct FunctionOutliningInfo {
159   FunctionOutliningInfo() = default;
160
161   // Returns the number of blocks to be inlined including all blocks
162   // in Entries and one return block.
163   unsigned GetNumInlinedBlocks() const { return Entries.size() + 1; }
164
165   // A set of blocks including the function entry that guard
166   // the region to be outlined.
167   SmallVector<BasicBlock *, 4> Entries;
168
169   // The return block that is not included in the outlined region.
170   BasicBlock *ReturnBlock = nullptr;
171
172   // The dominating block of the region to be outlined.
173   BasicBlock *NonReturnBlock = nullptr;
174
175   // The set of blocks in Entries that that are predecessors to ReturnBlock
176   SmallVector<BasicBlock *, 4> ReturnBlockPreds;
177 };
178
179 struct FunctionOutliningMultiRegionInfo {
180   FunctionOutliningMultiRegionInfo()
181       : ORI() {}
182
183   // Container for outline regions
184   struct OutlineRegionInfo {
185     OutlineRegionInfo(SmallVector<BasicBlock *, 8> Region,
186                       BasicBlock *EntryBlock, BasicBlock *ExitBlock,
187                       BasicBlock *ReturnBlock)
188         : Region(Region), EntryBlock(EntryBlock), ExitBlock(ExitBlock),
189           ReturnBlock(ReturnBlock) {}
190     SmallVector<BasicBlock *, 8> Region;
191     BasicBlock *EntryBlock;
192     BasicBlock *ExitBlock;
193     BasicBlock *ReturnBlock;
194   };
195
196   SmallVector<OutlineRegionInfo, 4> ORI;
197 };
198
199 struct PartialInlinerImpl {
200
201   PartialInlinerImpl(
202       std::function<AssumptionCache &(Function &)> *GetAC,
203       std::function<TargetTransformInfo &(Function &)> *GTTI,
204       Optional<function_ref<BlockFrequencyInfo &(Function &)>> GBFI,
205       ProfileSummaryInfo *ProfSI)
206       : GetAssumptionCache(GetAC), GetTTI(GTTI), GetBFI(GBFI), PSI(ProfSI) {}
207
208   bool run(Module &M);
209   // Main part of the transformation that calls helper functions to find
210   // outlining candidates, clone & outline the function, and attempt to
211   // partially inline the resulting function. Returns true if
212   // inlining was successful, false otherwise.  Also returns the outline
213   // function (only if we partially inlined early returns) as there is a
214   // possibility to further "peel" early return statements that were left in the
215   // outline function due to code size.
216   std::pair<bool, Function *> unswitchFunction(Function *F);
217
218   // This class speculatively clones the function to be partial inlined.
219   // At the end of partial inlining, the remaining callsites to the cloned
220   // function that are not partially inlined will be fixed up to reference
221   // the original function, and the cloned function will be erased.
222   struct FunctionCloner {
223     // Two constructors, one for single region outlining, the other for
224     // multi-region outlining.
225     FunctionCloner(Function *F, FunctionOutliningInfo *OI,
226                    OptimizationRemarkEmitter &ORE);
227     FunctionCloner(Function *F, FunctionOutliningMultiRegionInfo *OMRI,
228                    OptimizationRemarkEmitter &ORE);
229     ~FunctionCloner();
230
231     // Prepare for function outlining: making sure there is only
232     // one incoming edge from the extracted/outlined region to
233     // the return block.
234     void NormalizeReturnBlock();
235
236     // Do function outlining for cold regions.
237     bool doMultiRegionFunctionOutlining();
238     // Do function outlining for region after early return block(s).
239     // NOTE: For vararg functions that do the vararg handling in the outlined
240     //       function, we temporarily generate IR that does not properly
241     //       forward varargs to the outlined function. Calling InlineFunction
242     //       will update calls to the outlined functions to properly forward
243     //       the varargs.
244     Function *doSingleRegionFunctionOutlining();
245
246     Function *OrigFunc = nullptr;
247     Function *ClonedFunc = nullptr;
248
249     typedef std::pair<Function *, BasicBlock *> FuncBodyCallerPair;
250     // Keep track of Outlined Functions and the basic block they're called from.
251     SmallVector<FuncBodyCallerPair, 4> OutlinedFunctions;
252
253     // ClonedFunc is inlined in one of its callers after function
254     // outlining.
255     bool IsFunctionInlined = false;
256     // The cost of the region to be outlined.
257     int OutlinedRegionCost = 0;
258     // ClonedOI is specific to outlining non-early return blocks.
259     std::unique_ptr<FunctionOutliningInfo> ClonedOI = nullptr;
260     // ClonedOMRI is specific to outlining cold regions.
261     std::unique_ptr<FunctionOutliningMultiRegionInfo> ClonedOMRI = nullptr;
262     std::unique_ptr<BlockFrequencyInfo> ClonedFuncBFI = nullptr;
263     OptimizationRemarkEmitter &ORE;
264   };
265
266 private:
267   int NumPartialInlining = 0;
268   std::function<AssumptionCache &(Function &)> *GetAssumptionCache;
269   std::function<TargetTransformInfo &(Function &)> *GetTTI;
270   Optional<function_ref<BlockFrequencyInfo &(Function &)>> GetBFI;
271   ProfileSummaryInfo *PSI;
272
273   // Return the frequency of the OutlininingBB relative to F's entry point.
274   // The result is no larger than 1 and is represented using BP.
275   // (Note that the outlined region's 'head' block can only have incoming
276   // edges from the guarding entry blocks).
277   BranchProbability getOutliningCallBBRelativeFreq(FunctionCloner &Cloner);
278
279   // Return true if the callee of CS should be partially inlined with
280   // profit.
281   bool shouldPartialInline(CallSite CS, FunctionCloner &Cloner,
282                            BlockFrequency WeightedOutliningRcost,
283                            OptimizationRemarkEmitter &ORE);
284
285   // Try to inline DuplicateFunction (cloned from F with call to
286   // the OutlinedFunction into its callers. Return true
287   // if there is any successful inlining.
288   bool tryPartialInline(FunctionCloner &Cloner);
289
290   // Compute the mapping from use site of DuplicationFunction to the enclosing
291   // BB's profile count.
292   void computeCallsiteToProfCountMap(Function *DuplicateFunction,
293                                      DenseMap<User *, uint64_t> &SiteCountMap);
294
295   bool IsLimitReached() {
296     return (MaxNumPartialInlining != -1 &&
297             NumPartialInlining >= MaxNumPartialInlining);
298   }
299
300   static CallSite getCallSite(User *U) {
301     CallSite CS;
302     if (CallInst *CI = dyn_cast<CallInst>(U))
303       CS = CallSite(CI);
304     else if (InvokeInst *II = dyn_cast<InvokeInst>(U))
305       CS = CallSite(II);
306     else
307       llvm_unreachable("All uses must be calls");
308     return CS;
309   }
310
311   static CallSite getOneCallSiteTo(Function *F) {
312     User *User = *F->user_begin();
313     return getCallSite(User);
314   }
315
316   std::tuple<DebugLoc, BasicBlock *> getOneDebugLoc(Function *F) {
317     CallSite CS = getOneCallSiteTo(F);
318     DebugLoc DLoc = CS.getInstruction()->getDebugLoc();
319     BasicBlock *Block = CS.getParent();
320     return std::make_tuple(DLoc, Block);
321   }
322
323   // Returns the costs associated with function outlining:
324   // - The first value is the non-weighted runtime cost for making the call
325   //   to the outlined function, including the addtional  setup cost in the
326   //    outlined function itself;
327   // - The second value is the estimated size of the new call sequence in
328   //   basic block Cloner.OutliningCallBB;
329   std::tuple<int, int> computeOutliningCosts(FunctionCloner &Cloner);
330
331   // Compute the 'InlineCost' of block BB. InlineCost is a proxy used to
332   // approximate both the size and runtime cost (Note that in the current
333   // inline cost analysis, there is no clear distinction there either).
