]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp
Merge llvm, clang, lld and lldb trunk r300890, and update build glue.
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / InstCombine / InstCombineAddSub.cpp
1 //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for add, fadd, sub, and fsub.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/Analysis/InstructionSimplify.h"
17 #include "llvm/IR/DataLayout.h"
18 #include "llvm/IR/GetElementPtrTypeIterator.h"
19 #include "llvm/IR/PatternMatch.h"
20
21 using namespace llvm;
22 using namespace PatternMatch;
23
24 #define DEBUG_TYPE "instcombine"
25
26 namespace {
27
28   /// Class representing coefficient of floating-point addend.
29   /// This class needs to be highly efficient, which is especially true for
30   /// the constructor. As of I write this comment, the cost of the default
31   /// constructor is merely 4-byte-store-zero (Assuming compiler is able to
32   /// perform write-merging).
33   ///
34   class FAddendCoef {
35   public:
36     // The constructor has to initialize a APFloat, which is unnecessary for
37     // most addends which have coefficient either 1 or -1. So, the constructor
38     // is expensive. In order to avoid the cost of the constructor, we should
39     // reuse some instances whenever possible. The pre-created instances
40     // FAddCombine::Add[0-5] embodies this idea.
41     //
42     FAddendCoef() : IsFp(false), BufHasFpVal(false), IntVal(0) {}
43     ~FAddendCoef();
44
45     void set(short C) {
46       assert(!insaneIntVal(C) && "Insane coefficient");
47       IsFp = false; IntVal = C;
48     }
49
50     void set(const APFloat& C);
51
52     void negate();
53
54     bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
55     Value *getValue(Type *) const;
56
57     // If possible, don't define operator+/operator- etc because these
58     // operators inevitably call FAddendCoef's constructor which is not cheap.
59     void operator=(const FAddendCoef &A);
60     void operator+=(const FAddendCoef &A);
61     void operator*=(const FAddendCoef &S);
62
63     bool isOne() const { return isInt() && IntVal == 1; }
64     bool isTwo() const { return isInt() && IntVal == 2; }
65     bool isMinusOne() const { return isInt() && IntVal == -1; }
66     bool isMinusTwo() const { return isInt() && IntVal == -2; }
67
68   private:
69     bool insaneIntVal(int V) { return V > 4 || V < -4; }
70     APFloat *getFpValPtr()
71       { return reinterpret_cast<APFloat*>(&FpValBuf.buffer[0]); }
72     const APFloat *getFpValPtr() const
73       { return reinterpret_cast<const APFloat*>(&FpValBuf.buffer[0]); }
74
75     const APFloat &getFpVal() const {
76       assert(IsFp && BufHasFpVal && "Incorret state");
77       return *getFpValPtr();
78     }
79
80     APFloat &getFpVal() {
81       assert(IsFp && BufHasFpVal && "Incorret state");
82       return *getFpValPtr();
83     }
84
85     bool isInt() const { return !IsFp; }
86
87     // If the coefficient is represented by an integer, promote it to a
88     // floating point.
89     void convertToFpType(const fltSemantics &Sem);
90
91     // Construct an APFloat from a signed integer.
92     // TODO: We should get rid of this function when APFloat can be constructed
93     //       from an *SIGNED* integer.
94     APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val);
95
96   private:
97     bool IsFp;
98
99     // True iff FpValBuf contains an instance of APFloat.
100     bool BufHasFpVal;
101
102     // The integer coefficient of an individual addend is either 1 or -1,
103     // and we try to simplify at most 4 addends from neighboring at most
104     // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
105     // is overkill of this end.
106     short IntVal;
107
108     AlignedCharArrayUnion<APFloat> FpValBuf;
109   };
110
111   /// FAddend is used to represent floating-point addend. An addend is
112   /// represented as <C, V>, where the V is a symbolic value, and C is a
113   /// constant coefficient. A constant addend is represented as <C, 0>.
114   ///
115   class FAddend {
116   public:
117     FAddend() : Val(nullptr) {}
118
119     Value *getSymVal() const { return Val; }
120     const FAddendCoef &getCoef() const { return Coeff; }
121
122     bool isConstant() const { return Val == nullptr; }
123     bool isZero() const { return Coeff.isZero(); }
124
125     void set(short Coefficient, Value *V) {
126       Coeff.set(Coefficient);
127       Val = V;
128     }
129     void set(const APFloat &Coefficient, Value *V) {
130       Coeff.set(Coefficient);
131       Val = V;
132     }
133     void set(const ConstantFP *Coefficient, Value *V) {
134       Coeff.set(Coefficient->getValueAPF());
135       Val = V;
136     }
137
138     void negate() { Coeff.negate(); }
139
140     /// Drill down the U-D chain one step to find the definition of V, and
141     /// try to break the definition into one or two addends.
142     static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
143
144     /// Similar to FAddend::drillDownOneStep() except that the value being
145     /// splitted is the addend itself.
146     unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
147
148     void operator+=(const FAddend &T) {
149       assert((Val == T.Val) && "Symbolic-values disagree");
150       Coeff += T.Coeff;
151     }
152
153   private:
154     void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
155
156     // This addend has the value of "Coeff * Val".
157     Value *Val;
158     FAddendCoef Coeff;
159   };
160
161   /// FAddCombine is the class for optimizing an unsafe fadd/fsub along
162   /// with its neighboring at most two instructions.
163   ///
164   class FAddCombine {
165   public:
166     FAddCombine(InstCombiner::BuilderTy *B) : Builder(B), Instr(nullptr) {}
167     Value *simplify(Instruction *FAdd);
168
169   private:
170     typedef SmallVector<const FAddend*, 4> AddendVect;
171
172     Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
173
174     Value *performFactorization(Instruction *I);
175
176     /// Convert given addend to a Value
177     Value *createAddendVal(const FAddend &A, bool& NeedNeg);
178
179     /// Return the number of instructions needed to emit the N-ary addition.
180     unsigned calcInstrNumber(const AddendVect& Vect);
181     Value *createFSub(Value *Opnd0, Value *Opnd1);
182     Value *createFAdd(Value *Opnd0, Value *Opnd1);
183     Value *createFMul(Value *Opnd0, Value *Opnd1);
184     Value *createFDiv(Value *Opnd0, Value *Opnd1);
185     Value *createFNeg(Value *V);
186     Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
187     void createInstPostProc(Instruction *NewInst, bool NoNumber = false);
188
189     InstCombiner::BuilderTy *Builder;
190     Instruction *Instr;
191
192      // Debugging stuff are clustered here.
193     #ifndef NDEBUG
194       unsigned CreateInstrNum;
195       void initCreateInstNum() { CreateInstrNum = 0; }
196       void incCreateInstNum() { CreateInstrNum++; }
197     #else
198       void initCreateInstNum() {}
199       void incCreateInstNum() {}
200     #endif
201   };
202
203 } // anonymous namespace
204
205 //===----------------------------------------------------------------------===//
206 //
207 // Implementation of
208 //    {FAddendCoef, FAddend, FAddition, FAddCombine}.
209 //
210 //===----------------------------------------------------------------------===//
211 FAddendCoef::~FAddendCoef() {
212   if (BufHasFpVal)
213     getFpValPtr()->~APFloat();
214 }
215
216 void FAddendCoef::set(const APFloat& C) {
217   APFloat *P = getFpValPtr();
218
219   if (isInt()) {
220     // As the buffer is meanless byte stream, we cannot call
221     // APFloat::operator=().
