]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/IPO/SampleProfile.cpp
MFV r318944: 8265 Reserve send stream flag for large dnode feature
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / IPO / SampleProfile.cpp
1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
2 //
3 //                      The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SampleProfileLoader transformation. This pass
11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf -
12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
13 // profile information in the given profile.
14 //
15 // This pass generates branch weight annotations on the IR:
16 //
17 // - prof: Represents branch weights. This annotation is added to branches
18 //      to indicate the weights of each edge coming out of the branch.
19 //      The weight of each edge is the weight of the target block for
20 //      that edge. The weight of a block B is computed as the maximum
21 //      number of samples found in B.
22 //
23 //===----------------------------------------------------------------------===//
24
25 #include "llvm/Transforms/SampleProfile.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/Analysis/AssumptionCache.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/Analysis/PostDominators.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DebugInfo.h"
35 #include "llvm/IR/DiagnosticInfo.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/InstIterator.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/LLVMContext.h"
42 #include "llvm/IR/MDBuilder.h"
43 #include "llvm/IR/Metadata.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/Pass.h"
46 #include "llvm/ProfileData/SampleProfReader.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/ErrorOr.h"
50 #include "llvm/Support/Format.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include "llvm/Transforms/IPO.h"
53 #include "llvm/Transforms/Utils/Cloning.h"
54 #include <cctype>
55
56 using namespace llvm;
57 using namespace sampleprof;
58
59 #define DEBUG_TYPE "sample-profile"
60
61 // Command line option to specify the file to read samples from. This is
62 // mainly used for debugging.
63 static cl::opt<std::string> SampleProfileFile(
64     "sample-profile-file", cl::init(""), cl::value_desc("filename"),
65     cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
66 static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
67     "sample-profile-max-propagate-iterations", cl::init(100),
68     cl::desc("Maximum number of iterations to go through when propagating "
69              "sample block/edge weights through the CFG."));
70 static cl::opt<unsigned> SampleProfileRecordCoverage(
71     "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"),
72     cl::desc("Emit a warning if less than N% of records in the input profile "
73              "are matched to the IR."));
74 static cl::opt<unsigned> SampleProfileSampleCoverage(
75     "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"),
76     cl::desc("Emit a warning if less than N% of samples in the input profile "
77              "are matched to the IR."));
78 static cl::opt<double> SampleProfileHotThreshold(
79     "sample-profile-inline-hot-threshold", cl::init(0.1), cl::value_desc("N"),
80     cl::desc("Inlined functions that account for more than N% of all samples "
81              "collected in the parent function, will be inlined again."));
82
83 namespace {
84 typedef DenseMap<const BasicBlock *, uint64_t> BlockWeightMap;
85 typedef DenseMap<const BasicBlock *, const BasicBlock *> EquivalenceClassMap;
86 typedef std::pair<const BasicBlock *, const BasicBlock *> Edge;
87 typedef DenseMap<Edge, uint64_t> EdgeWeightMap;
88 typedef DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>
89     BlockEdgeMap;
90
91 class SampleCoverageTracker {
92 public:
93   SampleCoverageTracker() : SampleCoverage(), TotalUsedSamples(0) {}
94
95   bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset,
96                        uint32_t Discriminator, uint64_t Samples);
97   unsigned computeCoverage(unsigned Used, unsigned Total) const;
98   unsigned countUsedRecords(const FunctionSamples *FS) const;
99   unsigned countBodyRecords(const FunctionSamples *FS) const;
100   uint64_t getTotalUsedSamples() const { return TotalUsedSamples; }
101   uint64_t countBodySamples(const FunctionSamples *FS) const;
102   void clear() {
103     SampleCoverage.clear();
104     TotalUsedSamples = 0;
105   }
106
107 private:
108   typedef std::map<LineLocation, unsigned> BodySampleCoverageMap;
109   typedef DenseMap<const FunctionSamples *, BodySampleCoverageMap>
110       FunctionSamplesCoverageMap;
111
112   /// Coverage map for sampling records.
113   ///
114   /// This map keeps a record of sampling records that have been matched to
115   /// an IR instruction. This is used to detect some form of staleness in
116   /// profiles (see flag -sample-profile-check-coverage).
117   ///
118   /// Each entry in the map corresponds to a FunctionSamples instance.  This is
119   /// another map that counts how many times the sample record at the
120   /// given location has been used.
121   FunctionSamplesCoverageMap SampleCoverage;
122
123   /// Number of samples used from the profile.
124   ///
125   /// When a sampling record is used for the first time, the samples from
126   /// that record are added to this accumulator.  Coverage is later computed
127   /// based on the total number of samples available in this function and
128   /// its callsites.
129   ///
130   /// Note that this accumulator tracks samples used from a single function
131   /// and all the inlined callsites. Strictly, we should have a map of counters
132   /// keyed by FunctionSamples pointers, but these stats are cleared after
133   /// every function, so we just need to keep a single counter.
134   uint64_t TotalUsedSamples;
135 };
136
137 /// \brief Sample profile pass.
138 ///
139 /// This pass reads profile data from the file specified by
140 /// -sample-profile-file and annotates every affected function with the
141 /// profile information found in that file.
142 class SampleProfileLoader {
143 public:
144   SampleProfileLoader(StringRef Name = SampleProfileFile)
145       : DT(nullptr), PDT(nullptr), LI(nullptr), ACT(nullptr), Reader(),
146         Samples(nullptr), Filename(Name), ProfileIsValid(false),
147         TotalCollectedSamples(0) {}
148
149   bool doInitialization(Module &M);
150   bool runOnModule(Module &M);
151   void setACT(AssumptionCacheTracker *A) { ACT = A; }
152
153   void dump() { Reader->dump(); }
154
155 protected:
156   bool runOnFunction(Function &F);
157   unsigned getFunctionLoc(Function &F);
158   bool emitAnnotations(Function &F);
159   ErrorOr<uint64_t> getInstWeight(const Instruction &I);
160   ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB);
161   const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const;
162   const FunctionSamples *findFunctionSamples(const Instruction &I) const;
163   bool inlineHotFunctions(Function &F);
164   void printEdgeWeight(raw_ostream &OS, Edge E);
165   void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const;
166   void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB);
167   bool computeBlockWeights(Function &F);
168   void findEquivalenceClasses(Function &F);
169   void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
170                            DominatorTreeBase<BasicBlock> *DomTree);
171   void propagateWeights(Function &F);
172   uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
173   void buildEdges(Function &F);
174   bool propagateThroughEdges(Function &F, bool UpdateBlockCount);
175   void computeDominanceAndLoopInfo(Function &F);
176   unsigned getOffset(unsigned L, unsigned H) const;
177   void clearFunctionData();
178
179   /// \brief Map basic blocks to their computed weights.