334   static int computeBBInlineCost(BasicBlock *BB);
335
336   std::unique_ptr<FunctionOutliningInfo> computeOutliningInfo(Function *F);
337   std::unique_ptr<FunctionOutliningMultiRegionInfo>
338   computeOutliningColdRegionsInfo(Function *F, OptimizationRemarkEmitter &ORE);
339 };
340
341 struct PartialInlinerLegacyPass : public ModulePass {
342   static char ID; // Pass identification, replacement for typeid
343
344   PartialInlinerLegacyPass() : ModulePass(ID) {
345     initializePartialInlinerLegacyPassPass(*PassRegistry::getPassRegistry());
346   }
347
348   void getAnalysisUsage(AnalysisUsage &AU) const override {
349     AU.addRequired<AssumptionCacheTracker>();
350     AU.addRequired<ProfileSummaryInfoWrapperPass>();
351     AU.addRequired<TargetTransformInfoWrapperPass>();
352   }
353
354   bool runOnModule(Module &M) override {
355     if (skipModule(M))
356       return false;
357
358     AssumptionCacheTracker *ACT = &getAnalysis<AssumptionCacheTracker>();
359     TargetTransformInfoWrapperPass *TTIWP =
360         &getAnalysis<TargetTransformInfoWrapperPass>();
361     ProfileSummaryInfo *PSI =
362         &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
363
364     std::function<AssumptionCache &(Function &)> GetAssumptionCache =
365         [&ACT](Function &F) -> AssumptionCache & {
366       return ACT->getAssumptionCache(F);
367     };
368
369     std::function<TargetTransformInfo &(Function &)> GetTTI =
370         [&TTIWP](Function &F) -> TargetTransformInfo & {
371       return TTIWP->getTTI(F);
372     };
373
374     return PartialInlinerImpl(&GetAssumptionCache, &GetTTI, NoneType::None, PSI)
375         .run(M);
376   }
377 };
378
379 } // end anonymous namespace
380
381 std::unique_ptr<FunctionOutliningMultiRegionInfo>
382 PartialInlinerImpl::computeOutliningColdRegionsInfo(Function *F,
383                                                     OptimizationRemarkEmitter &ORE) {
384   BasicBlock *EntryBlock = &F->front();
385
386   DominatorTree DT(*F);
387   LoopInfo LI(DT);
388   BranchProbabilityInfo BPI(*F, LI);
389   std::unique_ptr<BlockFrequencyInfo> ScopedBFI;
390   BlockFrequencyInfo *BFI;
391   if (!GetBFI) {
392     ScopedBFI.reset(new BlockFrequencyInfo(*F, BPI, LI));
393     BFI = ScopedBFI.get();
394   } else
395     BFI = &(*GetBFI)(*F);
396
397   // Return if we don't have profiling information.
398   if (!PSI->hasInstrumentationProfile())
399     return std::unique_ptr<FunctionOutliningMultiRegionInfo>();
400
401   std::unique_ptr<FunctionOutliningMultiRegionInfo> OutliningInfo =
402       llvm::make_unique<FunctionOutliningMultiRegionInfo>();
403
404   auto IsSingleEntry = [](SmallVectorImpl<BasicBlock *> &BlockList) {
405     BasicBlock *Dom = BlockList.front();
406     return BlockList.size() > 1 && Dom->hasNPredecessors(1);
407   };
408
409   auto IsSingleExit =
410       [&ORE](SmallVectorImpl<BasicBlock *> &BlockList) -> BasicBlock * {
411     BasicBlock *ExitBlock = nullptr;
412     for (auto *Block : BlockList) {
413       for (auto SI = succ_begin(Block); SI != succ_end(Block); ++SI) {
414         if (!is_contained(BlockList, *SI)) {
415           if (ExitBlock) {
416             ORE.emit([&]() {
417               return OptimizationRemarkMissed(DEBUG_TYPE, "MultiExitRegion",
418                                               &SI->front())
419                      << "Region dominated by "
420                      << ore::NV("Block", BlockList.front()->getName())
421                      << " has more than one region exit edge.";
422             });
423             return nullptr;
424           } else
425             ExitBlock = Block;
426         }
427       }
428     }
429     return ExitBlock;
430   };
431
432   auto BBProfileCount = [BFI](BasicBlock *BB) {
433     return BFI->getBlockProfileCount(BB)
434                ? BFI->getBlockProfileCount(BB).getValue()
435                : 0;
436   };
437
438   // Use the same computeBBInlineCost function to compute the cost savings of
439   // the outlining the candidate region.
440   int OverallFunctionCost = 0;
441   for (auto &BB : *F)
442     OverallFunctionCost += computeBBInlineCost(&BB);
443
444 #ifndef NDEBUG
445   if (TracePartialInlining)
446     dbgs() << "OverallFunctionCost = " << OverallFunctionCost << "\n";
447 #endif
448   int MinOutlineRegionCost =
449       static_cast<int>(OverallFunctionCost * MinRegionSizeRatio);
450   BranchProbability MinBranchProbability(
451       static_cast<int>(ColdBranchRatio * MinBlockCounterExecution),
452       MinBlockCounterExecution);
453   bool ColdCandidateFound = false;
454   BasicBlock *CurrEntry = EntryBlock;
455   std::vector<BasicBlock *> DFS;
456   DenseMap<BasicBlock *, bool> VisitedMap;
457   DFS.push_back(CurrEntry);
458   VisitedMap[CurrEntry] = true;
459   // Use Depth First Search on the basic blocks to find CFG edges that are
460   // considered cold.
461   // Cold regions considered must also have its inline cost compared to the
462   // overall inline cost of the original function.  The region is outlined only
463   // if it reduced the inline cost of the function by 'MinOutlineRegionCost' or
464   // more.
465   while (!DFS.empty()) {
466     auto *thisBB = DFS.back();
467     DFS.pop_back();
468     // Only consider regions with predecessor blocks that are considered
469     // not-cold (default: part of the top 99.99% of all block counters)
470     // AND greater than our minimum block execution count (default: 100).
471     if (PSI->isColdBlock(thisBB, BFI) ||
472         BBProfileCount(thisBB) < MinBlockCounterExecution)
473       continue;
474     for (auto SI = succ_begin(thisBB); SI != succ_end(thisBB); ++SI) {
475       if (VisitedMap[*SI])
476         continue;
477       VisitedMap[*SI] = true;
478       DFS.push_back(*SI);
479       // If branch isn't cold, we skip to the next one.
480       BranchProbability SuccProb = BPI.getEdgeProbability(thisBB, *SI);
481       if (SuccProb > MinBranchProbability)
482         continue;
483 #ifndef NDEBUG
484       if (TracePartialInlining) {
485         dbgs() << "Found cold edge: " << thisBB->getName() << "->"
486                << (*SI)->getName() << "\nBranch Probability = " << SuccProb
487                << "\n";
488       }
489 #endif
490       SmallVector<BasicBlock *, 8> DominateVector;
491       DT.getDescendants(*SI, DominateVector);
492       // We can only outline single entry regions (for now).
