]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / InstCombine / InstCombineAddSub.cpp
1 //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for add, fadd, sub, and fsub.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/ValueTracking.h"
21 #include "llvm/IR/Constant.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/InstrTypes.h"
24 #include "llvm/IR/Instruction.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/Operator.h"
27 #include "llvm/IR/PatternMatch.h"
28 #include "llvm/IR/Type.h"
29 #include "llvm/IR/Value.h"
30 #include "llvm/Support/AlignOf.h"
31 #include "llvm/Support/Casting.h"
32 #include "llvm/Support/KnownBits.h"
33 #include <cassert>
34 #include <utility>
35
36 using namespace llvm;
37 using namespace PatternMatch;
38
39 #define DEBUG_TYPE "instcombine"
40
41 namespace {
42
43   /// Class representing coefficient of floating-point addend.
44   /// This class needs to be highly efficient, which is especially true for
45   /// the constructor. As of I write this comment, the cost of the default
46   /// constructor is merely 4-byte-store-zero (Assuming compiler is able to
47   /// perform write-merging).
48   ///
49   class FAddendCoef {
50   public:
51     // The constructor has to initialize a APFloat, which is unnecessary for
52     // most addends which have coefficient either 1 or -1. So, the constructor
53     // is expensive. In order to avoid the cost of the constructor, we should
54     // reuse some instances whenever possible. The pre-created instances
55     // FAddCombine::Add[0-5] embodies this idea.
56     FAddendCoef() = default;
57     ~FAddendCoef();
58
59     // If possible, don't define operator+/operator- etc because these
60     // operators inevitably call FAddendCoef's constructor which is not cheap.
61     void operator=(const FAddendCoef &A);
62     void operator+=(const FAddendCoef &A);
63     void operator*=(const FAddendCoef &S);
64
65     void set(short C) {
66       assert(!insaneIntVal(C) && "Insane coefficient");
67       IsFp = false; IntVal = C;
68     }
69
70     void set(const APFloat& C);
71
72     void negate();
73
74     bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
75     Value *getValue(Type *) const;
76
77     bool isOne() const { return isInt() && IntVal == 1; }
78     bool isTwo() const { return isInt() && IntVal == 2; }
79     bool isMinusOne() const { return isInt() && IntVal == -1; }
80     bool isMinusTwo() const { return isInt() && IntVal == -2; }
81
82   private:
83     bool insaneIntVal(int V) { return V > 4 || V < -4; }
84
85     APFloat *getFpValPtr()
86       { return reinterpret_cast<APFloat *>(&FpValBuf.buffer[0]); }
87
88     const APFloat *getFpValPtr() const
89       { return reinterpret_cast<const APFloat *>(&FpValBuf.buffer[0]); }
90
91     const APFloat &getFpVal() const {
92       assert(IsFp && BufHasFpVal && "Incorret state");
93       return *getFpValPtr();
94     }
95
96     APFloat &getFpVal() {
97       assert(IsFp && BufHasFpVal && "Incorret state");
98       return *getFpValPtr();
99     }
100
101     bool isInt() const { return !IsFp; }
102
103     // If the coefficient is represented by an integer, promote it to a
104     // floating point.
105     void convertToFpType(const fltSemantics &Sem);
106
107     // Construct an APFloat from a signed integer.
108     // TODO: We should get rid of this function when APFloat can be constructed
109     //       from an *SIGNED* integer.
110     APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val);
111
112     bool IsFp = false;
113
114     // True iff FpValBuf contains an instance of APFloat.
115     bool BufHasFpVal = false;
116
117     // The integer coefficient of an individual addend is either 1 or -1,
118     // and we try to simplify at most 4 addends from neighboring at most
119     // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
120     // is overkill of this end.
121     short IntVal = 0;
122
123     AlignedCharArrayUnion<APFloat> FpValBuf;
124   };
125
126   /// FAddend is used to represent floating-point addend. An addend is
127   /// represented as <C, V>, where the V is a symbolic value, and C is a
128   /// constant coefficient. A constant addend is represented as <C, 0>.
129   class FAddend {
130   public:
131     FAddend() = default;
132
133     void operator+=(const FAddend &T) {
134       assert((Val == T.Val) && "Symbolic-values disagree");
135       Coeff += T.Coeff;
136     }
137
138     Value *getSymVal() const { return Val; }
139     const FAddendCoef &getCoef() const { return Coeff; }
140
141     bool isConstant() const { return Val == nullptr; }
142     bool isZero() const { return Coeff.isZero(); }
143
144     void set(short Coefficient, Value *V) {
145       Coeff.set(Coefficient);
146       Val = V;
147     }
148     void set(const APFloat &Coefficient, Value *V) {
149       Coeff.set(Coefficient);
150       Val = V;
151     }
152     void set(const ConstantFP *Coefficient, Value *V) {
153       Coeff.set(Coefficient->getValueAPF());
154       Val = V;
155     }
156
157     void negate() { Coeff.negate(); }
158
159     /// Drill down the U-D chain one step to find the definition of V, and
160     /// try to break the definition into one or two addends.
161     static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
162
163     /// Similar to FAddend::drillDownOneStep() except that the value being
164     /// splitted is the addend itself.
165     unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
166
167   private:
168     void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
169
170     // This addend has the value of "Coeff * Val".
171     Value *Val = nullptr;
172     FAddendCoef Coeff;
173   };
174
175   /// FAddCombine is the class for optimizing an unsafe fadd/fsub along
176   /// with its neighboring at most two instructions.
177   ///
178   class FAddCombine {
179   public:
180     FAddCombine(InstCombiner::BuilderTy &B) : Builder(B) {}
181
182     Value *simplify(Instruction *FAdd);
183
184   private:
185     using AddendVect = SmallVector<const FAddend *, 4>;
186
187     Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
188
189     /// Convert given addend to a Value
190     Value *createAddendVal(const FAddend &A, bool& NeedNeg);
191
192     /// Return the number of instructions needed to emit the N-ary addition.
193     unsigned calcInstrNumber(const AddendVect& Vect);
194
195     Value *createFSub(Value *Opnd0, Value *Opnd1);
196     Value *createFAdd(Value *Opnd0, Value *Opnd1);
197     Value *createFMul(Value *Opnd0, Value *Opnd1);
198     Value *createFNeg(Value *V);
199     Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
200     void createInstPostProc(Instruction *NewInst, bool NoNumber = false);
201
202      // Debugging stuff are clustered here.
203     #ifndef NDEBUG
204       unsigned CreateInstrNum;
205       void initCreateInstNum() { CreateInstrNum = 0; }
206       void incCreateInstNum() { CreateInstrNum++; }
207     #else
208       void initCreateInstNum() {}
209       void incCreateInstNum() {}
210     #endif
211
212     InstCombiner::BuilderTy &Builder;
213     Instruction *Instr = nullptr;
214   };
215
216 } // end anonymous namespace
217
218 //===----------------------------------------------------------------------===//
219 //
220 // Implementation of
221 //    {FAddendCoef, FAddend, FAddition, FAddCombine}.
222 //
223 //===----------------------------------------------------------------------===//
224 FAddendCoef::~FAddendCoef() {
225   if (BufHasFpVal)
226     getFpValPtr()->~APFloat();
227 }
228
229 void FAddendCoef::set(const APFloat& C) {
230   APFloat *P = getFpValPtr();
231
232   if (isInt()) {
233     // As the buffer is meanless byte stream, we cannot call
234     // APFloat::operator=().
235     new(P) APFloat(C);
236   } else
237     *P = C;
238
239   IsFp = BufHasFpVal = true;
240 }
241
242 void FAddendCoef::convertToFpType(const fltSemantics &Sem) {
243   if (!isInt())
244     return;
245
246   APFloat *P = getFpValPtr();
247   if (IntVal > 0)
248     new(P) APFloat(Sem, IntVal);
249   else {
250     new(P) APFloat(Sem, 0 - IntVal);
251     P->changeSign();
252   }
253   IsFp = BufHasFpVal = true;
254 }
255
256 APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) {
257   if (Val >= 0)
258     return APFloat(Sem, Val);
259
260   APFloat T(Sem, 0 - Val);
261   T.changeSign();
262
263   return T;
264 }
265
266 void FAddendCoef::operator=(const FAddendCoef &That) {
267   if (That.isInt())
268     set(That.IntVal);
269   else
270     set(That.getFpVal());
271 }
272
273 void FAddendCoef::operator+=(const FAddendCoef &That) {
274   enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven;
275   if (isInt() == That.isInt()) {
276     if (isInt())
277       IntVal += That.IntVal;
278     else
279       getFpVal().add(That.getFpVal(), RndMode);
280     return;
281   }
282
283   if (isInt()) {
284     const APFloat &T = That.getFpVal();
285     convertToFpType(T.getSemantics());
286     getFpVal().add(T, RndMode);
287     return;
288   }
289
290   APFloat &T = getFpVal();
291   T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode);
292 }
293
294 void FAddendCoef::operator*=(const FAddendCoef &That) {
295   if (That.isOne())
296     return;
297
298   if (That.isMinusOne()) {
299     negate();
300     return;
301   }
302
303   if (isInt() && That.isInt()) {
304     int Res = IntVal * (int)That.IntVal;
305     assert(!insaneIntVal(Res) && "Insane int value");
306     IntVal = Res;
307     return;
308   }
309
310   const fltSemantics &Semantic =
311     isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
312
313   if (isInt())
314     convertToFpType(Semantic);
315   APFloat &F0 = getFpVal();
316
317   if (That.isInt())
318     F0.multiply(createAPFloatFromInt(Semantic, That.IntVal),
319                 APFloat::rmNearestTiesToEven);
320   else
321     F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
322 }
323
324 void FAddendCoef::negate() {
325   if (isInt())
326     IntVal = 0 - IntVal;
327   else
328     getFpVal().changeSign();
329 }
330
331 Value *FAddendCoef::getValue(Type *Ty) const {
332   return isInt() ?
