]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/IPO/WholeProgramDevirt.cpp
Merge ^/head r304700 through r304884.
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / IPO / WholeProgramDevirt.cpp
1 //===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements whole program optimization of virtual calls in cases
11 // where we know (via !type metadata) that the list of callees is fixed. This
12 // includes the following:
13 // - Single implementation devirtualization: if a virtual call has a single
14 //   possible callee, replace all calls with a direct call to that callee.
15 // - Virtual constant propagation: if the virtual function's return type is an
16 //   integer <=64 bits and all possible callees are readnone, for each class and
17 //   each list of constant arguments: evaluate the function, store the return
18 //   value alongside the virtual table, and rewrite each virtual call as a load
19 //   from the virtual table.
20 // - Uniform return value optimization: if the conditions for virtual constant
21 //   propagation hold and each function returns the same constant value, replace
22 //   each virtual call with that constant.
23 // - Unique return value optimization for i1 return values: if the conditions
24 //   for virtual constant propagation hold and a single vtable's function
25 //   returns 0, or a single vtable's function returns 1, replace each virtual
26 //   call with a comparison of the vptr against that vtable's address.
27 //
28 //===----------------------------------------------------------------------===//
29
30 #include "llvm/Transforms/IPO/WholeProgramDevirt.h"
31 #include "llvm/ADT/ArrayRef.h"
32 #include "llvm/ADT/DenseSet.h"
33 #include "llvm/ADT/MapVector.h"
34 #include "llvm/Analysis/TypeMetadataUtils.h"
35 #include "llvm/IR/CallSite.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/DiagnosticInfo.h"
39 #include "llvm/IR/IRBuilder.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/Intrinsics.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Transforms/IPO.h"
46 #include "llvm/Transforms/Utils/Evaluator.h"
47 #include "llvm/Transforms/Utils/Local.h"
48
49 #include <set>
50
51 using namespace llvm;
52 using namespace wholeprogramdevirt;
53
54 #define DEBUG_TYPE "wholeprogramdevirt"
55
56 // Find the minimum offset that we may store a value of size Size bits at. If
57 // IsAfter is set, look for an offset before the object, otherwise look for an
58 // offset after the object.
59 uint64_t
60 wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets,
61                                      bool IsAfter, uint64_t Size) {
62   // Find a minimum offset taking into account only vtable sizes.
63   uint64_t MinByte = 0;
64   for (const VirtualCallTarget &Target : Targets) {
65     if (IsAfter)
66       MinByte = std::max(MinByte, Target.minAfterBytes());
67     else
68       MinByte = std::max(MinByte, Target.minBeforeBytes());
69   }
70
71   // Build a vector of arrays of bytes covering, for each target, a slice of the
72   // used region (see AccumBitVector::BytesUsed in
73   // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively,
74   // this aligns the used regions to start at MinByte.
75   //
76   // In this example, A, B and C are vtables, # is a byte already allocated for
77   // a virtual function pointer, AAAA... (etc.) are the used regions for the
78   // vtables and Offset(X) is the value computed for the Offset variable below
79   // for X.
80   //
81   //                    Offset(A)
82   //                    |       |
83   //                            |MinByte
84   // A: ################AAAAAAAA|AAAAAAAA
85   // B: ########BBBBBBBBBBBBBBBB|BBBB
86   // C: ########################|CCCCCCCCCCCCCCCC
87   //            |   Offset(B)   |
88   //
89   // This code produces the slices of A, B and C that appear after the divider
90   // at MinByte.
91   std::vector<ArrayRef<uint8_t>> Used;
92   for (const VirtualCallTarget &Target : Targets) {
93     ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed
94                                        : Target.TM->Bits->Before.BytesUsed;
95     uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes()
96                               : MinByte - Target.minBeforeBytes();
97
98     // Disregard used regions that are smaller than Offset. These are
99     // effectively all-free regions that do not need to be checked.
100     if (VTUsed.size() > Offset)
101       Used.push_back(VTUsed.slice(Offset));
102   }
103
104   if (Size == 1) {
105     // Find a free bit in each member of Used.
