]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/IPO/SampleProfile.cpp
Merge clang 7.0.1 and several follow-up changes
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / IPO / SampleProfile.cpp
1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
2 //
3 //                      The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SampleProfileLoader transformation. This pass
11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf -
12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
13 // profile information in the given profile.
14 //
15 // This pass generates branch weight annotations on the IR:
16 //
17 // - prof: Represents branch weights. This annotation is added to branches
18 //      to indicate the weights of each edge coming out of the branch.
19 //      The weight of each edge is the weight of the target block for
20 //      that edge. The weight of a block B is computed as the maximum
21 //      number of samples found in B.
22 //
23 //===----------------------------------------------------------------------===//
24
25 #include "llvm/Transforms/IPO/SampleProfile.h"
26 #include "llvm/ADT/ArrayRef.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/DenseSet.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/StringMap.h"
34 #include "llvm/ADT/StringRef.h"
35 #include "llvm/ADT/Twine.h"
36 #include "llvm/Analysis/AssumptionCache.h"
37 #include "llvm/Analysis/InlineCost.h"
38 #include "llvm/Analysis/LoopInfo.h"
39 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
40 #include "llvm/Analysis/PostDominators.h"
41 #include "llvm/Analysis/ProfileSummaryInfo.h"
42 #include "llvm/Analysis/TargetTransformInfo.h"
43 #include "llvm/IR/BasicBlock.h"
44 #include "llvm/IR/CFG.h"
45 #include "llvm/IR/CallSite.h"
46 #include "llvm/IR/DebugInfoMetadata.h"
47 #include "llvm/IR/DebugLoc.h"
48 #include "llvm/IR/DiagnosticInfo.h"
49 #include "llvm/IR/Dominators.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/GlobalValue.h"
52 #include "llvm/IR/InstrTypes.h"
53 #include "llvm/IR/Instruction.h"
54 #include "llvm/IR/Instructions.h"
55 #include "llvm/IR/IntrinsicInst.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/MDBuilder.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/PassManager.h"
60 #include "llvm/IR/ValueSymbolTable.h"
61 #include "llvm/Pass.h"
62 #include "llvm/ProfileData/InstrProf.h"
63 #include "llvm/ProfileData/SampleProf.h"
64 #include "llvm/ProfileData/SampleProfReader.h"
65 #include "llvm/Support/Casting.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/ErrorOr.h"
70 #include "llvm/Support/GenericDomTree.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include "llvm/Transforms/IPO.h"
73 #include "llvm/Transforms/Instrumentation.h"
74 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
75 #include "llvm/Transforms/Utils/Cloning.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <cstdint>
79 #include <functional>
80 #include <limits>
81 #include <map>
82 #include <memory>
83 #include <string>
84 #include <system_error>
85 #include <utility>
86 #include <vector>
87
88 using namespace llvm;
89 using namespace sampleprof;
90 using ProfileCount = Function::ProfileCount;
91 #define DEBUG_TYPE "sample-profile"
92
93 // Command line option to specify the file to read samples from. This is
94 // mainly used for debugging.
95 static cl::opt<std::string> SampleProfileFile(
96     "sample-profile-file", cl::init(""), cl::value_desc("filename"),
97     cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
98
99 static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
100     "sample-profile-max-propagate-iterations", cl::init(100),
101     cl::desc("Maximum number of iterations to go through when propagating "
102              "sample block/edge weights through the CFG."));
103
104 static cl::opt<unsigned> SampleProfileRecordCoverage(
105     "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"),
106     cl::desc("Emit a warning if less than N% of records in the input profile "
107              "are matched to the IR."));
108
109 static cl::opt<unsigned> SampleProfileSampleCoverage(
110     "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"),
111     cl::desc("Emit a warning if less than N% of samples in the input profile "
112              "are matched to the IR."));
113
114 static cl::opt<bool> NoWarnSampleUnused(
115     "no-warn-sample-unused", cl::init(false), cl::Hidden,
116     cl::desc("Use this option to turn off/on warnings about function with "
117              "samples but without debug information to use those samples. "));
118
119 namespace {
120
121 using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>;
122 using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>;
123 using Edge = std::pair<const BasicBlock *, const BasicBlock *>;
124 using EdgeWeightMap = DenseMap<Edge, uint64_t>;
125 using BlockEdgeMap =
126     DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>;
127
128 class SampleCoverageTracker {
129 public:
130   SampleCoverageTracker() = default;
131
132   bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset,
133                        uint32_t Discriminator, uint64_t Samples);
134   unsigned computeCoverage(unsigned Used, unsigned Total) const;
135   unsigned countUsedRecords(const FunctionSamples *FS,
136                             ProfileSummaryInfo *PSI) const;
137   unsigned countBodyRecords(const FunctionSamples *FS,
138                             ProfileSummaryInfo *PSI) const;
139   uint64_t getTotalUsedSamples() const { return TotalUsedSamples; }
140   uint64_t countBodySamples(const FunctionSamples *FS,
141                             ProfileSummaryInfo *PSI) const;
142
143   void clear() {
144     SampleCoverage.clear();
145     TotalUsedSamples = 0;
146   }
147
148 private:
149   using BodySampleCoverageMap = std::map<LineLocation, unsigned>;
150   using FunctionSamplesCoverageMap =
151       DenseMap<const FunctionSamples *, BodySampleCoverageMap>;
152
153   /// Coverage map for sampling records.
154   ///
155   /// This map keeps a record of sampling records that have been matched to
156   /// an IR instruction. This is used to detect some form of staleness in
157   /// profiles (see flag -sample-profile-check-coverage).
158   ///
159   /// Each entry in the map corresponds to a FunctionSamples instance.  This is
160   /// another map that counts how many times the sample record at the
161   /// given location has been used.
162   FunctionSamplesCoverageMap SampleCoverage;
163
164   /// Number of samples used from the profile.
165   ///
166   /// When a sampling record is used for the first time, the samples from
167   /// that record are added to this accumulator.  Coverage is later computed
168   /// based on the total number of samples available in this function and
169   /// its callsites.
170   ///
171   /// Note that this accumulator tracks samples used from a single function
172   /// and all the inlined callsites. Strictly, we should have a map of counters
173   /// keyed by FunctionSamples pointers, but these stats are cleared after
174   /// every function, so we just need to keep a single counter.
175   uint64_t TotalUsedSamples = 0;
176 };
177
178 /// Sample profile pass.
179 ///
180 /// This pass reads profile data from the file specified by
181 /// -sample-profile-file and annotates every affected function with the
182 /// profile information found in that file.
183 class SampleProfileLoader {
184 public:
185   SampleProfileLoader(
186       StringRef Name, bool IsThinLTOPreLink,
187       std::function<AssumptionCache &(Function &)> GetAssumptionCache,
188       std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo)
189       : GetAC(std::move(GetAssumptionCache)),
190         GetTTI(std::move(GetTargetTransformInfo)), Filename(Name),
191         IsThinLTOPreLink(IsThinLTOPreLink) {}
192
193   bool doInitialization(Module &M);
194   bool runOnModule(Module &M, ModuleAnalysisManager *AM,
195                    ProfileSummaryInfo *_PSI);
196
197   void dump() { Reader->dump(); }
198
199 protected:
200   bool runOnFunction(Function &F, ModuleAnalysisManager *AM);
201   unsigned getFunctionLoc(Function &F);
202   bool emitAnnotations(Function &F);
203   ErrorOr<uint64_t> getInstWeight(const Instruction &I);
204   ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB);
205   const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const;
206   std::vector<const FunctionSamples *>
207   findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const;
208   const FunctionSamples *findFunctionSamples(const Instruction &I) const;
209   bool inlineCallInstruction(Instruction *I);
210   bool inlineHotFunctions(Function &F,
211                           DenseSet<GlobalValue::GUID> &InlinedGUIDs);
212   void printEdgeWeight(raw_ostream &OS, Edge E);
213   void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const;
214   void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB);
215   bool computeBlockWeights(Function &F);
216   void findEquivalenceClasses(Function &F);
217   template <bool IsPostDom>
218   void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
219                            DominatorTreeBase<BasicBlock, IsPostDom> *DomTree);
220
221   void propagateWeights(Function &F);
222   uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
223   void buildEdges(Function &F);
224   bool propagateThroughEdges(Function &F, bool UpdateBlockCount);
225   void computeDominanceAndLoopInfo(Function &F);
226   void clearFunctionData();
227
228   /// Map basic blocks to their computed weights.