333     ConstantFP::get(Ty, float(IntVal)) :
334     ConstantFP::get(Ty->getContext(), getFpVal());
335 }
336
337 // The definition of <Val>     Addends
338 // =========================================
339 //  A + B                     <1, A>, <1,B>
340 //  A - B                     <1, A>, <1,B>
341 //  0 - B                     <-1, B>
342 //  C * A,                    <C, A>
343 //  A + C                     <1, A> <C, NULL>
344 //  0 +/- 0                   <0, NULL> (corner case)
345 //
346 // Legend: A and B are not constant, C is constant
347 unsigned FAddend::drillValueDownOneStep
348   (Value *Val, FAddend &Addend0, FAddend &Addend1) {
349   Instruction *I = nullptr;
350   if (!Val || !(I = dyn_cast<Instruction>(Val)))
351     return 0;
352
353   unsigned Opcode = I->getOpcode();
354
355   if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
356     ConstantFP *C0, *C1;
357     Value *Opnd0 = I->getOperand(0);
358     Value *Opnd1 = I->getOperand(1);
359     if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
360       Opnd0 = nullptr;
361
362     if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
363       Opnd1 = nullptr;
364
365     if (Opnd0) {
366       if (!C0)
367         Addend0.set(1, Opnd0);
368       else
369         Addend0.set(C0, nullptr);
370     }
371
372     if (Opnd1) {
373       FAddend &Addend = Opnd0 ? Addend1 : Addend0;
374       if (!C1)
375         Addend.set(1, Opnd1);
376       else
377         Addend.set(C1, nullptr);
378       if (Opcode == Instruction::FSub)
379         Addend.negate();
380     }
381
382     if (Opnd0 || Opnd1)
383       return Opnd0 && Opnd1 ? 2 : 1;
384
385     // Both operands are zero. Weird!
386     Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr);
387     return 1;
388   }
389
390   if (I->getOpcode() == Instruction::FMul) {
391     Value *V0 = I->getOperand(0);
392     Value *V1 = I->getOperand(1);
393     if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
394       Addend0.set(C, V1);
395       return 1;
396     }
397
398     if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
399       Addend0.set(C, V0);
400       return 1;
401     }
402   }
403
404   return 0;
405 }
406
407 // Try to break *this* addend into two addends. e.g. Suppose this addend is
408 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
409 // i.e. <2.3, X> and <2.3, Y>.
410 unsigned FAddend::drillAddendDownOneStep
411   (FAddend &Addend0, FAddend &Addend1) const {
412   if (isConstant())
413     return 0;
414
415   unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
416   if (!BreakNum || Coeff.isOne())
417     return BreakNum;
418
419   Addend0.Scale(Coeff);
420
421   if (BreakNum == 2)
422     Addend1.Scale(Coeff);
423
424   return BreakNum;
425 }
426
427 Value *FAddCombine::simplify(Instruction *I) {
428   assert(I->hasAllowReassoc() && I->hasNoSignedZeros() &&
429          "Expected 'reassoc'+'nsz' instruction");
430
431   // Currently we are not able to handle vector type.
432   if (I->getType()->isVectorTy())
433     return nullptr;
434
435   assert((I->getOpcode() == Instruction::FAdd ||
436           I->getOpcode() == Instruction::FSub) && "Expect add/sub");
437
438   // Save the instruction before calling other member-functions.
439   Instr = I;
440
441   FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
442
443   unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);
444
445   // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
446   unsigned Opnd0_ExpNum = 0;
447   unsigned Opnd1_ExpNum = 0;
448
449   if (!Opnd0.isConstant())
450     Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
451
452   // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
453   if (OpndNum == 2 && !Opnd1.isConstant())
454     Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
455
456   // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
457   if (Opnd0_ExpNum && Opnd1_ExpNum) {
458     AddendVect AllOpnds;
459     AllOpnds.push_back(&Opnd0_0);
460     AllOpnds.push_back(&Opnd1_0);
461     if (Opnd0_ExpNum == 2)
462       AllOpnds.push_back(&Opnd0_1);
463     if (Opnd1_ExpNum == 2)
464       AllOpnds.push_back(&Opnd1_1);
465
466     // Compute instruction quota. We should save at least one instruction.
467     unsigned InstQuota = 0;
468
469     Value *V0 = I->getOperand(0);
470     Value *V1 = I->getOperand(1);
471     InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
472                  (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;
473
474     if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
475       return R;
476   }
477
478   if (OpndNum != 2) {
479     // The input instruction is : "I=0.0 +/- V". If the "V" were able to be
480     // splitted into two addends, say "V = X - Y", the instruction would have
481     // been optimized into "I = Y - X" in the previous steps.
482     //
483     const FAddendCoef &CE = Opnd0.getCoef();
484     return CE.isOne() ? Opnd0.getSymVal() : nullptr;
485   }
486
487   // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
488   if (Opnd1_ExpNum) {
489     AddendVect AllOpnds;
490     AllOpnds.push_back(&Opnd0);
491     AllOpnds.push_back(&Opnd1_0);
492     if (Opnd1_ExpNum == 2)
493       AllOpnds.push_back(&Opnd1_1);
494
495     if (Value *R = simplifyFAdd(AllOpnds, 1))
496       return R;
497   }
498
499   // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
500   if (Opnd0_ExpNum) {
501     AddendVect AllOpnds;
502     AllOpnds.push_back(&Opnd1);
503     AllOpnds.push_back(&Opnd0_0);
504     if (Opnd0_ExpNum == 2)
505       AllOpnds.push_back(&Opnd0_1);
506
507     if (Value *R = simplifyFAdd(AllOpnds, 1))
508       return R;
509   }
510
511   return nullptr;
512 }
513
514 Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
515   unsigned AddendNum = Addends.size();
516   assert(AddendNum <= 4 && "Too many addends");
517
518   // For saving intermediate results;
519   unsigned NextTmpIdx = 0;
520   FAddend TmpResult[3];
521
522   // Points to the constant addend of the resulting simplified expression.
523   // If the resulting expr has constant-addend, this constant-addend is
524   // desirable to reside at the top of the resulting expression tree. Placing
525   // constant close to supper-expr(s) will potentially reveal some optimization
526   // opportunities in super-expr(s).
527   const FAddend *ConstAdd = nullptr;
528
529   // Simplified addends are placed <SimpVect>.
530   AddendVect SimpVect;
531
532   // The outer loop works on one symbolic-value at a time. Suppose the input
533   // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
534   // The symbolic-values will be processed in this order: x, y, z.
535   for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
536
537     const FAddend *ThisAddend = Addends[SymIdx];
538     if (!ThisAddend) {
539       // This addend was processed before.
540       continue;
541     }
542
543     Value *Val = ThisAddend->getSymVal();
544     unsigned StartIdx = SimpVect.size();
545     SimpVect.push_back(ThisAddend);
546
547     // The inner loop collects addends sharing same symbolic-value, and these
548     // addends will be later on folded into a single addend. Following above
549     // example, if the symbolic value "y" is being processed, the inner loop
550     // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
551     // be later on folded into "<b1+b2, y>".
552     for (unsigned SameSymIdx = SymIdx + 1;
553          SameSymIdx < AddendNum; SameSymIdx++) {
554       const FAddend *T = Addends[SameSymIdx];
555       if (T && T->getSymVal() == Val) {
556         // Set null such that next iteration of the outer loop will not process
557         // this addend again.
558         Addends[SameSymIdx] = nullptr;
559         SimpVect.push_back(T);
560       }
561     }
562
563     // If multiple addends share same symbolic value, fold them together.
564     if (StartIdx + 1 != SimpVect.size()) {
565       FAddend &R = TmpResult[NextTmpIdx ++];
566       R = *SimpVect[StartIdx];
567       for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
568         R += *SimpVect[Idx];
569
570       // Pop all addends being folded and push the resulting folded addend.