106     for (unsigned I = 0;; ++I) {
107       uint8_t BitsUsed = 0;
108       for (auto &&B : Used)
109         if (I < B.size())
110           BitsUsed |= B[I];
111       if (BitsUsed != 0xff)
112         return (MinByte + I) * 8 +
113                countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined);
114     }
115   } else {
116     // Find a free (Size/8) byte region in each member of Used.
117     // FIXME: see if alignment helps.
118     for (unsigned I = 0;; ++I) {
119       for (auto &&B : Used) {
120         unsigned Byte = 0;
121         while ((I + Byte) < B.size() && Byte < (Size / 8)) {
122           if (B[I + Byte])
123             goto NextI;
124           ++Byte;
125         }
126       }
127       return (MinByte + I) * 8;
128     NextI:;
129     }
130   }
131 }
132
133 void wholeprogramdevirt::setBeforeReturnValues(
134     MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore,
135     unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
136   if (BitWidth == 1)
137     OffsetByte = -(AllocBefore / 8 + 1);
138   else
139     OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8);
140   OffsetBit = AllocBefore % 8;
141
142   for (VirtualCallTarget &Target : Targets) {
143     if (BitWidth == 1)
144       Target.setBeforeBit(AllocBefore);
145     else
146       Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8);
147   }
148 }
149
150 void wholeprogramdevirt::setAfterReturnValues(
151     MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter,
152     unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
153   if (BitWidth == 1)
154     OffsetByte = AllocAfter / 8;
155   else
156     OffsetByte = (AllocAfter + 7) / 8;
157   OffsetBit = AllocAfter % 8;
158
159   for (VirtualCallTarget &Target : Targets) {
160     if (BitWidth == 1)
161       Target.setAfterBit(AllocAfter);
162     else
163       Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8);
164   }
165 }
166
167 VirtualCallTarget::VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM)
168     : Fn(Fn), TM(TM),
169       IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()) {}
170
171 namespace {
172
173 // A slot in a set of virtual tables. The TypeID identifies the set of virtual
174 // tables, and the ByteOffset is the offset in bytes from the address point to
175 // the virtual function pointer.
176 struct VTableSlot {
177   Metadata *TypeID;
178   uint64_t ByteOffset;
179 };
180
181 }
182
183 namespace llvm {
184
185 template <> struct DenseMapInfo<VTableSlot> {
186   static VTableSlot getEmptyKey() {
187     return {DenseMapInfo<Metadata *>::getEmptyKey(),
188             DenseMapInfo<uint64_t>::getEmptyKey()};
189   }
190   static VTableSlot getTombstoneKey() {
191     return {DenseMapInfo<Metadata *>::getTombstoneKey(),
192             DenseMapInfo<uint64_t>::getTombstoneKey()};
193   }
194   static unsigned getHashValue(const VTableSlot &I) {
195     return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^
196            DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
197   }
198   static bool isEqual(const VTableSlot &LHS,
199                       const VTableSlot &RHS) {
200     return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
201   }
202 };
203
204 }
205
206 namespace {
207
208 // A virtual call site. VTable is the loaded virtual table pointer, and CS is
209 // the indirect virtual call.
210 struct VirtualCallSite {
211   Value *VTable;
212   CallSite CS;
213
214   // If non-null, this field points to the associated unsafe use count stored in
215   // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description
216   // of that field for details.
217   unsigned *NumUnsafeUses;
218
219   void emitRemark() {
220     Function *F = CS.getCaller();
221     emitOptimizationRemark(F->getContext(), DEBUG_TYPE, *F,
222                            CS.getInstruction()->getDebugLoc(),
223                            "devirtualized call");
224   }
225
226   void replaceAndErase(Value *New) {
227     emitRemark();
228     CS->replaceAllUsesWith(New);
229     if (auto II = dyn_cast<InvokeInst>(CS.getInstruction())) {
230       BranchInst::Create(II->getNormalDest(), CS.getInstruction());
231       II->getUnwindDest()->removePredecessor(II->getParent());
232     }
233     CS->eraseFromParent();
234     // This use is no longer unsafe.