229   ///
230   /// The weight of a basic block is defined to be the maximum
231   /// of all the instruction weights in that block.
232   BlockWeightMap BlockWeights;
233
234   /// Map edges to their computed weights.
235   ///
236   /// Edge weights are computed by propagating basic block weights in
237   /// SampleProfile::propagateWeights.
238   EdgeWeightMap EdgeWeights;
239
240   /// Set of visited blocks during propagation.
241   SmallPtrSet<const BasicBlock *, 32> VisitedBlocks;
242
243   /// Set of visited edges during propagation.
244   SmallSet<Edge, 32> VisitedEdges;
245
246   /// Equivalence classes for block weights.
247   ///
248   /// Two blocks BB1 and BB2 are in the same equivalence class if they
249   /// dominate and post-dominate each other, and they are in the same loop
250   /// nest. When this happens, the two blocks are guaranteed to execute
251   /// the same number of times.
252   EquivalenceClassMap EquivalenceClass;
253
254   /// Map from function name to Function *. Used to find the function from
255   /// the function name. If the function name contains suffix, additional
256   /// entry is added to map from the stripped name to the function if there
257   /// is one-to-one mapping.
258   StringMap<Function *> SymbolMap;
259
260   /// Dominance, post-dominance and loop information.
261   std::unique_ptr<DominatorTree> DT;
262   std::unique_ptr<PostDominatorTree> PDT;
263   std::unique_ptr<LoopInfo> LI;
264
265   std::function<AssumptionCache &(Function &)> GetAC;
266   std::function<TargetTransformInfo &(Function &)> GetTTI;
267
268   /// Predecessors for each basic block in the CFG.
269   BlockEdgeMap Predecessors;
270
271   /// Successors for each basic block in the CFG.
272   BlockEdgeMap Successors;
273
274   SampleCoverageTracker CoverageTracker;
275
276   /// Profile reader object.
277   std::unique_ptr<SampleProfileReader> Reader;
278
279   /// Samples collected for the body of this function.
280   FunctionSamples *Samples = nullptr;
281
282   /// Name of the profile file to load.
283   std::string Filename;
284
285   /// Flag indicating whether the profile input loaded successfully.
286   bool ProfileIsValid = false;
287
288   /// Flag indicating if the pass is invoked in ThinLTO compile phase.
289   ///
290   /// In this phase, in annotation, we should not promote indirect calls.
291   /// Instead, we will mark GUIDs that needs to be annotated to the function.
292   bool IsThinLTOPreLink;
293
294   /// Profile Summary Info computed from sample profile.
295   ProfileSummaryInfo *PSI = nullptr;
296
297   /// Total number of samples collected in this profile.
298   ///
299   /// This is the sum of all the samples collected in all the functions executed
300   /// at runtime.
301   uint64_t TotalCollectedSamples = 0;
302
303   /// Optimization Remark Emitter used to emit diagnostic remarks.
304   OptimizationRemarkEmitter *ORE = nullptr;
305 };
306
307 class SampleProfileLoaderLegacyPass : public ModulePass {
308 public:
309   // Class identification, replacement for typeinfo
310   static char ID;
311
312   SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile,
313                                 bool IsThinLTOPreLink = false)
314       : ModulePass(ID), SampleLoader(Name, IsThinLTOPreLink,
315                                      [&](Function &F) -> AssumptionCache & {
316                                        return ACT->getAssumptionCache(F);
317                                      },
318                                      [&](Function &F) -> TargetTransformInfo & {
319                                        return TTIWP->getTTI(F);
320                                      }) {
321     initializeSampleProfileLoaderLegacyPassPass(
322         *PassRegistry::getPassRegistry());
323   }
324
325   void dump() { SampleLoader.dump(); }
326
327   bool doInitialization(Module &M) override {
328     return SampleLoader.doInitialization(M);
329   }
330
331   StringRef getPassName() const override { return "Sample profile pass"; }
332   bool runOnModule(Module &M) override;
333
334   void getAnalysisUsage(AnalysisUsage &AU) const override {
335     AU.addRequired<AssumptionCacheTracker>();
336     AU.addRequired<TargetTransformInfoWrapperPass>();
337     AU.addRequired<ProfileSummaryInfoWrapperPass>();
338   }
339
340 private:
341   SampleProfileLoader SampleLoader;
342   AssumptionCacheTracker *ACT = nullptr;
343   TargetTransformInfoWrapperPass *TTIWP = nullptr;
344 };
345
346 } // end anonymous namespace
347
348 /// Return true if the given callsite is hot wrt to hot cutoff threshold.
349 ///
350 /// Functions that were inlined in the original binary will be represented
351 /// in the inline stack in the sample profile. If the profile shows that
352 /// the original inline decision was "good" (i.e., the callsite is executed
353 /// frequently), then we will recreate the inline decision and apply the
354 /// profile from the inlined callsite.
355 ///
356 /// To decide whether an inlined callsite is hot, we compare the callsite
357 /// sample count with the hot cutoff computed by ProfileSummaryInfo, it is
358 /// regarded as hot if the count is above the cutoff value.
359 static bool callsiteIsHot(const FunctionSamples *CallsiteFS,
360                           ProfileSummaryInfo *PSI) {
361   if (!CallsiteFS)
362     return false; // The callsite was not inlined in the original binary.
363
364   assert(PSI && "PSI is expected to be non null");
365   uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples();
366   return PSI->isHotCount(CallsiteTotalSamples);
367 }
368
369 /// Mark as used the sample record for the given function samples at
370 /// (LineOffset, Discriminator).
371 ///
372 /// \returns true if this is the first time we mark the given record.
373 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS,
374                                             uint32_t LineOffset,
375                                             uint32_t Discriminator,
376                                             uint64_t Samples) {
377   LineLocation Loc(LineOffset, Discriminator);
378   unsigned &Count = SampleCoverage[FS][Loc];
379   bool FirstTime = (++Count == 1);
380   if (FirstTime)
381     TotalUsedSamples += Samples;
382   return FirstTime;
383 }
384
385 /// Return the number of sample records that were applied from this profile.
386 ///
387 /// This count does not include records from cold inlined callsites.
388 unsigned
389 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS,
390                                         ProfileSummaryInfo *PSI) const {
391   auto I = SampleCoverage.find(FS);
392
393   // The size of the coverage map for FS represents the number of records
394   // that were marked used at least once.
395   unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0;
396
397   // If there are inlined callsites in this function, count the samples found
398   // in the respective bodies. However, do not bother counting callees with 0
399   // total samples, these are callees that were never invoked at runtime.
400   for (const auto &I : FS->getCallsiteSamples())
401     for (const auto &J : I.second) {
402       const FunctionSamples *CalleeSamples = &J.second;
403       if (callsiteIsHot(CalleeSamples, PSI))
404         Count += countUsedRecords(CalleeSamples, PSI);
405     }
406
407   return Count;
408 }
409
410 /// Return the number of sample records in the body of this profile.
411 ///
412 /// This count does not include records from cold inlined callsites.
413 unsigned
414 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS,
415                                         ProfileSummaryInfo *PSI) const {
416   unsigned Count = FS->getBodySamples().size();
417
418   // Only count records in hot callsites.