180   ///
181   /// The weight of a basic block is defined to be the maximum
182   /// of all the instruction weights in that block.
183   BlockWeightMap BlockWeights;
184
185   /// \brief Map edges to their computed weights.
186   ///
187   /// Edge weights are computed by propagating basic block weights in
188   /// SampleProfile::propagateWeights.
189   EdgeWeightMap EdgeWeights;
190
191   /// \brief Set of visited blocks during propagation.
192   SmallPtrSet<const BasicBlock *, 32> VisitedBlocks;
193
194   /// \brief Set of visited edges during propagation.
195   SmallSet<Edge, 32> VisitedEdges;
196
197   /// \brief Equivalence classes for block weights.
198   ///
199   /// Two blocks BB1 and BB2 are in the same equivalence class if they
200   /// dominate and post-dominate each other, and they are in the same loop
201   /// nest. When this happens, the two blocks are guaranteed to execute
202   /// the same number of times.
203   EquivalenceClassMap EquivalenceClass;
204
205   /// \brief Dominance, post-dominance and loop information.
206   std::unique_ptr<DominatorTree> DT;
207   std::unique_ptr<DominatorTreeBase<BasicBlock>> PDT;
208   std::unique_ptr<LoopInfo> LI;
209
210   AssumptionCacheTracker *ACT;
211
212   /// \brief Predecessors for each basic block in the CFG.
213   BlockEdgeMap Predecessors;
214
215   /// \brief Successors for each basic block in the CFG.
216   BlockEdgeMap Successors;
217
218   SampleCoverageTracker CoverageTracker;
219
220   /// \brief Profile reader object.
221   std::unique_ptr<SampleProfileReader> Reader;
222
223   /// \brief Samples collected for the body of this function.
224   FunctionSamples *Samples;
225
226   /// \brief Name of the profile file to load.
227   std::string Filename;
228
229   /// \brief Flag indicating whether the profile input loaded successfully.
230   bool ProfileIsValid;
231
232   /// \brief Total number of samples collected in this profile.
233   ///
234   /// This is the sum of all the samples collected in all the functions executed
235   /// at runtime.
236   uint64_t TotalCollectedSamples;
237 };
238
239 class SampleProfileLoaderLegacyPass : public ModulePass {
240 public:
241   // Class identification, replacement for typeinfo
242   static char ID;
243
244   SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile)
245       : ModulePass(ID), SampleLoader(Name) {
246     initializeSampleProfileLoaderLegacyPassPass(
247         *PassRegistry::getPassRegistry());
248   }
249
250   void dump() { SampleLoader.dump(); }
251
252   bool doInitialization(Module &M) override {
253     return SampleLoader.doInitialization(M);
254   }
255   StringRef getPassName() const override { return "Sample profile pass"; }
256   bool runOnModule(Module &M) override;
257
258   void getAnalysisUsage(AnalysisUsage &AU) const override {
259     AU.addRequired<AssumptionCacheTracker>();
260   }
261
262 private:
263   SampleProfileLoader SampleLoader;
264 };
265
266 /// Return true if the given callsite is hot wrt to its caller.
267 ///
268 /// Functions that were inlined in the original binary will be represented
269 /// in the inline stack in the sample profile. If the profile shows that
270 /// the original inline decision was "good" (i.e., the callsite is executed
271 /// frequently), then we will recreate the inline decision and apply the
272 /// profile from the inlined callsite.
273 ///
274 /// To decide whether an inlined callsite is hot, we compute the fraction
275 /// of samples used by the callsite with respect to the total number of samples
276 /// collected in the caller.
277 ///
278 /// If that fraction is larger than the default given by
279 /// SampleProfileHotThreshold, the callsite will be inlined again.
280 bool callsiteIsHot(const FunctionSamples *CallerFS,
281                    const FunctionSamples *CallsiteFS) {
282   if (!CallsiteFS)
283     return false; // The callsite was not inlined in the original binary.
284
285   uint64_t ParentTotalSamples = CallerFS->getTotalSamples();
286   if (ParentTotalSamples == 0)
287     return false; // Avoid division by zero.
288
289   uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples();
290   if (CallsiteTotalSamples == 0)
291     return false; // Callsite is trivially cold.
292
293   double PercentSamples =
294       (double)CallsiteTotalSamples / (double)ParentTotalSamples * 100.0;
295   return PercentSamples >= SampleProfileHotThreshold;
296 }
297 }
298
299 /// Mark as used the sample record for the given function samples at
300 /// (LineOffset, Discriminator).
301 ///
302 /// \returns true if this is the first time we mark the given record.
303 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS,
304                                             uint32_t LineOffset,
305                                             uint32_t Discriminator,
306                                             uint64_t Samples) {
307   LineLocation Loc(LineOffset, Discriminator);
308   unsigned &Count = SampleCoverage[FS][Loc];
309   bool FirstTime = (++Count == 1);
310   if (FirstTime)
311     TotalUsedSamples += Samples;
312   return FirstTime;
313 }
314
315 /// Return the number of sample records that were applied from this profile.
316 ///
317 /// This count does not include records from cold inlined callsites.
318 unsigned
319 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS) const {
320   auto I = SampleCoverage.find(FS);
321
322   // The size of the coverage map for FS represents the number of records
323   // that were marked used at least once.
324   unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0;
325
326   // If there are inlined callsites in this function, count the samples found
327   // in the respective bodies. However, do not bother counting callees with 0
328   // total samples, these are callees that were never invoked at runtime.
329   for (const auto &I : FS->getCallsiteSamples()) {
330     const FunctionSamples *CalleeSamples = &I.second;
331     if (callsiteIsHot(FS, CalleeSamples))
332       Count += countUsedRecords(CalleeSamples);
333   }
334
335   return Count;
336 }
337
338 /// Return the number of sample records in the body of this profile.
339 ///
340 /// This count does not include records from cold inlined callsites.
341 unsigned
342 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS) const {
343   unsigned Count = FS->getBodySamples().size();
344
345   // Only count records in hot callsites.
346   for (const auto &I : FS->getCallsiteSamples()) {
347     const FunctionSamples *CalleeSamples = &I.second;
348     if (callsiteIsHot(FS, CalleeSamples))
349       Count += countBodyRecords(CalleeSamples);
350   }
351
352   return Count;
353 }
354
355 /// Return the number of samples collected in the body of this profile.