493       if (!IsSingleEntry(DominateVector))
494         continue;
495       BasicBlock *ExitBlock = nullptr;
496       // We can only outline single exit regions (for now).
497       if (!(ExitBlock = IsSingleExit(DominateVector)))
498         continue;
499       int OutlineRegionCost = 0;
500       for (auto *BB : DominateVector)
501         OutlineRegionCost += computeBBInlineCost(BB);
502
503 #ifndef NDEBUG
504       if (TracePartialInlining)
505         dbgs() << "OutlineRegionCost = " << OutlineRegionCost << "\n";
506 #endif
507
508       if (OutlineRegionCost < MinOutlineRegionCost) {
509         ORE.emit([&]() {
510           return OptimizationRemarkAnalysis(DEBUG_TYPE, "TooCostly",
511                                             &SI->front())
512                  << ore::NV("Callee", F) << " inline cost-savings smaller than "
513                  << ore::NV("Cost", MinOutlineRegionCost);
514         });
515         continue;
516       }
517       // For now, ignore blocks that belong to a SISE region that is a
518       // candidate for outlining.  In the future, we may want to look
519       // at inner regions because the outer region may have live-exit
520       // variables.
521       for (auto *BB : DominateVector)
522         VisitedMap[BB] = true;
523       // ReturnBlock here means the block after the outline call
524       BasicBlock *ReturnBlock = ExitBlock->getSingleSuccessor();
525       // assert(ReturnBlock && "ReturnBlock is NULL somehow!");
526       FunctionOutliningMultiRegionInfo::OutlineRegionInfo RegInfo(
527           DominateVector, DominateVector.front(), ExitBlock, ReturnBlock);
528       RegInfo.Region = DominateVector;
529       OutliningInfo->ORI.push_back(RegInfo);
530 #ifndef NDEBUG
531       if (TracePartialInlining) {
532         dbgs() << "Found Cold Candidate starting at block: "
533                << DominateVector.front()->getName() << "\n";
534       }
535 #endif
536       ColdCandidateFound = true;
537       NumColdRegionsFound++;
538     }
539   }
540   if (ColdCandidateFound)
541     return OutliningInfo;
542   else
543     return std::unique_ptr<FunctionOutliningMultiRegionInfo>();
544 }
545
546 std::unique_ptr<FunctionOutliningInfo>
547 PartialInlinerImpl::computeOutliningInfo(Function *F) {
548   BasicBlock *EntryBlock = &F->front();
549   BranchInst *BR = dyn_cast<BranchInst>(EntryBlock->getTerminator());
550   if (!BR || BR->isUnconditional())
551     return std::unique_ptr<FunctionOutliningInfo>();
552
553   // Returns true if Succ is BB's successor
554   auto IsSuccessor = [](BasicBlock *Succ, BasicBlock *BB) {
555     return is_contained(successors(BB), Succ);
556   };
557
558   auto IsReturnBlock = [](BasicBlock *BB) {
559     Instruction *TI = BB->getTerminator();
560     return isa<ReturnInst>(TI);
561   };
562
563   auto GetReturnBlock = [&](BasicBlock *Succ1, BasicBlock *Succ2) {
564     if (IsReturnBlock(Succ1))
565       return std::make_tuple(Succ1, Succ2);
566     if (IsReturnBlock(Succ2))
567       return std::make_tuple(Succ2, Succ1);
568
569     return std::make_tuple<BasicBlock *, BasicBlock *>(nullptr, nullptr);
570   };
571
572   // Detect a triangular shape:
573   auto GetCommonSucc = [&](BasicBlock *Succ1, BasicBlock *Succ2) {
574     if (IsSuccessor(Succ1, Succ2))
575       return std::make_tuple(Succ1, Succ2);
576     if (IsSuccessor(Succ2, Succ1))
577       return std::make_tuple(Succ2, Succ1);
578
579     return std::make_tuple<BasicBlock *, BasicBlock *>(nullptr, nullptr);
580   };
581
582   std::unique_ptr<FunctionOutliningInfo> OutliningInfo =
583       llvm::make_unique<FunctionOutliningInfo>();
584
585   BasicBlock *CurrEntry = EntryBlock;
586   bool CandidateFound = false;
587   do {
588     // The number of blocks to be inlined has already reached
589     // the limit. When MaxNumInlineBlocks is set to 0 or 1, this
590     // disables partial inlining for the function.
591     if (OutliningInfo->GetNumInlinedBlocks() >= MaxNumInlineBlocks)
592       break;
593
594     if (succ_size(CurrEntry) != 2)
595       break;
596
597     BasicBlock *Succ1 = *succ_begin(CurrEntry);
598     BasicBlock *Succ2 = *(succ_begin(CurrEntry) + 1);
599
600     BasicBlock *ReturnBlock, *NonReturnBlock;
601     std::tie(ReturnBlock, NonReturnBlock) = GetReturnBlock(Succ1, Succ2);
602
603     if (ReturnBlock) {
604       OutliningInfo->Entries.push_back(CurrEntry);
605       OutliningInfo->ReturnBlock = ReturnBlock;
606       OutliningInfo->NonReturnBlock = NonReturnBlock;
607       CandidateFound = true;
608       break;
609     }
610
611     BasicBlock *CommSucc;
612     BasicBlock *OtherSucc;
613     std::tie(CommSucc, OtherSucc) = GetCommonSucc(Succ1, Succ2);
614
615     if (!CommSucc)
616       break;
617
618     OutliningInfo->Entries.push_back(CurrEntry);
619     CurrEntry = OtherSucc;
620   } while (true);
621
622   if (!CandidateFound)
623     return std::unique_ptr<FunctionOutliningInfo>();
624
625   // Do sanity check of the entries: threre should not
626   // be any successors (not in the entry set) other than
627   // {ReturnBlock, NonReturnBlock}
628   assert(OutliningInfo->Entries[0] == &F->front() &&
629          "Function Entry must be the first in Entries vector");
630   DenseSet<BasicBlock *> Entries;
631   for (BasicBlock *E : OutliningInfo->Entries)
632     Entries.insert(E);
633
634   // Returns true of BB has Predecessor which is not
635   // in Entries set.