222     new(P) APFloat(C);
223   } else
224     *P = C;
225
226   IsFp = BufHasFpVal = true;
227 }
228
229 void FAddendCoef::convertToFpType(const fltSemantics &Sem) {
230   if (!isInt())
231     return;
232
233   APFloat *P = getFpValPtr();
234   if (IntVal > 0)
235     new(P) APFloat(Sem, IntVal);
236   else {
237     new(P) APFloat(Sem, 0 - IntVal);
238     P->changeSign();
239   }
240   IsFp = BufHasFpVal = true;
241 }
242
243 APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) {
244   if (Val >= 0)
245     return APFloat(Sem, Val);
246
247   APFloat T(Sem, 0 - Val);
248   T.changeSign();
249
250   return T;
251 }
252
253 void FAddendCoef::operator=(const FAddendCoef &That) {
254   if (That.isInt())
255     set(That.IntVal);
256   else
257     set(That.getFpVal());
258 }
259
260 void FAddendCoef::operator+=(const FAddendCoef &That) {
261   enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven;
262   if (isInt() == That.isInt()) {
263     if (isInt())
264       IntVal += That.IntVal;
265     else
266       getFpVal().add(That.getFpVal(), RndMode);
267     return;
268   }
269
270   if (isInt()) {
271     const APFloat &T = That.getFpVal();
272     convertToFpType(T.getSemantics());
273     getFpVal().add(T, RndMode);
274     return;
275   }
276
277   APFloat &T = getFpVal();
278   T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode);
279 }
280
281 void FAddendCoef::operator*=(const FAddendCoef &That) {
282   if (That.isOne())
283     return;
284
285   if (That.isMinusOne()) {
286     negate();
287     return;
288   }
289
290   if (isInt() && That.isInt()) {
291     int Res = IntVal * (int)That.IntVal;
292     assert(!insaneIntVal(Res) && "Insane int value");
293     IntVal = Res;
294     return;
295   }
296
297   const fltSemantics &Semantic =
298     isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
299
300   if (isInt())
301     convertToFpType(Semantic);
302   APFloat &F0 = getFpVal();
303
304   if (That.isInt())
305     F0.multiply(createAPFloatFromInt(Semantic, That.IntVal),
306                 APFloat::rmNearestTiesToEven);
307   else
308     F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
309 }
310
311 void FAddendCoef::negate() {
312   if (isInt())
313     IntVal = 0 - IntVal;
314   else
315     getFpVal().changeSign();
316 }
317
318 Value *FAddendCoef::getValue(Type *Ty) const {
319   return isInt() ?
320     ConstantFP::get(Ty, float(IntVal)) :
321     ConstantFP::get(Ty->getContext(), getFpVal());
322 }
323
324 // The definition of <Val>     Addends
325 // =========================================
326 //  A + B                     <1, A>, <1,B>
327 //  A - B                     <1, A>, <1,B>
328 //  0 - B                     <-1, B>
329 //  C * A,                    <C, A>
330 //  A + C                     <1, A> <C, NULL>
331 //  0 +/- 0                   <0, NULL> (corner case)
332 //
333 // Legend: A and B are not constant, C is constant
334 //
335 unsigned FAddend::drillValueDownOneStep
336   (Value *Val, FAddend &Addend0, FAddend &Addend1) {
337   Instruction *I = nullptr;
338   if (!Val || !(I = dyn_cast<Instruction>(Val)))
339     return 0;
340
341   unsigned Opcode = I->getOpcode();
342
343   if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
344     ConstantFP *C0, *C1;
345     Value *Opnd0 = I->getOperand(0);
346     Value *Opnd1 = I->getOperand(1);
347     if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
348       Opnd0 = nullptr;
349
350     if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
351       Opnd1 = nullptr;
352
353     if (Opnd0) {
354       if (!C0)
355         Addend0.set(1, Opnd0);
356       else
357         Addend0.set(C0, nullptr);
358     }
359
360     if (Opnd1) {
361       FAddend &Addend = Opnd0 ? Addend1 : Addend0;
362       if (!C1)
363         Addend.set(1, Opnd1);
364       else
365         Addend.set(C1, nullptr);
366       if (Opcode == Instruction::FSub)
367         Addend.negate();
368     }
369
370     if (Opnd0 || Opnd1)
371       return Opnd0 && Opnd1 ? 2 : 1;
372
373     // Both operands are zero. Weird!
374     Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr);
375     return 1;
376   }
377
378   if (I->getOpcode() == Instruction::FMul) {
379     Value *V0 = I->getOperand(0);
380     Value *V1 = I->getOperand(1);
381     if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
382       Addend0.set(C, V1);
383       return 1;
384     }
385
386     if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
387       Addend0.set(C, V0);
388       return 1;
389     }
390   }
391
392   return 0;
393 }
394
395 // Try to break *this* addend into two addends. e.g. Suppose this addend is
396 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
397 // i.e. <2.3, X> and <2.3, Y>.
398 //
399 unsigned FAddend::drillAddendDownOneStep
400   (FAddend &Addend0, FAddend &Addend1) const {
401   if (isConstant())
402     return 0;
403
404   unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
405   if (!BreakNum || Coeff.isOne())
406     return BreakNum;
407
408   Addend0.Scale(Coeff);
409
410   if (BreakNum == 2)
411     Addend1.Scale(Coeff);
412
413   return BreakNum;
414 }
415
416 // Try to perform following optimization on the input instruction I. Return the
417 // simplified expression if was successful; otherwise, return 0.
418 //
419 //   Instruction "I" is                Simplified into
420 // -------------------------------------------------------
421 //   (x * y) +/- (x * z)               x * (y +/- z)
422 //   (y / x) +/- (z / x)               (y +/- z) / x
423 //
424 Value *FAddCombine::performFactorization(Instruction *I) {
425   assert((I->getOpcode() == Instruction::FAdd ||
426           I->getOpcode() == Instruction::FSub) && "Expect add/sub");
427
428   Instruction *I0 = dyn_cast<Instruction>(I->getOperand(0));
429   Instruction *I1 = dyn_cast<Instruction>(I->getOperand(1));
430
431   if (!I0 || !I1 || I0->getOpcode() != I1->getOpcode())
432     return nullptr;
433
434   bool isMpy = false;
435   if (I0->getOpcode() == Instruction::FMul)
436     isMpy = true;
437   else if (I0->getOpcode() != Instruction::FDiv)
438     return nullptr;
439
440   Value *Opnd0_0 = I0->getOperand(0);
441   Value *Opnd0_1 = I0->getOperand(1);
442   Value *Opnd1_0 = I1->getOperand(0);
443   Value *Opnd1_1 = I1->getOperand(1);
444
445   //  Input Instr I       Factor   AddSub0  AddSub1
446   //  ----------------------------------------------
447   // (x*y) +/- (x*z)        x        y         z
448   // (y/x) +/- (z/x)        x        y         z
449   //
450   Value *Factor = nullptr;
451   Value *AddSub0 = nullptr, *AddSub1 = nullptr;
452
453   if (isMpy) {
454     if (Opnd0_0 == Opnd1_0 || Opnd0_0 == Opnd1_1)
455       Factor = Opnd0_0;
456     else if (Opnd0_1 == Opnd1_0 || Opnd0_1 == Opnd1_1)
457       Factor = Opnd0_1;
458
459     if (Factor) {
460       AddSub0 = (Factor == Opnd0_0) ? Opnd0_1 : Opnd0_0;
461       AddSub1 = (Factor == Opnd1_0) ? Opnd1_1 : Opnd1_0;
462     }
463   } else if (Opnd0_1 == Opnd1_1) {
464     Factor = Opnd0_1;
465     AddSub0 = Opnd0_0;
466     AddSub1 = Opnd1_0;
467   }
468
469   if (!Factor)
470     return nullptr;
471
472   FastMathFlags Flags;
473   Flags.setUnsafeAlgebra();
474   if (I0) Flags &= I->getFastMathFlags();
475   if (I1) Flags &= I->getFastMathFlags();
476
477   // Create expression "NewAddSub = AddSub0 +/- AddsSub1"
478   Value *NewAddSub = (I->getOpcode() == Instruction::FAdd) ?
479                       createFAdd(AddSub0, AddSub1) :
480                       createFSub(AddSub0, AddSub1);
481   if (ConstantFP *CFP = dyn_cast<ConstantFP>(NewAddSub)) {
482     const APFloat &F = CFP->getValueAPF();
483     if (!F.isNormal())
484       return nullptr;
485   } else if (Instruction *II = dyn_cast<Instruction>(NewAddSub))
486     II->setFastMathFlags(Flags);
487
488   if (isMpy) {
489     Value *RI = createFMul(Factor, NewAddSub);
490     if (Instruction *II = dyn_cast<Instruction>(RI))
491       II->setFastMathFlags(Flags);
492     return RI;
493   }
494
495   Value *RI = createFDiv(NewAddSub, Factor);
496   if (Instruction *II = dyn_cast<Instruction>(RI))
497     II->setFastMathFlags(Flags);
498   return RI;
499 }
500
501 Value *FAddCombine::simplify(Instruction *I) {
502   assert(I->hasUnsafeAlgebra() && "Should be in unsafe mode");
503
504   // Currently we are not able to handle vector type.
505   if (I->getType()->isVectorTy())
506     return nullptr;
507
508   assert((I->getOpcode() == Instruction::FAdd ||
509           I->getOpcode() == Instruction::FSub) && "Expect add/sub");
510
511   // Save the instruction before calling other member-functions.