419   for (const auto &I : FS->getCallsiteSamples())
420     for (const auto &J : I.second) {
421       const FunctionSamples *CalleeSamples = &J.second;
422       if (callsiteIsHot(CalleeSamples, PSI))
423         Count += countBodyRecords(CalleeSamples, PSI);
424     }
425
426   return Count;
427 }
428
429 /// Return the number of samples collected in the body of this profile.
430 ///
431 /// This count does not include samples from cold inlined callsites.
432 uint64_t
433 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS,
434                                         ProfileSummaryInfo *PSI) const {
435   uint64_t Total = 0;
436   for (const auto &I : FS->getBodySamples())
437     Total += I.second.getSamples();
438
439   // Only count samples in hot callsites.
440   for (const auto &I : FS->getCallsiteSamples())
441     for (const auto &J : I.second) {
442       const FunctionSamples *CalleeSamples = &J.second;
443       if (callsiteIsHot(CalleeSamples, PSI))
444         Total += countBodySamples(CalleeSamples, PSI);
445     }
446
447   return Total;
448 }
449
450 /// Return the fraction of sample records used in this profile.
451 ///
452 /// The returned value is an unsigned integer in the range 0-100 indicating
453 /// the percentage of sample records that were used while applying this
454 /// profile to the associated function.
455 unsigned SampleCoverageTracker::computeCoverage(unsigned Used,
456                                                 unsigned Total) const {
457   assert(Used <= Total &&
458          "number of used records cannot exceed the total number of records");
459   return Total > 0 ? Used * 100 / Total : 100;
460 }
461
462 /// Clear all the per-function data used to load samples and propagate weights.
463 void SampleProfileLoader::clearFunctionData() {
464   BlockWeights.clear();
465   EdgeWeights.clear();
466   VisitedBlocks.clear();
467   VisitedEdges.clear();
468   EquivalenceClass.clear();
469   DT = nullptr;
470   PDT = nullptr;
471   LI = nullptr;
472   Predecessors.clear();
473   Successors.clear();
474   CoverageTracker.clear();
475 }
476
477 #ifndef NDEBUG
478 /// Print the weight of edge \p E on stream \p OS.
479 ///
480 /// \param OS  Stream to emit the output to.
481 /// \param E  Edge to print.
482 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
483   OS << "weight[" << E.first->getName() << "->" << E.second->getName()
484      << "]: " << EdgeWeights[E] << "\n";
485 }
486
487 /// Print the equivalence class of block \p BB on stream \p OS.
488 ///
489 /// \param OS  Stream to emit the output to.
490 /// \param BB  Block to print.
491 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
492                                                 const BasicBlock *BB) {
493   const BasicBlock *Equiv = EquivalenceClass[BB];
494   OS << "equivalence[" << BB->getName()
495      << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
496 }
497
498 /// Print the weight of block \p BB on stream \p OS.
499 ///
500 /// \param OS  Stream to emit the output to.
501 /// \param BB  Block to print.
502 void SampleProfileLoader::printBlockWeight(raw_ostream &OS,
503                                            const BasicBlock *BB) const {
504   const auto &I = BlockWeights.find(BB);
505   uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
506   OS << "weight[" << BB->getName() << "]: " << W << "\n";
507 }
508 #endif
509
510 /// Get the weight for an instruction.
511 ///
512 /// The "weight" of an instruction \p Inst is the number of samples
513 /// collected on that instruction at runtime. To retrieve it, we
514 /// need to compute the line number of \p Inst relative to the start of its
515 /// function. We use HeaderLineno to compute the offset. We then
516 /// look up the samples collected for \p Inst using BodySamples.
517 ///
518 /// \param Inst Instruction to query.
519 ///
520 /// \returns the weight of \p Inst.
521 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) {
522   const DebugLoc &DLoc = Inst.getDebugLoc();
523   if (!DLoc)
524     return std::error_code();
525
526   const FunctionSamples *FS = findFunctionSamples(Inst);
527   if (!FS)
528     return std::error_code();
529
530   // Ignore all intrinsics and branch instructions.
531   // Branch instruction usually contains debug info from sources outside of
532   // the residing basic block, thus we ignore them during annotation.
533   if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst))
534     return std::error_code();
535
536   // If a direct call/invoke instruction is inlined in profile
537   // (findCalleeFunctionSamples returns non-empty result), but not inlined here,
538   // it means that the inlined callsite has no sample, thus the call
539   // instruction should have 0 count.
540   if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) &&
541       !ImmutableCallSite(&Inst).isIndirectCall() &&
542       findCalleeFunctionSamples(Inst))
543     return 0;
544
545   const DILocation *DIL = DLoc;
546   uint32_t LineOffset = FunctionSamples::getOffset(DIL);
547   uint32_t Discriminator = DIL->getBaseDiscriminator();
548   ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator);
549   if (R) {
550     bool FirstMark =
551         CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
552     if (FirstMark) {
553       ORE->emit([&]() {
554         OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst);
555         Remark << "Applied " << ore::NV("NumSamples", *R);
556         Remark << " samples from profile (offset: ";
557         Remark << ore::NV("LineOffset", LineOffset);
558         if (Discriminator) {
559           Remark << ".";
560           Remark << ore::NV("Discriminator", Discriminator);
561         }
562         Remark << ")";
563         return Remark;
564       });
565     }
566     LLVM_DEBUG(dbgs() << "    " << DLoc.getLine() << "."
567                       << DIL->getBaseDiscriminator() << ":" << Inst
568                       << " (line offset: " << LineOffset << "."
569                       << DIL->getBaseDiscriminator() << " - weight: " << R.get()
570                       << ")\n");
571   }
572   return R;
573 }
574
575 /// Compute the weight of a basic block.
576 ///
577 /// The weight of basic block \p BB is the maximum weight of all the
578 /// instructions in BB.
579 ///
580 /// \param BB The basic block to query.
581 ///
582 /// \returns the weight for \p BB.
583 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) {
584   uint64_t Max = 0;
585   bool HasWeight = false;
586   for (auto &I : BB->getInstList()) {
587     const ErrorOr<uint64_t> &R = getInstWeight(I);
588     if (R) {
589       Max = std::max(Max, R.get());
590       HasWeight = true;
591     }
592   }
593   return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code();
594 }
595
596 /// Compute and store the weights of every basic block.
597 ///
598 /// This populates the BlockWeights map by computing
599 /// the weights of every basic block in the CFG.
600 ///
601 /// \param F The function to query.
602 bool SampleProfileLoader::computeBlockWeights(Function &F) {
603   bool Changed = false;
604   LLVM_DEBUG(dbgs() << "Block weights\n");
605   for (const auto &BB : F) {
606     ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
607     if (Weight) {
608       BlockWeights[&BB] = Weight.get();
609       VisitedBlocks.insert(&BB);
610       Changed = true;
611     }
612     LLVM_DEBUG(printBlockWeight(dbgs(), &BB));
613   }
614
615   return Changed;
616 }
617
618 /// Get the FunctionSamples for a call instruction.
619 ///
620 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined
621 /// instance in which that call instruction is calling to. It contains
622 /// all samples that resides in the inlined instance. We first find the
623 /// inlined instance in which the call instruction is from, then we
624 /// traverse its children to find the callsite with the matching
625 /// location.
626 ///
627 /// \param Inst Call/Invoke instruction to query.
628 ///
629 /// \returns The FunctionSamples pointer to the inlined instance.
630 const FunctionSamples *
631 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const {
632   const DILocation *DIL = Inst.getDebugLoc();
633   if (!DIL) {
634     return nullptr;
635   }
636
637   StringRef CalleeName;
638   if (const CallInst *CI = dyn_cast<CallInst>(&Inst))
639     if (Function *Callee = CI->getCalledFunction())
640       CalleeName = Callee->getName();
641
642   const FunctionSamples *FS = findFunctionSamples(Inst);
643   if (FS == nullptr)
644     return nullptr;
645
646   std::string CalleeGUID;
647   CalleeName = getRepInFormat(CalleeName, Reader->getFormat(), CalleeGUID);
648   return FS->findFunctionSamplesAt(LineLocation(FunctionSamples::getOffset(DIL),
649                                                 DIL->getBaseDiscriminator()),
650                                    CalleeName);
651 }
652
653 /// Returns a vector of FunctionSamples that are the indirect call targets
654 /// of \p Inst. The vector is sorted by the total number of samples. Stores
655 /// the total call count of the indirect call in \p Sum.