636   auto HasNonEntryPred = [Entries](BasicBlock *BB) {
637     for (auto Pred : predecessors(BB)) {
638       if (!Entries.count(Pred))
639         return true;
640     }
641     return false;
642   };
643   auto CheckAndNormalizeCandidate =
644       [Entries, HasNonEntryPred](FunctionOutliningInfo *OutliningInfo) {
645         for (BasicBlock *E : OutliningInfo->Entries) {
646           for (auto Succ : successors(E)) {
647             if (Entries.count(Succ))
648               continue;
649             if (Succ == OutliningInfo->ReturnBlock)
650               OutliningInfo->ReturnBlockPreds.push_back(E);
651             else if (Succ != OutliningInfo->NonReturnBlock)
652               return false;
653           }
654           // There should not be any outside incoming edges either:
655           if (HasNonEntryPred(E))
656             return false;
657         }
658         return true;
659       };
660
661   if (!CheckAndNormalizeCandidate(OutliningInfo.get()))
662     return std::unique_ptr<FunctionOutliningInfo>();
663
664   // Now further growing the candidate's inlining region by
665   // peeling off dominating blocks from the outlining region:
666   while (OutliningInfo->GetNumInlinedBlocks() < MaxNumInlineBlocks) {
667     BasicBlock *Cand = OutliningInfo->NonReturnBlock;
668     if (succ_size(Cand) != 2)
669       break;
670
671     if (HasNonEntryPred(Cand))
672       break;
673
674     BasicBlock *Succ1 = *succ_begin(Cand);
675     BasicBlock *Succ2 = *(succ_begin(Cand) + 1);
676
677     BasicBlock *ReturnBlock, *NonReturnBlock;
678     std::tie(ReturnBlock, NonReturnBlock) = GetReturnBlock(Succ1, Succ2);
679     if (!ReturnBlock || ReturnBlock != OutliningInfo->ReturnBlock)
680       break;
681
682     if (NonReturnBlock->getSinglePredecessor() != Cand)
683       break;
684
685     // Now grow and update OutlininigInfo:
686     OutliningInfo->Entries.push_back(Cand);
687     OutliningInfo->NonReturnBlock = NonReturnBlock;
688     OutliningInfo->ReturnBlockPreds.push_back(Cand);
689     Entries.insert(Cand);
690   }
691
692   return OutliningInfo;
693 }
694
695 // Check if there is PGO data or user annoated branch data:
696 static bool hasProfileData(Function *F, FunctionOutliningInfo *OI) {
697   if (F->hasProfileData())
698     return true;
699   // Now check if any of the entry block has MD_prof data:
700   for (auto *E : OI->Entries) {
701     BranchInst *BR = dyn_cast<BranchInst>(E->getTerminator());
702     if (!BR || BR->isUnconditional())
703       continue;
704     uint64_t T, F;
705     if (BR->extractProfMetadata(T, F))
706       return true;
707   }
708   return false;
709 }
710
711 BranchProbability
712 PartialInlinerImpl::getOutliningCallBBRelativeFreq(FunctionCloner &Cloner) {
713   BasicBlock *OutliningCallBB = Cloner.OutlinedFunctions.back().second;
714   auto EntryFreq =
715       Cloner.ClonedFuncBFI->getBlockFreq(&Cloner.ClonedFunc->getEntryBlock());
716   auto OutliningCallFreq =
717       Cloner.ClonedFuncBFI->getBlockFreq(OutliningCallBB);
718   // FIXME Hackery needed because ClonedFuncBFI is based on the function BEFORE
719   // we outlined any regions, so we may encounter situations where the
720   // OutliningCallFreq is *slightly* bigger than the EntryFreq.
721   if (OutliningCallFreq.getFrequency() > EntryFreq.getFrequency()) {
722     OutliningCallFreq = EntryFreq;
723   }
724   auto OutlineRegionRelFreq = BranchProbability::getBranchProbability(
725       OutliningCallFreq.getFrequency(), EntryFreq.getFrequency());
726
727   if (hasProfileData(Cloner.OrigFunc, Cloner.ClonedOI.get()))
728     return OutlineRegionRelFreq;
729
730   // When profile data is not available, we need to be conservative in
731   // estimating the overall savings. Static branch prediction can usually
732   // guess the branch direction right (taken/non-taken), but the guessed
733   // branch probability is usually not biased enough. In case when the
734   // outlined region is predicted to be likely, its probability needs
735   // to be made higher (more biased) to not under-estimate the cost of
736   // function outlining. On the other hand, if the outlined region
737   // is predicted to be less likely, the predicted probablity is usually
738   // higher than the actual. For instance, the actual probability of the
739   // less likely target is only 5%, but the guessed probablity can be
740   // 40%. In the latter case, there is no need for further adjustement.
741   // FIXME: add an option for this.
742   if (OutlineRegionRelFreq < BranchProbability(45, 100))
743     return OutlineRegionRelFreq;
744
745   OutlineRegionRelFreq = std::max(
746       OutlineRegionRelFreq, BranchProbability(OutlineRegionFreqPercent, 100));
747
748   return OutlineRegionRelFreq;
749 }
750
751 bool PartialInlinerImpl::shouldPartialInline(
752     CallSite CS, FunctionCloner &Cloner,
753     BlockFrequency WeightedOutliningRcost,
754     OptimizationRemarkEmitter &ORE) {
755   using namespace ore;
756
757   Instruction *Call = CS.getInstruction();
758   Function *Callee = CS.getCalledFunction();
759   assert(Callee == Cloner.ClonedFunc);
760
761   if (SkipCostAnalysis)
762     return isInlineViable(*Callee);
763
764   Function *Caller = CS.getCaller();
765   auto &CalleeTTI = (*GetTTI)(*Callee);
766   InlineCost IC = getInlineCost(CS, getInlineParams(), CalleeTTI,
767                                 *GetAssumptionCache, GetBFI, PSI, &ORE);
768
769   if (IC.isAlways()) {
770     ORE.emit([&]() {
771       return OptimizationRemarkAnalysis(DEBUG_TYPE, "AlwaysInline", Call)
772              << NV("Callee", Cloner.OrigFunc)
773              << " should always be fully inlined, not partially";
774     });
775     return false;
776   }
777
778   if (IC.isNever()) {
779     ORE.emit([&]() {
780       return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", Call)
781              << NV("Callee", Cloner.OrigFunc) << " not partially inlined into "
782              << NV("Caller", Caller)
783              << " because it should never be inlined (cost=never)";
784     });
785     return false;
786   }
787
788   if (!IC) {
789     ORE.emit([&]() {
790       return OptimizationRemarkAnalysis(DEBUG_TYPE, "TooCostly", Call)
791              << NV("Callee", Cloner.OrigFunc) << " not partially inlined into "
792              << NV("Caller", Caller) << " because too costly to inline (cost="
793              << NV("Cost", IC.getCost()) << ", threshold="
794              << NV("Threshold", IC.getCostDelta() + IC.getCost()) << ")";
795     });
796     return false;
797   }
798   const DataLayout &DL = Caller->getParent()->getDataLayout();
799
800   // The savings of eliminating the call:
801   int NonWeightedSavings = getCallsiteCost(CS, DL);
802   BlockFrequency NormWeightedSavings(NonWeightedSavings);
803
804   // Weighted saving is smaller than weighted cost, return false
805   if (NormWeightedSavings < WeightedOutliningRcost) {
806     ORE.emit([&]() {
807       return OptimizationRemarkAnalysis(DEBUG_TYPE, "OutliningCallcostTooHigh",
808                                         Call)
809              << NV("Callee", Cloner.OrigFunc) << " not partially inlined into "
810              << NV("Caller", Caller) << " runtime overhead (overhead="
811              << NV("Overhead", (unsigned)WeightedOutliningRcost.getFrequency())
812              << ", savings="
813              << NV("Savings", (unsigned)NormWeightedSavings.getFrequency())
814              << ")"
815              << " of making the outlined call is too high";
816     });
817
818     return false;
819   }
820
821   ORE.emit([&]() {
822     return OptimizationRemarkAnalysis(DEBUG_TYPE, "CanBePartiallyInlined", Call)
823            << NV("Callee", Cloner.OrigFunc) << " can be partially inlined into "
824            << NV("Caller", Caller) << " with cost=" << NV("Cost", IC.getCost())
825            << " (threshold="
826            << NV("Threshold", IC.getCostDelta() + IC.getCost()) << ")";
827   });
828   return true;
829 }
830
831 // TODO: Ideally  we should share Inliner's InlineCost Analysis code.
832 // For now use a simplified version. The returned 'InlineCost' will be used
833 // to esimate the size cost as well as runtime cost of the BB.