512   Instr = I;
513
514   FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
515
516   unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);
517
518   // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
519   unsigned Opnd0_ExpNum = 0;
520   unsigned Opnd1_ExpNum = 0;
521
522   if (!Opnd0.isConstant())
523     Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
524
525   // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
526   if (OpndNum == 2 && !Opnd1.isConstant())
527     Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
528
529   // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
530   if (Opnd0_ExpNum && Opnd1_ExpNum) {
531     AddendVect AllOpnds;
532     AllOpnds.push_back(&Opnd0_0);
533     AllOpnds.push_back(&Opnd1_0);
534     if (Opnd0_ExpNum == 2)
535       AllOpnds.push_back(&Opnd0_1);
536     if (Opnd1_ExpNum == 2)
537       AllOpnds.push_back(&Opnd1_1);
538
539     // Compute instruction quota. We should save at least one instruction.
540     unsigned InstQuota = 0;
541
542     Value *V0 = I->getOperand(0);
543     Value *V1 = I->getOperand(1);
544     InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
545                  (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;
546
547     if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
548       return R;
549   }
550
551   if (OpndNum != 2) {
552     // The input instruction is : "I=0.0 +/- V". If the "V" were able to be
553     // splitted into two addends, say "V = X - Y", the instruction would have
554     // been optimized into "I = Y - X" in the previous steps.
555     //
556     const FAddendCoef &CE = Opnd0.getCoef();
557     return CE.isOne() ? Opnd0.getSymVal() : nullptr;
558   }
559
560   // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
561   if (Opnd1_ExpNum) {
562     AddendVect AllOpnds;
563     AllOpnds.push_back(&Opnd0);
564     AllOpnds.push_back(&Opnd1_0);
565     if (Opnd1_ExpNum == 2)
566       AllOpnds.push_back(&Opnd1_1);
567
568     if (Value *R = simplifyFAdd(AllOpnds, 1))
569       return R;
570   }
571
572   // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
573   if (Opnd0_ExpNum) {
574     AddendVect AllOpnds;
575     AllOpnds.push_back(&Opnd1);
576     AllOpnds.push_back(&Opnd0_0);
577     if (Opnd0_ExpNum == 2)
578       AllOpnds.push_back(&Opnd0_1);
579
580     if (Value *R = simplifyFAdd(AllOpnds, 1))
581       return R;
582   }
583
584   // step 6: Try factorization as the last resort,
585   return performFactorization(I);
586 }
587
588 Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
589   unsigned AddendNum = Addends.size();
590   assert(AddendNum <= 4 && "Too many addends");
591
592   // For saving intermediate results;
593   unsigned NextTmpIdx = 0;
594   FAddend TmpResult[3];
595
596   // Points to the constant addend of the resulting simplified expression.
597   // If the resulting expr has constant-addend, this constant-addend is
598   // desirable to reside at the top of the resulting expression tree. Placing
599   // constant close to supper-expr(s) will potentially reveal some optimization
600   // opportunities in super-expr(s).
601   //
602   const FAddend *ConstAdd = nullptr;
603
604   // Simplified addends are placed <SimpVect>.
605   AddendVect SimpVect;
606
607   // The outer loop works on one symbolic-value at a time. Suppose the input
608   // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
609   // The symbolic-values will be processed in this order: x, y, z.
610   //
611   for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
612
613     const FAddend *ThisAddend = Addends[SymIdx];
614     if (!ThisAddend) {
615       // This addend was processed before.
616       continue;
617     }
618
619     Value *Val = ThisAddend->getSymVal();
620     unsigned StartIdx = SimpVect.size();
621     SimpVect.push_back(ThisAddend);
622
623     // The inner loop collects addends sharing same symbolic-value, and these
624     // addends will be later on folded into a single addend. Following above
625     // example, if the symbolic value "y" is being processed, the inner loop
626     // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
627     // be later on folded into "<b1+b2, y>".
628     //
629     for (unsigned SameSymIdx = SymIdx + 1;
630          SameSymIdx < AddendNum; SameSymIdx++) {
631       const FAddend *T = Addends[SameSymIdx];
632       if (T && T->getSymVal() == Val) {
633         // Set null such that next iteration of the outer loop will not process
634         // this addend again.
635         Addends[SameSymIdx] = nullptr;
636         SimpVect.push_back(T);
637       }
638     }
639
640     // If multiple addends share same symbolic value, fold them together.
641     if (StartIdx + 1 != SimpVect.size()) {
642       FAddend &R = TmpResult[NextTmpIdx ++];
643       R = *SimpVect[StartIdx];
644       for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
645         R += *SimpVect[Idx];
646
647       // Pop all addends being folded and push the resulting folded addend.
648       SimpVect.resize(StartIdx);
649       if (Val) {
650         if (!R.isZero()) {
651           SimpVect.push_back(&R);
652         }
653       } else {
654         // Don't push constant addend at this time. It will be the last element
655         // of <SimpVect>.
656         ConstAdd = &R;
657       }
658     }
659   }
660
661   assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) &&
662          "out-of-bound access");
663
664   if (ConstAdd)
665     SimpVect.push_back(ConstAdd);
666
667   Value *Result;
668   if (!SimpVect.empty())
669     Result = createNaryFAdd(SimpVect, InstrQuota);
670   else {
671     // The addition is folded to 0.0.
672     Result = ConstantFP::get(Instr->getType(), 0.0);
673   }
674
675   return Result;
676 }
677
678 Value *FAddCombine::createNaryFAdd
679   (const AddendVect &Opnds, unsigned InstrQuota) {
680   assert(!Opnds.empty() && "Expect at least one addend");
681
682   // Step 1: Check if the # of instructions needed exceeds the quota.
683   //
684   unsigned InstrNeeded = calcInstrNumber(Opnds);
685   if (InstrNeeded > InstrQuota)
686     return nullptr;
687
688   initCreateInstNum();
689
690   // step 2: Emit the N-ary addition.
691   // Note that at most three instructions are involved in Fadd-InstCombine: the
692   // addition in question, and at most two neighboring instructions.
693   // The resulting optimized addition should have at least one less instruction
694   // than the original addition expression tree. This implies that the resulting
695   // N-ary addition has at most two instructions, and we don't need to worry
696   // about tree-height when constructing the N-ary addition.
697
698   Value *LastVal = nullptr;
699   bool LastValNeedNeg = false;
700
701   // Iterate the addends, creating fadd/fsub using adjacent two addends.
702   for (const FAddend *Opnd : Opnds) {
703     bool NeedNeg;
704     Value *V = createAddendVal(*Opnd, NeedNeg);
705     if (!LastVal) {
706       LastVal = V;
707       LastValNeedNeg = NeedNeg;
708       continue;
709     }
710
711     if (LastValNeedNeg == NeedNeg) {
712       LastVal = createFAdd(LastVal, V);
713       continue;
714     }
715
716     if (LastValNeedNeg)
717       LastVal = createFSub(V, LastVal);
718     else
719       LastVal = createFSub(LastVal, V);
720
721     LastValNeedNeg = false;
722   }
723
724   if (LastValNeedNeg) {
725     LastVal = createFNeg(LastVal);
726   }
727
728   #ifndef NDEBUG
729     assert(CreateInstrNum == InstrNeeded &&
730            "Inconsistent in instruction numbers");
731   #endif
732
733   return LastVal;
734 }
735
736 Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) {
737   Value *V = Builder->CreateFSub(Opnd0, Opnd1);
738   if (Instruction *I = dyn_cast<Instruction>(V))
739     createInstPostProc(I);
740   return V;
741 }
742
743 Value *FAddCombine::createFNeg(Value *V) {
744   Value *Zero = cast<Value>(ConstantFP::getZeroValueForNegation(V->getType()));
745   Value *NewV = createFSub(Zero, V);
746   if (Instruction *I = dyn_cast<Instruction>(NewV))
747     createInstPostProc(I, true); // fneg's don't receive instruction numbers.
748   return NewV;
749 }
750
751 Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) {
752   Value *V = Builder->CreateFAdd(Opnd0, Opnd1);
753   if (Instruction *I = dyn_cast<Instruction>(V))
754     createInstPostProc(I);
755   return V;
756 }
757
758 Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
759   Value *V = Builder->CreateFMul(Opnd0, Opnd1);
760   if (Instruction *I = dyn_cast<Instruction>(V))
761     createInstPostProc(I);
762   return V;
763 }
764
765 Value *FAddCombine::createFDiv(Value *Opnd0, Value *Opnd1) {
766   Value *V = Builder->CreateFDiv(Opnd0, Opnd1);
767   if (Instruction *I = dyn_cast<Instruction>(V))
768     createInstPostProc(I);
769   return V;
770 }
771
772 void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) {
773   NewInstr->setDebugLoc(Instr->getDebugLoc());
774
775   // Keep track of the number of instruction created.
