]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
Merge clang 7.0.1 and several follow-up changes
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / InstCombine / InstCombineAndOrXor.cpp
1 //===- InstCombineAndOrXor.cpp --------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visitAnd, visitOr, and visitXor functions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombineInternal.h"
15 #include "llvm/Analysis/CmpInstAnalysis.h"
16 #include "llvm/Analysis/InstructionSimplify.h"
17 #include "llvm/Transforms/Utils/Local.h"
18 #include "llvm/IR/ConstantRange.h"
19 #include "llvm/IR/Intrinsics.h"
20 #include "llvm/IR/PatternMatch.h"
21 using namespace llvm;
22 using namespace PatternMatch;
23
24 #define DEBUG_TYPE "instcombine"
25
26 /// Similar to getICmpCode but for FCmpInst. This encodes a fcmp predicate into
27 /// a four bit mask.
28 static unsigned getFCmpCode(FCmpInst::Predicate CC) {
29   assert(FCmpInst::FCMP_FALSE <= CC && CC <= FCmpInst::FCMP_TRUE &&
30          "Unexpected FCmp predicate!");
31   // Take advantage of the bit pattern of FCmpInst::Predicate here.
32   //                                                 U L G E
33   static_assert(FCmpInst::FCMP_FALSE ==  0, "");  // 0 0 0 0
34   static_assert(FCmpInst::FCMP_OEQ   ==  1, "");  // 0 0 0 1
35   static_assert(FCmpInst::FCMP_OGT   ==  2, "");  // 0 0 1 0
36   static_assert(FCmpInst::FCMP_OGE   ==  3, "");  // 0 0 1 1
37   static_assert(FCmpInst::FCMP_OLT   ==  4, "");  // 0 1 0 0
38   static_assert(FCmpInst::FCMP_OLE   ==  5, "");  // 0 1 0 1
39   static_assert(FCmpInst::FCMP_ONE   ==  6, "");  // 0 1 1 0
40   static_assert(FCmpInst::FCMP_ORD   ==  7, "");  // 0 1 1 1
41   static_assert(FCmpInst::FCMP_UNO   ==  8, "");  // 1 0 0 0
42   static_assert(FCmpInst::FCMP_UEQ   ==  9, "");  // 1 0 0 1
43   static_assert(FCmpInst::FCMP_UGT   == 10, "");  // 1 0 1 0
44   static_assert(FCmpInst::FCMP_UGE   == 11, "");  // 1 0 1 1
45   static_assert(FCmpInst::FCMP_ULT   == 12, "");  // 1 1 0 0
46   static_assert(FCmpInst::FCMP_ULE   == 13, "");  // 1 1 0 1
47   static_assert(FCmpInst::FCMP_UNE   == 14, "");  // 1 1 1 0
48   static_assert(FCmpInst::FCMP_TRUE  == 15, "");  // 1 1 1 1
49   return CC;
50 }
51
52 /// This is the complement of getICmpCode, which turns an opcode and two
53 /// operands into either a constant true or false, or a brand new ICmp
54 /// instruction. The sign is passed in to determine which kind of predicate to
55 /// use in the new icmp instruction.
56 static Value *getNewICmpValue(bool Sign, unsigned Code, Value *LHS, Value *RHS,
57                               InstCombiner::BuilderTy &Builder) {
58   ICmpInst::Predicate NewPred;
59   if (Value *NewConstant = getICmpValue(Sign, Code, LHS, RHS, NewPred))
60     return NewConstant;
61   return Builder.CreateICmp(NewPred, LHS, RHS);
62 }
63
64 /// This is the complement of getFCmpCode, which turns an opcode and two
65 /// operands into either a FCmp instruction, or a true/false constant.
66 static Value *getFCmpValue(unsigned Code, Value *LHS, Value *RHS,
67                            InstCombiner::BuilderTy &Builder) {
68   const auto Pred = static_cast<FCmpInst::Predicate>(Code);
69   assert(FCmpInst::FCMP_FALSE <= Pred && Pred <= FCmpInst::FCMP_TRUE &&
70          "Unexpected FCmp predicate!");
71   if (Pred == FCmpInst::FCMP_FALSE)
72     return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
73   if (Pred == FCmpInst::FCMP_TRUE)
74     return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1);
75   return Builder.CreateFCmp(Pred, LHS, RHS);
76 }
77
78 /// Transform BITWISE_OP(BSWAP(A),BSWAP(B)) or
79 /// BITWISE_OP(BSWAP(A), Constant) to BSWAP(BITWISE_OP(A, B))
80 /// \param I Binary operator to transform.