656 std::vector<const FunctionSamples *>
657 SampleProfileLoader::findIndirectCallFunctionSamples(
658     const Instruction &Inst, uint64_t &Sum) const {
659   const DILocation *DIL = Inst.getDebugLoc();
660   std::vector<const FunctionSamples *> R;
661
662   if (!DIL) {
663     return R;
664   }
665
666   const FunctionSamples *FS = findFunctionSamples(Inst);
667   if (FS == nullptr)
668     return R;
669
670   uint32_t LineOffset = FunctionSamples::getOffset(DIL);
671   uint32_t Discriminator = DIL->getBaseDiscriminator();
672
673   auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
674   Sum = 0;
675   if (T)
676     for (const auto &T_C : T.get())
677       Sum += T_C.second;
678   if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(LineLocation(
679           FunctionSamples::getOffset(DIL), DIL->getBaseDiscriminator()))) {
680     if (M->empty())
681       return R;
682     for (const auto &NameFS : *M) {
683       Sum += NameFS.second.getEntrySamples();
684       R.push_back(&NameFS.second);
685     }
686     llvm::sort(R.begin(), R.end(),
687                [](const FunctionSamples *L, const FunctionSamples *R) {
688                  return L->getEntrySamples() > R->getEntrySamples();
689                });
690   }
691   return R;
692 }
693
694 /// Get the FunctionSamples for an instruction.
695 ///
696 /// The FunctionSamples of an instruction \p Inst is the inlined instance
697 /// in which that instruction is coming from. We traverse the inline stack
698 /// of that instruction, and match it with the tree nodes in the profile.
699 ///
700 /// \param Inst Instruction to query.
701 ///
702 /// \returns the FunctionSamples pointer to the inlined instance.
703 const FunctionSamples *
704 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const {
705   SmallVector<std::pair<LineLocation, StringRef>, 10> S;
706   const DILocation *DIL = Inst.getDebugLoc();
707   if (!DIL)
708     return Samples;
709
710   return Samples->findFunctionSamples(DIL);
711 }
712
713 bool SampleProfileLoader::inlineCallInstruction(Instruction *I) {
714   assert(isa<CallInst>(I) || isa<InvokeInst>(I));
715   CallSite CS(I);
716   Function *CalledFunction = CS.getCalledFunction();
717   assert(CalledFunction);
718   DebugLoc DLoc = I->getDebugLoc();
719   BasicBlock *BB = I->getParent();
720   InlineParams Params = getInlineParams();
721   Params.ComputeFullInlineCost = true;
722   // Checks if there is anything in the reachable portion of the callee at
723   // this callsite that makes this inlining potentially illegal. Need to
724   // set ComputeFullInlineCost, otherwise getInlineCost may return early
725   // when cost exceeds threshold without checking all IRs in the callee.
726   // The acutal cost does not matter because we only checks isNever() to
727   // see if it is legal to inline the callsite.
728   InlineCost Cost = getInlineCost(CS, Params, GetTTI(*CalledFunction), GetAC,
729                                   None, nullptr, nullptr);
730   if (Cost.isNever()) {
731     ORE->emit(OptimizationRemark(DEBUG_TYPE, "Not inline", DLoc, BB)
732               << "incompatible inlining");
733     return false;
734   }
735   InlineFunctionInfo IFI(nullptr, &GetAC);
736   if (InlineFunction(CS, IFI)) {
737     // The call to InlineFunction erases I, so we can't pass it here.
738     ORE->emit(OptimizationRemark(DEBUG_TYPE, "HotInline", DLoc, BB)
739               << "inlined hot callee '" << ore::NV("Callee", CalledFunction)
740               << "' into '" << ore::NV("Caller", BB->getParent()) << "'");
741     return true;
742   }
743   return false;
744 }
745
746 /// Iteratively inline hot callsites of a function.
747 ///
748 /// Iteratively traverse all callsites of the function \p F, and find if
749 /// the corresponding inlined instance exists and is hot in profile. If
750 /// it is hot enough, inline the callsites and adds new callsites of the
751 /// callee into the caller. If the call is an indirect call, first promote
752 /// it to direct call. Each indirect call is limited with a single target.
753 ///
754 /// \param F function to perform iterative inlining.
755 /// \param InlinedGUIDs a set to be updated to include all GUIDs that are
756 ///     inlined in the profiled binary.
757 ///
758 /// \returns True if there is any inline happened.
759 bool SampleProfileLoader::inlineHotFunctions(
760     Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
761   DenseSet<Instruction *> PromotedInsns;
762   bool Changed = false;
763   bool isCompact = (Reader->getFormat() == SPF_Compact_Binary);
764   while (true) {
765     bool LocalChanged = false;
766     SmallVector<Instruction *, 10> CIS;
767     for (auto &BB : F) {
768       bool Hot = false;
769       SmallVector<Instruction *, 10> Candidates;
770       for (auto &I : BB.getInstList()) {
771         const FunctionSamples *FS = nullptr;
772         if ((isa<CallInst>(I) || isa<InvokeInst>(I)) &&
773             !isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(I))) {
774           Candidates.push_back(&I);
775           if (callsiteIsHot(FS, PSI))
776             Hot = true;
777         }
778       }
779       if (Hot) {
780         CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end());
781       }
782     }
783     for (auto I : CIS) {
784       Function *CalledFunction = CallSite(I).getCalledFunction();
785       // Do not inline recursive calls.
786       if (CalledFunction == &F)
787         continue;
788       if (CallSite(I).isIndirectCall()) {
789         if (PromotedInsns.count(I))
790           continue;
791         uint64_t Sum;
792         for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) {
793           if (IsThinLTOPreLink) {
794             FS->findInlinedFunctions(InlinedGUIDs, F.getParent(),
795                                      PSI->getOrCompHotCountThreshold(),
796                                      isCompact);
797             continue;
798           }
799           auto CalleeFunctionName = FS->getName();
800           // If it is a recursive call, we do not inline it as it could bloat
801           // the code exponentially. There is way to better handle this, e.g.
802           // clone the caller first, and inline the cloned caller if it is
803           // recursive. As llvm does not inline recursive calls, we will
804           // simply ignore it instead of handling it explicitly.
805           std::string FGUID;
806           auto Fname = getRepInFormat(F.getName(), Reader->getFormat(), FGUID);
807           if (CalleeFunctionName == Fname)
808             continue;
809
810           const char *Reason = "Callee function not available";
811           auto R = SymbolMap.find(CalleeFunctionName);
812           if (R != SymbolMap.end() && R->getValue() &&
813               !R->getValue()->isDeclaration() &&
814               R->getValue()->getSubprogram() &&
815               isLegalToPromote(CallSite(I), R->getValue(), &Reason)) {
816             uint64_t C = FS->getEntrySamples();
817             Instruction *DI =
818                 pgo::promoteIndirectCall(I, R->getValue(), C, Sum, false, ORE);
819             Sum -= C;
820             PromotedInsns.insert(I);
821             // If profile mismatches, we should not attempt to inline DI.