356 ///
357 /// This count does not include samples from cold inlined callsites.
358 uint64_t
359 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS) const {
360   uint64_t Total = 0;
361   for (const auto &I : FS->getBodySamples())
362     Total += I.second.getSamples();
363
364   // Only count samples in hot callsites.
365   for (const auto &I : FS->getCallsiteSamples()) {
366     const FunctionSamples *CalleeSamples = &I.second;
367     if (callsiteIsHot(FS, CalleeSamples))
368       Total += countBodySamples(CalleeSamples);
369   }
370
371   return Total;
372 }
373
374 /// Return the fraction of sample records used in this profile.
375 ///
376 /// The returned value is an unsigned integer in the range 0-100 indicating
377 /// the percentage of sample records that were used while applying this
378 /// profile to the associated function.
379 unsigned SampleCoverageTracker::computeCoverage(unsigned Used,
380                                                 unsigned Total) const {
381   assert(Used <= Total &&
382          "number of used records cannot exceed the total number of records");
383   return Total > 0 ? Used * 100 / Total : 100;
384 }
385
386 /// Clear all the per-function data used to load samples and propagate weights.
387 void SampleProfileLoader::clearFunctionData() {
388   BlockWeights.clear();
389   EdgeWeights.clear();
390   VisitedBlocks.clear();
391   VisitedEdges.clear();
392   EquivalenceClass.clear();
393   DT = nullptr;
394   PDT = nullptr;
395   LI = nullptr;
396   Predecessors.clear();
397   Successors.clear();
398   CoverageTracker.clear();
399 }
400
401 /// \brief Returns the offset of lineno \p L to head_lineno \p H
402 ///
403 /// \param L  Lineno
404 /// \param H  Header lineno of the function
405 ///
406 /// \returns offset to the header lineno. 16 bits are used to represent offset.
407 /// We assume that a single function will not exceed 65535 LOC.
408 unsigned SampleProfileLoader::getOffset(unsigned L, unsigned H) const {
409   return (L - H) & 0xffff;
410 }
411
412 /// \brief Print the weight of edge \p E on stream \p OS.
413 ///
414 /// \param OS  Stream to emit the output to.
415 /// \param E  Edge to print.
416 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
417   OS << "weight[" << E.first->getName() << "->" << E.second->getName()
418      << "]: " << EdgeWeights[E] << "\n";
419 }
420
421 /// \brief Print the equivalence class of block \p BB on stream \p OS.
422 ///
423 /// \param OS  Stream to emit the output to.
424 /// \param BB  Block to print.
425 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
426                                                 const BasicBlock *BB) {
427   const BasicBlock *Equiv = EquivalenceClass[BB];
428   OS << "equivalence[" << BB->getName()
429      << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
430 }
431
432 /// \brief Print the weight of block \p BB on stream \p OS.
433 ///
434 /// \param OS  Stream to emit the output to.
435 /// \param BB  Block to print.
436 void SampleProfileLoader::printBlockWeight(raw_ostream &OS,
437                                            const BasicBlock *BB) const {
438   const auto &I = BlockWeights.find(BB);
439   uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
440   OS << "weight[" << BB->getName() << "]: " << W << "\n";
441 }
442
443 /// \brief Get the weight for an instruction.
444 ///
445 /// The "weight" of an instruction \p Inst is the number of samples
446 /// collected on that instruction at runtime. To retrieve it, we
447 /// need to compute the line number of \p Inst relative to the start of its
448 /// function. We use HeaderLineno to compute the offset. We then
449 /// look up the samples collected for \p Inst using BodySamples.
450 ///
451 /// \param Inst Instruction to query.
452 ///
453 /// \returns the weight of \p Inst.
454 ErrorOr<uint64_t>
455 SampleProfileLoader::getInstWeight(const Instruction &Inst) {
456   const DebugLoc &DLoc = Inst.getDebugLoc();
457   if (!DLoc)
458     return std::error_code();
459
460   const FunctionSamples *FS = findFunctionSamples(Inst);
461   if (!FS)
462     return std::error_code();
463
464   // Ignore all intrinsics and branch instructions.
465   // Branch instruction usually contains debug info from sources outside of
466   // the residing basic block, thus we ignore them during annotation.
467   if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst))
468     return std::error_code();
469
470   // If a call/invoke instruction is inlined in profile, but not inlined here,
471   // it means that the inlined callsite has no sample, thus the call
472   // instruction should have 0 count.
473   bool IsCall = isa<CallInst>(Inst) || isa<InvokeInst>(Inst);
474   if (IsCall && findCalleeFunctionSamples(Inst))
475     return 0;
476
477   const DILocation *DIL = DLoc;
478   unsigned Lineno = DLoc.getLine();
479   unsigned HeaderLineno = DIL->getScope()->getSubprogram()->getLine();
480
481   uint32_t LineOffset = getOffset(Lineno, HeaderLineno);
482   uint32_t Discriminator = DIL->getDiscriminator();
483   ErrorOr<uint64_t> R = IsCall
484                             ? FS->findCallSamplesAt(LineOffset, Discriminator)
485                             : FS->findSamplesAt(LineOffset, Discriminator);
486   if (R) {
487     bool FirstMark =
488         CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
489     if (FirstMark) {
490       const Function *F = Inst.getParent()->getParent();
491       LLVMContext &Ctx = F->getContext();
492       emitOptimizationRemark(
493           Ctx, DEBUG_TYPE, *F, DLoc,
494           Twine("Applied ") + Twine(*R) + " samples from profile (offset: " +
495               Twine(LineOffset) +
496               ((Discriminator) ? Twine(".") + Twine(Discriminator) : "") + ")");
497     }
498     DEBUG(dbgs() << "    " << Lineno << "." << DIL->getDiscriminator() << ":"
499                  << Inst << " (line offset: " << Lineno - HeaderLineno << "."
500                  << DIL->getDiscriminator() << " - weight: " << R.get()
501                  << ")\n");
502   }
503   return R;
504 }
505
506 /// \brief Compute the weight of a basic block.
507 ///
508 /// The weight of basic block \p BB is the maximum weight of all the
509 /// instructions in BB.
510 ///
511 /// \param BB The basic block to query.
512 ///
513 /// \returns the weight for \p BB.
514 ErrorOr<uint64_t>
515 SampleProfileLoader::getBlockWeight(const BasicBlock *BB) {
516   uint64_t Max = 0;
517   bool HasWeight = false;
518   for (auto &I : BB->getInstList()) {
519     const ErrorOr<uint64_t> &R = getInstWeight(I);
520     if (R) {
521       Max = std::max(Max, R.get());
522       HasWeight = true;
523     }
524   }
525   return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code();
526 }
527
528 /// \brief Compute and store the weights of every basic block.