776   if (!NoNumber)
777     incCreateInstNum();
778
779   // Propagate fast-math flags
780   NewInstr->setFastMathFlags(Instr->getFastMathFlags());
781 }
782
783 // Return the number of instruction needed to emit the N-ary addition.
784 // NOTE: Keep this function in sync with createAddendVal().
785 unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
786   unsigned OpndNum = Opnds.size();
787   unsigned InstrNeeded = OpndNum - 1;
788
789   // The number of addends in the form of "(-1)*x".
790   unsigned NegOpndNum = 0;
791
792   // Adjust the number of instructions needed to emit the N-ary add.
793   for (const FAddend *Opnd : Opnds) {
794     if (Opnd->isConstant())
795       continue;
796
797     const FAddendCoef &CE = Opnd->getCoef();
798     if (CE.isMinusOne() || CE.isMinusTwo())
799       NegOpndNum++;
800
801     // Let the addend be "c * x". If "c == +/-1", the value of the addend
802     // is immediately available; otherwise, it needs exactly one instruction
803     // to evaluate the value.
804     if (!CE.isMinusOne() && !CE.isOne())
805       InstrNeeded++;
806   }
807   if (NegOpndNum == OpndNum)
808     InstrNeeded++;
809   return InstrNeeded;
810 }
811
812 // Input Addend        Value           NeedNeg(output)
813 // ================================================================
814 // Constant C          C               false
815 // <+/-1, V>           V               coefficient is -1
816 // <2/-2, V>          "fadd V, V"      coefficient is -2
817 // <C, V>             "fmul V, C"      false
818 //
819 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
820 Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) {
821   const FAddendCoef &Coeff = Opnd.getCoef();
822
823   if (Opnd.isConstant()) {
824     NeedNeg = false;
825     return Coeff.getValue(Instr->getType());
826   }
827
828   Value *OpndVal = Opnd.getSymVal();
829
830   if (Coeff.isMinusOne() || Coeff.isOne()) {
831     NeedNeg = Coeff.isMinusOne();
832     return OpndVal;
833   }
834
835   if (Coeff.isTwo() || Coeff.isMinusTwo()) {
836     NeedNeg = Coeff.isMinusTwo();
837     return createFAdd(OpndVal, OpndVal);
838   }
839
840   NeedNeg = false;
841   return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
842 }
843
844 // If one of the operands only has one non-zero bit, and if the other
845 // operand has a known-zero bit in a more significant place than it (not
846 // including the sign bit) the ripple may go up to and fill the zero, but
847 // won't change the sign. For example, (X & ~4) + 1.
848 static bool checkRippleForAdd(const APInt &Op0KnownZero,
849                               const APInt &Op1KnownZero) {
850   APInt Op1MaybeOne = ~Op1KnownZero;
851   // Make sure that one of the operand has at most one bit set to 1.
852   if (Op1MaybeOne.countPopulation() != 1)
853     return false;
854
855   // Find the most significant known 0 other than the sign bit.
856   int BitWidth = Op0KnownZero.getBitWidth();
857   APInt Op0KnownZeroTemp(Op0KnownZero);
858   Op0KnownZeroTemp.clearBit(BitWidth - 1);
859   int Op0ZeroPosition = BitWidth - Op0KnownZeroTemp.countLeadingZeros() - 1;
860
861   int Op1OnePosition = BitWidth - Op1MaybeOne.countLeadingZeros() - 1;
862   assert(Op1OnePosition >= 0);
863
864   // This also covers the case of no known zero, since in that case
865   // Op0ZeroPosition is -1.
866   return Op0ZeroPosition >= Op1OnePosition;
867 }
868
869 /// Return true if we can prove that:
870 ///    (sext (add LHS, RHS))  === (add (sext LHS), (sext RHS))
871 /// This basically requires proving that the add in the original type would not
872 /// overflow to change the sign bit or have a carry out.
873 bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS,
874                                             Instruction &CxtI) {
875   // There are different heuristics we can use for this.  Here are some simple
876   // ones.
877
878   // If LHS and RHS each have at least two sign bits, the addition will look
879   // like
880   //
881   // XX..... +
882   // YY.....
883   //
884   // If the carry into the most significant position is 0, X and Y can't both
885   // be 1 and therefore the carry out of the addition is also 0.
886   //
887   // If the carry into the most significant position is 1, X and Y can't both
888   // be 0 and therefore the carry out of the addition is also 1.
889   //
890   // Since the carry into the most significant position is always equal to
891   // the carry out of the addition, there is no signed overflow.
892   if (ComputeNumSignBits(LHS, 0, &CxtI) > 1 &&
893       ComputeNumSignBits(RHS, 0, &CxtI) > 1)
894     return true;
895
896   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
897   APInt LHSKnownZero(BitWidth, 0);
898   APInt LHSKnownOne(BitWidth, 0);
899   computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, &CxtI);
900
901   APInt RHSKnownZero(BitWidth, 0);
902   APInt RHSKnownOne(BitWidth, 0);
903   computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, &CxtI);
904
905   // Addition of two 2's complement numbers having opposite signs will never
906   // overflow.
907   if ((LHSKnownOne[BitWidth - 1] && RHSKnownZero[BitWidth - 1]) ||
908       (LHSKnownZero[BitWidth - 1] && RHSKnownOne[BitWidth - 1]))
909     return true;
910
911   // Check if carry bit of addition will not cause overflow.
912   if (checkRippleForAdd(LHSKnownZero, RHSKnownZero))
913     return true;
914   if (checkRippleForAdd(RHSKnownZero, LHSKnownZero))
915     return true;
916
917   return false;
918 }
919
920 /// \brief Return true if we can prove that:
921 ///    (sub LHS, RHS)  === (sub nsw LHS, RHS)
922 /// This basically requires proving that the add in the original type would not
923 /// overflow to change the sign bit or have a carry out.
924 /// TODO: Handle this for Vectors.
925 bool InstCombiner::WillNotOverflowSignedSub(Value *LHS, Value *RHS,
926                                             Instruction &CxtI) {
927   // If LHS and RHS each have at least two sign bits, the subtraction
928   // cannot overflow.
929   if (ComputeNumSignBits(LHS, 0, &CxtI) > 1 &&
930       ComputeNumSignBits(RHS, 0, &CxtI) > 1)
931     return true;
932
933   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
934   APInt LHSKnownZero(BitWidth, 0);
935   APInt LHSKnownOne(BitWidth, 0);
936   computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, &CxtI);
937
938   APInt RHSKnownZero(BitWidth, 0);
939   APInt RHSKnownOne(BitWidth, 0);
940   computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, &CxtI);
941
942   // Subtraction of two 2's complement numbers having identical signs will
943   // never overflow.
944   if ((LHSKnownOne[BitWidth - 1] && RHSKnownOne[BitWidth - 1]) ||
945       (LHSKnownZero[BitWidth - 1] && RHSKnownZero[BitWidth - 1]))
946     return true;
947
948   // TODO: implement logic similar to checkRippleForAdd
949   return false;
950 }
951
952 /// \brief Return true if we can prove that:
953 ///    (sub LHS, RHS)  === (sub nuw LHS, RHS)
954 bool InstCombiner::WillNotOverflowUnsignedSub(Value *LHS, Value *RHS,
955                                               Instruction &CxtI) {
956   // If the LHS is negative and the RHS is non-negative, no unsigned wrap.
957   bool LHSKnownNonNegative, LHSKnownNegative;
958   bool RHSKnownNonNegative, RHSKnownNegative;
959   ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, /*Depth=*/0,
960                  &CxtI);
961   ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, /*Depth=*/0,
962                  &CxtI);
963   if (LHSKnownNegative && RHSKnownNonNegative)
964     return true;
965
966   return false;
967 }
968
969 // Checks if any operand is negative and we can convert add to sub.
970 // This function checks for following negative patterns
971 //   ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C))
972 //   ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C))
973 //   XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even
974 static Value *checkForNegativeOperand(BinaryOperator &I,
975                                       InstCombiner::BuilderTy *Builder) {
976   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
977
978   // This function creates 2 instructions to replace ADD, we need at least one
979   // of LHS or RHS to have one use to ensure benefit in transform.