834 int PartialInlinerImpl::computeBBInlineCost(BasicBlock *BB) {
835   int InlineCost = 0;
836   const DataLayout &DL = BB->getParent()->getParent()->getDataLayout();
837   for (Instruction &I : BB->instructionsWithoutDebug()) {
838     // Skip free instructions.
839     switch (I.getOpcode()) {
840     case Instruction::BitCast:
841     case Instruction::PtrToInt:
842     case Instruction::IntToPtr:
843     case Instruction::Alloca:
844     case Instruction::PHI:
845       continue;
846     case Instruction::GetElementPtr:
847       if (cast<GetElementPtrInst>(&I)->hasAllZeroIndices())
848         continue;
849       break;
850     default:
851       break;
852     }
853
854     if (I.isLifetimeStartOrEnd())
855       continue;
856
857     if (CallInst *CI = dyn_cast<CallInst>(&I)) {
858       InlineCost += getCallsiteCost(CallSite(CI), DL);
859       continue;
860     }
861
862     if (InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
863       InlineCost += getCallsiteCost(CallSite(II), DL);
864       continue;
865     }
866
867     if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) {
868       InlineCost += (SI->getNumCases() + 1) * InlineConstants::InstrCost;
869       continue;
870     }
871     InlineCost += InlineConstants::InstrCost;
872   }
873   return InlineCost;
874 }
875
876 std::tuple<int, int>
877 PartialInlinerImpl::computeOutliningCosts(FunctionCloner &Cloner) {
878   int OutliningFuncCallCost = 0, OutlinedFunctionCost = 0;
879   for (auto FuncBBPair : Cloner.OutlinedFunctions) {
880     Function *OutlinedFunc = FuncBBPair.first;
881     BasicBlock* OutliningCallBB = FuncBBPair.second;
882     // Now compute the cost of the call sequence to the outlined function
883     // 'OutlinedFunction' in BB 'OutliningCallBB':
884     OutliningFuncCallCost += computeBBInlineCost(OutliningCallBB);
885
886     // Now compute the cost of the extracted/outlined function itself:
887     for (BasicBlock &BB : *OutlinedFunc)
888       OutlinedFunctionCost += computeBBInlineCost(&BB);
889   }
890   assert(OutlinedFunctionCost >= Cloner.OutlinedRegionCost &&
891          "Outlined function cost should be no less than the outlined region");
892
893   // The code extractor introduces a new root and exit stub blocks with
894   // additional unconditional branches. Those branches will be eliminated
895   // later with bb layout. The cost should be adjusted accordingly:
896   OutlinedFunctionCost -=
897       2 * InlineConstants::InstrCost * Cloner.OutlinedFunctions.size();
898
899   int OutliningRuntimeOverhead =
900       OutliningFuncCallCost +
901       (OutlinedFunctionCost - Cloner.OutlinedRegionCost) +
902       ExtraOutliningPenalty;
903
904   return std::make_tuple(OutliningFuncCallCost, OutliningRuntimeOverhead);
905 }
906
907 // Create the callsite to profile count map which is
908 // used to update the original function's entry count,
909 // after the function is partially inlined into the callsite.
910 void PartialInlinerImpl::computeCallsiteToProfCountMap(
911     Function *DuplicateFunction,
912     DenseMap<User *, uint64_t> &CallSiteToProfCountMap) {
913   std::vector<User *> Users(DuplicateFunction->user_begin(),
914                             DuplicateFunction->user_end());
915   Function *CurrentCaller = nullptr;
916   std::unique_ptr<BlockFrequencyInfo> TempBFI;
917   BlockFrequencyInfo *CurrentCallerBFI = nullptr;
918
919   auto ComputeCurrBFI = [&,this](Function *Caller) {
920       // For the old pass manager:
921       if (!GetBFI) {
922         DominatorTree DT(*Caller);
923         LoopInfo LI(DT);
924         BranchProbabilityInfo BPI(*Caller, LI);
925         TempBFI.reset(new BlockFrequencyInfo(*Caller, BPI, LI));
926         CurrentCallerBFI = TempBFI.get();
927       } else {
928         // New pass manager:
929         CurrentCallerBFI = &(*GetBFI)(*Caller);
930       }
931   };
932
933   for (User *User : Users) {
934     CallSite CS = getCallSite(User);
935     Function *Caller = CS.getCaller();
936     if (CurrentCaller != Caller) {
937       CurrentCaller = Caller;
938       ComputeCurrBFI(Caller);
939     } else {
940       assert(CurrentCallerBFI && "CallerBFI is not set");
941     }
942     BasicBlock *CallBB = CS.getInstruction()->getParent();
943     auto Count = CurrentCallerBFI->getBlockProfileCount(CallBB);
944     if (Count)
945       CallSiteToProfCountMap[User] = *Count;
946     else
947       CallSiteToProfCountMap[User] = 0;
948   }
949 }
950
951 PartialInlinerImpl::FunctionCloner::FunctionCloner(
952     Function *F, FunctionOutliningInfo *OI, OptimizationRemarkEmitter &ORE)
953     : OrigFunc(F), ORE(ORE) {
954   ClonedOI = llvm::make_unique<FunctionOutliningInfo>();
955
956   // Clone the function, so that we can hack away on it.
957   ValueToValueMapTy VMap;
958   ClonedFunc = CloneFunction(F, VMap);
959
960   ClonedOI->ReturnBlock = cast<BasicBlock>(VMap[OI->ReturnBlock]);
961   ClonedOI->NonReturnBlock = cast<BasicBlock>(VMap[OI->NonReturnBlock]);
962   for (BasicBlock *BB : OI->Entries) {
963     ClonedOI->Entries.push_back(cast<BasicBlock>(VMap[BB]));
964   }
965   for (BasicBlock *E : OI->ReturnBlockPreds) {
966     BasicBlock *NewE = cast<BasicBlock>(VMap[E]);
967     ClonedOI->ReturnBlockPreds.push_back(NewE);
968   }
969   // Go ahead and update all uses to the duplicate, so that we can just
970   // use the inliner functionality when we're done hacking.
971   F->replaceAllUsesWith(ClonedFunc);
972 }
973
974 PartialInlinerImpl::FunctionCloner::FunctionCloner(
975     Function *F, FunctionOutliningMultiRegionInfo *OI,
976     OptimizationRemarkEmitter &ORE)
977     : OrigFunc(F), ORE(ORE) {
978   ClonedOMRI = llvm::make_unique<FunctionOutliningMultiRegionInfo>();
979
980   // Clone the function, so that we can hack away on it.
981   ValueToValueMapTy VMap;
982   ClonedFunc = CloneFunction(F, VMap);
983
984   // Go through all Outline Candidate Regions and update all BasicBlock
985   // information.
986   for (FunctionOutliningMultiRegionInfo::OutlineRegionInfo RegionInfo :
987        OI->ORI) {
988     SmallVector<BasicBlock *, 8> Region;
989     for (BasicBlock *BB : RegionInfo.Region) {
990       Region.push_back(cast<BasicBlock>(VMap[BB]));
991     }
992     BasicBlock *NewEntryBlock = cast<BasicBlock>(VMap[RegionInfo.EntryBlock]);
993     BasicBlock *NewExitBlock = cast<BasicBlock>(VMap[RegionInfo.ExitBlock]);
994     BasicBlock *NewReturnBlock = nullptr;
995     if (RegionInfo.ReturnBlock)
996       NewReturnBlock = cast<BasicBlock>(VMap[RegionInfo.ReturnBlock]);
997     FunctionOutliningMultiRegionInfo::OutlineRegionInfo MappedRegionInfo(
998         Region, NewEntryBlock, NewExitBlock, NewReturnBlock);
999     ClonedOMRI->ORI.push_back(MappedRegionInfo);
1000   }
1001   // Go ahead and update all uses to the duplicate, so that we can just
1002   // use the inliner functionality when we're done hacking.