235     if (NumUnsafeUses)
236       --*NumUnsafeUses;
237   }
238 };
239
240 struct DevirtModule {
241   Module &M;
242   IntegerType *Int8Ty;
243   PointerType *Int8PtrTy;
244   IntegerType *Int32Ty;
245
246   MapVector<VTableSlot, std::vector<VirtualCallSite>> CallSlots;
247
248   // This map keeps track of the number of "unsafe" uses of a loaded function
249   // pointer. The key is the associated llvm.type.test intrinsic call generated
250   // by this pass. An unsafe use is one that calls the loaded function pointer
251   // directly. Every time we eliminate an unsafe use (for example, by
252   // devirtualizing it or by applying virtual constant propagation), we
253   // decrement the value stored in this map. If a value reaches zero, we can
254   // eliminate the type check by RAUWing the associated llvm.type.test call with
255   // true.
256   std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest;
257
258   DevirtModule(Module &M)
259       : M(M), Int8Ty(Type::getInt8Ty(M.getContext())),
260         Int8PtrTy(Type::getInt8PtrTy(M.getContext())),
261         Int32Ty(Type::getInt32Ty(M.getContext())) {}
262
263   void scanTypeTestUsers(Function *TypeTestFunc, Function *AssumeFunc);
264   void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc);
265
266   void buildTypeIdentifierMap(
267       std::vector<VTableBits> &Bits,
268       DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap);
269   bool
270   tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot,
271                             const std::set<TypeMemberInfo> &TypeMemberInfos,
272                             uint64_t ByteOffset);
273   bool trySingleImplDevirt(ArrayRef<VirtualCallTarget> TargetsForSlot,
274                            MutableArrayRef<VirtualCallSite> CallSites);
275   bool tryEvaluateFunctionsWithArgs(
276       MutableArrayRef<VirtualCallTarget> TargetsForSlot,
277       ArrayRef<ConstantInt *> Args);
278   bool tryUniformRetValOpt(IntegerType *RetType,
279                            ArrayRef<VirtualCallTarget> TargetsForSlot,
280                            MutableArrayRef<VirtualCallSite> CallSites);
281   bool tryUniqueRetValOpt(unsigned BitWidth,
282                           ArrayRef<VirtualCallTarget> TargetsForSlot,
283                           MutableArrayRef<VirtualCallSite> CallSites);
284   bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
285                            ArrayRef<VirtualCallSite> CallSites);
286
287   void rebuildGlobal(VTableBits &B);
288
289   bool run();
290 };
291
292 struct WholeProgramDevirt : public ModulePass {
293   static char ID;
294   WholeProgramDevirt() : ModulePass(ID) {
295     initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
296   }
297   bool runOnModule(Module &M) {
298     if (skipModule(M))
299       return false;
300
301     return DevirtModule(M).run();
302   }
303 };
304
305 } // anonymous namespace
306
307 INITIALIZE_PASS(WholeProgramDevirt, "wholeprogramdevirt",
308                 "Whole program devirtualization", false, false)
309 char WholeProgramDevirt::ID = 0;
310
311 ModulePass *llvm::createWholeProgramDevirtPass() {
312   return new WholeProgramDevirt;
313 }
314
315 PreservedAnalyses WholeProgramDevirtPass::run(Module &M,
316                                               ModuleAnalysisManager &) {
317   if (!DevirtModule(M).run())
318     return PreservedAnalyses::all();
319   return PreservedAnalyses::none();
320 }
321
322 void DevirtModule::buildTypeIdentifierMap(
323     std::vector<VTableBits> &Bits,
324     DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) {
325   DenseMap<GlobalVariable *, VTableBits *> GVToBits;
326   Bits.reserve(M.getGlobalList().size());
327   SmallVector<MDNode *, 2> Types;
328   for (GlobalVariable &GV : M.globals()) {
329     Types.clear();
330     GV.getMetadata(LLVMContext::MD_type, Types);
331     if (Types.empty())
332       continue;
333
334     VTableBits *&BitsPtr = GVToBits[&GV];
335     if (!BitsPtr) {
336       Bits.emplace_back();
337       Bits.back().GV = &GV;