529 ///
530 /// This populates the BlockWeights map by computing
531 /// the weights of every basic block in the CFG.
532 ///
533 /// \param F The function to query.
534 bool SampleProfileLoader::computeBlockWeights(Function &F) {
535   bool Changed = false;
536   DEBUG(dbgs() << "Block weights\n");
537   for (const auto &BB : F) {
538     ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
539     if (Weight) {
540       BlockWeights[&BB] = Weight.get();
541       VisitedBlocks.insert(&BB);
542       Changed = true;
543     }
544     DEBUG(printBlockWeight(dbgs(), &BB));
545   }
546
547   return Changed;
548 }
549
550 /// \brief Get the FunctionSamples for a call instruction.
551 ///
552 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined
553 /// instance in which that call instruction is calling to. It contains
554 /// all samples that resides in the inlined instance. We first find the
555 /// inlined instance in which the call instruction is from, then we
556 /// traverse its children to find the callsite with the matching
557 /// location.
558 ///
559 /// \param Inst Call/Invoke instruction to query.
560 ///
561 /// \returns The FunctionSamples pointer to the inlined instance.
562 const FunctionSamples *
563 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const {
564   const DILocation *DIL = Inst.getDebugLoc();
565   if (!DIL) {
566     return nullptr;
567   }
568   DISubprogram *SP = DIL->getScope()->getSubprogram();
569   if (!SP)
570     return nullptr;
571
572   const FunctionSamples *FS = findFunctionSamples(Inst);
573   if (FS == nullptr)
574     return nullptr;
575
576   return FS->findFunctionSamplesAt(LineLocation(
577       getOffset(DIL->getLine(), SP->getLine()), DIL->getDiscriminator()));
578 }
579
580 /// \brief Get the FunctionSamples for an instruction.
581 ///
582 /// The FunctionSamples of an instruction \p Inst is the inlined instance
583 /// in which that instruction is coming from. We traverse the inline stack
584 /// of that instruction, and match it with the tree nodes in the profile.
585 ///
586 /// \param Inst Instruction to query.
587 ///
588 /// \returns the FunctionSamples pointer to the inlined instance.
589 const FunctionSamples *
590 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const {
591   SmallVector<LineLocation, 10> S;
592   const DILocation *DIL = Inst.getDebugLoc();
593   if (!DIL) {
594     return Samples;
595   }
596   for (DIL = DIL->getInlinedAt(); DIL; DIL = DIL->getInlinedAt()) {
597     DISubprogram *SP = DIL->getScope()->getSubprogram();
598     if (!SP)
599       return nullptr;
600     S.push_back(LineLocation(getOffset(DIL->getLine(), SP->getLine()),
601                              DIL->getDiscriminator()));
602   }
603   if (S.size() == 0)
604     return Samples;
605   const FunctionSamples *FS = Samples;
606   for (int i = S.size() - 1; i >= 0 && FS != nullptr; i--) {
607     FS = FS->findFunctionSamplesAt(S[i]);
608   }
609   return FS;
610 }
611
612 /// \brief Iteratively inline hot callsites of a function.
613 ///
614 /// Iteratively traverse all callsites of the function \p F, and find if
615 /// the corresponding inlined instance exists and is hot in profile. If
616 /// it is hot enough, inline the callsites and adds new callsites of the
617 /// callee into the caller.
618 ///
619 /// TODO: investigate the possibility of not invoking InlineFunction directly.
620 ///
621 /// \param F function to perform iterative inlining.
622 ///
623 /// \returns True if there is any inline happened.
624 bool SampleProfileLoader::inlineHotFunctions(Function &F) {
625   bool Changed = false;
626   LLVMContext &Ctx = F.getContext();
627   std::function<AssumptionCache &(Function &)> GetAssumptionCache = [&](
628       Function &F) -> AssumptionCache & { return ACT->getAssumptionCache(F); };
629   while (true) {
630     bool LocalChanged = false;
631     SmallVector<Instruction *, 10> CIS;
632     for (auto &BB : F) {
633       bool Hot = false;
634       SmallVector<Instruction *, 10> Candidates;
635       for (auto &I : BB.getInstList()) {
636         const FunctionSamples *FS = nullptr;
637         if ((isa<CallInst>(I) || isa<InvokeInst>(I)) &&
638             (FS = findCalleeFunctionSamples(I))) {
639           Candidates.push_back(&I);
640           if (callsiteIsHot(Samples, FS))
641             Hot = true;
642         }
643       }
644       if (Hot) {
645         CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end());
646       }
647     }
648     for (auto I : CIS) {
649       InlineFunctionInfo IFI(nullptr, ACT ? &GetAssumptionCache : nullptr);
650       CallSite CS(I);
651       Function *CalledFunction = CS.getCalledFunction();
652       if (!CalledFunction || !CalledFunction->getSubprogram())
653         continue;
654       DebugLoc DLoc = I->getDebugLoc();
655       uint64_t NumSamples = findCalleeFunctionSamples(*I)->getTotalSamples();
656       if (InlineFunction(CS, IFI)) {
657         LocalChanged = true;
658         emitOptimizationRemark(Ctx, DEBUG_TYPE, F, DLoc,
659                                Twine("inlined hot callee '") +
660                                    CalledFunction->getName() + "' with " +
661                                    Twine(NumSamples) + " samples into '" +
662                                    F.getName() + "'");
663       }
664     }
665     if (LocalChanged) {
666       Changed = true;
667     } else {
668       break;
669     }
670   }
671   return Changed;
672 }
673
674 /// \brief Find equivalence classes for the given block.
675 ///
676 /// This finds all the blocks that are guaranteed to execute the same
677 /// number of times as \p BB1. To do this, it traverses all the
678 /// descendants of \p BB1 in the dominator or post-dominator tree.
679 ///
680 /// A block BB2 will be in the same equivalence class as \p BB1 if
681 /// the following holds:
682 ///
683 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
684 ///    is a descendant of \p BB1 in the dominator tree, then BB2 should
685 ///    dominate BB1 in the post-dominator tree.
686 ///
687 /// 2- Both BB2 and \p BB1 must be in the same loop.
688 ///
689 /// For every block BB2 that meets those two requirements, we set BB2's
690 /// equivalence class to \p BB1.
691 ///
692 /// \param BB1  Block to check.
693 /// \param Descendants  Descendants of \p BB1 in either the dom or pdom tree.