822             if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) &&
823                 inlineCallInstruction(DI))
824               LocalChanged = true;
825           } else {
826             LLVM_DEBUG(dbgs()
827                        << "\nFailed to promote indirect call to "
828                        << CalleeFunctionName << " because " << Reason << "\n");
829           }
830         }
831       } else if (CalledFunction && CalledFunction->getSubprogram() &&
832                  !CalledFunction->isDeclaration()) {
833         if (inlineCallInstruction(I))
834           LocalChanged = true;
835       } else if (IsThinLTOPreLink) {
836         findCalleeFunctionSamples(*I)->findInlinedFunctions(
837             InlinedGUIDs, F.getParent(), PSI->getOrCompHotCountThreshold(),
838             isCompact);
839       }
840     }
841     if (LocalChanged) {
842       Changed = true;
843     } else {
844       break;
845     }
846   }
847   return Changed;
848 }
849
850 /// Find equivalence classes for the given block.
851 ///
852 /// This finds all the blocks that are guaranteed to execute the same
853 /// number of times as \p BB1. To do this, it traverses all the
854 /// descendants of \p BB1 in the dominator or post-dominator tree.
855 ///
856 /// A block BB2 will be in the same equivalence class as \p BB1 if
857 /// the following holds:
858 ///
859 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
860 ///    is a descendant of \p BB1 in the dominator tree, then BB2 should
861 ///    dominate BB1 in the post-dominator tree.
862 ///
863 /// 2- Both BB2 and \p BB1 must be in the same loop.
864 ///
865 /// For every block BB2 that meets those two requirements, we set BB2's
866 /// equivalence class to \p BB1.
867 ///
868 /// \param BB1  Block to check.
869 /// \param Descendants  Descendants of \p BB1 in either the dom or pdom tree.
870 /// \param DomTree  Opposite dominator tree. If \p Descendants is filled
871 ///                 with blocks from \p BB1's dominator tree, then
872 ///                 this is the post-dominator tree, and vice versa.
873 template <bool IsPostDom>
874 void SampleProfileLoader::findEquivalencesFor(
875     BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
876     DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) {
877   const BasicBlock *EC = EquivalenceClass[BB1];
878   uint64_t Weight = BlockWeights[EC];
879   for (const auto *BB2 : Descendants) {
880     bool IsDomParent = DomTree->dominates(BB2, BB1);
881     bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
882     if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
883       EquivalenceClass[BB2] = EC;
884       // If BB2 is visited, then the entire EC should be marked as visited.
885       if (VisitedBlocks.count(BB2)) {
886         VisitedBlocks.insert(EC);
887       }
888
889       // If BB2 is heavier than BB1, make BB2 have the same weight
890       // as BB1.
891       //
892       // Note that we don't worry about the opposite situation here
893       // (when BB2 is lighter than BB1). We will deal with this
894       // during the propagation phase. Right now, we just want to
895       // make sure that BB1 has the largest weight of all the
896       // members of its equivalence set.
897       Weight = std::max(Weight, BlockWeights[BB2]);
898     }
899   }
900   if (EC == &EC->getParent()->getEntryBlock()) {
901     BlockWeights[EC] = Samples->getHeadSamples() + 1;
902   } else {
903     BlockWeights[EC] = Weight;
904   }
905 }
906
907 /// Find equivalence classes.
908 ///
909 /// Since samples may be missing from blocks, we can fill in the gaps by setting
910 /// the weights of all the blocks in the same equivalence class to the same
911 /// weight. To compute the concept of equivalence, we use dominance and loop
912 /// information. Two blocks B1 and B2 are in the same equivalence class if B1
913 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
914 ///
915 /// \param F The function to query.
916 void SampleProfileLoader::findEquivalenceClasses(Function &F) {
917   SmallVector<BasicBlock *, 8> DominatedBBs;
918   LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n");
919   // Find equivalence sets based on dominance and post-dominance information.
920   for (auto &BB : F) {
921     BasicBlock *BB1 = &BB;
922
923     // Compute BB1's equivalence class once.
924     if (EquivalenceClass.count(BB1)) {
925       LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
926       continue;
927     }
928
929     // By default, blocks are in their own equivalence class.
930     EquivalenceClass[BB1] = BB1;
931
932     // Traverse all the blocks dominated by BB1. We are looking for
933     // every basic block BB2 such that:
934     //
935     // 1- BB1 dominates BB2.
936     // 2- BB2 post-dominates BB1.
937     // 3- BB1 and BB2 are in the same loop nest.
938     //
939     // If all those conditions hold, it means that BB2 is executed
940     // as many times as BB1, so they are placed in the same equivalence
941     // class by making BB2's equivalence class be BB1.
942     DominatedBBs.clear();
943     DT->getDescendants(BB1, DominatedBBs);
944     findEquivalencesFor(BB1, DominatedBBs, PDT.get());
945
946     LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
947   }
948
949   // Assign weights to equivalence classes.
950   //
951   // All the basic blocks in the same equivalence class will execute
952   // the same number of times. Since we know that the head block in
953   // each equivalence class has the largest weight, assign that weight
954   // to all the blocks in that equivalence class.
955   LLVM_DEBUG(
956       dbgs() << "\nAssign the same weight to all blocks in the same class\n");
957   for (auto &BI : F) {
958     const BasicBlock *BB = &BI;
959     const BasicBlock *EquivBB = EquivalenceClass[BB];
960     if (BB != EquivBB)
961       BlockWeights[BB] = BlockWeights[EquivBB];
962     LLVM_DEBUG(printBlockWeight(dbgs(), BB));
963   }
964 }
965
966 /// Visit the given edge to decide if it has a valid weight.
967 ///
968 /// If \p E has not been visited before, we copy to \p UnknownEdge
969 /// and increment the count of unknown edges.
970 ///
971 /// \param E  Edge to visit.
972 /// \param NumUnknownEdges  Current number of unknown edges.
973 /// \param UnknownEdge  Set if E has not been visited before.
974 ///
975 /// \returns E's weight, if known. Otherwise, return 0.
976 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
977                                         Edge *UnknownEdge) {
978   if (!VisitedEdges.count(E)) {
979     (*NumUnknownEdges)++;
980     *UnknownEdge = E;
981     return 0;
982   }
983
984   return EdgeWeights[E];
985 }
986
987 /// Propagate weights through incoming/outgoing edges.
988 ///
989 /// If the weight of a basic block is known, and there is only one edge
990 /// with an unknown weight, we can calculate the weight of that edge.
991 ///
992 /// Similarly, if all the edges have a known count, we can calculate the
993 /// count of the basic block, if needed.
994 ///
995 /// \param F  Function to process.
996 /// \param UpdateBlockCount  Whether we should update basic block counts that
997 ///                          has already been annotated.
998 ///
999 /// \returns  True if new weights were assigned to edges or blocks.
1000 bool SampleProfileLoader::propagateThroughEdges(Function &F,
1001                                                 bool UpdateBlockCount) {
1002   bool Changed = false;
1003   LLVM_DEBUG(dbgs() << "\nPropagation through edges\n");
1004   for (const auto &BI : F) {
1005     const BasicBlock *BB = &BI;
1006     const BasicBlock *EC = EquivalenceClass[BB];
1007
1008     // Visit all the predecessor and successor edges to determine
1009     // which ones have a weight assigned already. Note that it doesn't
1010     // matter that we only keep track of a single unknown edge. The
1011     // only case we are interested in handling is when only a single
1012     // edge is unknown (see setEdgeOrBlockWeight).
1013     for (unsigned i = 0; i < 2; i++) {
1014       uint64_t TotalWeight = 0;
1015       unsigned NumUnknownEdges = 0, NumTotalEdges = 0;
1016       Edge UnknownEdge, SelfReferentialEdge, SingleEdge;
1017
1018       if (i == 0) {
1019         // First, visit all predecessor edges.
1020         NumTotalEdges = Predecessors[BB].size();
1021         for (auto *Pred : Predecessors[BB]) {
1022           Edge E = std::make_pair(Pred, BB);
1023           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1024           if (E.first == E.second)
1025             SelfReferentialEdge = E;
1026         }
1027         if (NumTotalEdges == 1) {
1028           SingleEdge = std::make_pair(Predecessors[BB][0], BB);
1029         }
1030       } else {
1031         // On the second round, visit all successor edges.