571       SimpVect.resize(StartIdx);
572       if (Val) {
573         if (!R.isZero()) {
574           SimpVect.push_back(&R);
575         }
576       } else {
577         // Don't push constant addend at this time. It will be the last element
578         // of <SimpVect>.
579         ConstAdd = &R;
580       }
581     }
582   }
583
584   assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) &&
585          "out-of-bound access");
586
587   if (ConstAdd)
588     SimpVect.push_back(ConstAdd);
589
590   Value *Result;
591   if (!SimpVect.empty())
592     Result = createNaryFAdd(SimpVect, InstrQuota);
593   else {
594     // The addition is folded to 0.0.
595     Result = ConstantFP::get(Instr->getType(), 0.0);
596   }
597
598   return Result;
599 }
600
601 Value *FAddCombine::createNaryFAdd
602   (const AddendVect &Opnds, unsigned InstrQuota) {
603   assert(!Opnds.empty() && "Expect at least one addend");
604
605   // Step 1: Check if the # of instructions needed exceeds the quota.
606
607   unsigned InstrNeeded = calcInstrNumber(Opnds);
608   if (InstrNeeded > InstrQuota)
609     return nullptr;
610
611   initCreateInstNum();
612
613   // step 2: Emit the N-ary addition.
614   // Note that at most three instructions are involved in Fadd-InstCombine: the
615   // addition in question, and at most two neighboring instructions.
616   // The resulting optimized addition should have at least one less instruction
617   // than the original addition expression tree. This implies that the resulting
618   // N-ary addition has at most two instructions, and we don't need to worry
619   // about tree-height when constructing the N-ary addition.
620
621   Value *LastVal = nullptr;
622   bool LastValNeedNeg = false;
623
624   // Iterate the addends, creating fadd/fsub using adjacent two addends.
625   for (const FAddend *Opnd : Opnds) {
626     bool NeedNeg;
627     Value *V = createAddendVal(*Opnd, NeedNeg);
628     if (!LastVal) {
629       LastVal = V;
630       LastValNeedNeg = NeedNeg;
631       continue;
632     }
633
634     if (LastValNeedNeg == NeedNeg) {
635       LastVal = createFAdd(LastVal, V);
636       continue;
637     }
638
639     if (LastValNeedNeg)
640       LastVal = createFSub(V, LastVal);
641     else
642       LastVal = createFSub(LastVal, V);
643
644     LastValNeedNeg = false;
645   }
646
647   if (LastValNeedNeg) {
648     LastVal = createFNeg(LastVal);
649   }
650
651 #ifndef NDEBUG
652   assert(CreateInstrNum == InstrNeeded &&
653          "Inconsistent in instruction numbers");
654 #endif
655
656   return LastVal;
657 }
658
659 Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) {
660   Value *V = Builder.CreateFSub(Opnd0, Opnd1);
661   if (Instruction *I = dyn_cast<Instruction>(V))
662     createInstPostProc(I);
663   return V;
664 }
665
666 Value *FAddCombine::createFNeg(Value *V) {
667   Value *Zero = cast<Value>(ConstantFP::getZeroValueForNegation(V->getType()));
668   Value *NewV = createFSub(Zero, V);
669   if (Instruction *I = dyn_cast<Instruction>(NewV))
670     createInstPostProc(I, true); // fneg's don't receive instruction numbers.
671   return NewV;
672 }
673
674 Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) {
675   Value *V = Builder.CreateFAdd(Opnd0, Opnd1);
676   if (Instruction *I = dyn_cast<Instruction>(V))
677     createInstPostProc(I);
678   return V;
679 }
680
681 Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
682   Value *V = Builder.CreateFMul(Opnd0, Opnd1);
683   if (Instruction *I = dyn_cast<Instruction>(V))
684     createInstPostProc(I);
685   return V;
686 }
687
688 void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) {
689   NewInstr->setDebugLoc(Instr->getDebugLoc());
690
691   // Keep track of the number of instruction created.
692   if (!NoNumber)
693     incCreateInstNum();
694
695   // Propagate fast-math flags
696   NewInstr->setFastMathFlags(Instr->getFastMathFlags());
697 }
698
699 // Return the number of instruction needed to emit the N-ary addition.
700 // NOTE: Keep this function in sync with createAddendVal().
701 unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
702   unsigned OpndNum = Opnds.size();
703   unsigned InstrNeeded = OpndNum - 1;
704
705   // The number of addends in the form of "(-1)*x".
706   unsigned NegOpndNum = 0;
707
708   // Adjust the number of instructions needed to emit the N-ary add.
709   for (const FAddend *Opnd : Opnds) {
710     if (Opnd->isConstant())
711       continue;
712
713     // The constant check above is really for a few special constant
714     // coefficients.
715     if (isa<UndefValue>(Opnd->getSymVal()))
716       continue;
717
718     const FAddendCoef &CE = Opnd->getCoef();
719     if (CE.isMinusOne() || CE.isMinusTwo())
720       NegOpndNum++;
721
722     // Let the addend be "c * x". If "c == +/-1", the value of the addend
723     // is immediately available; otherwise, it needs exactly one instruction
724     // to evaluate the value.
725     if (!CE.isMinusOne() && !CE.isOne())
726       InstrNeeded++;
727   }
728   if (NegOpndNum == OpndNum)
729     InstrNeeded++;
730   return InstrNeeded;
731 }
732
733 // Input Addend        Value           NeedNeg(output)
734 // ================================================================
735 // Constant C          C               false
736 // <+/-1, V>           V               coefficient is -1
737 // <2/-2, V>          "fadd V, V"      coefficient is -2
738 // <C, V>             "fmul V, C"      false
739 //
740 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
741 Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) {
742   const FAddendCoef &Coeff = Opnd.getCoef();
743
744   if (Opnd.isConstant()) {
745     NeedNeg = false;
746     return Coeff.getValue(Instr->getType());
747   }
748
749   Value *OpndVal = Opnd.getSymVal();
750
751   if (Coeff.isMinusOne() || Coeff.isOne()) {
752     NeedNeg = Coeff.isMinusOne();
753     return OpndVal;
754   }
755
756   if (Coeff.isTwo() || Coeff.isMinusTwo()) {
757     NeedNeg = Coeff.isMinusTwo();
758     return createFAdd(OpndVal, OpndVal);
759   }
760
761   NeedNeg = false;
762   return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
763 }
764
765 // Checks if any operand is negative and we can convert add to sub.
766 // This function checks for following negative patterns
767 //   ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C))
768 //   ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C))
769 //   XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even
770 static Value *checkForNegativeOperand(BinaryOperator &I,
771                                       InstCombiner::BuilderTy &Builder) {
772   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
773
774   // This function creates 2 instructions to replace ADD, we need at least one
775   // of LHS or RHS to have one use to ensure benefit in transform.
776   if (!LHS->hasOneUse() && !RHS->hasOneUse())
777     return nullptr;
778
779   Value *X = nullptr, *Y = nullptr, *Z = nullptr;
780   const APInt *C1 = nullptr, *C2 = nullptr;
781
782   // if ONE is on other side, swap
783   if (match(RHS, m_Add(m_Value(X), m_One())))
784     std::swap(LHS, RHS);
785
786   if (match(LHS, m_Add(m_Value(X), m_One()))) {
787     // if XOR on other side, swap
788     if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
789       std::swap(X, RHS);
790
791     if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) {
792       // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1))
793       // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1))
794       if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) {
795         Value *NewAnd = Builder.CreateAnd(Z, *C1);
796         return Builder.CreateSub(RHS, NewAnd, "sub");
797       } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) {
798         // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1))
799         // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1))
800         Value *NewOr = Builder.CreateOr(Z, ~(*C1));
801         return Builder.CreateSub(RHS, NewOr, "sub");
802       }
803     }
804   }
805
806   // Restore LHS and RHS
807   LHS = I.getOperand(0);
808   RHS = I.getOperand(1);
809
810   // if XOR is on other side, swap
811   if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
812     std::swap(LHS, RHS);
813
814   // C2 is ODD
815   // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2))
816   // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2))
817   if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1))))
818     if (C1->countTrailingZeros() == 0)
819       if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) {
820         Value *NewOr = Builder.CreateOr(Z, ~(*C2));
821         return Builder.CreateSub(RHS, NewOr, "sub");
822       }
823   return nullptr;
824 }
825
826 Instruction *InstCombiner::foldAddWithConstant(BinaryOperator &Add) {
827   Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
828   Constant *Op1C;
829   if (!match(Op1, m_Constant(Op1C)))
830     return nullptr;
831
832   if (Instruction *NV = foldBinOpIntoSelectOrPhi(Add))
833     return NV;
834
835   Value *X, *Y;
836
837   // add (sub X, Y), -1 --> add (not Y), X
838   if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y)))) &&
839       match(Op1, m_AllOnes()))
840     return BinaryOperator::CreateAdd(Builder.CreateNot(Y), X);
841
842   // zext(bool) + C -> bool ? C + 1 : C
843   if (match(Op0, m_ZExt(m_Value(X))) &&
844       X->getType()->getScalarSizeInBits() == 1)
845     return SelectInst::Create(X, AddOne(Op1C), Op1);
846
847   // ~X + C --> (C-1) - X
848   if (match(Op0, m_Not(m_Value(X))))
849     return BinaryOperator::CreateSub(SubOne(Op1C), X);
850
851   const APInt *C;
852   if (!match(Op1, m_APInt(C)))
853     return nullptr;
854
855   if (C->isSignMask()) {
856     // If wrapping is not allowed, then the addition must set the sign bit:
857     // X + (signmask) --> X | signmask
858     if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap())
859       return BinaryOperator::CreateOr(Op0, Op1);
860
861     // If wrapping is allowed, then the addition flips the sign bit of LHS:
862     // X + (signmask) --> X ^ signmask
863     return BinaryOperator::CreateXor(Op0, Op1);
864   }
865
866   // Is this add the last step in a convoluted sext?