694 /// \param DomTree  Opposite dominator tree. If \p Descendants is filled
695 ///                 with blocks from \p BB1's dominator tree, then
696 ///                 this is the post-dominator tree, and vice versa.
697 void SampleProfileLoader::findEquivalencesFor(
698     BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
699     DominatorTreeBase<BasicBlock> *DomTree) {
700   const BasicBlock *EC = EquivalenceClass[BB1];
701   uint64_t Weight = BlockWeights[EC];
702   for (const auto *BB2 : Descendants) {
703     bool IsDomParent = DomTree->dominates(BB2, BB1);
704     bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
705     if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
706       EquivalenceClass[BB2] = EC;
707       // If BB2 is visited, then the entire EC should be marked as visited.
708       if (VisitedBlocks.count(BB2)) {
709         VisitedBlocks.insert(EC);
710       }
711
712       // If BB2 is heavier than BB1, make BB2 have the same weight
713       // as BB1.
714       //
715       // Note that we don't worry about the opposite situation here
716       // (when BB2 is lighter than BB1). We will deal with this
717       // during the propagation phase. Right now, we just want to
718       // make sure that BB1 has the largest weight of all the
719       // members of its equivalence set.
720       Weight = std::max(Weight, BlockWeights[BB2]);
721     }
722   }
723   if (EC == &EC->getParent()->getEntryBlock()) {
724     BlockWeights[EC] = Samples->getHeadSamples() + 1;
725   } else {
726     BlockWeights[EC] = Weight;
727   }
728 }
729
730 /// \brief Find equivalence classes.
731 ///
732 /// Since samples may be missing from blocks, we can fill in the gaps by setting
733 /// the weights of all the blocks in the same equivalence class to the same
734 /// weight. To compute the concept of equivalence, we use dominance and loop
735 /// information. Two blocks B1 and B2 are in the same equivalence class if B1
736 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
737 ///
738 /// \param F The function to query.
739 void SampleProfileLoader::findEquivalenceClasses(Function &F) {
740   SmallVector<BasicBlock *, 8> DominatedBBs;
741   DEBUG(dbgs() << "\nBlock equivalence classes\n");
742   // Find equivalence sets based on dominance and post-dominance information.
743   for (auto &BB : F) {
744     BasicBlock *BB1 = &BB;
745
746     // Compute BB1's equivalence class once.
747     if (EquivalenceClass.count(BB1)) {
748       DEBUG(printBlockEquivalence(dbgs(), BB1));
749       continue;
750     }
751
752     // By default, blocks are in their own equivalence class.
753     EquivalenceClass[BB1] = BB1;
754
755     // Traverse all the blocks dominated by BB1. We are looking for
756     // every basic block BB2 such that:
757     //
758     // 1- BB1 dominates BB2.
759     // 2- BB2 post-dominates BB1.
760     // 3- BB1 and BB2 are in the same loop nest.
761     //
762     // If all those conditions hold, it means that BB2 is executed
763     // as many times as BB1, so they are placed in the same equivalence
764     // class by making BB2's equivalence class be BB1.
765     DominatedBBs.clear();
766     DT->getDescendants(BB1, DominatedBBs);
767     findEquivalencesFor(BB1, DominatedBBs, PDT.get());
768
769     DEBUG(printBlockEquivalence(dbgs(), BB1));
770   }
771
772   // Assign weights to equivalence classes.
773   //
774   // All the basic blocks in the same equivalence class will execute
775   // the same number of times. Since we know that the head block in
776   // each equivalence class has the largest weight, assign that weight
777   // to all the blocks in that equivalence class.
778   DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n");
779   for (auto &BI : F) {
780     const BasicBlock *BB = &BI;
781     const BasicBlock *EquivBB = EquivalenceClass[BB];
782     if (BB != EquivBB)
783       BlockWeights[BB] = BlockWeights[EquivBB];
784     DEBUG(printBlockWeight(dbgs(), BB));
785   }
786 }
787
788 /// \brief Visit the given edge to decide if it has a valid weight.
789 ///
790 /// If \p E has not been visited before, we copy to \p UnknownEdge
791 /// and increment the count of unknown edges.
792 ///
793 /// \param E  Edge to visit.
794 /// \param NumUnknownEdges  Current number of unknown edges.
795 /// \param UnknownEdge  Set if E has not been visited before.
796 ///
797 /// \returns E's weight, if known. Otherwise, return 0.
798 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
799                                         Edge *UnknownEdge) {
800   if (!VisitedEdges.count(E)) {
801     (*NumUnknownEdges)++;
802     *UnknownEdge = E;
803     return 0;
804   }
805
806   return EdgeWeights[E];
807 }
808
809 /// \brief Propagate weights through incoming/outgoing edges.
810 ///
811 /// If the weight of a basic block is known, and there is only one edge
812 /// with an unknown weight, we can calculate the weight of that edge.
813 ///
814 /// Similarly, if all the edges have a known count, we can calculate the
815 /// count of the basic block, if needed.
816 ///
817 /// \param F  Function to process.
818 /// \param UpdateBlockCount  Whether we should update basic block counts that
819 ///                          has already been annotated.
820 ///
821 /// \returns  True if new weights were assigned to edges or blocks.
822 bool SampleProfileLoader::propagateThroughEdges(Function &F,
823                                                 bool UpdateBlockCount) {
824   bool Changed = false;
825   DEBUG(dbgs() << "\nPropagation through edges\n");
826   for (const auto &BI : F) {
827     const BasicBlock *BB = &BI;
828     const BasicBlock *EC = EquivalenceClass[BB];
829
830     // Visit all the predecessor and successor edges to determine
831     // which ones have a weight assigned already. Note that it doesn't
832     // matter that we only keep track of a single unknown edge. The
833     // only case we are interested in handling is when only a single
834     // edge is unknown (see setEdgeOrBlockWeight).
835     for (unsigned i = 0; i < 2; i++) {
836       uint64_t TotalWeight = 0;
837       unsigned NumUnknownEdges = 0, NumTotalEdges = 0;
838       Edge UnknownEdge, SelfReferentialEdge, SingleEdge;
839
840       if (i == 0) {
841         // First, visit all predecessor edges.
842         NumTotalEdges = Predecessors[BB].size();
843         for (auto *Pred : Predecessors[BB]) {
844           Edge E = std::make_pair(Pred, BB);
845           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
846           if (E.first == E.second)
847             SelfReferentialEdge = E;
848         }
849         if (NumTotalEdges == 1) {
850           SingleEdge = std::make_pair(Predecessors[BB][0], BB);
851         }
852       } else {
853         // On the second round, visit all successor edges.