338       Bits.back().ObjectSize =
339           M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType());
340       BitsPtr = &Bits.back();
341     }
342
343     for (MDNode *Type : Types) {
344       auto TypeID = Type->getOperand(1).get();
345
346       uint64_t Offset =
347           cast<ConstantInt>(
348               cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
349               ->getZExtValue();
350
351       TypeIdMap[TypeID].insert({BitsPtr, Offset});
352     }
353   }
354 }
355
356 bool DevirtModule::tryFindVirtualCallTargets(
357     std::vector<VirtualCallTarget> &TargetsForSlot,
358     const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset) {
359   for (const TypeMemberInfo &TM : TypeMemberInfos) {
360     if (!TM.Bits->GV->isConstant())
361       return false;
362
363     auto Init = dyn_cast<ConstantArray>(TM.Bits->GV->getInitializer());
364     if (!Init)
365       return false;
366     ArrayType *VTableTy = Init->getType();
367
368     uint64_t ElemSize =
369         M.getDataLayout().getTypeAllocSize(VTableTy->getElementType());
370     uint64_t GlobalSlotOffset = TM.Offset + ByteOffset;
371     if (GlobalSlotOffset % ElemSize != 0)
372       return false;
373
374     unsigned Op = GlobalSlotOffset / ElemSize;
375     if (Op >= Init->getNumOperands())
376       return false;
377
378     auto Fn = dyn_cast<Function>(Init->getOperand(Op)->stripPointerCasts());
379     if (!Fn)
380       return false;
381
382     // We can disregard __cxa_pure_virtual as a possible call target, as
383     // calls to pure virtuals are UB.
384     if (Fn->getName() == "__cxa_pure_virtual")
385       continue;
386
387     TargetsForSlot.push_back({Fn, &TM});
388   }
389
390   // Give up if we couldn't find any targets.
391   return !TargetsForSlot.empty();
392 }
393
394 bool DevirtModule::trySingleImplDevirt(
395     ArrayRef<VirtualCallTarget> TargetsForSlot,
396     MutableArrayRef<VirtualCallSite> CallSites) {
397   // See if the program contains a single implementation of this virtual
398   // function.
399   Function *TheFn = TargetsForSlot[0].Fn;
400   for (auto &&Target : TargetsForSlot)
401     if (TheFn != Target.Fn)
402       return false;
403
404   // If so, update each call site to call that implementation directly.
405   for (auto &&VCallSite : CallSites) {
406     VCallSite.emitRemark();
407     VCallSite.CS.setCalledFunction(ConstantExpr::getBitCast(
408         TheFn, VCallSite.CS.getCalledValue()->getType()));
409     // This use is no longer unsafe.
410     if (VCallSite.NumUnsafeUses)
411       --*VCallSite.NumUnsafeUses;
412   }
413   return true;
414 }
415
416 bool DevirtModule::tryEvaluateFunctionsWithArgs(
417     MutableArrayRef<VirtualCallTarget> TargetsForSlot,
418     ArrayRef<ConstantInt *> Args) {
419   // Evaluate each function and store the result in each target's RetVal
420   // field.
421   for (VirtualCallTarget &Target : TargetsForSlot) {
422     if (Target.Fn->arg_size() != Args.size() + 1)
423       return false;
424     for (unsigned I = 0; I != Args.size(); ++I)
425       if (Target.Fn->getFunctionType()->getParamType(I + 1) !=
426           Args[I]->getType())
427         return false;
428
429     Evaluator Eval(M.getDataLayout(), nullptr);
430     SmallVector<Constant *, 2> EvalArgs;
431     EvalArgs.push_back(
432         Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0)));
433     EvalArgs.insert(EvalArgs.end(), Args.begin(), Args.end());
434     Constant *RetVal;
435     if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) ||
436         !isa<ConstantInt>(RetVal))
437       return false;
438     Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue();
439   }
440   return true;
441 }
442
443 bool DevirtModule::tryUniformRetValOpt(
444     IntegerType *RetType, ArrayRef<VirtualCallTarget> TargetsForSlot,
445     MutableArrayRef<VirtualCallSite> CallSites) {
446   // Uniform return value optimization. If all functions return the same
447   // constant, replace all calls with that constant.