867   // add(zext(xor i16 X, -32768), -32768) --> sext X
868   Type *Ty = Add.getType();
869   const APInt *C2;
870   if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) &&
871       C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C)
872     return CastInst::Create(Instruction::SExt, X, Ty);
873
874   // (add (zext (add nuw X, C2)), C) --> (zext (add nuw X, C2 + C))
875   if (match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_APInt(C2))))) &&
876       C->isNegative() && C->sge(-C2->sext(C->getBitWidth()))) {
877     Constant *NewC =
878         ConstantInt::get(X->getType(), *C2 + C->trunc(C2->getBitWidth()));
879     return new ZExtInst(Builder.CreateNUWAdd(X, NewC), Ty);
880   }
881
882   if (C->isOneValue() && Op0->hasOneUse()) {
883     // add (sext i1 X), 1 --> zext (not X)
884     // TODO: The smallest IR representation is (select X, 0, 1), and that would
885     // not require the one-use check. But we need to remove a transform in
886     // visitSelect and make sure that IR value tracking for select is equal or
887     // better than for these ops.
888     if (match(Op0, m_SExt(m_Value(X))) &&
889         X->getType()->getScalarSizeInBits() == 1)
890       return new ZExtInst(Builder.CreateNot(X), Ty);
891
892     // Shifts and add used to flip and mask off the low bit:
893     // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1
894     const APInt *C3;
895     if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) &&
896         C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) {
897       Value *NotX = Builder.CreateNot(X);
898       return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1));
899     }
900   }
901
902   return nullptr;
903 }
904
905 // Matches multiplication expression Op * C where C is a constant. Returns the
906 // constant value in C and the other operand in Op. Returns true if such a
907 // match is found.
908 static bool MatchMul(Value *E, Value *&Op, APInt &C) {
909   const APInt *AI;
910   if (match(E, m_Mul(m_Value(Op), m_APInt(AI)))) {
911     C = *AI;
912     return true;
913   }
914   if (match(E, m_Shl(m_Value(Op), m_APInt(AI)))) {
915     C = APInt(AI->getBitWidth(), 1);
916     C <<= *AI;
917     return true;
918   }
919   return false;
920 }
921
922 // Matches remainder expression Op % C where C is a constant. Returns the
923 // constant value in C and the other operand in Op. Returns the signedness of
924 // the remainder operation in IsSigned. Returns true if such a match is
925 // found.
926 static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned) {
927   const APInt *AI;
928   IsSigned = false;
929   if (match(E, m_SRem(m_Value(Op), m_APInt(AI)))) {
930     IsSigned = true;
931     C = *AI;
932     return true;
933   }
934   if (match(E, m_URem(m_Value(Op), m_APInt(AI)))) {
935     C = *AI;
936     return true;
937   }
938   if (match(E, m_And(m_Value(Op), m_APInt(AI))) && (*AI + 1).isPowerOf2()) {
939     C = *AI + 1;
940     return true;
941   }
942   return false;
943 }
944
945 // Matches division expression Op / C with the given signedness as indicated
946 // by IsSigned, where C is a constant. Returns the constant value in C and the
947 // other operand in Op. Returns true if such a match is found.
948 static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned) {
949   const APInt *AI;
950   if (IsSigned && match(E, m_SDiv(m_Value(Op), m_APInt(AI)))) {
951     C = *AI;
952     return true;
953   }
954   if (!IsSigned) {
955     if (match(E, m_UDiv(m_Value(Op), m_APInt(AI)))) {
956       C = *AI;
957       return true;
958     }
959     if (match(E, m_LShr(m_Value(Op), m_APInt(AI)))) {
960       C = APInt(AI->getBitWidth(), 1);
961       C <<= *AI;
962       return true;
963     }
964   }
965   return false;
966 }
967
968 // Returns whether C0 * C1 with the given signedness overflows.
969 static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned) {
970   bool overflow;
971   if (IsSigned)
972     (void)C0.smul_ov(C1, overflow);
973   else
974     (void)C0.umul_ov(C1, overflow);
975   return overflow;
976 }
977
978 // Simplifies X % C0 + (( X / C0 ) % C1) * C0 to X % (C0 * C1), where (C0 * C1)
979 // does not overflow.
980 Value *InstCombiner::SimplifyAddWithRemainder(BinaryOperator &I) {
981   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
982   Value *X, *MulOpV;
983   APInt C0, MulOpC;
984   bool IsSigned;
985   // Match I = X % C0 + MulOpV * C0
986   if (((MatchRem(LHS, X, C0, IsSigned) && MatchMul(RHS, MulOpV, MulOpC)) ||
987        (MatchRem(RHS, X, C0, IsSigned) && MatchMul(LHS, MulOpV, MulOpC))) &&
988       C0 == MulOpC) {
989     Value *RemOpV;
990     APInt C1;
991     bool Rem2IsSigned;
992     // Match MulOpC = RemOpV % C1
993     if (MatchRem(MulOpV, RemOpV, C1, Rem2IsSigned) &&
994         IsSigned == Rem2IsSigned) {
995       Value *DivOpV;
996       APInt DivOpC;
997       // Match RemOpV = X / C0
998       if (MatchDiv(RemOpV, DivOpV, DivOpC, IsSigned) && X == DivOpV &&
999           C0 == DivOpC && !MulWillOverflow(C0, C1, IsSigned)) {
1000         Value *NewDivisor =
1001             ConstantInt::get(X->getType()->getContext(), C0 * C1);
1002         return IsSigned ? Builder.CreateSRem(X, NewDivisor, "srem")
1003                         : Builder.CreateURem(X, NewDivisor, "urem");
1004       }
1005     }
1006   }
1007
1008   return nullptr;
1009 }
1010
1011 /// Fold
1012 ///   (1 << NBits) - 1
1013 /// Into:
1014 ///   ~(-(1 << NBits))
1015 /// Because a 'not' is better for bit-tracking analysis and other transforms
1016 /// than an 'add'. The new shl is always nsw, and is nuw if old `and` was.
1017 static Instruction *canonicalizeLowbitMask(BinaryOperator &I,
1018                                            InstCombiner::BuilderTy &Builder) {
1019   Value *NBits;
1020   if (!match(&I, m_Add(m_OneUse(m_Shl(m_One(), m_Value(NBits))), m_AllOnes())))
1021     return nullptr;
1022
1023   Constant *MinusOne = Constant::getAllOnesValue(NBits->getType());
1024   Value *NotMask = Builder.CreateShl(MinusOne, NBits, "notmask");
1025   // Be wary of constant folding.
1026   if (auto *BOp = dyn_cast<BinaryOperator>(NotMask)) {
1027     // Always NSW. But NUW propagates from `add`.
1028     BOp->setHasNoSignedWrap();
1029     BOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1030   }
1031
1032   return BinaryOperator::CreateNot(NotMask, I.getName());
1033 }
1034
1035 Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
1036   if (Value *V = SimplifyAddInst(I.getOperand(0), I.getOperand(1),
1037                                  I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
1038                                  SQ.getWithInstruction(&I)))
1039     return replaceInstUsesWith(I, V);
1040
1041   if (SimplifyAssociativeOrCommutative(I))
1042     return &I;
1043
1044   if (Instruction *X = foldVectorBinop(I))
1045     return X;
1046
1047   // (A*B)+(A*C) -> A*(B+C) etc
1048   if (Value *V = SimplifyUsingDistributiveLaws(I))
1049     return replaceInstUsesWith(I, V);
1050
1051   if (Instruction *X = foldAddWithConstant(I))
1052     return X;
1053
1054   // FIXME: This should be moved into the above helper function to allow these
1055   // transforms for general constant or constant splat vectors.