1003   F->replaceAllUsesWith(ClonedFunc);
1004 }
1005
1006 void PartialInlinerImpl::FunctionCloner::NormalizeReturnBlock() {
1007   auto getFirstPHI = [](BasicBlock *BB) {
1008     BasicBlock::iterator I = BB->begin();
1009     PHINode *FirstPhi = nullptr;
1010     while (I != BB->end()) {
1011       PHINode *Phi = dyn_cast<PHINode>(I);
1012       if (!Phi)
1013         break;
1014       if (!FirstPhi) {
1015         FirstPhi = Phi;
1016         break;
1017       }
1018     }
1019     return FirstPhi;
1020   };
1021
1022   // Shouldn't need to normalize PHIs if we're not outlining non-early return
1023   // blocks.
1024   if (!ClonedOI)
1025     return;
1026
1027   // Special hackery is needed with PHI nodes that have inputs from more than
1028   // one extracted block.  For simplicity, just split the PHIs into a two-level
1029   // sequence of PHIs, some of which will go in the extracted region, and some
1030   // of which will go outside.
1031   BasicBlock *PreReturn = ClonedOI->ReturnBlock;
1032   // only split block when necessary:
1033   PHINode *FirstPhi = getFirstPHI(PreReturn);
1034   unsigned NumPredsFromEntries = ClonedOI->ReturnBlockPreds.size();
1035
1036   if (!FirstPhi || FirstPhi->getNumIncomingValues() <= NumPredsFromEntries + 1)
1037     return;
1038
1039   auto IsTrivialPhi = [](PHINode *PN) -> Value * {
1040     Value *CommonValue = PN->getIncomingValue(0);
1041     if (all_of(PN->incoming_values(),
1042                [&](Value *V) { return V == CommonValue; }))
1043       return CommonValue;
1044     return nullptr;
1045   };
1046
1047   ClonedOI->ReturnBlock = ClonedOI->ReturnBlock->splitBasicBlock(
1048       ClonedOI->ReturnBlock->getFirstNonPHI()->getIterator());
1049   BasicBlock::iterator I = PreReturn->begin();
1050   Instruction *Ins = &ClonedOI->ReturnBlock->front();
1051   SmallVector<Instruction *, 4> DeadPhis;
1052   while (I != PreReturn->end()) {
1053     PHINode *OldPhi = dyn_cast<PHINode>(I);
1054     if (!OldPhi)
1055       break;
1056
1057     PHINode *RetPhi =
1058         PHINode::Create(OldPhi->getType(), NumPredsFromEntries + 1, "", Ins);
1059     OldPhi->replaceAllUsesWith(RetPhi);
1060     Ins = ClonedOI->ReturnBlock->getFirstNonPHI();
1061
1062     RetPhi->addIncoming(&*I, PreReturn);
1063     for (BasicBlock *E : ClonedOI->ReturnBlockPreds) {
1064       RetPhi->addIncoming(OldPhi->getIncomingValueForBlock(E), E);
1065       OldPhi->removeIncomingValue(E);
1066     }
1067
1068     // After incoming values splitting, the old phi may become trivial.
1069     // Keeping the trivial phi can introduce definition inside the outline
1070     // region which is live-out, causing necessary overhead (load, store
1071     // arg passing etc).
1072     if (auto *OldPhiVal = IsTrivialPhi(OldPhi)) {
1073       OldPhi->replaceAllUsesWith(OldPhiVal);
1074       DeadPhis.push_back(OldPhi);
1075     }
1076     ++I;
1077   }
1078   for (auto *DP : DeadPhis)
1079     DP->eraseFromParent();
1080
1081   for (auto E : ClonedOI->ReturnBlockPreds) {
1082     E->getTerminator()->replaceUsesOfWith(PreReturn, ClonedOI->ReturnBlock);
1083   }
1084 }
1085
1086 bool PartialInlinerImpl::FunctionCloner::doMultiRegionFunctionOutlining() {
1087
1088   auto ComputeRegionCost = [](SmallVectorImpl<BasicBlock *> &Region) {
1089     int Cost = 0;
1090     for (BasicBlock* BB : Region)
1091       Cost += computeBBInlineCost(BB);
1092     return Cost;
1093   };
1094
1095   assert(ClonedOMRI && "Expecting OutlineInfo for multi region outline");
1096
1097   if (ClonedOMRI->ORI.empty())
1098     return false;
1099
1100   // The CodeExtractor needs a dominator tree.
1101   DominatorTree DT;
1102   DT.recalculate(*ClonedFunc);
1103
1104   // Manually calculate a BlockFrequencyInfo and BranchProbabilityInfo.
1105   LoopInfo LI(DT);
1106   BranchProbabilityInfo BPI(*ClonedFunc, LI);
1107   ClonedFuncBFI.reset(new BlockFrequencyInfo(*ClonedFunc, BPI, LI));
1108
1109   SetVector<Value *> Inputs, Outputs, Sinks;
1110   for (FunctionOutliningMultiRegionInfo::OutlineRegionInfo RegionInfo :
1111        ClonedOMRI->ORI) {
1112     int CurrentOutlinedRegionCost = ComputeRegionCost(RegionInfo.Region);
1113
1114     CodeExtractor CE(RegionInfo.Region, &DT, /*AggregateArgs*/ false,
1115                      ClonedFuncBFI.get(), &BPI, /* AllowVarargs */ false);
1116
1117     CE.findInputsOutputs(Inputs, Outputs, Sinks);
1118
1119 #ifndef NDEBUG
1120     if (TracePartialInlining) {
1121       dbgs() << "inputs: " << Inputs.size() << "\n";
1122       dbgs() << "outputs: " << Outputs.size() << "\n";
1123       for (Value *value : Inputs)
1124         dbgs() << "value used in func: " << *value << "\n";
1125       for (Value *output : Outputs)
1126         dbgs() << "instr used in func: " << *output << "\n";
1127     }
1128 #endif
1129     // Do not extract regions that have live exit variables.
1130     if (Outputs.size() > 0 && !ForceLiveExit)
1131       continue;
1132
1133     Function *OutlinedFunc = CE.extractCodeRegion();
1134
1135     if (OutlinedFunc) {
1136       CallSite OCS = PartialInlinerImpl::getOneCallSiteTo(OutlinedFunc);
1137       BasicBlock *OutliningCallBB = OCS.getInstruction()->getParent();
1138       assert(OutliningCallBB->getParent() == ClonedFunc);
1139       OutlinedFunctions.push_back(std::make_pair(OutlinedFunc,OutliningCallBB));
1140       NumColdRegionsOutlined++;
1141       OutlinedRegionCost += CurrentOutlinedRegionCost;
1142
1143       if (MarkOutlinedColdCC) {
1144         OutlinedFunc->setCallingConv(CallingConv::Cold);
1145         OCS.setCallingConv(CallingConv::Cold);
1146       }
1147     } else
1148       ORE.emit([&]() {
1149         return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed",
1150                                         &RegionInfo.Region.front()->front())
1151                << "Failed to extract region at block "
1152                << ore::NV("Block", RegionInfo.Region.front());
1153       });
1154   }
1155
1156   return !OutlinedFunctions.empty();
1157 }
1158
1159 Function *
1160 PartialInlinerImpl::FunctionCloner::doSingleRegionFunctionOutlining() {
1161   // Returns true if the block is to be partial inlined into the caller
1162   // (i.e. not to be extracted to the out of line function)
1163   auto ToBeInlined = [&, this](BasicBlock *BB) {
1164     return BB == ClonedOI->ReturnBlock ||
1165            (std::find(ClonedOI->Entries.begin(), ClonedOI->Entries.end(), BB) !=
1166             ClonedOI->Entries.end());
1167   };
1168
1169   assert(ClonedOI && "Expecting OutlineInfo for single region outline");
1170   // The CodeExtractor needs a dominator tree.