448   uint64_t TheRetVal = TargetsForSlot[0].RetVal;
449   for (const VirtualCallTarget &Target : TargetsForSlot)
450     if (Target.RetVal != TheRetVal)
451       return false;
452
453   auto TheRetValConst = ConstantInt::get(RetType, TheRetVal);
454   for (auto Call : CallSites)
455     Call.replaceAndErase(TheRetValConst);
456   return true;
457 }
458
459 bool DevirtModule::tryUniqueRetValOpt(
460     unsigned BitWidth, ArrayRef<VirtualCallTarget> TargetsForSlot,
461     MutableArrayRef<VirtualCallSite> CallSites) {
462   // IsOne controls whether we look for a 0 or a 1.
463   auto tryUniqueRetValOptFor = [&](bool IsOne) {
464     const TypeMemberInfo *UniqueMember = 0;
465     for (const VirtualCallTarget &Target : TargetsForSlot) {
466       if (Target.RetVal == (IsOne ? 1 : 0)) {
467         if (UniqueMember)
468           return false;
469         UniqueMember = Target.TM;
470       }
471     }
472
473     // We should have found a unique member or bailed out by now. We already
474     // checked for a uniform return value in tryUniformRetValOpt.
475     assert(UniqueMember);
476
477     // Replace each call with the comparison.
478     for (auto &&Call : CallSites) {
479       IRBuilder<> B(Call.CS.getInstruction());
480       Value *OneAddr = B.CreateBitCast(UniqueMember->Bits->GV, Int8PtrTy);
481       OneAddr = B.CreateConstGEP1_64(OneAddr, UniqueMember->Offset);
482       Value *Cmp = B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
483                                 Call.VTable, OneAddr);
484       Call.replaceAndErase(Cmp);
485     }
486     return true;
487   };
488
489   if (BitWidth == 1) {
490     if (tryUniqueRetValOptFor(true))
491       return true;
492     if (tryUniqueRetValOptFor(false))
493       return true;
494   }
495   return false;
496 }
497
498 bool DevirtModule::tryVirtualConstProp(
499     MutableArrayRef<VirtualCallTarget> TargetsForSlot,
500     ArrayRef<VirtualCallSite> CallSites) {
501   // This only works if the function returns an integer.
502   auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType());
503   if (!RetType)
504     return false;
505   unsigned BitWidth = RetType->getBitWidth();
506   if (BitWidth > 64)
507     return false;
508
509   // Make sure that each function does not access memory, takes at least one
510   // argument, does not use its first argument (which we assume is 'this'),
511   // and has the same return type.
512   for (VirtualCallTarget &Target : TargetsForSlot) {
513     if (!Target.Fn->doesNotAccessMemory() || Target.Fn->arg_empty() ||
514         !Target.Fn->arg_begin()->use_empty() ||
515         Target.Fn->getReturnType() != RetType)
516       return false;
517   }
518
519   // Group call sites by the list of constant arguments they pass.
520   // The comparator ensures deterministic ordering.