1056   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1057   Type *Ty = I.getType();
1058   if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1059     Value *XorLHS = nullptr; ConstantInt *XorRHS = nullptr;
1060     if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
1061       unsigned TySizeBits = Ty->getScalarSizeInBits();
1062       const APInt &RHSVal = CI->getValue();
1063       unsigned ExtendAmt = 0;
1064       // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
1065       // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
1066       if (XorRHS->getValue() == -RHSVal) {
1067         if (RHSVal.isPowerOf2())
1068           ExtendAmt = TySizeBits - RHSVal.logBase2() - 1;
1069         else if (XorRHS->getValue().isPowerOf2())
1070           ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1;
1071       }
1072
1073       if (ExtendAmt) {
1074         APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt);
1075         if (!MaskedValueIsZero(XorLHS, Mask, 0, &I))
1076           ExtendAmt = 0;
1077       }
1078
1079       if (ExtendAmt) {
1080         Constant *ShAmt = ConstantInt::get(Ty, ExtendAmt);
1081         Value *NewShl = Builder.CreateShl(XorLHS, ShAmt, "sext");
1082         return BinaryOperator::CreateAShr(NewShl, ShAmt);
1083       }
1084
1085       // If this is a xor that was canonicalized from a sub, turn it back into
1086       // a sub and fuse this add with it.
1087       if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) {
1088         KnownBits LHSKnown = computeKnownBits(XorLHS, 0, &I);
1089         if ((XorRHS->getValue() | LHSKnown.Zero).isAllOnesValue())
1090           return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI),
1091                                            XorLHS);
1092       }
1093       // (X + signmask) + C could have gotten canonicalized to (X^signmask) + C,
1094       // transform them into (X + (signmask ^ C))
1095       if (XorRHS->getValue().isSignMask())
1096         return BinaryOperator::CreateAdd(XorLHS,
1097                                          ConstantExpr::getXor(XorRHS, CI));
1098     }
1099   }
1100
1101   if (Ty->isIntOrIntVectorTy(1))
1102     return BinaryOperator::CreateXor(LHS, RHS);
1103
1104   // X + X --> X << 1
1105   if (LHS == RHS) {
1106     auto *Shl = BinaryOperator::CreateShl(LHS, ConstantInt::get(Ty, 1));
1107     Shl->setHasNoSignedWrap(I.hasNoSignedWrap());
1108     Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1109     return Shl;
1110   }
1111
1112   Value *A, *B;
1113   if (match(LHS, m_Neg(m_Value(A)))) {
1114     // -A + -B --> -(A + B)
1115     if (match(RHS, m_Neg(m_Value(B))))
1116       return BinaryOperator::CreateNeg(Builder.CreateAdd(A, B));
1117
1118     // -A + B --> B - A
1119     return BinaryOperator::CreateSub(RHS, A);
1120   }
1121
1122   // A + -B  -->  A - B
1123   if (match(RHS, m_Neg(m_Value(B))))
1124     return BinaryOperator::CreateSub(LHS, B);
1125
1126   if (Value *V = checkForNegativeOperand(I, Builder))
1127     return replaceInstUsesWith(I, V);
1128
1129   // (A + 1) + ~B --> A - B
1130   // ~B + (A + 1) --> A - B
1131   if (match(&I, m_c_BinOp(m_Add(m_Value(A), m_One()), m_Not(m_Value(B)))))
1132     return BinaryOperator::CreateSub(A, B);
1133
1134   // X % C0 + (( X / C0 ) % C1) * C0 => X % (C0 * C1)
1135   if (Value *V = SimplifyAddWithRemainder(I)) return replaceInstUsesWith(I, V);
1136
1137   // A+B --> A|B iff A and B have no bits set in common.
1138   if (haveNoCommonBitsSet(LHS, RHS, DL, &AC, &I, &DT))
1139     return BinaryOperator::CreateOr(LHS, RHS);
1140
1141   // FIXME: We already did a check for ConstantInt RHS above this.
1142   // FIXME: Is this pattern covered by another fold? No regression tests fail on
1143   // removal.
1144   if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
1145     // (X & FF00) + xx00  -> (X+xx00) & FF00
1146     Value *X;
1147     ConstantInt *C2;
1148     if (LHS->hasOneUse() &&
1149         match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) &&
1150         CRHS->getValue() == (CRHS->getValue() & C2->getValue())) {
1151       // See if all bits from the first bit set in the Add RHS up are included
1152       // in the mask.  First, get the rightmost bit.
1153       const APInt &AddRHSV = CRHS->getValue();
1154
1155       // Form a mask of all bits from the lowest bit added through the top.
1156       APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
1157
1158       // See if the and mask includes all of these bits.
1159       APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
1160
1161       if (AddRHSHighBits == AddRHSHighBitsAnd) {
1162         // Okay, the xform is safe.  Insert the new add pronto.
1163         Value *NewAdd = Builder.CreateAdd(X, CRHS, LHS->getName());
1164         return BinaryOperator::CreateAnd(NewAdd, C2);
1165       }
1166     }
1167   }
1168
1169   // add (select X 0 (sub n A)) A  -->  select X A n
1170   {
1171     SelectInst *SI = dyn_cast<SelectInst>(LHS);
1172     Value *A = RHS;
1173     if (!SI) {
1174       SI = dyn_cast<SelectInst>(RHS);
1175       A = LHS;
1176     }
1177     if (SI && SI->hasOneUse()) {
1178       Value *TV = SI->getTrueValue();
1179       Value *FV = SI->getFalseValue();
1180       Value *N;
1181
1182       // Can we fold the add into the argument of the select?
1183       // We check both true and false select arguments for a matching subtract.
1184       if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
1185         // Fold the add into the true select value.
1186         return SelectInst::Create(SI->getCondition(), N, A);
1187
1188       if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
1189         // Fold the add into the false select value.
1190         return SelectInst::Create(SI->getCondition(), A, N);
1191     }
1192   }
1193
1194   if (Instruction *Ext = narrowMathIfNoOverflow(I))
1195     return Ext;
1196
1197   // (add (xor A, B) (and A, B)) --> (or A, B)
1198   // (add (and A, B) (xor A, B)) --> (or A, B)
1199   if (match(&I, m_c_BinOp(m_Xor(m_Value(A), m_Value(B)),
1200                           m_c_And(m_Deferred(A), m_Deferred(B)))))
1201     return BinaryOperator::CreateOr(A, B);
1202
1203   // (add (or A, B) (and A, B)) --> (add A, B)
1204   // (add (and A, B) (or A, B)) --> (add A, B)
1205   if (match(&I, m_c_BinOp(m_Or(m_Value(A), m_Value(B)),
1206                           m_c_And(m_Deferred(A), m_Deferred(B))))) {
1207     I.setOperand(0, A);
1208     I.setOperand(1, B);
1209     return &I;
1210   }
1211
1212   // TODO(jingyue): Consider willNotOverflowSignedAdd and
1213   // willNotOverflowUnsignedAdd to reduce the number of invocations of
1214   // computeKnownBits.
1215   bool Changed = false;
1216   if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHS, RHS, I)) {
1217     Changed = true;
1218     I.setHasNoSignedWrap(true);
1219   }
1220   if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedAdd(LHS, RHS, I)) {
1221     Changed = true;
1222     I.setHasNoUnsignedWrap(true);
1223   }
1224
1225   if (Instruction *V = canonicalizeLowbitMask(I, Builder))
1226     return V;
1227
1228   return Changed ? &I : nullptr;
1229 }
1230
1231 /// Factor a common operand out of fadd/fsub of fmul/fdiv.
1232 static Instruction *factorizeFAddFSub(BinaryOperator &I,
1233                                       InstCombiner::BuilderTy &Builder) {
1234   assert((I.getOpcode() == Instruction::FAdd ||
1235           I.getOpcode() == Instruction::FSub) && "Expecting fadd/fsub");
1236   assert(I.hasAllowReassoc() && I.hasNoSignedZeros() &&
1237          "FP factorization requires FMF");
1238   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1239   Value *X, *Y, *Z;
1240   bool IsFMul;
1241   if ((match(Op0, m_OneUse(m_FMul(m_Value(X), m_Value(Z)))) &&
1242        match(Op1, m_OneUse(m_c_FMul(m_Value(Y), m_Specific(Z))))) ||
1243       (match(Op0, m_OneUse(m_FMul(m_Value(Z), m_Value(X)))) &&
1244        match(Op1, m_OneUse(m_c_FMul(m_Value(Y), m_Specific(Z))))))
1245     IsFMul = true;
1246   else if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Z)))) &&
1247            match(Op1, m_OneUse(m_FDiv(m_Value(Y), m_Specific(Z)))))
1248     IsFMul = false;
1249   else
1250     return nullptr;
1251
1252   // (X * Z) + (Y * Z) --> (X + Y) * Z
1253   // (X * Z) - (Y * Z) --> (X - Y) * Z
1254   // (X / Z) + (Y / Z) --> (X + Y) / Z
1255   // (X / Z) - (Y / Z) --> (X - Y) / Z
1256   bool IsFAdd = I.getOpcode() == Instruction::FAdd;
1257   Value *XY = IsFAdd ? Builder.CreateFAddFMF(X, Y, &I)
1258                      : Builder.CreateFSubFMF(X, Y, &I);
1259
1260   // Bail out if we just created a denormal constant.