1032         NumTotalEdges = Successors[BB].size();
1033         for (auto *Succ : Successors[BB]) {
1034           Edge E = std::make_pair(BB, Succ);
1035           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1036         }
1037         if (NumTotalEdges == 1) {
1038           SingleEdge = std::make_pair(BB, Successors[BB][0]);
1039         }
1040       }
1041
1042       // After visiting all the edges, there are three cases that we
1043       // can handle immediately:
1044       //
1045       // - All the edge weights are known (i.e., NumUnknownEdges == 0).
1046       //   In this case, we simply check that the sum of all the edges
1047       //   is the same as BB's weight. If not, we change BB's weight
1048       //   to match. Additionally, if BB had not been visited before,
1049       //   we mark it visited.
1050       //
1051       // - Only one edge is unknown and BB has already been visited.
1052       //   In this case, we can compute the weight of the edge by
1053       //   subtracting the total block weight from all the known
1054       //   edge weights. If the edges weight more than BB, then the
1055       //   edge of the last remaining edge is set to zero.
1056       //
1057       // - There exists a self-referential edge and the weight of BB is
1058       //   known. In this case, this edge can be based on BB's weight.
1059       //   We add up all the other known edges and set the weight on
1060       //   the self-referential edge as we did in the previous case.
1061       //
1062       // In any other case, we must continue iterating. Eventually,
1063       // all edges will get a weight, or iteration will stop when
1064       // it reaches SampleProfileMaxPropagateIterations.
1065       if (NumUnknownEdges <= 1) {
1066         uint64_t &BBWeight = BlockWeights[EC];
1067         if (NumUnknownEdges == 0) {
1068           if (!VisitedBlocks.count(EC)) {
1069             // If we already know the weight of all edges, the weight of the
1070             // basic block can be computed. It should be no larger than the sum
1071             // of all edge weights.
1072             if (TotalWeight > BBWeight) {
1073               BBWeight = TotalWeight;
1074               Changed = true;
1075               LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName()
1076                                 << " known. Set weight for block: ";
1077                          printBlockWeight(dbgs(), BB););
1078             }
1079           } else if (NumTotalEdges == 1 &&
1080                      EdgeWeights[SingleEdge] < BlockWeights[EC]) {
1081             // If there is only one edge for the visited basic block, use the
1082             // block weight to adjust edge weight if edge weight is smaller.
1083             EdgeWeights[SingleEdge] = BlockWeights[EC];
1084             Changed = true;
1085           }
1086         } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
1087           // If there is a single unknown edge and the block has been
1088           // visited, then we can compute E's weight.
1089           if (BBWeight >= TotalWeight)
1090             EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
1091           else
1092             EdgeWeights[UnknownEdge] = 0;
1093           const BasicBlock *OtherEC;
1094           if (i == 0)
1095             OtherEC = EquivalenceClass[UnknownEdge.first];
1096           else
1097             OtherEC = EquivalenceClass[UnknownEdge.second];
1098           // Edge weights should never exceed the BB weights it connects.
1099           if (VisitedBlocks.count(OtherEC) &&
1100               EdgeWeights[UnknownEdge] > BlockWeights[OtherEC])
1101             EdgeWeights[UnknownEdge] = BlockWeights[OtherEC];
1102           VisitedEdges.insert(UnknownEdge);
1103           Changed = true;
1104           LLVM_DEBUG(dbgs() << "Set weight for edge: ";
1105                      printEdgeWeight(dbgs(), UnknownEdge));
1106         }
1107       } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) {
1108         // If a block Weights 0, all its in/out edges should weight 0.
1109         if (i == 0) {
1110           for (auto *Pred : Predecessors[BB]) {
1111             Edge E = std::make_pair(Pred, BB);
1112             EdgeWeights[E] = 0;
1113             VisitedEdges.insert(E);
1114           }
1115         } else {
1116           for (auto *Succ : Successors[BB]) {
1117             Edge E = std::make_pair(BB, Succ);
1118             EdgeWeights[E] = 0;
1119             VisitedEdges.insert(E);
1120           }
1121         }
1122       } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
1123         uint64_t &BBWeight = BlockWeights[BB];
1124         // We have a self-referential edge and the weight of BB is known.
1125         if (BBWeight >= TotalWeight)
1126           EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
1127         else
1128           EdgeWeights[SelfReferentialEdge] = 0;
1129         VisitedEdges.insert(SelfReferentialEdge);
1130         Changed = true;
1131         LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: ";
1132                    printEdgeWeight(dbgs(), SelfReferentialEdge));
1133       }
1134       if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) {
1135         BlockWeights[EC] = TotalWeight;
1136         VisitedBlocks.insert(EC);
1137         Changed = true;
1138       }
1139     }
1140   }
1141
1142   return Changed;
1143 }
1144
1145 /// Build in/out edge lists for each basic block in the CFG.
1146 ///
1147 /// We are interested in unique edges. If a block B1 has multiple
1148 /// edges to another block B2, we only add a single B1->B2 edge.
1149 void SampleProfileLoader::buildEdges(Function &F) {
1150   for (auto &BI : F) {
1151     BasicBlock *B1 = &BI;
1152
1153     // Add predecessors for B1.
1154     SmallPtrSet<BasicBlock *, 16> Visited;
1155     if (!Predecessors[B1].empty())
1156       llvm_unreachable("Found a stale predecessors list in a basic block.");
1157     for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
1158       BasicBlock *B2 = *PI;
1159       if (Visited.insert(B2).second)
1160         Predecessors[B1].push_back(B2);
1161     }
1162
1163     // Add successors for B1.
1164     Visited.clear();
1165     if (!Successors[B1].empty())
1166       llvm_unreachable("Found a stale successors list in a basic block.");
1167     for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
1168       BasicBlock *B2 = *SI;
1169       if (Visited.insert(B2).second)
1170         Successors[B1].push_back(B2);
1171     }
1172   }
1173 }
1174
1175 /// Returns the sorted CallTargetMap \p M by count in descending order.
1176 static SmallVector<InstrProfValueData, 2> SortCallTargets(
1177     const SampleRecord::CallTargetMap &M) {
1178   SmallVector<InstrProfValueData, 2> R;
1179   for (auto I = M.begin(); I != M.end(); ++I)
1180     R.push_back({Function::getGUID(I->getKey()), I->getValue()});
1181   llvm::sort(R.begin(), R.end(),
1182              [](const InstrProfValueData &L, const InstrProfValueData &R) {
1183                if (L.Count == R.Count)
1184                  return L.Value > R.Value;
1185                else
1186                  return L.Count > R.Count;
1187              });
1188   return R;
1189 }
1190
1191 /// Propagate weights into edges
1192 ///
1193 /// The following rules are applied to every block BB in the CFG:
1194 ///
1195 /// - If BB has a single predecessor/successor, then the weight
1196 ///   of that edge is the weight of the block.
1197 ///
1198 /// - If all incoming or outgoing edges are known except one, and the
1199 ///   weight of the block is already known, the weight of the unknown
1200 ///   edge will be the weight of the block minus the sum of all the known
1201 ///   edges. If the sum of all the known edges is larger than BB's weight,
1202 ///   we set the unknown edge weight to zero.
1203 ///
1204 /// - If there is a self-referential edge, and the weight of the block is
1205 ///   known, the weight for that edge is set to the weight of the block
1206 ///   minus the weight of the other incoming edges to that block (if
1207 ///   known).
1208 void SampleProfileLoader::propagateWeights(Function &F) {
1209   bool Changed = true;
1210   unsigned I = 0;
1211
1212   // If BB weight is larger than its corresponding loop's header BB weight,
1213   // use the BB weight to replace the loop header BB weight.