521   struct ByAPIntValue {
522     bool operator()(const std::vector<ConstantInt *> &A,
523                     const std::vector<ConstantInt *> &B) const {
524       return std::lexicographical_compare(
525           A.begin(), A.end(), B.begin(), B.end(),
526           [](ConstantInt *AI, ConstantInt *BI) {
527             return AI->getValue().ult(BI->getValue());
528           });
529     }
530   };
531   std::map<std::vector<ConstantInt *>, std::vector<VirtualCallSite>,
532            ByAPIntValue>
533       VCallSitesByConstantArg;
534   for (auto &&VCallSite : CallSites) {
535     std::vector<ConstantInt *> Args;
536     if (VCallSite.CS.getType() != RetType)
537       continue;
538     for (auto &&Arg :
539          make_range(VCallSite.CS.arg_begin() + 1, VCallSite.CS.arg_end())) {
540       if (!isa<ConstantInt>(Arg))
541         break;
542       Args.push_back(cast<ConstantInt>(&Arg));
543     }
544     if (Args.size() + 1 != VCallSite.CS.arg_size())
545       continue;
546
547     VCallSitesByConstantArg[Args].push_back(VCallSite);
548   }
549
550   for (auto &&CSByConstantArg : VCallSitesByConstantArg) {
551     if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first))
552       continue;
553
554     if (tryUniformRetValOpt(RetType, TargetsForSlot, CSByConstantArg.second))
555       continue;
556
557     if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second))
558       continue;
559
560     // Find an allocation offset in bits in all vtables associated with the
561     // type.
562     uint64_t AllocBefore =
563         findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth);
564     uint64_t AllocAfter =
565         findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth);
566
567     // Calculate the total amount of padding needed to store a value at both
568     // ends of the object.
569     uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0;
570     for (auto &&Target : TargetsForSlot) {
571       TotalPaddingBefore += std::max<int64_t>(
572           (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0);
573       TotalPaddingAfter += std::max<int64_t>(
574           (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0);
575     }
576
577     // If the amount of padding is too large, give up.
578     // FIXME: do something smarter here.
579     if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128)
580       continue;
581
582     // Calculate the offset to the value as a (possibly negative) byte offset
583     // and (if applicable) a bit offset, and store the values in the targets.
584     int64_t OffsetByte;
585     uint64_t OffsetBit;
586     if (TotalPaddingBefore <= TotalPaddingAfter)
587       setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte,
588                             OffsetBit);
589     else
590       setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte,
591                            OffsetBit);
592
593     // Rewrite each call to a load from OffsetByte/OffsetBit.
594     for (auto Call : CSByConstantArg.second) {
595       IRBuilder<> B(Call.CS.getInstruction());
596       Value *Addr = B.CreateConstGEP1_64(Call.VTable, OffsetByte);
597       if (BitWidth == 1) {
598         Value *Bits = B.CreateLoad(Addr);
599         Value *Bit = ConstantInt::get(Int8Ty, 1ULL << OffsetBit);
600         Value *BitsAndBit = B.CreateAnd(Bits, Bit);
601         auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0));
602         Call.replaceAndErase(IsBitSet);
603       } else {
604         Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo());
605         Value *Val = B.CreateLoad(RetType, ValAddr);
606         Call.replaceAndErase(Val);
607       }
608     }
609   }
610   return true;
611 }
612
613 void DevirtModule::rebuildGlobal(VTableBits &B) {
614   if (B.Before.Bytes.empty() && B.After.Bytes.empty())
615     return;
616
617   // Align each byte array to pointer width.
618   unsigned PointerSize = M.getDataLayout().getPointerSize();
619   B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), PointerSize));
620   B.After.Bytes.resize(alignTo(B.After.Bytes.size(), PointerSize));
621
622   // Before was stored in reverse order; flip it now.
623   for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I)
624     std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]);
625
626   // Build an anonymous global containing the before bytes, followed by the
627   // original initializer, followed by the after bytes.
628   auto NewInit = ConstantStruct::getAnon(
629       {ConstantDataArray::get(M.getContext(), B.Before.Bytes),
630        B.GV->getInitializer(),
631        ConstantDataArray::get(M.getContext(), B.After.Bytes)});
632   auto NewGV =
633       new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(),
634                          GlobalVariable::PrivateLinkage, NewInit, "", B.GV);
635   NewGV->setSection(B.GV->getSection());
636   NewGV->setComdat(B.GV->getComdat());
637
638   // Copy the original vtable's metadata to the anonymous global, adjusting
639   // offsets as required.