1261   // TODO: This is copied from a previous implementation. Is it necessary?
1262   const APFloat *C;
1263   if (match(XY, m_APFloat(C)) && !C->isNormal())
1264     return nullptr;
1265
1266   return IsFMul ? BinaryOperator::CreateFMulFMF(XY, Z, &I)
1267                 : BinaryOperator::CreateFDivFMF(XY, Z, &I);
1268 }
1269
1270 Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
1271   if (Value *V = SimplifyFAddInst(I.getOperand(0), I.getOperand(1),
1272                                   I.getFastMathFlags(),
1273                                   SQ.getWithInstruction(&I)))
1274     return replaceInstUsesWith(I, V);
1275
1276   if (SimplifyAssociativeOrCommutative(I))
1277     return &I;
1278
1279   if (Instruction *X = foldVectorBinop(I))
1280     return X;
1281
1282   if (Instruction *FoldedFAdd = foldBinOpIntoSelectOrPhi(I))
1283     return FoldedFAdd;
1284
1285   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1286   Value *X;
1287   // (-X) + Y --> Y - X
1288   if (match(LHS, m_FNeg(m_Value(X))))
1289     return BinaryOperator::CreateFSubFMF(RHS, X, &I);
1290   // Y + (-X) --> Y - X
1291   if (match(RHS, m_FNeg(m_Value(X))))
1292     return BinaryOperator::CreateFSubFMF(LHS, X, &I);
1293
1294   // Check for (fadd double (sitofp x), y), see if we can merge this into an
1295   // integer add followed by a promotion.
1296   if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
1297     Value *LHSIntVal = LHSConv->getOperand(0);
1298     Type *FPType = LHSConv->getType();
1299
1300     // TODO: This check is overly conservative. In many cases known bits
1301     // analysis can tell us that the result of the addition has less significant
1302     // bits than the integer type can hold.
1303     auto IsValidPromotion = [](Type *FTy, Type *ITy) {
1304       Type *FScalarTy = FTy->getScalarType();
1305       Type *IScalarTy = ITy->getScalarType();
1306
1307       // Do we have enough bits in the significand to represent the result of
1308       // the integer addition?
1309       unsigned MaxRepresentableBits =
1310           APFloat::semanticsPrecision(FScalarTy->getFltSemantics());
1311       return IScalarTy->getIntegerBitWidth() <= MaxRepresentableBits;
1312     };
1313
1314     // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
1315     // ... if the constant fits in the integer value.  This is useful for things
1316     // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
1317     // requires a constant pool load, and generally allows the add to be better
1318     // instcombined.
1319     if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
1320       if (IsValidPromotion(FPType, LHSIntVal->getType())) {
1321         Constant *CI =
1322           ConstantExpr::getFPToSI(CFP, LHSIntVal->getType());
1323         if (LHSConv->hasOneUse() &&
1324             ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
1325             willNotOverflowSignedAdd(LHSIntVal, CI, I)) {
1326           // Insert the new integer add.
1327           Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, CI, "addconv");
1328           return new SIToFPInst(NewAdd, I.getType());
1329         }
1330       }
1331
1332     // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
1333     if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
1334       Value *RHSIntVal = RHSConv->getOperand(0);
1335       // It's enough to check LHS types only because we require int types to
1336       // be the same for this transform.
1337       if (IsValidPromotion(FPType, LHSIntVal->getType())) {
1338         // Only do this if x/y have the same type, if at least one of them has a
1339         // single use (so we don't increase the number of int->fp conversions),
1340         // and if the integer add will not overflow.
1341         if (LHSIntVal->getType() == RHSIntVal->getType() &&
1342             (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1343             willNotOverflowSignedAdd(LHSIntVal, RHSIntVal, I)) {
1344           // Insert the new integer add.
1345           Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, RHSIntVal, "addconv");
1346           return new SIToFPInst(NewAdd, I.getType());
1347         }
1348       }
1349     }
1350   }
1351
1352   // Handle specials cases for FAdd with selects feeding the operation
1353   if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS, RHS))
1354     return replaceInstUsesWith(I, V);
1355
1356   if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
1357     if (Instruction *F = factorizeFAddFSub(I, Builder))
1358       return F;
1359     if (Value *V = FAddCombine(Builder).simplify(&I))
1360       return replaceInstUsesWith(I, V);
1361   }
1362
1363   return nullptr;
1364 }
1365
1366 /// Optimize pointer differences into the same array into a size.  Consider:
1367 ///  &A[10] - &A[0]: we should compile this to "10".  LHS/RHS are the pointer
1368 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
1369 Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
1370                                                Type *Ty) {
1371   // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
1372   // this.
1373   bool Swapped = false;
1374   GEPOperator *GEP1 = nullptr, *GEP2 = nullptr;
1375
1376   // For now we require one side to be the base pointer "A" or a constant
1377   // GEP derived from it.
1378   if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1379     // (gep X, ...) - X
1380     if (LHSGEP->getOperand(0) == RHS) {
1381       GEP1 = LHSGEP;
1382       Swapped = false;
1383     } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1384       // (gep X, ...) - (gep X, ...)
1385       if (LHSGEP->getOperand(0)->stripPointerCasts() ==
1386             RHSGEP->getOperand(0)->stripPointerCasts()) {
1387         GEP2 = RHSGEP;
1388         GEP1 = LHSGEP;
1389         Swapped = false;
1390       }
1391     }
1392   }
1393
1394   if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1395     // X - (gep X, ...)
1396     if (RHSGEP->getOperand(0) == LHS) {
1397       GEP1 = RHSGEP;
1398       Swapped = true;
1399     } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1400       // (gep X, ...) - (gep X, ...)
1401       if (RHSGEP->getOperand(0)->stripPointerCasts() ==
1402             LHSGEP->getOperand(0)->stripPointerCasts()) {
1403         GEP2 = LHSGEP;
1404         GEP1 = RHSGEP;
1405         Swapped = true;
1406       }
1407     }
1408   }
1409
1410   if (!GEP1)
1411     // No GEP found.
1412     return nullptr;
1413
1414   if (GEP2) {
1415     // (gep X, ...) - (gep X, ...)
1416     //
1417     // Avoid duplicating the arithmetic if there are more than one non-constant
1418     // indices between the two GEPs and either GEP has a non-constant index and
1419     // multiple users. If zero non-constant index, the result is a constant and
1420     // there is no duplication. If one non-constant index, the result is an add
1421     // or sub with a constant, which is no larger than the original code, and
1422     // there's no duplicated arithmetic, even if either GEP has multiple
1423     // users. If more than one non-constant indices combined, as long as the GEP
1424     // with at least one non-constant index doesn't have multiple users, there
1425     // is no duplication.
1426     unsigned NumNonConstantIndices1 = GEP1->countNonConstantIndices();
1427     unsigned NumNonConstantIndices2 = GEP2->countNonConstantIndices();
1428     if (NumNonConstantIndices1 + NumNonConstantIndices2 > 1 &&
1429         ((NumNonConstantIndices1 > 0 && !GEP1->hasOneUse()) ||
1430          (NumNonConstantIndices2 > 0 && !GEP2->hasOneUse()))) {
1431       return nullptr;
1432     }
1433   }
1434
1435   // Emit the offset of the GEP and an intptr_t.
1436   Value *Result = EmitGEPOffset(GEP1);
1437
1438   // If we had a constant expression GEP on the other side offsetting the
1439   // pointer, subtract it from the offset we have.
1440   if (GEP2) {
1441     Value *Offset = EmitGEPOffset(GEP2);
1442     Result = Builder.CreateSub(Result, Offset);
1443   }
1444
1445   // If we have p - gep(p, ...)  then we have to negate the result.
1446   if (Swapped)
1447     Result = Builder.CreateNeg(Result, "diff.neg");
1448
1449   return Builder.CreateIntCast(Result, Ty, true);
1450 }
1451
1452 Instruction *InstCombiner::visitSub(BinaryOperator &I) {
1453   if (Value *V = SimplifySubInst(I.getOperand(0), I.getOperand(1),
1454                                  I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
1455                                  SQ.getWithInstruction(&I)))
1456     return replaceInstUsesWith(I, V);
1457
1458   if (Instruction *X = foldVectorBinop(I))
1459     return X;
1460
1461   // (A*B)-(A*C) -> A*(B-C) etc
1462   if (Value *V = SimplifyUsingDistributiveLaws(I))
1463     return replaceInstUsesWith(I, V);
1464
1465   // If this is a 'B = x-(-A)', change to B = x+A.
1466   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1467   if (Value *V = dyn_castNegVal(Op1)) {
1468     BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
1469
1470     if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) {
1471       assert(BO->getOpcode() == Instruction::Sub &&
1472              "Expected a subtraction operator!");
1473       if (BO->hasNoSignedWrap() && I.hasNoSignedWrap())
1474         Res->setHasNoSignedWrap(true);
1475     } else {
1476       if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap())
1477         Res->setHasNoSignedWrap(true);
1478     }
1479
1480     return Res;
1481   }
1482
1483   if (I.getType()->isIntOrIntVectorTy(1))
1484     return BinaryOperator::CreateXor(Op0, Op1);
1485
1486   // Replace (-1 - A) with (~A).