980   if (!LHS->hasOneUse() && !RHS->hasOneUse())
981     return nullptr;
982
983   Value *X = nullptr, *Y = nullptr, *Z = nullptr;
984   const APInt *C1 = nullptr, *C2 = nullptr;
985
986   // if ONE is on other side, swap
987   if (match(RHS, m_Add(m_Value(X), m_One())))
988     std::swap(LHS, RHS);
989
990   if (match(LHS, m_Add(m_Value(X), m_One()))) {
991     // if XOR on other side, swap
992     if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
993       std::swap(X, RHS);
994
995     if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) {
996       // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1))
997       // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1))
998       if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) {
999         Value *NewAnd = Builder->CreateAnd(Z, *C1);
1000         return Builder->CreateSub(RHS, NewAnd, "sub");
1001       } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) {
1002         // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1))
1003         // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1))
1004         Value *NewOr = Builder->CreateOr(Z, ~(*C1));
1005         return Builder->CreateSub(RHS, NewOr, "sub");
1006       }
1007     }
1008   }
1009
1010   // Restore LHS and RHS
1011   LHS = I.getOperand(0);
1012   RHS = I.getOperand(1);
1013
1014   // if XOR is on other side, swap
1015   if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
1016     std::swap(LHS, RHS);
1017
1018   // C2 is ODD
1019   // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2))
1020   // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2))
1021   if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1))))
1022     if (C1->countTrailingZeros() == 0)
1023       if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) {
1024         Value *NewOr = Builder->CreateOr(Z, ~(*C2));
1025         return Builder->CreateSub(RHS, NewOr, "sub");
1026       }
1027   return nullptr;
1028 }
1029
1030 Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
1031   bool Changed = SimplifyAssociativeOrCommutative(I);
1032   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1033
1034   if (Value *V = SimplifyVectorOp(I))
1035     return replaceInstUsesWith(I, V);
1036
1037   if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(),
1038                                  I.hasNoUnsignedWrap(), DL, &TLI, &DT, &AC))
1039     return replaceInstUsesWith(I, V);
1040
1041    // (A*B)+(A*C) -> A*(B+C) etc
1042   if (Value *V = SimplifyUsingDistributiveLaws(I))
1043     return replaceInstUsesWith(I, V);
1044
1045   const APInt *RHSC;
1046   if (match(RHS, m_APInt(RHSC))) {
1047     if (RHSC->isSignMask()) {
1048       // If wrapping is not allowed, then the addition must set the sign bit:
1049       // X + (signmask) --> X | signmask
1050       if (I.hasNoSignedWrap() || I.hasNoUnsignedWrap())
1051         return BinaryOperator::CreateOr(LHS, RHS);
1052
1053       // If wrapping is allowed, then the addition flips the sign bit of LHS:
1054       // X + (signmask) --> X ^ signmask
1055       return BinaryOperator::CreateXor(LHS, RHS);
1056     }
1057
1058     // Is this add the last step in a convoluted sext?
1059     Value *X;
1060     const APInt *C;
1061     if (match(LHS, m_ZExt(m_Xor(m_Value(X), m_APInt(C)))) &&
1062         C->isMinSignedValue() &&
1063         C->sext(LHS->getType()->getScalarSizeInBits()) == *RHSC) {
1064       // add(zext(xor i16 X, -32768), -32768) --> sext X
1065       return CastInst::Create(Instruction::SExt, X, LHS->getType());
1066     }
1067
1068     if (RHSC->isNegative() &&
1069         match(LHS, m_ZExt(m_NUWAdd(m_Value(X), m_APInt(C)))) &&
1070         RHSC->sge(-C->sext(RHSC->getBitWidth()))) {
1071       // (add (zext (add nuw X, C)), Val) -> (zext (add nuw X, C+Val))
1072       Constant *NewC =
1073           ConstantInt::get(X->getType(), *C + RHSC->trunc(C->getBitWidth()));
1074       return new ZExtInst(Builder->CreateNUWAdd(X, NewC), I.getType());
1075     }
1076   }
1077
1078   // FIXME: Use the match above instead of dyn_cast to allow these transforms
1079   // for splat vectors.
1080   if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1081     // zext(bool) + C -> bool ? C + 1 : C
1082     if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
1083       if (ZI->getSrcTy()->isIntegerTy(1))
1084         return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI);
1085
1086     Value *XorLHS = nullptr; ConstantInt *XorRHS = nullptr;
1087     if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
1088       uint32_t TySizeBits = I.getType()->getScalarSizeInBits();
1089       const APInt &RHSVal = CI->getValue();
1090       unsigned ExtendAmt = 0;
1091       // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
1092       // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
1093       if (XorRHS->getValue() == -RHSVal) {
1094         if (RHSVal.isPowerOf2())
1095           ExtendAmt = TySizeBits - RHSVal.logBase2() - 1;
1096         else if (XorRHS->getValue().isPowerOf2())
1097           ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1;
1098       }
1099
1100       if (ExtendAmt) {
1101         APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt);
1102         if (!MaskedValueIsZero(XorLHS, Mask, 0, &I))
1103           ExtendAmt = 0;
1104       }
1105
1106       if (ExtendAmt) {
1107         Constant *ShAmt = ConstantInt::get(I.getType(), ExtendAmt);
1108         Value *NewShl = Builder->CreateShl(XorLHS, ShAmt, "sext");
1109         return BinaryOperator::CreateAShr(NewShl, ShAmt);
1110       }
1111
1112       // If this is a xor that was canonicalized from a sub, turn it back into
1113       // a sub and fuse this add with it.
1114       if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) {
1115         IntegerType *IT = cast<IntegerType>(I.getType());
1116         APInt LHSKnownOne(IT->getBitWidth(), 0);
1117         APInt LHSKnownZero(IT->getBitWidth(), 0);
1118         computeKnownBits(XorLHS, LHSKnownZero, LHSKnownOne, 0, &I);
1119         if ((XorRHS->getValue() | LHSKnownZero).isAllOnesValue())
1120           return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI),
1121                                            XorLHS);
1122       }
1123       // (X + signmask) + C could have gotten canonicalized to (X^signmask) + C,
1124       // transform them into (X + (signmask ^ C))
1125       if (XorRHS->getValue().isSignMask())
1126         return BinaryOperator::CreateAdd(XorLHS,
1127                                          ConstantExpr::getXor(XorRHS, CI));
1128     }
1129   }
1130
1131   if (isa<Constant>(RHS))
1132     if (Instruction *NV = foldOpWithConstantIntoOperand(I))
1133       return NV;
1134
1135   if (I.getType()->getScalarType()->isIntegerTy(1))
1136     return BinaryOperator::CreateXor(LHS, RHS);
1137
1138   // X + X --> X << 1
1139   if (LHS == RHS) {
1140     BinaryOperator *New =
1141       BinaryOperator::CreateShl(LHS, ConstantInt::get(I.getType(), 1));
1142     New->setHasNoSignedWrap(I.hasNoSignedWrap());
1143     New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1144     return New;
1145   }
1146
1147   // -A + B  -->  B - A
1148   // -A + -B  -->  -(A + B)
1149   if (Value *LHSV = dyn_castNegVal(LHS)) {
1150     if (!isa<Constant>(RHS))
1151       if (Value *RHSV = dyn_castNegVal(RHS)) {
1152         Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum");
1153         return BinaryOperator::CreateNeg(NewAdd);
1154       }
1155
1156     return BinaryOperator::CreateSub(RHS, LHSV);
1157   }
1158
1159   // A + -B  -->  A - B
1160   if (!isa<Constant>(RHS))
1161     if (Value *V = dyn_castNegVal(RHS))
1162       return BinaryOperator::CreateSub(LHS, V);
1163
1164   if (Value *V = checkForNegativeOperand(I, Builder))
1165     return replaceInstUsesWith(I, V);
1166
1167   // A+B --> A|B iff A and B have no bits set in common.
1168   if (haveNoCommonBitsSet(LHS, RHS, DL, &AC, &I, &DT))
1169     return BinaryOperator::CreateOr(LHS, RHS);
1170
1171   if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
1172     Value *X;
1173     if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X
1174       return BinaryOperator::CreateSub(SubOne(CRHS), X);
1175   }
1176
1177   // FIXME: We already did a check for ConstantInt RHS above this.
1178   // FIXME: Is this pattern covered by another fold? No regression tests fail on
1179   // removal.
1180   if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
1181     // (X & FF00) + xx00  -> (X+xx00) & FF00
1182     Value *X;
1183     ConstantInt *C2;
1184     if (LHS->hasOneUse() &&
1185         match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) &&
1186         CRHS->getValue() == (CRHS->getValue() & C2->getValue())) {
1187       // See if all bits from the first bit set in the Add RHS up are included
1188       // in the mask.  First, get the rightmost bit.