854         NumTotalEdges = Successors[BB].size();
855         for (auto *Succ : Successors[BB]) {
856           Edge E = std::make_pair(BB, Succ);
857           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
858         }
859         if (NumTotalEdges == 1) {
860           SingleEdge = std::make_pair(BB, Successors[BB][0]);
861         }
862       }
863
864       // After visiting all the edges, there are three cases that we
865       // can handle immediately:
866       //
867       // - All the edge weights are known (i.e., NumUnknownEdges == 0).
868       //   In this case, we simply check that the sum of all the edges
869       //   is the same as BB's weight. If not, we change BB's weight
870       //   to match. Additionally, if BB had not been visited before,
871       //   we mark it visited.
872       //
873       // - Only one edge is unknown and BB has already been visited.
874       //   In this case, we can compute the weight of the edge by
875       //   subtracting the total block weight from all the known
876       //   edge weights. If the edges weight more than BB, then the
877       //   edge of the last remaining edge is set to zero.
878       //
879       // - There exists a self-referential edge and the weight of BB is
880       //   known. In this case, this edge can be based on BB's weight.
881       //   We add up all the other known edges and set the weight on
882       //   the self-referential edge as we did in the previous case.
883       //
884       // In any other case, we must continue iterating. Eventually,
885       // all edges will get a weight, or iteration will stop when
886       // it reaches SampleProfileMaxPropagateIterations.
887       if (NumUnknownEdges <= 1) {
888         uint64_t &BBWeight = BlockWeights[EC];
889         if (NumUnknownEdges == 0) {
890           if (!VisitedBlocks.count(EC)) {
891             // If we already know the weight of all edges, the weight of the
892             // basic block can be computed. It should be no larger than the sum
893             // of all edge weights.
894             if (TotalWeight > BBWeight) {
895               BBWeight = TotalWeight;
896               Changed = true;
897               DEBUG(dbgs() << "All edge weights for " << BB->getName()
898                            << " known. Set weight for block: ";
899                     printBlockWeight(dbgs(), BB););
900             }
901           } else if (NumTotalEdges == 1 &&
902                      EdgeWeights[SingleEdge] < BlockWeights[EC]) {
903             // If there is only one edge for the visited basic block, use the
904             // block weight to adjust edge weight if edge weight is smaller.
905             EdgeWeights[SingleEdge] = BlockWeights[EC];
906             Changed = true;
907           }
908         } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
909           // If there is a single unknown edge and the block has been
910           // visited, then we can compute E's weight.
911           if (BBWeight >= TotalWeight)
912             EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
913           else
914             EdgeWeights[UnknownEdge] = 0;
915           const BasicBlock *OtherEC;
916           if (i == 0)
917             OtherEC = EquivalenceClass[UnknownEdge.first];
918           else
919             OtherEC = EquivalenceClass[UnknownEdge.second];
920           // Edge weights should never exceed the BB weights it connects.
921           if (VisitedBlocks.count(OtherEC) &&
922               EdgeWeights[UnknownEdge] > BlockWeights[OtherEC])
923             EdgeWeights[UnknownEdge] = BlockWeights[OtherEC];
924           VisitedEdges.insert(UnknownEdge);
925           Changed = true;
926           DEBUG(dbgs() << "Set weight for edge: ";
927                 printEdgeWeight(dbgs(), UnknownEdge));
928         }
929       } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) {
930         // If a block Weights 0, all its in/out edges should weight 0.
931         if (i == 0) {
932           for (auto *Pred : Predecessors[BB]) {
933             Edge E = std::make_pair(Pred, BB);
934             EdgeWeights[E] = 0;
935             VisitedEdges.insert(E);
936           }
937         } else {
938           for (auto *Succ : Successors[BB]) {
939             Edge E = std::make_pair(BB, Succ);
940             EdgeWeights[E] = 0;
941             VisitedEdges.insert(E);
942           }
943         }
944       } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
945         uint64_t &BBWeight = BlockWeights[BB];
946         // We have a self-referential edge and the weight of BB is known.
947         if (BBWeight >= TotalWeight)
948           EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
949         else
950           EdgeWeights[SelfReferentialEdge] = 0;
951         VisitedEdges.insert(SelfReferentialEdge);
952         Changed = true;
953         DEBUG(dbgs() << "Set self-referential edge weight to: ";
954               printEdgeWeight(dbgs(), SelfReferentialEdge));
955       }
956       if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) {
957         BlockWeights[EC] = TotalWeight;
958         VisitedBlocks.insert(EC);
959         Changed = true;
960       }
961     }
962   }
963
964   return Changed;
965 }
966
967 /// \brief Build in/out edge lists for each basic block in the CFG.
968 ///
969 /// We are interested in unique edges. If a block B1 has multiple
970 /// edges to another block B2, we only add a single B1->B2 edge.
971 void SampleProfileLoader::buildEdges(Function &F) {
972   for (auto &BI : F) {
973     BasicBlock *B1 = &BI;
974
975     // Add predecessors for B1.
976     SmallPtrSet<BasicBlock *, 16> Visited;
977     if (!Predecessors[B1].empty())
978       llvm_unreachable("Found a stale predecessors list in a basic block.");
979     for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
980       BasicBlock *B2 = *PI;
981       if (Visited.insert(B2).second)
982         Predecessors[B1].push_back(B2);
983     }
984
985     // Add successors for B1.
986     Visited.clear();
987     if (!Successors[B1].empty())
988       llvm_unreachable("Found a stale successors list in a basic block.");
989     for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
990       BasicBlock *B2 = *SI;
991       if (Visited.insert(B2).second)
992         Successors[B1].push_back(B2);
993     }
994   }
995 }
996
997 /// \brief Propagate weights into edges
998 ///
999 /// The following rules are applied to every block BB in the CFG:
1000 ///
1001 /// - If BB has a single predecessor/successor, then the weight
1002 ///   of that edge is the weight of the block.
1003 ///
1004 /// - If all incoming or outgoing edges are known except one, and the
1005 ///   weight of the block is already known, the weight of the unknown
1006 ///   edge will be the weight of the block minus the sum of all the known
1007 ///   edges. If the sum of all the known edges is larger than BB's weight,
1008 ///   we set the unknown edge weight to zero.
1009 ///
1010 /// - If there is a self-referential edge, and the weight of the block is
1011 ///   known, the weight for that edge is set to the weight of the block
1012 ///   minus the weight of the other incoming edges to that block (if
1013 ///   known).