1487   if (match(Op0, m_AllOnes()))
1488     return BinaryOperator::CreateNot(Op1);
1489
1490   // (~X) - (~Y) --> Y - X
1491   Value *X, *Y;
1492   if (match(Op0, m_Not(m_Value(X))) && match(Op1, m_Not(m_Value(Y))))
1493     return BinaryOperator::CreateSub(Y, X);
1494
1495   // (X + -1) - Y --> ~Y + X
1496   if (match(Op0, m_OneUse(m_Add(m_Value(X), m_AllOnes()))))
1497     return BinaryOperator::CreateAdd(Builder.CreateNot(Op1), X);
1498
1499   // Y - (X + 1) --> ~X + Y
1500   if (match(Op1, m_OneUse(m_Add(m_Value(X), m_One()))))
1501     return BinaryOperator::CreateAdd(Builder.CreateNot(X), Op0);
1502
1503   if (Constant *C = dyn_cast<Constant>(Op0)) {
1504     bool IsNegate = match(C, m_ZeroInt());
1505     Value *X;
1506     if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1507       // 0 - (zext bool) --> sext bool
1508       // C - (zext bool) --> bool ? C - 1 : C
1509       if (IsNegate)
1510         return CastInst::CreateSExtOrBitCast(X, I.getType());
1511       return SelectInst::Create(X, SubOne(C), C);
1512     }
1513     if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1514       // 0 - (sext bool) --> zext bool
1515       // C - (sext bool) --> bool ? C + 1 : C
1516       if (IsNegate)
1517         return CastInst::CreateZExtOrBitCast(X, I.getType());
1518       return SelectInst::Create(X, AddOne(C), C);
1519     }
1520
1521     // C - ~X == X + (1+C)
1522     if (match(Op1, m_Not(m_Value(X))))
1523       return BinaryOperator::CreateAdd(X, AddOne(C));
1524
1525     // Try to fold constant sub into select arguments.
1526     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1527       if (Instruction *R = FoldOpIntoSelect(I, SI))
1528         return R;
1529
1530     // Try to fold constant sub into PHI values.
1531     if (PHINode *PN = dyn_cast<PHINode>(Op1))
1532       if (Instruction *R = foldOpIntoPhi(I, PN))
1533         return R;
1534
1535     // C-(X+C2) --> (C-C2)-X
1536     Constant *C2;
1537     if (match(Op1, m_Add(m_Value(X), m_Constant(C2))))
1538       return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
1539   }
1540
1541   const APInt *Op0C;
1542   if (match(Op0, m_APInt(Op0C))) {
1543     unsigned BitWidth = I.getType()->getScalarSizeInBits();
1544
1545     // -(X >>u 31) -> (X >>s 31)
1546     // -(X >>s 31) -> (X >>u 31)
1547     if (Op0C->isNullValue()) {
1548       Value *X;
1549       const APInt *ShAmt;
1550       if (match(Op1, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
1551           *ShAmt == BitWidth - 1) {
1552         Value *ShAmtOp = cast<Instruction>(Op1)->getOperand(1);
1553         return BinaryOperator::CreateAShr(X, ShAmtOp);
1554       }
1555       if (match(Op1, m_AShr(m_Value(X), m_APInt(ShAmt))) &&
1556           *ShAmt == BitWidth - 1) {
1557         Value *ShAmtOp = cast<Instruction>(Op1)->getOperand(1);
1558         return BinaryOperator::CreateLShr(X, ShAmtOp);
1559       }
1560
1561       if (Op1->hasOneUse()) {
1562         Value *LHS, *RHS;
1563         SelectPatternFlavor SPF = matchSelectPattern(Op1, LHS, RHS).Flavor;
1564         if (SPF == SPF_ABS || SPF == SPF_NABS) {
1565           // This is a negate of an ABS/NABS pattern. Just swap the operands
1566           // of the select.
1567           SelectInst *SI = cast<SelectInst>(Op1);
1568           Value *TrueVal = SI->getTrueValue();
1569           Value *FalseVal = SI->getFalseValue();
1570           SI->setTrueValue(FalseVal);
1571           SI->setFalseValue(TrueVal);
1572           // Don't swap prof metadata, we didn't change the branch behavior.
1573           return replaceInstUsesWith(I, SI);
1574         }
1575       }
1576     }
1577
1578     // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
1579     // zero.
1580     if (Op0C->isMask()) {
1581       KnownBits RHSKnown = computeKnownBits(Op1, 0, &I);
1582       if ((*Op0C | RHSKnown.Zero).isAllOnesValue())
1583         return BinaryOperator::CreateXor(Op1, Op0);
1584     }
1585   }
1586
1587   {
1588     Value *Y;
1589     // X-(X+Y) == -Y    X-(Y+X) == -Y
1590     if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y))))
1591       return BinaryOperator::CreateNeg(Y);
1592
1593     // (X-Y)-X == -Y
1594     if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
1595       return BinaryOperator::CreateNeg(Y);
1596   }
1597
1598   // (sub (or A, B), (xor A, B)) --> (and A, B)
1599   {
1600     Value *A, *B;
1601     if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
1602         match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
1603       return BinaryOperator::CreateAnd(A, B);
1604   }
1605
1606   {
1607     Value *Y;
1608     // ((X | Y) - X) --> (~X & Y)
1609     if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1)))))
1610       return BinaryOperator::CreateAnd(
1611           Y, Builder.CreateNot(Op1, Op1->getName() + ".not"));
1612   }
1613
1614   if (Op1->hasOneUse()) {
1615     Value *X = nullptr, *Y = nullptr, *Z = nullptr;
1616     Constant *C = nullptr;
1617
1618     // (X - (Y - Z))  -->  (X + (Z - Y)).
1619     if (match(Op1, m_Sub(m_Value(Y), m_Value(Z))))
1620       return BinaryOperator::CreateAdd(Op0,
1621                                       Builder.CreateSub(Z, Y, Op1->getName()));
1622
1623     // (X - (X & Y))   -->   (X & ~Y)
1624     if (match(Op1, m_c_And(m_Value(Y), m_Specific(Op0))))
1625       return BinaryOperator::CreateAnd(Op0,
1626                                   Builder.CreateNot(Y, Y->getName() + ".not"));
1627
1628     // 0 - (X sdiv C)  -> (X sdiv -C)  provided the negation doesn't overflow.
1629     if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) && match(Op0, m_Zero()) &&
1630         C->isNotMinSignedValue() && !C->isOneValue())
1631       return BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(C));
1632
1633     // 0 - (X << Y)  -> (-X << Y)   when X is freely negatable.
1634     if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero()))
1635       if (Value *XNeg = dyn_castNegVal(X))
1636         return BinaryOperator::CreateShl(XNeg, Y);
1637
1638     // Subtracting -1/0 is the same as adding 1/0:
1639     // sub [nsw] Op0, sext(bool Y) -> add [nsw] Op0, zext(bool Y)
1640     // 'nuw' is dropped in favor of the canonical form.
1641     if (match(Op1, m_SExt(m_Value(Y))) &&
1642         Y->getType()->getScalarSizeInBits() == 1) {
1643       Value *Zext = Builder.CreateZExt(Y, I.getType());
1644       BinaryOperator *Add = BinaryOperator::CreateAdd(Op0, Zext);
1645       Add->setHasNoSignedWrap(I.hasNoSignedWrap());
1646       return Add;
1647     }
1648
1649     // X - A*-B -> X + A*B
1650     // X - -A*B -> X + A*B
1651     Value *A, *B;
1652     if (match(Op1, m_c_Mul(m_Value(A), m_Neg(m_Value(B)))))
1653       return BinaryOperator::CreateAdd(Op0, Builder.CreateMul(A, B));
1654
1655     // X - A*C -> X + A*-C
1656     // No need to handle commuted multiply because multiply handling will
1657     // ensure constant will be move to the right hand side.
1658     if (match(Op1, m_Mul(m_Value(A), m_Constant(C))) && !isa<ConstantExpr>(C)) {
1659       Value *NewMul = Builder.CreateMul(A, ConstantExpr::getNeg(C));
1660       return BinaryOperator::CreateAdd(Op0, NewMul);
1661     }
1662   }
1663
1664   {
1665     // ~A - Min/Max(~A, O) -> Max/Min(A, ~O) - A
1666     // ~A - Min/Max(O, ~A) -> Max/Min(A, ~O) - A
1667     // Min/Max(~A, O) - ~A -> A - Max/Min(A, ~O)
1668     // Min/Max(O, ~A) - ~A -> A - Max/Min(A, ~O)
1669     // So long as O here is freely invertible, this will be neutral or a win.