1214   for (auto &BI : F) {
1215     BasicBlock *BB = &BI;
1216     Loop *L = LI->getLoopFor(BB);
1217     if (!L) {
1218       continue;
1219     }
1220     BasicBlock *Header = L->getHeader();
1221     if (Header && BlockWeights[BB] > BlockWeights[Header]) {
1222       BlockWeights[Header] = BlockWeights[BB];
1223     }
1224   }
1225
1226   // Before propagation starts, build, for each block, a list of
1227   // unique predecessors and successors. This is necessary to handle
1228   // identical edges in multiway branches. Since we visit all blocks and all
1229   // edges of the CFG, it is cleaner to build these lists once at the start
1230   // of the pass.
1231   buildEdges(F);
1232
1233   // Propagate until we converge or we go past the iteration limit.
1234   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1235     Changed = propagateThroughEdges(F, false);
1236   }
1237
1238   // The first propagation propagates BB counts from annotated BBs to unknown
1239   // BBs. The 2nd propagation pass resets edges weights, and use all BB weights
1240   // to propagate edge weights.
1241   VisitedEdges.clear();
1242   Changed = true;
1243   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1244     Changed = propagateThroughEdges(F, false);
1245   }
1246
1247   // The 3rd propagation pass allows adjust annotated BB weights that are
1248   // obviously wrong.
1249   Changed = true;
1250   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1251     Changed = propagateThroughEdges(F, true);
1252   }
1253
1254   // Generate MD_prof metadata for every branch instruction using the
1255   // edge weights computed during propagation.
1256   LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
1257   LLVMContext &Ctx = F.getContext();
1258   MDBuilder MDB(Ctx);
1259   for (auto &BI : F) {
1260     BasicBlock *BB = &BI;
1261
1262     if (BlockWeights[BB]) {
1263       for (auto &I : BB->getInstList()) {
1264         if (!isa<CallInst>(I) && !isa<InvokeInst>(I))
1265           continue;
1266         CallSite CS(&I);
1267         if (!CS.getCalledFunction()) {
1268           const DebugLoc &DLoc = I.getDebugLoc();
1269           if (!DLoc)
1270             continue;
1271           const DILocation *DIL = DLoc;
1272           uint32_t LineOffset = FunctionSamples::getOffset(DIL);
1273           uint32_t Discriminator = DIL->getBaseDiscriminator();
1274
1275           const FunctionSamples *FS = findFunctionSamples(I);
1276           if (!FS)
1277             continue;
1278           auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
1279           if (!T || T.get().empty())
1280             continue;
1281           SmallVector<InstrProfValueData, 2> SortedCallTargets =
1282               SortCallTargets(T.get());
1283           uint64_t Sum;
1284           findIndirectCallFunctionSamples(I, Sum);
1285           annotateValueSite(*I.getParent()->getParent()->getParent(), I,
1286                             SortedCallTargets, Sum, IPVK_IndirectCallTarget,
1287                             SortedCallTargets.size());
1288         } else if (!dyn_cast<IntrinsicInst>(&I)) {
1289           SmallVector<uint32_t, 1> Weights;
1290           Weights.push_back(BlockWeights[BB]);
1291           I.setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights));
1292         }
1293       }
1294     }
1295     TerminatorInst *TI = BB->getTerminator();
1296     if (TI->getNumSuccessors() == 1)
1297       continue;
1298     if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
1299       continue;
1300
1301     DebugLoc BranchLoc = TI->getDebugLoc();
1302     LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line "
1303                       << ((BranchLoc) ? Twine(BranchLoc.getLine())
1304                                       : Twine("<UNKNOWN LOCATION>"))
1305                       << ".\n");
1306     SmallVector<uint32_t, 4> Weights;
1307     uint32_t MaxWeight = 0;
1308     Instruction *MaxDestInst;
1309     for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
1310       BasicBlock *Succ = TI->getSuccessor(I);
1311       Edge E = std::make_pair(BB, Succ);
1312       uint64_t Weight = EdgeWeights[E];
1313       LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
1314       // Use uint32_t saturated arithmetic to adjust the incoming weights,
1315       // if needed. Sample counts in profiles are 64-bit unsigned values,
1316       // but internally branch weights are expressed as 32-bit values.
1317       if (Weight > std::numeric_limits<uint32_t>::max()) {
1318         LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
1319         Weight = std::numeric_limits<uint32_t>::max();
1320       }
1321       // Weight is added by one to avoid propagation errors introduced by
1322       // 0 weights.
1323       Weights.push_back(static_cast<uint32_t>(Weight + 1));
1324       if (Weight != 0) {
1325         if (Weight > MaxWeight) {
1326           MaxWeight = Weight;
1327           MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime();
1328         }
1329       }
1330     }
1331
1332     uint64_t TempWeight;
1333     // Only set weights if there is at least one non-zero weight.
1334     // In any other case, let the analyzer set weights.
1335     // Do not set weights if the weights are present. In ThinLTO, the profile
1336     // annotation is done twice. If the first annotation already set the
1337     // weights, the second pass does not need to set it.
1338     if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) {
1339       LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
1340       TI->setMetadata(LLVMContext::MD_prof,
1341                       MDB.createBranchWeights(Weights));
1342       ORE->emit([&]() {
1343         return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst)
1344                << "most popular destination for conditional branches at "
1345                << ore::NV("CondBranchesLoc", BranchLoc);
1346       });
1347     } else {
1348       LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
1349     }
1350   }
1351 }
1352
1353 /// Get the line number for the function header.
1354 ///
1355 /// This looks up function \p F in the current compilation unit and
1356 /// retrieves the line number where the function is defined. This is
1357 /// line 0 for all the samples read from the profile file. Every line
1358 /// number is relative to this line.
1359 ///
1360 /// \param F  Function object to query.
1361 ///
1362 /// \returns the line number where \p F is defined. If it returns 0,
1363 ///          it means that there is no debug information available for \p F.
1364 unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
1365   if (DISubprogram *S = F.getSubprogram())
1366     return S->getLine();
1367
1368   if (NoWarnSampleUnused)
1369     return 0;
1370
1371   // If the start of \p F is missing, emit a diagnostic to inform the user
1372   // about the missed opportunity.
1373   F.getContext().diagnose(DiagnosticInfoSampleProfile(
1374       "No debug information found in function " + F.getName() +
1375           ": Function profile not used",
1376       DS_Warning));
1377   return 0;
1378 }
1379
1380 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) {
1381   DT.reset(new DominatorTree);
1382   DT->recalculate(F);
1383
1384   PDT.reset(new PostDominatorTree(F));
1385
1386   LI.reset(new LoopInfo);
1387   LI->analyze(*DT);
1388 }
1389
1390 /// Generate branch weight metadata for all branches in \p F.
1391 ///
1392 /// Branch weights are computed out of instruction samples using a
1393 /// propagation heuristic. Propagation proceeds in 3 phases:
1394 ///
1395 /// 1- Assignment of block weights. All the basic blocks in the function
1396 ///    are initial assigned the same weight as their most frequently
1397 ///    executed instruction.
1398 ///
1399 /// 2- Creation of equivalence classes. Since samples may be missing from
1400 ///    blocks, we can fill in the gaps by setting the weights of all the
1401 ///    blocks in the same equivalence class to the same weight. To compute
1402 ///    the concept of equivalence, we use dominance and loop information.
1403 ///    Two blocks B1 and B2 are in the same equivalence class if B1
1404 ///    dominates B2, B2 post-dominates B1 and both are in the same loop.
1405 ///
1406 /// 3- Propagation of block weights into edges. This uses a simple
1407 ///    propagation heuristic. The following rules are applied to every
1408 ///    block BB in the CFG:
1409 ///
1410 ///    - If BB has a single predecessor/successor, then the weight
1411 ///      of that edge is the weight of the block.