640   NewGV->copyMetadata(B.GV, B.Before.Bytes.size());
641
642   // Build an alias named after the original global, pointing at the second
643   // element (the original initializer).
644   auto Alias = GlobalAlias::create(
645       B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "",
646       ConstantExpr::getGetElementPtr(
647           NewInit->getType(), NewGV,
648           ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0),
649                                ConstantInt::get(Int32Ty, 1)}),
650       &M);
651   Alias->setVisibility(B.GV->getVisibility());
652   Alias->takeName(B.GV);
653
654   B.GV->replaceAllUsesWith(Alias);
655   B.GV->eraseFromParent();
656 }
657
658 void DevirtModule::scanTypeTestUsers(Function *TypeTestFunc,
659                                      Function *AssumeFunc) {
660   // Find all virtual calls via a virtual table pointer %p under an assumption
661   // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p
662   // points to a member of the type identifier %md. Group calls by (type ID,
663   // offset) pair (effectively the identity of the virtual function) and store
664   // to CallSlots.
665   DenseSet<Value *> SeenPtrs;
666   for (auto I = TypeTestFunc->use_begin(), E = TypeTestFunc->use_end();
667        I != E;) {
668     auto CI = dyn_cast<CallInst>(I->getUser());
669     ++I;
670     if (!CI)
671       continue;
672
673     // Search for virtual calls based on %p and add them to DevirtCalls.
674     SmallVector<DevirtCallSite, 1> DevirtCalls;
675     SmallVector<CallInst *, 1> Assumes;
676     findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI);
677
678     // If we found any, add them to CallSlots. Only do this if we haven't seen
679     // the vtable pointer before, as it may have been CSE'd with pointers from
680     // other call sites, and we don't want to process call sites multiple times.
681     if (!Assumes.empty()) {
682       Metadata *TypeId =
683           cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata();
684       Value *Ptr = CI->getArgOperand(0)->stripPointerCasts();
685       if (SeenPtrs.insert(Ptr).second) {
686         for (DevirtCallSite Call : DevirtCalls) {
687           CallSlots[{TypeId, Call.Offset}].push_back(
688               {CI->getArgOperand(0), Call.CS, nullptr});
689         }
690       }
691     }
692
693     // We no longer need the assumes or the type test.
694     for (auto Assume : Assumes)
695       Assume->eraseFromParent();
696     // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we
697     // may use the vtable argument later.
698     if (CI->use_empty())
699       CI->eraseFromParent();
700   }
701 }
702
703 void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) {
704   Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test);
705
706   for (auto I = TypeCheckedLoadFunc->use_begin(),
707             E = TypeCheckedLoadFunc->use_end();
708        I != E;) {
709     auto CI = dyn_cast<CallInst>(I->getUser());
710     ++I;
711     if (!CI)
712       continue;
713
714     Value *Ptr = CI->getArgOperand(0);
715     Value *Offset = CI->getArgOperand(1);
716     Value *TypeIdValue = CI->getArgOperand(2);
717     Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata();
718
719     SmallVector<DevirtCallSite, 1> DevirtCalls;
720     SmallVector<Instruction *, 1> LoadedPtrs;
721     SmallVector<Instruction *, 1> Preds;
722     bool HasNonCallUses = false;
723     findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
724                                                HasNonCallUses, CI);
725
726     // Start by generating "pessimistic" code that explicitly loads the function
727     // pointer from the vtable and performs the type check. If possible, we will
728     // eliminate the load and the type check later.
729
730     // If possible, only generate the load at the point where it is used.
731     // This helps avoid unnecessary spills.
732     IRBuilder<> LoadB(
733         (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI);
734     Value *GEP = LoadB.CreateGEP(Int8Ty, Ptr, Offset);
735     Value *GEPPtr = LoadB.CreateBitCast(GEP, PointerType::getUnqual(Int8PtrTy));
736     Value *LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEPPtr);
737
738     for (Instruction *LoadedPtr : LoadedPtrs) {
739       LoadedPtr->replaceAllUsesWith(LoadedValue);
740       LoadedPtr->eraseFromParent();
741     }
742
743     // Likewise for the type test.