1670     Value *LHS, *RHS, *A;
1671     Value *NotA = Op0, *MinMax = Op1;
1672     SelectPatternFlavor SPF = matchSelectPattern(MinMax, LHS, RHS).Flavor;
1673     if (!SelectPatternResult::isMinOrMax(SPF)) {
1674       NotA = Op1;
1675       MinMax = Op0;
1676       SPF = matchSelectPattern(MinMax, LHS, RHS).Flavor;
1677     }
1678     if (SelectPatternResult::isMinOrMax(SPF) &&
1679         match(NotA, m_Not(m_Value(A))) && (NotA == LHS || NotA == RHS)) {
1680       if (NotA == LHS)
1681         std::swap(LHS, RHS);
1682       // LHS is now O above and expected to have at least 2 uses (the min/max)
1683       // NotA is epected to have 2 uses from the min/max and 1 from the sub.
1684       if (IsFreeToInvert(LHS, !LHS->hasNUsesOrMore(3)) &&
1685           !NotA->hasNUsesOrMore(4)) {
1686         // Note: We don't generate the inverse max/min, just create the not of
1687         // it and let other folds do the rest.
1688         Value *Not = Builder.CreateNot(MinMax);
1689         if (NotA == Op0)
1690           return BinaryOperator::CreateSub(Not, A);
1691         else
1692           return BinaryOperator::CreateSub(A, Not);
1693       }
1694     }
1695   }
1696
1697   // Optimize pointer differences into the same array into a size.  Consider:
1698   //  &A[10] - &A[0]: we should compile this to "10".
1699   Value *LHSOp, *RHSOp;
1700   if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
1701       match(Op1, m_PtrToInt(m_Value(RHSOp))))
1702     if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
1703       return replaceInstUsesWith(I, Res);
1704
1705   // trunc(p)-trunc(q) -> trunc(p-q)
1706   if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
1707       match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
1708     if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
1709       return replaceInstUsesWith(I, Res);
1710
1711   // Canonicalize a shifty way to code absolute value to the common pattern.
1712   // There are 2 potential commuted variants.
1713   // We're relying on the fact that we only do this transform when the shift has
1714   // exactly 2 uses and the xor has exactly 1 use (otherwise, we might increase
1715   // instructions).
1716   Value *A;
1717   const APInt *ShAmt;
1718   Type *Ty = I.getType();
1719   if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) &&
1720       Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 &&
1721       match(Op0, m_OneUse(m_c_Xor(m_Specific(A), m_Specific(Op1))))) {
1722     // B = ashr i32 A, 31 ; smear the sign bit
1723     // sub (xor A, B), B  ; flip bits if negative and subtract -1 (add 1)
1724     // --> (A < 0) ? -A : A
1725     Value *Cmp = Builder.CreateICmpSLT(A, ConstantInt::getNullValue(Ty));
1726     // Copy the nuw/nsw flags from the sub to the negate.
1727     Value *Neg = Builder.CreateNeg(A, "", I.hasNoUnsignedWrap(),
1728                                    I.hasNoSignedWrap());
1729     return SelectInst::Create(Cmp, Neg, A);
1730   }
1731
1732   if (Instruction *Ext = narrowMathIfNoOverflow(I))
1733     return Ext;
1734
1735   bool Changed = false;
1736   if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) {
1737     Changed = true;
1738     I.setHasNoSignedWrap(true);
1739   }
1740   if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) {
1741     Changed = true;
1742     I.setHasNoUnsignedWrap(true);
1743   }
1744
1745   return Changed ? &I : nullptr;
1746 }
1747
1748 Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
1749   if (Value *V = SimplifyFSubInst(I.getOperand(0), I.getOperand(1),
1750                                   I.getFastMathFlags(),
1751                                   SQ.getWithInstruction(&I)))
1752     return replaceInstUsesWith(I, V);
1753
1754   if (Instruction *X = foldVectorBinop(I))
1755     return X;
1756
1757   // Subtraction from -0.0 is the canonical form of fneg.
1758   // fsub nsz 0, X ==> fsub nsz -0.0, X
1759   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1760   if (I.hasNoSignedZeros() && match(Op0, m_PosZeroFP()))
1761     return BinaryOperator::CreateFNegFMF(Op1, &I);
1762
1763   Value *X, *Y;
1764   Constant *C;
1765
1766   // Fold negation into constant operand. This is limited with one-use because
1767   // fneg is assumed better for analysis and cheaper in codegen than fmul/fdiv.
1768   // -(X * C) --> X * (-C)
1769   if (match(&I, m_FNeg(m_OneUse(m_FMul(m_Value(X), m_Constant(C))))))
1770     return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I);
1771   // -(X / C) --> X / (-C)
1772   if (match(&I, m_FNeg(m_OneUse(m_FDiv(m_Value(X), m_Constant(C))))))
1773     return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I);
1774   // -(C / X) --> (-C) / X
1775   if (match(&I, m_FNeg(m_OneUse(m_FDiv(m_Constant(C), m_Value(X))))))
1776     return BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I);
1777
1778   // If Op0 is not -0.0 or we can ignore -0.0: Z - (X - Y) --> Z + (Y - X)
1779   // Canonicalize to fadd to make analysis easier.
1780   // This can also help codegen because fadd is commutative.
1781   // Note that if this fsub was really an fneg, the fadd with -0.0 will get
1782   // killed later. We still limit that particular transform with 'hasOneUse'
1783   // because an fneg is assumed better/cheaper than a generic fsub.
1784   if (I.hasNoSignedZeros() || CannotBeNegativeZero(Op0, SQ.TLI)) {
1785     if (match(Op1, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) {
1786       Value *NewSub = Builder.CreateFSubFMF(Y, X, &I);
1787       return BinaryOperator::CreateFAddFMF(Op0, NewSub, &I);
1788     }
1789   }
1790
1791   if (isa<Constant>(Op0))
1792     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1793       if (Instruction *NV = FoldOpIntoSelect(I, SI))
1794         return NV;
1795
1796   // X - C --> X + (-C)
1797   // But don't transform constant expressions because there's an inverse fold
1798   // for X + (-Y) --> X - Y.
1799   if (match(Op1, m_Constant(C)) && !isa<ConstantExpr>(Op1))
1800     return BinaryOperator::CreateFAddFMF(Op0, ConstantExpr::getFNeg(C), &I);
1801
1802   // X - (-Y) --> X + Y
1803   if (match(Op1, m_FNeg(m_Value(Y))))
1804     return BinaryOperator::CreateFAddFMF(Op0, Y, &I);
1805
1806   // Similar to above, but look through a cast of the negated value:
1807   // X - (fptrunc(-Y)) --> X + fptrunc(Y)
1808   Type *Ty = I.getType();
1809   if (match(Op1, m_OneUse(m_FPTrunc(m_FNeg(m_Value(Y))))))
1810     return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPTrunc(Y, Ty), &I);
1811
1812   // X - (fpext(-Y)) --> X + fpext(Y)
1813   if (match(Op1, m_OneUse(m_FPExt(m_FNeg(m_Value(Y))))))
1814     return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPExt(Y, Ty), &I);
1815
1816   // Handle special cases for FSub with selects feeding the operation
1817   if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
1818     return replaceInstUsesWith(I, V);
1819
1820   if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
1821     // (Y - X) - Y --> -X
1822     if (match(Op0, m_FSub(m_Specific(Op1), m_Value(X))))
1823       return BinaryOperator::CreateFNegFMF(X, &I);
1824
1825     // Y - (X + Y) --> -X
1826     // Y - (Y + X) --> -X
1827     if (match(Op1, m_c_FAdd(m_Specific(Op0), m_Value(X))))
1828       return BinaryOperator::CreateFNegFMF(X, &I);
1829
1830     // (X * C) - X --> X * (C - 1.0)
1831     if (match(Op0, m_FMul(m_Specific(Op1), m_Constant(C)))) {
1832       Constant *CSubOne = ConstantExpr::getFSub(C, ConstantFP::get(Ty, 1.0));
1833       return BinaryOperator::CreateFMulFMF(Op1, CSubOne, &I);
1834     }
1835     // X - (X * C) --> X * (1.0 - C)
1836     if (match(Op1, m_FMul(m_Specific(Op0), m_Constant(C)))) {
1837       Constant *OneSubC = ConstantExpr::getFSub(ConstantFP::get(Ty, 1.0), C);
1838       return BinaryOperator::CreateFMulFMF(Op0, OneSubC, &I);
1839     }
1840
1841     if (Instruction *F = factorizeFAddFSub(I, Builder))
1842       return F;
1843
1844     // TODO: This performs reassociative folds for FP ops. Some fraction of the
1845     // functionality has been subsumed by simple pattern matching here and in
1846     // InstSimplify. We should let a dedicated reassociation pass handle more
1847     // complex pattern matching and remove this from InstCombine.
1848     if (Value *V = FAddCombine(Builder).simplify(&I))
1849       return replaceInstUsesWith(I, V);
1850   }
1851
1852   return nullptr;
1853 }