1412 ///
1413 ///    - If all the edges are known except one, and the weight of the
1414 ///      block is already known, the weight of the unknown edge will
1415 ///      be the weight of the block minus the sum of all the known
1416 ///      edges. If the sum of all the known edges is larger than BB's weight,
1417 ///      we set the unknown edge weight to zero.
1418 ///
1419 ///    - If there is a self-referential edge, and the weight of the block is
1420 ///      known, the weight for that edge is set to the weight of the block
1421 ///      minus the weight of the other incoming edges to that block (if
1422 ///      known).
1423 ///
1424 /// Since this propagation is not guaranteed to finalize for every CFG, we
1425 /// only allow it to proceed for a limited number of iterations (controlled
1426 /// by -sample-profile-max-propagate-iterations).
1427 ///
1428 /// FIXME: Try to replace this propagation heuristic with a scheme
1429 /// that is guaranteed to finalize. A work-list approach similar to
1430 /// the standard value propagation algorithm used by SSA-CCP might
1431 /// work here.
1432 ///
1433 /// Once all the branch weights are computed, we emit the MD_prof
1434 /// metadata on BB using the computed values for each of its branches.
1435 ///
1436 /// \param F The function to query.
1437 ///
1438 /// \returns true if \p F was modified. Returns false, otherwise.
1439 bool SampleProfileLoader::emitAnnotations(Function &F) {
1440   bool Changed = false;
1441
1442   if (getFunctionLoc(F) == 0)
1443     return false;
1444
1445   LLVM_DEBUG(dbgs() << "Line number for the first instruction in "
1446                     << F.getName() << ": " << getFunctionLoc(F) << "\n");
1447
1448   DenseSet<GlobalValue::GUID> InlinedGUIDs;
1449   Changed |= inlineHotFunctions(F, InlinedGUIDs);
1450
1451   // Compute basic block weights.
1452   Changed |= computeBlockWeights(F);
1453
1454   if (Changed) {
1455     // Add an entry count to the function using the samples gathered at the
1456     // function entry.
1457     // Sets the GUIDs that are inlined in the profiled binary. This is used
1458     // for ThinLink to make correct liveness analysis, and also make the IR
1459     // match the profiled binary before annotation.
1460     F.setEntryCount(
1461         ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real),
1462         &InlinedGUIDs);
1463
1464     // Compute dominance and loop info needed for propagation.
1465     computeDominanceAndLoopInfo(F);
1466
1467     // Find equivalence classes.
1468     findEquivalenceClasses(F);
1469
1470     // Propagate weights to all edges.
1471     propagateWeights(F);
1472   }
1473
1474   // If coverage checking was requested, compute it now.
1475   if (SampleProfileRecordCoverage) {
1476     unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI);
1477     unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI);
1478     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1479     if (Coverage < SampleProfileRecordCoverage) {
1480       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1481           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1482           Twine(Used) + " of " + Twine(Total) + " available profile records (" +
1483               Twine(Coverage) + "%) were applied",
1484           DS_Warning));
1485     }
1486   }
1487
1488   if (SampleProfileSampleCoverage) {
1489     uint64_t Used = CoverageTracker.getTotalUsedSamples();
1490     uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI);
1491     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1492     if (Coverage < SampleProfileSampleCoverage) {
1493       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1494           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1495           Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
1496               Twine(Coverage) + "%) were applied",
1497           DS_Warning));
1498     }
1499   }
1500   return Changed;
1501 }
1502
1503 char SampleProfileLoaderLegacyPass::ID = 0;
1504
1505 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile",
1506                       "Sample Profile loader", false, false)
1507 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1508 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1509 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
1510 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile",
1511                     "Sample Profile loader", false, false)
1512
1513 bool SampleProfileLoader::doInitialization(Module &M) {
1514   auto &Ctx = M.getContext();
1515   auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx);
1516   if (std::error_code EC = ReaderOrErr.getError()) {
1517     std::string Msg = "Could not open profile: " + EC.message();
1518     Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
1519     return false;
1520   }
1521   Reader = std::move(ReaderOrErr.get());
1522   ProfileIsValid = (Reader->read() == sampleprof_error::success);
1523   return true;
1524 }
1525
1526 ModulePass *llvm::createSampleProfileLoaderPass() {
1527   return new SampleProfileLoaderLegacyPass(SampleProfileFile);
1528 }
1529
1530 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) {
1531   return new SampleProfileLoaderLegacyPass(Name);
1532 }
1533
1534 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM,
1535                                       ProfileSummaryInfo *_PSI) {
1536   if (!ProfileIsValid)
1537     return false;
1538
1539   PSI = _PSI;
1540   if (M.getProfileSummary() == nullptr)
1541     M.setProfileSummary(Reader->getSummary().getMD(M.getContext()));
1542
1543   // Compute the total number of samples collected in this profile.
1544   for (const auto &I : Reader->getProfiles())
1545     TotalCollectedSamples += I.second.getTotalSamples();
1546
1547   // Populate the symbol map.
1548   for (const auto &N_F : M.getValueSymbolTable()) {
1549     StringRef OrigName = N_F.getKey();
1550     Function *F = dyn_cast<Function>(N_F.getValue());
1551     if (F == nullptr)
1552       continue;
1553     SymbolMap[OrigName] = F;
1554     auto pos = OrigName.find('.');
1555     if (pos != StringRef::npos) {
1556       StringRef NewName = OrigName.substr(0, pos);
1557       auto r = SymbolMap.insert(std::make_pair(NewName, F));
1558       // Failiing to insert means there is already an entry in SymbolMap,
1559       // thus there are multiple functions that are mapped to the same
1560       // stripped name. In this case of name conflicting, set the value
1561       // to nullptr to avoid confusion.
1562       if (!r.second)
1563         r.first->second = nullptr;
1564     }
1565   }
1566
1567   bool retval = false;
1568   for (auto &F : M)
1569     if (!F.isDeclaration()) {
1570       clearFunctionData();
1571       retval |= runOnFunction(F, AM);
1572     }
1573   return retval;
1574 }
1575
1576 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) {
1577   ACT = &getAnalysis<AssumptionCacheTracker>();
1578   TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>();
1579   ProfileSummaryInfo *PSI =
1580       getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
1581   return SampleLoader.runOnModule(M, nullptr, PSI);
1582 }
1583
1584 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) {
1585   // Initialize the entry count to -1, which will be treated conservatively
1586   // by getEntryCount as the same as unknown (None). If we have samples this
1587   // will be overwritten in emitAnnotations.
1588   F.setEntryCount(ProfileCount(-1, Function::PCT_Real));
1589   std::unique_ptr<OptimizationRemarkEmitter> OwnedORE;
1590   if (AM) {
1591     auto &FAM =
1592         AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent())
1593             .getManager();
1594     ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1595   } else {
1596     OwnedORE = make_unique<OptimizationRemarkEmitter>(&F);
1597     ORE = OwnedORE.get();
1598   }
1599   Samples = Reader->getSamplesFor(F);
1600   if (Samples && !Samples->empty())
1601     return emitAnnotations(F);
1602   return false;
1603 }
1604
1605 PreservedAnalyses SampleProfileLoaderPass::run(Module &M,
1606                                                ModuleAnalysisManager &AM) {
1607   FunctionAnalysisManager &FAM =
1608       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1609
1610   auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
1611     return FAM.getResult<AssumptionAnalysis>(F);
1612   };
1613   auto GetTTI = [&](Function &F) -> TargetTransformInfo & {
1614     return FAM.getResult<TargetIRAnalysis>(F);
1615   };
1616
1617   SampleProfileLoader SampleLoader(
1618       ProfileFileName.empty() ? SampleProfileFile : ProfileFileName,
1619       IsThinLTOPreLink, GetAssumptionCache, GetTTI);
1620
1621   SampleLoader.doInitialization(M);
1622
1623   ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
1624   if (!SampleLoader.runOnModule(M, &AM, PSI))
1625     return PreservedAnalyses::all();
1626
1627   return PreservedAnalyses::none();
1628 }