744     IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI);
745     CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue});
746
747     for (Instruction *Pred : Preds) {
748       Pred->replaceAllUsesWith(TypeTestCall);
749       Pred->eraseFromParent();
750     }
751
752     // We have already erased any extractvalue instructions that refer to the
753     // intrinsic call, but the intrinsic may have other non-extractvalue uses
754     // (although this is unlikely). In that case, explicitly build a pair and
755     // RAUW it.
756     if (!CI->use_empty()) {
757       Value *Pair = UndefValue::get(CI->getType());
758       IRBuilder<> B(CI);
759       Pair = B.CreateInsertValue(Pair, LoadedValue, {0});
760       Pair = B.CreateInsertValue(Pair, TypeTestCall, {1});
761       CI->replaceAllUsesWith(Pair);
762     }
763
764     // The number of unsafe uses is initially the number of uses.
765     auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall];
766     NumUnsafeUses = DevirtCalls.size();
767
768     // If the function pointer has a non-call user, we cannot eliminate the type
769     // check, as one of those users may eventually call the pointer. Increment
770     // the unsafe use count to make sure it cannot reach zero.
771     if (HasNonCallUses)
772       ++NumUnsafeUses;
773     for (DevirtCallSite Call : DevirtCalls) {
774       CallSlots[{TypeId, Call.Offset}].push_back(
775           {Ptr, Call.CS, &NumUnsafeUses});
776     }
777
778     CI->eraseFromParent();
779   }
780 }
781
782 bool DevirtModule::run() {
783   Function *TypeTestFunc =
784       M.getFunction(Intrinsic::getName(Intrinsic::type_test));
785   Function *TypeCheckedLoadFunc =
786       M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load));
787   Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume));
788
789   if ((!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc ||
790        AssumeFunc->use_empty()) &&
791       (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty()))
792     return false;
793
794   if (TypeTestFunc && AssumeFunc)
795     scanTypeTestUsers(TypeTestFunc, AssumeFunc);
796
797   if (TypeCheckedLoadFunc)
798     scanTypeCheckedLoadUsers(TypeCheckedLoadFunc);
799
800   // Rebuild type metadata into a map for easy lookup.
801   std::vector<VTableBits> Bits;
802   DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap;
803   buildTypeIdentifierMap(Bits, TypeIdMap);
804   if (TypeIdMap.empty())
805     return true;
806
807   // For each (type, offset) pair:
808   bool DidVirtualConstProp = false;
809   for (auto &S : CallSlots) {
810     // Search each of the members of the type identifier for the virtual
811     // function implementation at offset S.first.ByteOffset, and add to
812     // TargetsForSlot.
813     std::vector<VirtualCallTarget> TargetsForSlot;
814     if (!tryFindVirtualCallTargets(TargetsForSlot, TypeIdMap[S.first.TypeID],
815                                    S.first.ByteOffset))
816       continue;
817
818     if (trySingleImplDevirt(TargetsForSlot, S.second))
819       continue;
820
821     DidVirtualConstProp |= tryVirtualConstProp(TargetsForSlot, S.second);
822   }
823
824   // If we were able to eliminate all unsafe uses for a type checked load,
825   // eliminate the type test by replacing it with true.
826   if (TypeCheckedLoadFunc) {
827     auto True = ConstantInt::getTrue(M.getContext());
828     for (auto &&U : NumUnsafeUsesForTypeTest) {
829       if (U.second == 0) {
830         U.first->replaceAllUsesWith(True);
831         U.first->eraseFromParent();
832       }
833     }
834   }
835
836   // Rebuild each global we touched as part of virtual constant propagation to
837   // include the before and after bytes.
838   if (DidVirtualConstProp)
839     for (VTableBits &B : Bits)
840       rebuildGlobal(B);
841
842   return true;
843 }