1189       const APInt &AddRHSV = CRHS->getValue();
1190
1191       // Form a mask of all bits from the lowest bit added through the top.
1192       APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
1193
1194       // See if the and mask includes all of these bits.
1195       APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
1196
1197       if (AddRHSHighBits == AddRHSHighBitsAnd) {
1198         // Okay, the xform is safe.  Insert the new add pronto.
1199         Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName());
1200         return BinaryOperator::CreateAnd(NewAdd, C2);
1201       }
1202     }
1203   }
1204
1205   // add (select X 0 (sub n A)) A  -->  select X A n
1206   {
1207     SelectInst *SI = dyn_cast<SelectInst>(LHS);
1208     Value *A = RHS;
1209     if (!SI) {
1210       SI = dyn_cast<SelectInst>(RHS);
1211       A = LHS;
1212     }
1213     if (SI && SI->hasOneUse()) {
1214       Value *TV = SI->getTrueValue();
1215       Value *FV = SI->getFalseValue();
1216       Value *N;
1217
1218       // Can we fold the add into the argument of the select?
1219       // We check both true and false select arguments for a matching subtract.
1220       if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
1221         // Fold the add into the true select value.
1222         return SelectInst::Create(SI->getCondition(), N, A);
1223
1224       if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
1225         // Fold the add into the false select value.
1226         return SelectInst::Create(SI->getCondition(), A, N);
1227     }
1228   }
1229
1230   // Check for (add (sext x), y), see if we can merge this into an
1231   // integer add followed by a sext.
1232   if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
1233     // (add (sext x), cst) --> (sext (add x, cst'))
1234     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
1235       if (LHSConv->hasOneUse()) {
1236         Constant *CI =
1237             ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
1238         if (ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
1239             WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI, I)) {
1240           // Insert the new, smaller add.
1241           Value *NewAdd =
1242               Builder->CreateNSWAdd(LHSConv->getOperand(0), CI, "addconv");
1243           return new SExtInst(NewAdd, I.getType());
1244         }
1245       }
1246     }
1247
1248     // (add (sext x), (sext y)) --> (sext (add int x, y))
1249     if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
1250       // Only do this if x/y have the same type, if at least one of them has a
1251       // single use (so we don't increase the number of sexts), and if the
1252       // integer add will not overflow.
1253       if (LHSConv->getOperand(0)->getType() ==
1254               RHSConv->getOperand(0)->getType() &&
1255           (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1256           WillNotOverflowSignedAdd(LHSConv->getOperand(0),
1257                                    RHSConv->getOperand(0), I)) {
1258         // Insert the new integer add.
1259         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
1260                                              RHSConv->getOperand(0), "addconv");
1261         return new SExtInst(NewAdd, I.getType());
1262       }
1263     }
1264   }
1265
1266   // Check for (add (zext x), y), see if we can merge this into an
1267   // integer add followed by a zext.
1268   if (auto *LHSConv = dyn_cast<ZExtInst>(LHS)) {
1269     // (add (zext x), cst) --> (zext (add x, cst'))
1270     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
1271       if (LHSConv->hasOneUse()) {
1272         Constant *CI =
1273             ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
1274         if (ConstantExpr::getZExt(CI, I.getType()) == RHSC &&
1275             computeOverflowForUnsignedAdd(LHSConv->getOperand(0), CI, &I) ==
1276                 OverflowResult::NeverOverflows) {
1277           // Insert the new, smaller add.
1278           Value *NewAdd =
1279               Builder->CreateNUWAdd(LHSConv->getOperand(0), CI, "addconv");
1280           return new ZExtInst(NewAdd, I.getType());
1281         }
1282       }
1283     }
1284
1285     // (add (zext x), (zext y)) --> (zext (add int x, y))
1286     if (auto *RHSConv = dyn_cast<ZExtInst>(RHS)) {
1287       // Only do this if x/y have the same type, if at least one of them has a
1288       // single use (so we don't increase the number of zexts), and if the
1289       // integer add will not overflow.
1290       if (LHSConv->getOperand(0)->getType() ==
1291               RHSConv->getOperand(0)->getType() &&
1292           (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1293           computeOverflowForUnsignedAdd(LHSConv->getOperand(0),
1294                                         RHSConv->getOperand(0),
1295                                         &I) == OverflowResult::NeverOverflows) {
1296         // Insert the new integer add.
1297         Value *NewAdd = Builder->CreateNUWAdd(
1298             LHSConv->getOperand(0), RHSConv->getOperand(0), "addconv");
1299         return new ZExtInst(NewAdd, I.getType());
1300       }
1301     }
1302   }
1303
1304   // (add (xor A, B) (and A, B)) --> (or A, B)
1305   {
1306     Value *A = nullptr, *B = nullptr;
1307     if (match(RHS, m_Xor(m_Value(A), m_Value(B))) &&
1308         match(LHS, m_c_And(m_Specific(A), m_Specific(B))))
1309       return BinaryOperator::CreateOr(A, B);
1310
1311     if (match(LHS, m_Xor(m_Value(A), m_Value(B))) &&
1312         match(RHS, m_c_And(m_Specific(A), m_Specific(B))))
1313       return BinaryOperator::CreateOr(A, B);
1314   }
1315
1316   // (add (or A, B) (and A, B)) --> (add A, B)
1317   {
1318     Value *A = nullptr, *B = nullptr;
1319     if (match(RHS, m_Or(m_Value(A), m_Value(B))) &&
1320         match(LHS, m_c_And(m_Specific(A), m_Specific(B)))) {
1321       auto *New = BinaryOperator::CreateAdd(A, B);
1322       New->setHasNoSignedWrap(I.hasNoSignedWrap());
1323       New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1324       return New;
1325     }
1326
1327     if (match(LHS, m_Or(m_Value(A), m_Value(B))) &&
1328         match(RHS, m_c_And(m_Specific(A), m_Specific(B)))) {
1329       auto *New = BinaryOperator::CreateAdd(A, B);
1330       New->setHasNoSignedWrap(I.hasNoSignedWrap());
1331       New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1332       return New;
1333     }
1334   }
1335
1336   // TODO(jingyue): Consider WillNotOverflowSignedAdd and
1337   // WillNotOverflowUnsignedAdd to reduce the number of invocations of
1338   // computeKnownBits.
1339   if (!I.hasNoSignedWrap() && WillNotOverflowSignedAdd(LHS, RHS, I)) {
1340     Changed = true;
1341     I.setHasNoSignedWrap(true);
1342   }
1343   if (!I.hasNoUnsignedWrap() &&
1344       computeOverflowForUnsignedAdd(LHS, RHS, &I) ==
1345           OverflowResult::NeverOverflows) {
1346     Changed = true;
1347     I.setHasNoUnsignedWrap(true);
1348   }
1349
1350   return Changed ? &I : nullptr;
1351 }
1352
1353 Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
1354   bool Changed = SimplifyAssociativeOrCommutative(I);
1355   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1356
1357   if (Value *V = SimplifyVectorOp(I))
1358     return replaceInstUsesWith(I, V);
1359
1360   if (Value *V =
1361           SimplifyFAddInst(LHS, RHS, I.getFastMathFlags(), DL, &TLI, &DT, &AC))
1362     return replaceInstUsesWith(I, V);
1363
1364   if (isa<Constant>(RHS))
1365     if (Instruction *FoldedFAdd = foldOpWithConstantIntoOperand(I))
1366       return FoldedFAdd;
1367
1368   // -A + B  -->  B - A
1369   // -A + -B  -->  -(A + B)
1370   if (Value *LHSV = dyn_castFNegVal(LHS)) {
1371     Instruction *RI = BinaryOperator::CreateFSub(RHS, LHSV);
1372     RI->copyFastMathFlags(&I);
1373     return RI;
1374   }
1375
1376   // A + -B  -->  A - B
1377   if (!isa<Constant>(RHS))
1378     if (Value *V = dyn_castFNegVal(RHS)) {
1379       Instruction *RI = BinaryOperator::CreateFSub(LHS, V);
1380       RI->copyFastMathFlags(&I);
1381       return RI;
1382     }
1383
1384   // Check for (fadd double (sitofp x), y), see if we can merge this into an
1385   // integer add followed by a promotion.
1386   if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
1387     Value *LHSIntVal = LHSConv->getOperand(0);
1388
1389     // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
1390     // ... if the constant fits in the integer value.  This is useful for things
1391     // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
1392     // requires a constant pool load, and generally allows the add to be better
1393     // instcombined.