1014 void SampleProfileLoader::propagateWeights(Function &F) {
1015   bool Changed = true;
1016   unsigned I = 0;
1017
1018   // Add an entry count to the function using the samples gathered
1019   // at the function entry.
1020   F.setEntryCount(Samples->getHeadSamples() + 1);
1021
1022   // If BB weight is larger than its corresponding loop's header BB weight,
1023   // use the BB weight to replace the loop header BB weight.
1024   for (auto &BI : F) {
1025     BasicBlock *BB = &BI;
1026     Loop *L = LI->getLoopFor(BB);
1027     if (!L) {
1028       continue;
1029     }
1030     BasicBlock *Header = L->getHeader();
1031     if (Header && BlockWeights[BB] > BlockWeights[Header]) {
1032       BlockWeights[Header] = BlockWeights[BB];
1033     }
1034   }
1035
1036   // Before propagation starts, build, for each block, a list of
1037   // unique predecessors and successors. This is necessary to handle
1038   // identical edges in multiway branches. Since we visit all blocks and all
1039   // edges of the CFG, it is cleaner to build these lists once at the start
1040   // of the pass.
1041   buildEdges(F);
1042
1043   // Propagate until we converge or we go past the iteration limit.
1044   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1045     Changed = propagateThroughEdges(F, false);
1046   }
1047
1048   // The first propagation propagates BB counts from annotated BBs to unknown
1049   // BBs. The 2nd propagation pass resets edges weights, and use all BB weights
1050   // to propagate edge weights.
1051   VisitedEdges.clear();
1052   Changed = true;
1053   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1054     Changed = propagateThroughEdges(F, false);
1055   }
1056
1057   // The 3rd propagation pass allows adjust annotated BB weights that are
1058   // obviously wrong.
1059   Changed = true;
1060   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1061     Changed = propagateThroughEdges(F, true);
1062   }
1063
1064   // Generate MD_prof metadata for every branch instruction using the
1065   // edge weights computed during propagation.
1066   DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
1067   LLVMContext &Ctx = F.getContext();
1068   MDBuilder MDB(Ctx);
1069   for (auto &BI : F) {
1070     BasicBlock *BB = &BI;
1071
1072     if (BlockWeights[BB]) {
1073       for (auto &I : BB->getInstList()) {
1074         if (CallInst *CI = dyn_cast<CallInst>(&I)) {
1075           if (!dyn_cast<IntrinsicInst>(&I)) {
1076             SmallVector<uint32_t, 1> Weights;
1077             Weights.push_back(BlockWeights[BB]);
1078             CI->setMetadata(LLVMContext::MD_prof,
1079                             MDB.createBranchWeights(Weights));
1080           }
1081         }
1082       }
1083     }
1084     TerminatorInst *TI = BB->getTerminator();
1085     if (TI->getNumSuccessors() == 1)
1086       continue;
1087     if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
1088       continue;
1089
1090     DEBUG(dbgs() << "\nGetting weights for branch at line "
1091                  << TI->getDebugLoc().getLine() << ".\n");
1092     SmallVector<uint32_t, 4> Weights;
1093     uint32_t MaxWeight = 0;
1094     DebugLoc MaxDestLoc;
1095     for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
1096       BasicBlock *Succ = TI->getSuccessor(I);
1097       Edge E = std::make_pair(BB, Succ);
1098       uint64_t Weight = EdgeWeights[E];
1099       DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
1100       // Use uint32_t saturated arithmetic to adjust the incoming weights,
1101       // if needed. Sample counts in profiles are 64-bit unsigned values,
1102       // but internally branch weights are expressed as 32-bit values.
1103       if (Weight > std::numeric_limits<uint32_t>::max()) {
1104         DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
1105         Weight = std::numeric_limits<uint32_t>::max();
1106       }
1107       // Weight is added by one to avoid propagation errors introduced by
1108       // 0 weights.
1109       Weights.push_back(static_cast<uint32_t>(Weight + 1));
1110       if (Weight != 0) {
1111         if (Weight > MaxWeight) {
1112           MaxWeight = Weight;
1113           MaxDestLoc = Succ->getFirstNonPHIOrDbgOrLifetime()->getDebugLoc();
1114         }
1115       }
1116     }
1117
1118     // Only set weights if there is at least one non-zero weight.
1119     // In any other case, let the analyzer set weights.
1120     if (MaxWeight > 0) {
1121       DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
1122       TI->setMetadata(llvm::LLVMContext::MD_prof,
1123                       MDB.createBranchWeights(Weights));
1124       DebugLoc BranchLoc = TI->getDebugLoc();
1125       emitOptimizationRemark(
1126           Ctx, DEBUG_TYPE, F, MaxDestLoc,
1127           Twine("most popular destination for conditional branches at ") +
1128               ((BranchLoc) ? Twine(BranchLoc->getFilename() + ":" +
1129                                    Twine(BranchLoc.getLine()) + ":" +
1130                                    Twine(BranchLoc.getCol()))
1131                            : Twine("<UNKNOWN LOCATION>")));
1132     } else {
1133       DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
1134     }
1135   }
1136 }
1137
1138 /// \brief Get the line number for the function header.
1139 ///
1140 /// This looks up function \p F in the current compilation unit and
1141 /// retrieves the line number where the function is defined. This is
1142 /// line 0 for all the samples read from the profile file. Every line
1143 /// number is relative to this line.
1144 ///
1145 /// \param F  Function object to query.
1146 ///
1147 /// \returns the line number where \p F is defined. If it returns 0,
1148 ///          it means that there is no debug information available for \p F.
1149 unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
1150   if (DISubprogram *S = F.getSubprogram())
1151     return S->getLine();
1152
1153   // If the start of \p F is missing, emit a diagnostic to inform the user
1154   // about the missed opportunity.
1155   F.getContext().diagnose(DiagnosticInfoSampleProfile(
1156       "No debug information found in function " + F.getName() +
1157           ": Function profile not used",
1158       DS_Warning));
1159   return 0;
1160 }
1161
1162 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) {
1163   DT.reset(new DominatorTree);
1164   DT->recalculate(F);
1165
1166   PDT.reset(new DominatorTreeBase<BasicBlock>(true));
1167   PDT->recalculate(F);
1168
1169   LI.reset(new LoopInfo);
1170   LI->analyze(*DT);
1171 }
1172
1173 /// \brief Generate branch weight metadata for all branches in \p F.
1174 ///
1175 /// Branch weights are computed out of instruction samples using a
1176 /// propagation heuristic. Propagation proceeds in 3 phases:
1177 ///
1178 /// 1- Assignment of block weights. All the basic blocks in the function
1179 ///    are initial assigned the same weight as their most frequently
1180 ///    executed instruction.