1171   DominatorTree DT;
1172   DT.recalculate(*ClonedFunc);
1173
1174   // Manually calculate a BlockFrequencyInfo and BranchProbabilityInfo.
1175   LoopInfo LI(DT);
1176   BranchProbabilityInfo BPI(*ClonedFunc, LI);
1177   ClonedFuncBFI.reset(new BlockFrequencyInfo(*ClonedFunc, BPI, LI));
1178
1179   // Gather up the blocks that we're going to extract.
1180   std::vector<BasicBlock *> ToExtract;
1181   ToExtract.push_back(ClonedOI->NonReturnBlock);
1182   OutlinedRegionCost +=
1183       PartialInlinerImpl::computeBBInlineCost(ClonedOI->NonReturnBlock);
1184   for (BasicBlock &BB : *ClonedFunc)
1185     if (!ToBeInlined(&BB) && &BB != ClonedOI->NonReturnBlock) {
1186       ToExtract.push_back(&BB);
1187       // FIXME: the code extractor may hoist/sink more code
1188       // into the outlined function which may make the outlining
1189       // overhead (the difference of the outlined function cost
1190       // and OutliningRegionCost) look larger.
1191       OutlinedRegionCost += computeBBInlineCost(&BB);
1192     }
1193
1194   // Extract the body of the if.
1195   Function *OutlinedFunc =
1196       CodeExtractor(ToExtract, &DT, /*AggregateArgs*/ false,
1197                     ClonedFuncBFI.get(), &BPI,
1198                     /* AllowVarargs */ true)
1199           .extractCodeRegion();
1200
1201   if (OutlinedFunc) {
1202     BasicBlock *OutliningCallBB =
1203         PartialInlinerImpl::getOneCallSiteTo(OutlinedFunc)
1204             .getInstruction()
1205             ->getParent();
1206     assert(OutliningCallBB->getParent() == ClonedFunc);
1207     OutlinedFunctions.push_back(std::make_pair(OutlinedFunc, OutliningCallBB));
1208   } else
1209     ORE.emit([&]() {
1210       return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed",
1211                                       &ToExtract.front()->front())
1212              << "Failed to extract region at block "
1213              << ore::NV("Block", ToExtract.front());
1214     });
1215
1216   return OutlinedFunc;
1217 }
1218
1219 PartialInlinerImpl::FunctionCloner::~FunctionCloner() {
1220   // Ditch the duplicate, since we're done with it, and rewrite all remaining
1221   // users (function pointers, etc.) back to the original function.
1222   ClonedFunc->replaceAllUsesWith(OrigFunc);
1223   ClonedFunc->eraseFromParent();
1224   if (!IsFunctionInlined) {
1225     // Remove each function that was speculatively created if there is no
1226     // reference.
1227     for (auto FuncBBPair : OutlinedFunctions) {
1228       Function *Func = FuncBBPair.first;
1229       Func->eraseFromParent();
1230     }
1231   }
1232 }
1233
1234 std::pair<bool, Function *> PartialInlinerImpl::unswitchFunction(Function *F) {
1235
1236   if (F->hasAddressTaken())
1237     return {false, nullptr};
1238
1239   // Let inliner handle it
1240   if (F->hasFnAttribute(Attribute::AlwaysInline))
1241     return {false, nullptr};
1242
1243   if (F->hasFnAttribute(Attribute::NoInline))
1244     return {false, nullptr};
1245
1246   if (PSI->isFunctionEntryCold(F))
1247     return {false, nullptr};
1248
1249   if (empty(F->users()))
1250     return {false, nullptr};
1251
1252   OptimizationRemarkEmitter ORE(F);
1253
1254   // Only try to outline cold regions if we have a profile summary, which
1255   // implies we have profiling information.
1256   if (PSI->hasProfileSummary() && F->hasProfileData() &&
1257       !DisableMultiRegionPartialInline) {
1258     std::unique_ptr<FunctionOutliningMultiRegionInfo> OMRI =
1259         computeOutliningColdRegionsInfo(F, ORE);
1260     if (OMRI) {
1261       FunctionCloner Cloner(F, OMRI.get(), ORE);
1262
1263 #ifndef NDEBUG
1264       if (TracePartialInlining) {
1265         dbgs() << "HotCountThreshold = " << PSI->getHotCountThreshold() << "\n";
1266         dbgs() << "ColdCountThreshold = " << PSI->getColdCountThreshold()
1267                << "\n";
1268       }
1269 #endif
1270       bool DidOutline = Cloner.doMultiRegionFunctionOutlining();
1271
1272       if (DidOutline) {
1273 #ifndef NDEBUG
1274         if (TracePartialInlining) {
1275           dbgs() << ">>>>>> Outlined (Cloned) Function >>>>>>\n";
1276           Cloner.ClonedFunc->print(dbgs());
1277           dbgs() << "<<<<<< Outlined (Cloned) Function <<<<<<\n";
1278         }
1279 #endif
1280
1281         if (tryPartialInline(Cloner))
1282           return {true, nullptr};
1283       }
1284     }
1285   }
1286
1287   // Fall-thru to regular partial inlining if we:
1288   //    i) can't find any cold regions to outline, or
1289   //   ii) can't inline the outlined function anywhere.
1290   std::unique_ptr<FunctionOutliningInfo> OI = computeOutliningInfo(F);
1291   if (!OI)
1292     return {false, nullptr};
1293
1294   FunctionCloner Cloner(F, OI.get(), ORE);
1295   Cloner.NormalizeReturnBlock();
1296
1297   Function *OutlinedFunction = Cloner.doSingleRegionFunctionOutlining();
1298
1299   if (!OutlinedFunction)
1300     return {false, nullptr};
1301
1302   bool AnyInline = tryPartialInline(Cloner);
1303
1304   if (AnyInline)
1305     return {true, OutlinedFunction};
1306
1307   return {false, nullptr};
1308 }
1309
1310 bool PartialInlinerImpl::tryPartialInline(FunctionCloner &Cloner) {
1311   if (Cloner.OutlinedFunctions.empty())
1312     return false;
1313
1314   int SizeCost = 0;
1315   BlockFrequency WeightedRcost;
1316   int NonWeightedRcost;
1317   std::tie(SizeCost, NonWeightedRcost) = computeOutliningCosts(Cloner);
1318
1319   // Only calculate RelativeToEntryFreq when we are doing single region
1320   // outlining.
1321   BranchProbability RelativeToEntryFreq;
1322   if (Cloner.ClonedOI) {
1323     RelativeToEntryFreq = getOutliningCallBBRelativeFreq(Cloner);
1324   } else
1325     // RelativeToEntryFreq doesn't make sense when we have more than one
1326     // outlined call because each call will have a different relative frequency
1327     // to the entry block.  We can consider using the average, but the
1328     // usefulness of that information is questionable. For now, assume we never
1329     // execute the calls to outlined functions.