1394     if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
1395       Constant *CI =
1396       ConstantExpr::getFPToSI(CFP, LHSIntVal->getType());
1397       if (LHSConv->hasOneUse() &&
1398           ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
1399           WillNotOverflowSignedAdd(LHSIntVal, CI, I)) {
1400         // Insert the new integer add.
1401         Value *NewAdd = Builder->CreateNSWAdd(LHSIntVal,
1402                                               CI, "addconv");
1403         return new SIToFPInst(NewAdd, I.getType());
1404       }
1405     }
1406
1407     // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
1408     if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
1409       Value *RHSIntVal = RHSConv->getOperand(0);
1410
1411       // Only do this if x/y have the same type, if at least one of them has a
1412       // single use (so we don't increase the number of int->fp conversions),
1413       // and if the integer add will not overflow.
1414       if (LHSIntVal->getType() == RHSIntVal->getType() &&
1415           (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1416           WillNotOverflowSignedAdd(LHSIntVal, RHSIntVal, I)) {
1417         // Insert the new integer add.
1418         Value *NewAdd = Builder->CreateNSWAdd(LHSIntVal,
1419                                               RHSIntVal, "addconv");
1420         return new SIToFPInst(NewAdd, I.getType());
1421       }
1422     }
1423   }
1424
1425   // select C, 0, B + select C, A, 0 -> select C, A, B
1426   {
1427     Value *A1, *B1, *C1, *A2, *B2, *C2;
1428     if (match(LHS, m_Select(m_Value(C1), m_Value(A1), m_Value(B1))) &&
1429         match(RHS, m_Select(m_Value(C2), m_Value(A2), m_Value(B2)))) {
1430       if (C1 == C2) {
1431         Constant *Z1=nullptr, *Z2=nullptr;
1432         Value *A, *B, *C=C1;
1433         if (match(A1, m_AnyZero()) && match(B2, m_AnyZero())) {
1434             Z1 = dyn_cast<Constant>(A1); A = A2;
1435             Z2 = dyn_cast<Constant>(B2); B = B1;
1436         } else if (match(B1, m_AnyZero()) && match(A2, m_AnyZero())) {
1437             Z1 = dyn_cast<Constant>(B1); B = B2;
1438             Z2 = dyn_cast<Constant>(A2); A = A1;
1439         }
1440
1441         if (Z1 && Z2 &&
1442             (I.hasNoSignedZeros() ||
1443              (Z1->isNegativeZeroValue() && Z2->isNegativeZeroValue()))) {
1444           return SelectInst::Create(C, A, B);
1445         }
1446       }
1447     }
1448   }
1449
1450   if (I.hasUnsafeAlgebra()) {
1451     if (Value *V = FAddCombine(Builder).simplify(&I))
1452       return replaceInstUsesWith(I, V);
1453   }
1454
1455   return Changed ? &I : nullptr;
1456 }
1457
1458 /// Optimize pointer differences into the same array into a size.  Consider:
1459 ///  &A[10] - &A[0]: we should compile this to "10".  LHS/RHS are the pointer
1460 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
1461 ///
1462 Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
1463                                                Type *Ty) {
1464   // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
1465   // this.
1466   bool Swapped = false;
1467   GEPOperator *GEP1 = nullptr, *GEP2 = nullptr;
1468
1469   // For now we require one side to be the base pointer "A" or a constant
1470   // GEP derived from it.
1471   if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1472     // (gep X, ...) - X
1473     if (LHSGEP->getOperand(0) == RHS) {
1474       GEP1 = LHSGEP;
1475       Swapped = false;
1476     } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1477       // (gep X, ...) - (gep X, ...)
1478       if (LHSGEP->getOperand(0)->stripPointerCasts() ==
1479             RHSGEP->getOperand(0)->stripPointerCasts()) {
1480         GEP2 = RHSGEP;
1481         GEP1 = LHSGEP;
1482         Swapped = false;
1483       }
1484     }
1485   }
1486
1487   if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1488     // X - (gep X, ...)
1489     if (RHSGEP->getOperand(0) == LHS) {
1490       GEP1 = RHSGEP;
1491       Swapped = true;
1492     } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1493       // (gep X, ...) - (gep X, ...)
1494       if (RHSGEP->getOperand(0)->stripPointerCasts() ==
1495             LHSGEP->getOperand(0)->stripPointerCasts()) {
1496         GEP2 = LHSGEP;
1497         GEP1 = RHSGEP;
1498         Swapped = true;
1499       }
1500     }
1501   }
1502
1503   // Avoid duplicating the arithmetic if GEP2 has non-constant indices and
1504   // multiple users.
1505   if (!GEP1 ||
1506       (GEP2 && !GEP2->hasAllConstantIndices() && !GEP2->hasOneUse()))
1507     return nullptr;
1508
1509   // Emit the offset of the GEP and an intptr_t.
1510   Value *Result = EmitGEPOffset(GEP1);
1511
1512   // If we had a constant expression GEP on the other side offsetting the
1513   // pointer, subtract it from the offset we have.
1514   if (GEP2) {
1515     Value *Offset = EmitGEPOffset(GEP2);
1516     Result = Builder->CreateSub(Result, Offset);
1517   }
1518
1519   // If we have p - gep(p, ...)  then we have to negate the result.
1520   if (Swapped)
1521     Result = Builder->CreateNeg(Result, "diff.neg");
1522
1523   return Builder->CreateIntCast(Result, Ty, true);
1524 }
1525
1526 Instruction *InstCombiner::visitSub(BinaryOperator &I) {
1527   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1528
1529   if (Value *V = SimplifyVectorOp(I))
1530     return replaceInstUsesWith(I, V);
1531
1532   if (Value *V = SimplifySubInst(Op0, Op1, I.hasNoSignedWrap(),
1533                                  I.hasNoUnsignedWrap(), DL, &TLI, &DT, &AC))
1534     return replaceInstUsesWith(I, V);
1535
1536   // (A*B)-(A*C) -> A*(B-C) etc
1537   if (Value *V = SimplifyUsingDistributiveLaws(I))
1538     return replaceInstUsesWith(I, V);
1539
1540   // If this is a 'B = x-(-A)', change to B = x+A.
1541   if (Value *V = dyn_castNegVal(Op1)) {
1542     BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
1543
1544     if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) {
1545       assert(BO->getOpcode() == Instruction::Sub &&
1546              "Expected a subtraction operator!");
1547       if (BO->hasNoSignedWrap() && I.hasNoSignedWrap())
1548         Res->setHasNoSignedWrap(true);
1549     } else {
1550       if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap())
1551         Res->setHasNoSignedWrap(true);
1552     }
1553
1554     return Res;
1555   }
1556
1557   if (I.getType()->getScalarType()->isIntegerTy(1))
1558     return BinaryOperator::CreateXor(Op0, Op1);
1559
1560   // Replace (-1 - A) with (~A).
1561   if (match(Op0, m_AllOnes()))
1562     return BinaryOperator::CreateNot(Op1);
1563
1564   if (Constant *C = dyn_cast<Constant>(Op0)) {
1565     // C - ~X == X + (1+C)
1566     Value *X = nullptr;
1567     if (match(Op1, m_Not(m_Value(X))))
1568       return BinaryOperator::CreateAdd(X, AddOne(C));
1569
1570     // Try to fold constant sub into select arguments.
1571     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1572       if (Instruction *R = FoldOpIntoSelect(I, SI))
1573         return R;
1574
1575     // Try to fold constant sub into PHI values.
1576     if (PHINode *PN = dyn_cast<PHINode>(Op1))
1577       if (Instruction *R = foldOpIntoPhi(I, PN))
1578         return R;
1579
1580     // C-(X+C2) --> (C-C2)-X
1581     Constant *C2;
1582     if (match(Op1, m_Add(m_Value(X), m_Constant(C2))))
1583       return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
1584
1585     // Fold (sub 0, (zext bool to B)) --> (sext bool to B)
1586     if (C->isNullValue() && match(Op1, m_ZExt(m_Value(X))))
1587       if (X->getType()->getScalarType()->isIntegerTy(1))
1588         return CastInst::CreateSExtOrBitCast(X, Op1->getType());
1589
1590     // Fold (sub 0, (sext bool to B)) --> (zext bool to B)
1591     if (C->isNullValue() && match(Op1, m_SExt(m_Value(X))))
1592       if (X->getType()->getScalarType()->isIntegerTy(1))
1593         return CastInst::CreateZExtOrBitCast(X, Op1->getType());
1594   }
1595
1596   const APInt *Op0C;
1597   if (match(Op0, m_APInt(Op0C))) {
1598     unsigned BitWidth = I.getType()->getScalarSizeInBits();
1599
1600     // -(X >>u 31) -> (X >>s 31)
1601     // -(X >>s 31) -> (X >>u 31)
1602     if (*Op0C == 0) {
1603       Value *X;
1604       const APInt *ShAmt;
1605       if (match(Op1, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
1606           *ShAmt == BitWidth - 1) {
1607         Value *ShAmtOp = cast<Instruction>(Op1)->getOperand(1);
1608         return BinaryOperator::CreateAShr(X, ShAmtOp);
1609       }
1610       if (match(Op1, m_AShr(m_Value(X), m_APInt(ShAmt))) &&
1611           *ShAmt == BitWidth - 1) {
1612         Value *ShAmtOp = cast<Instruction>(Op1)->getOperand(1);
1613         return BinaryOperator::CreateLShr(X, ShAmtOp);
1614       }
1615     }
1616
1617     // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
1618     // zero.