1181 ///
1182 /// 2- Creation of equivalence classes. Since samples may be missing from
1183 ///    blocks, we can fill in the gaps by setting the weights of all the
1184 ///    blocks in the same equivalence class to the same weight. To compute
1185 ///    the concept of equivalence, we use dominance and loop information.
1186 ///    Two blocks B1 and B2 are in the same equivalence class if B1
1187 ///    dominates B2, B2 post-dominates B1 and both are in the same loop.
1188 ///
1189 /// 3- Propagation of block weights into edges. This uses a simple
1190 ///    propagation heuristic. The following rules are applied to every
1191 ///    block BB in the CFG:
1192 ///
1193 ///    - If BB has a single predecessor/successor, then the weight
1194 ///      of that edge is the weight of the block.
1195 ///
1196 ///    - If all the edges are known except one, and the weight of the
1197 ///      block is already known, the weight of the unknown edge will
1198 ///      be the weight of the block minus the sum of all the known
1199 ///      edges. If the sum of all the known edges is larger than BB's weight,
1200 ///      we set the unknown edge weight to zero.
1201 ///
1202 ///    - If there is a self-referential edge, and the weight of the block is
1203 ///      known, the weight for that edge is set to the weight of the block
1204 ///      minus the weight of the other incoming edges to that block (if
1205 ///      known).
1206 ///
1207 /// Since this propagation is not guaranteed to finalize for every CFG, we
1208 /// only allow it to proceed for a limited number of iterations (controlled
1209 /// by -sample-profile-max-propagate-iterations).
1210 ///
1211 /// FIXME: Try to replace this propagation heuristic with a scheme
1212 /// that is guaranteed to finalize. A work-list approach similar to
1213 /// the standard value propagation algorithm used by SSA-CCP might
1214 /// work here.
1215 ///
1216 /// Once all the branch weights are computed, we emit the MD_prof
1217 /// metadata on BB using the computed values for each of its branches.
1218 ///
1219 /// \param F The function to query.
1220 ///
1221 /// \returns true if \p F was modified. Returns false, otherwise.
1222 bool SampleProfileLoader::emitAnnotations(Function &F) {
1223   bool Changed = false;
1224
1225   if (getFunctionLoc(F) == 0)
1226     return false;
1227
1228   DEBUG(dbgs() << "Line number for the first instruction in " << F.getName()
1229                << ": " << getFunctionLoc(F) << "\n");
1230
1231   Changed |= inlineHotFunctions(F);
1232
1233   // Compute basic block weights.
1234   Changed |= computeBlockWeights(F);
1235
1236   if (Changed) {
1237     // Compute dominance and loop info needed for propagation.
1238     computeDominanceAndLoopInfo(F);
1239
1240     // Find equivalence classes.
1241     findEquivalenceClasses(F);
1242
1243     // Propagate weights to all edges.
1244     propagateWeights(F);
1245   }
1246
1247   // If coverage checking was requested, compute it now.
1248   if (SampleProfileRecordCoverage) {
1249     unsigned Used = CoverageTracker.countUsedRecords(Samples);
1250     unsigned Total = CoverageTracker.countBodyRecords(Samples);
1251     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1252     if (Coverage < SampleProfileRecordCoverage) {
1253       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1254           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1255           Twine(Used) + " of " + Twine(Total) + " available profile records (" +
1256               Twine(Coverage) + "%) were applied",
1257           DS_Warning));
1258     }
1259   }
1260
1261   if (SampleProfileSampleCoverage) {
1262     uint64_t Used = CoverageTracker.getTotalUsedSamples();
1263     uint64_t Total = CoverageTracker.countBodySamples(Samples);
1264     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1265     if (Coverage < SampleProfileSampleCoverage) {
1266       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1267           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1268           Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
1269               Twine(Coverage) + "%) were applied",
1270           DS_Warning));
1271     }
1272   }
1273   return Changed;
1274 }
1275
1276 char SampleProfileLoaderLegacyPass::ID = 0;
1277 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile",
1278                       "Sample Profile loader", false, false)
1279 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1280 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile",
1281                     "Sample Profile loader", false, false)
1282
1283 bool SampleProfileLoader::doInitialization(Module &M) {
1284   auto &Ctx = M.getContext();
1285   auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx);
1286   if (std::error_code EC = ReaderOrErr.getError()) {
1287     std::string Msg = "Could not open profile: " + EC.message();
1288     Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
1289     return false;
1290   }
1291   Reader = std::move(ReaderOrErr.get());
1292   ProfileIsValid = (Reader->read() == sampleprof_error::success);
1293   return true;
1294 }
1295
1296 ModulePass *llvm::createSampleProfileLoaderPass() {
1297   return new SampleProfileLoaderLegacyPass(SampleProfileFile);
1298 }
1299
1300 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) {
1301   return new SampleProfileLoaderLegacyPass(Name);
1302 }
1303
1304 bool SampleProfileLoader::runOnModule(Module &M) {
1305   if (!ProfileIsValid)
1306     return false;
1307
1308   // Compute the total number of samples collected in this profile.
1309   for (const auto &I : Reader->getProfiles())
1310     TotalCollectedSamples += I.second.getTotalSamples();
1311
1312   bool retval = false;
1313   for (auto &F : M)
1314     if (!F.isDeclaration()) {
1315       clearFunctionData();
1316       retval |= runOnFunction(F);
1317     }
1318   if (M.getProfileSummary() == nullptr)
1319     M.setProfileSummary(Reader->getSummary().getMD(M.getContext()));
1320   return retval;
1321 }
1322
1323 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) {
1324   // FIXME: pass in AssumptionCache correctly for the new pass manager.
1325   SampleLoader.setACT(&getAnalysis<AssumptionCacheTracker>());
1326   return SampleLoader.runOnModule(M);
1327 }
1328
1329 bool SampleProfileLoader::runOnFunction(Function &F) {
1330   F.setEntryCount(0);
1331   Samples = Reader->getSamplesFor(F);
1332   if (!Samples->empty())
1333     return emitAnnotations(F);
1334   return false;
1335 }
1336
1337 PreservedAnalyses SampleProfileLoaderPass::run(Module &M,
1338                                                ModuleAnalysisManager &AM) {
1339
1340   SampleProfileLoader SampleLoader(SampleProfileFile);
1341
1342   SampleLoader.doInitialization(M);
1343
1344   if (!SampleLoader.runOnModule(M))
1345     return PreservedAnalyses::all();
1346
1347   return PreservedAnalyses::none();
1348 }