1330     RelativeToEntryFreq = BranchProbability(0, 1);
1331
1332   WeightedRcost = BlockFrequency(NonWeightedRcost) * RelativeToEntryFreq;
1333
1334   // The call sequence(s) to the outlined function(s) are larger than the sum of
1335   // the original outlined region size(s), it does not increase the chances of
1336   // inlining the function with outlining (The inliner uses the size increase to
1337   // model the cost of inlining a callee).
1338   if (!SkipCostAnalysis && Cloner.OutlinedRegionCost < SizeCost) {
1339     OptimizationRemarkEmitter OrigFuncORE(Cloner.OrigFunc);
1340     DebugLoc DLoc;
1341     BasicBlock *Block;
1342     std::tie(DLoc, Block) = getOneDebugLoc(Cloner.ClonedFunc);
1343     OrigFuncORE.emit([&]() {
1344       return OptimizationRemarkAnalysis(DEBUG_TYPE, "OutlineRegionTooSmall",
1345                                         DLoc, Block)
1346              << ore::NV("Function", Cloner.OrigFunc)
1347              << " not partially inlined into callers (Original Size = "
1348              << ore::NV("OutlinedRegionOriginalSize", Cloner.OutlinedRegionCost)
1349              << ", Size of call sequence to outlined function = "
1350              << ore::NV("NewSize", SizeCost) << ")";
1351     });
1352     return false;
1353   }
1354
1355   assert(empty(Cloner.OrigFunc->users()) &&
1356          "F's users should all be replaced!");
1357
1358   std::vector<User *> Users(Cloner.ClonedFunc->user_begin(),
1359                             Cloner.ClonedFunc->user_end());
1360
1361   DenseMap<User *, uint64_t> CallSiteToProfCountMap;
1362   auto CalleeEntryCount = Cloner.OrigFunc->getEntryCount();
1363   if (CalleeEntryCount)
1364     computeCallsiteToProfCountMap(Cloner.ClonedFunc, CallSiteToProfCountMap);
1365
1366   uint64_t CalleeEntryCountV =
1367       (CalleeEntryCount ? CalleeEntryCount.getCount() : 0);
1368
1369   bool AnyInline = false;
1370   for (User *User : Users) {
1371     CallSite CS = getCallSite(User);
1372
1373     if (IsLimitReached())
1374       continue;
1375
1376     OptimizationRemarkEmitter CallerORE(CS.getCaller());
1377     if (!shouldPartialInline(CS, Cloner, WeightedRcost, CallerORE))
1378       continue;
1379
1380     // Construct remark before doing the inlining, as after successful inlining
1381     // the callsite is removed.
1382     OptimizationRemark OR(DEBUG_TYPE, "PartiallyInlined", CS.getInstruction());
1383     OR << ore::NV("Callee", Cloner.OrigFunc) << " partially inlined into "
1384        << ore::NV("Caller", CS.getCaller());
1385
1386     InlineFunctionInfo IFI(nullptr, GetAssumptionCache, PSI);
1387     // We can only forward varargs when we outlined a single region, else we
1388     // bail on vararg functions.
1389     if (!InlineFunction(CS, IFI, nullptr, true,
1390                         (Cloner.ClonedOI ? Cloner.OutlinedFunctions.back().first
1391                                          : nullptr)))
1392       continue;
1393
1394     CallerORE.emit(OR);
1395
1396     // Now update the entry count:
1397     if (CalleeEntryCountV && CallSiteToProfCountMap.count(User)) {
1398       uint64_t CallSiteCount = CallSiteToProfCountMap[User];
1399       CalleeEntryCountV -= std::min(CalleeEntryCountV, CallSiteCount);
1400     }
1401
1402     AnyInline = true;
1403     NumPartialInlining++;
1404     // Update the stats
1405     if (Cloner.ClonedOI)
1406       NumPartialInlined++;
1407     else
1408       NumColdOutlinePartialInlined++;
1409
1410   }
1411
1412   if (AnyInline) {
1413     Cloner.IsFunctionInlined = true;
1414     if (CalleeEntryCount)
1415       Cloner.OrigFunc->setEntryCount(
1416           CalleeEntryCount.setCount(CalleeEntryCountV));
1417     OptimizationRemarkEmitter OrigFuncORE(Cloner.OrigFunc);
1418     OrigFuncORE.emit([&]() {
1419       return OptimizationRemark(DEBUG_TYPE, "PartiallyInlined", Cloner.OrigFunc)
1420              << "Partially inlined into at least one caller";
1421     });
1422
1423   }
1424
1425   return AnyInline;
1426 }
1427
1428 bool PartialInlinerImpl::run(Module &M) {
1429   if (DisablePartialInlining)
1430     return false;
1431
1432   std::vector<Function *> Worklist;
1433   Worklist.reserve(M.size());
1434   for (Function &F : M)
1435     if (!F.use_empty() && !F.isDeclaration())
1436       Worklist.push_back(&F);
1437
1438   bool Changed = false;
1439   while (!Worklist.empty()) {
1440     Function *CurrFunc = Worklist.back();
1441     Worklist.pop_back();
1442
1443     if (CurrFunc->use_empty())
1444       continue;
1445
1446     bool Recursive = false;
1447     for (User *U : CurrFunc->users())
1448       if (Instruction *I = dyn_cast<Instruction>(U))
1449         if (I->getParent()->getParent() == CurrFunc) {
1450           Recursive = true;
1451           break;
1452         }
1453     if (Recursive)
1454       continue;
1455
1456     std::pair<bool, Function * > Result = unswitchFunction(CurrFunc);
1457     if (Result.second)
1458       Worklist.push_back(Result.second);
1459     Changed |= Result.first;
1460   }
1461
1462   return Changed;
1463 }
1464
1465 char PartialInlinerLegacyPass::ID = 0;
1466
1467 INITIALIZE_PASS_BEGIN(PartialInlinerLegacyPass, "partial-inliner",
1468                       "Partial Inliner", false, false)
1469 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1470 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
1471 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1472 INITIALIZE_PASS_END(PartialInlinerLegacyPass, "partial-inliner",
1473                     "Partial Inliner", false, false)
1474
1475 ModulePass *llvm::createPartialInliningPass() {
1476   return new PartialInlinerLegacyPass();
1477 }
1478
1479 PreservedAnalyses PartialInlinerPass::run(Module &M,
1480                                           ModuleAnalysisManager &AM) {
1481   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1482
1483   std::function<AssumptionCache &(Function &)> GetAssumptionCache =
1484       [&FAM](Function &F) -> AssumptionCache & {
1485     return FAM.getResult<AssumptionAnalysis>(F);
1486   };
1487
1488   std::function<BlockFrequencyInfo &(Function &)> GetBFI =
1489       [&FAM](Function &F) -> BlockFrequencyInfo & {
1490     return FAM.getResult<BlockFrequencyAnalysis>(F);
1491   };
1492
1493   std::function<TargetTransformInfo &(Function &)> GetTTI =
1494       [&FAM](Function &F) -> TargetTransformInfo & {
1495     return FAM.getResult<TargetIRAnalysis>(F);
1496   };
1497
1498   ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
1499
1500   if (PartialInlinerImpl(&GetAssumptionCache, &GetTTI, {GetBFI}, PSI)
1501           .run(M))
1502     return PreservedAnalyses::none();
1503   return PreservedAnalyses::all();
1504 }