1619     if (Op0C->isMask()) {
1620       APInt RHSKnownZero(BitWidth, 0);
1621       APInt RHSKnownOne(BitWidth, 0);
1622       computeKnownBits(Op1, RHSKnownZero, RHSKnownOne, 0, &I);
1623       if ((*Op0C | RHSKnownZero).isAllOnesValue())
1624         return BinaryOperator::CreateXor(Op1, Op0);
1625     }
1626   }
1627
1628   {
1629     Value *Y;
1630     // X-(X+Y) == -Y    X-(Y+X) == -Y
1631     if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y))))
1632       return BinaryOperator::CreateNeg(Y);
1633
1634     // (X-Y)-X == -Y
1635     if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
1636       return BinaryOperator::CreateNeg(Y);
1637   }
1638
1639   // (sub (or A, B) (xor A, B)) --> (and A, B)
1640   {
1641     Value *A, *B;
1642     if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
1643         match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
1644       return BinaryOperator::CreateAnd(A, B);
1645   }
1646
1647   {
1648     Value *Y;
1649     // ((X | Y) - X) --> (~X & Y)
1650     if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1)))))
1651       return BinaryOperator::CreateAnd(
1652           Y, Builder->CreateNot(Op1, Op1->getName() + ".not"));
1653   }
1654
1655   if (Op1->hasOneUse()) {
1656     Value *X = nullptr, *Y = nullptr, *Z = nullptr;
1657     Constant *C = nullptr;
1658
1659     // (X - (Y - Z))  -->  (X + (Z - Y)).
1660     if (match(Op1, m_Sub(m_Value(Y), m_Value(Z))))
1661       return BinaryOperator::CreateAdd(Op0,
1662                                       Builder->CreateSub(Z, Y, Op1->getName()));
1663
1664     // (X - (X & Y))   -->   (X & ~Y)
1665     //
1666     if (match(Op1, m_c_And(m_Value(Y), m_Specific(Op0))))
1667       return BinaryOperator::CreateAnd(Op0,
1668                                   Builder->CreateNot(Y, Y->getName() + ".not"));
1669
1670     // 0 - (X sdiv C)  -> (X sdiv -C)  provided the negation doesn't overflow.
1671     if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) && match(Op0, m_Zero()) &&
1672         C->isNotMinSignedValue() && !C->isOneValue())
1673       return BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(C));
1674
1675     // 0 - (X << Y)  -> (-X << Y)   when X is freely negatable.
1676     if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero()))
1677       if (Value *XNeg = dyn_castNegVal(X))
1678         return BinaryOperator::CreateShl(XNeg, Y);
1679
1680     // Subtracting -1/0 is the same as adding 1/0:
1681     // sub [nsw] Op0, sext(bool Y) -> add [nsw] Op0, zext(bool Y)
1682     // 'nuw' is dropped in favor of the canonical form.
1683     if (match(Op1, m_SExt(m_Value(Y))) &&
1684         Y->getType()->getScalarSizeInBits() == 1) {
1685       Value *Zext = Builder->CreateZExt(Y, I.getType());
1686       BinaryOperator *Add = BinaryOperator::CreateAdd(Op0, Zext);
1687       Add->setHasNoSignedWrap(I.hasNoSignedWrap());
1688       return Add;
1689     }
1690
1691     // X - A*-B -> X + A*B
1692     // X - -A*B -> X + A*B
1693     Value *A, *B;
1694     Constant *CI;
1695     if (match(Op1, m_c_Mul(m_Value(A), m_Neg(m_Value(B)))))
1696       return BinaryOperator::CreateAdd(Op0, Builder->CreateMul(A, B));
1697
1698     // X - A*CI -> X + A*-CI
1699     // No need to handle commuted multiply because multiply handling will
1700     // ensure constant will be move to the right hand side.
1701     if (match(Op1, m_Mul(m_Value(A), m_Constant(CI)))) {
1702       Value *NewMul = Builder->CreateMul(A, ConstantExpr::getNeg(CI));
1703       return BinaryOperator::CreateAdd(Op0, NewMul);
1704     }
1705   }
1706
1707   // Optimize pointer differences into the same array into a size.  Consider:
1708   //  &A[10] - &A[0]: we should compile this to "10".
1709   Value *LHSOp, *RHSOp;
1710   if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
1711       match(Op1, m_PtrToInt(m_Value(RHSOp))))
1712     if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
1713       return replaceInstUsesWith(I, Res);
1714
1715   // trunc(p)-trunc(q) -> trunc(p-q)
1716   if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
1717       match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
1718     if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
1719       return replaceInstUsesWith(I, Res);
1720
1721   bool Changed = false;
1722   if (!I.hasNoSignedWrap() && WillNotOverflowSignedSub(Op0, Op1, I)) {
1723     Changed = true;
1724     I.setHasNoSignedWrap(true);
1725   }
1726   if (!I.hasNoUnsignedWrap() && WillNotOverflowUnsignedSub(Op0, Op1, I)) {
1727     Changed = true;
1728     I.setHasNoUnsignedWrap(true);
1729   }
1730
1731   return Changed ? &I : nullptr;
1732 }
1733
1734 Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
1735   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1736
1737   if (Value *V = SimplifyVectorOp(I))
1738     return replaceInstUsesWith(I, V);
1739
1740   if (Value *V =
1741           SimplifyFSubInst(Op0, Op1, I.getFastMathFlags(), DL, &TLI, &DT, &AC))
1742     return replaceInstUsesWith(I, V);
1743
1744   // fsub nsz 0, X ==> fsub nsz -0.0, X
1745   if (I.getFastMathFlags().noSignedZeros() && match(Op0, m_Zero())) {
1746     // Subtraction from -0.0 is the canonical form of fneg.
1747     Instruction *NewI = BinaryOperator::CreateFNeg(Op1);
1748     NewI->copyFastMathFlags(&I);
1749     return NewI;
1750   }
1751
1752   if (isa<Constant>(Op0))
1753     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1754       if (Instruction *NV = FoldOpIntoSelect(I, SI))
1755         return NV;
1756
1757   // If this is a 'B = x-(-A)', change to B = x+A, potentially looking
1758   // through FP extensions/truncations along the way.
1759   if (Value *V = dyn_castFNegVal(Op1)) {
1760     Instruction *NewI = BinaryOperator::CreateFAdd(Op0, V);
1761     NewI->copyFastMathFlags(&I);
1762     return NewI;
1763   }
1764   if (FPTruncInst *FPTI = dyn_cast<FPTruncInst>(Op1)) {
1765     if (Value *V = dyn_castFNegVal(FPTI->getOperand(0))) {
1766       Value *NewTrunc = Builder->CreateFPTrunc(V, I.getType());
1767       Instruction *NewI = BinaryOperator::CreateFAdd(Op0, NewTrunc);
1768       NewI->copyFastMathFlags(&I);
1769       return NewI;
1770     }
1771   } else if (FPExtInst *FPEI = dyn_cast<FPExtInst>(Op1)) {
1772     if (Value *V = dyn_castFNegVal(FPEI->getOperand(0))) {
1773       Value *NewExt = Builder->CreateFPExt(V, I.getType());
1774       Instruction *NewI = BinaryOperator::CreateFAdd(Op0, NewExt);
1775       NewI->copyFastMathFlags(&I);
1776       return NewI;
1777     }
1778   }
1779
1780   if (I.hasUnsafeAlgebra()) {
1781     if (Value *V = FAddCombine(Builder).simplify(&I))
1782       return replaceInstUsesWith(I, V);
1783   }
1784
1785   return nullptr;
1786 }