81 /// \return Pointer to node that must replace the original binary operator, or
82 ///         null pointer if no transformation was made.
83 static Value *SimplifyBSwap(BinaryOperator &I,
84                             InstCombiner::BuilderTy &Builder) {
85   assert(I.isBitwiseLogicOp() && "Unexpected opcode for bswap simplifying");
86
87   Value *OldLHS = I.getOperand(0);
88   Value *OldRHS = I.getOperand(1);
89
90   Value *NewLHS;
91   if (!match(OldLHS, m_BSwap(m_Value(NewLHS))))
92     return nullptr;
93
94   Value *NewRHS;
95   const APInt *C;
96
97   if (match(OldRHS, m_BSwap(m_Value(NewRHS)))) {
98     // OP( BSWAP(x), BSWAP(y) ) -> BSWAP( OP(x, y) )
99     if (!OldLHS->hasOneUse() && !OldRHS->hasOneUse())
100       return nullptr;
101     // NewRHS initialized by the matcher.
102   } else if (match(OldRHS, m_APInt(C))) {
103     // OP( BSWAP(x), CONSTANT ) -> BSWAP( OP(x, BSWAP(CONSTANT) ) )
104     if (!OldLHS->hasOneUse())
105       return nullptr;
106     NewRHS = ConstantInt::get(I.getType(), C->byteSwap());
107   } else
108     return nullptr;
109
110   Value *BinOp = Builder.CreateBinOp(I.getOpcode(), NewLHS, NewRHS);
111   Function *F = Intrinsic::getDeclaration(I.getModule(), Intrinsic::bswap,
112                                           I.getType());
113   return Builder.CreateCall(F, BinOp);
114 }
115
116 /// This handles expressions of the form ((val OP C1) & C2).  Where
117 /// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'.
118 Instruction *InstCombiner::OptAndOp(BinaryOperator *Op,
119                                     ConstantInt *OpRHS,
120                                     ConstantInt *AndRHS,
121                                     BinaryOperator &TheAnd) {
122   Value *X = Op->getOperand(0);
123
124   switch (Op->getOpcode()) {
125   default: break;
126   case Instruction::Add:
127     if (Op->hasOneUse()) {
128       // Adding a one to a single bit bit-field should be turned into an XOR
129       // of the bit.  First thing to check is to see if this AND is with a
130       // single bit constant.
131       const APInt &AndRHSV = AndRHS->getValue();
132
133       // If there is only one bit set.
134       if (AndRHSV.isPowerOf2()) {
135         // Ok, at this point, we know that we are masking the result of the
136         // ADD down to exactly one bit.  If the constant we are adding has
137         // no bits set below this bit, then we can eliminate the ADD.
138         const APInt& AddRHS = OpRHS->getValue();
139
140         // Check to see if any bits below the one bit set in AndRHSV are set.
141         if ((AddRHS & (AndRHSV - 1)).isNullValue()) {
142           // If not, the only thing that can effect the output of the AND is
143           // the bit specified by AndRHSV.  If that bit is set, the effect of
144           // the XOR is to toggle the bit.  If it is clear, then the ADD has
145           // no effect.
146           if ((AddRHS & AndRHSV).isNullValue()) { // Bit is not set, noop
147             TheAnd.setOperand(0, X);
148             return &TheAnd;
149           } else {
150             // Pull the XOR out of the AND.
151             Value *NewAnd = Builder.CreateAnd(X, AndRHS);
152             NewAnd->takeName(Op);
153             return BinaryOperator::CreateXor(NewAnd, AndRHS);
154           }
155         }
156       }
157     }
158     break;
159   }
160   return nullptr;
161 }
162
163 /// Emit a computation of: (V >= Lo && V < Hi) if Inside is true, otherwise
164 /// (V < Lo || V >= Hi). This method expects that Lo <= Hi. IsSigned indicates
165 /// whether to treat V, Lo, and Hi as signed or not.
166 Value *InstCombiner::insertRangeTest(Value *V, const APInt &Lo, const APInt &Hi,
167                                      bool isSigned, bool Inside) {
168   assert((isSigned ? Lo.sle(Hi) : Lo.ule(Hi)) &&
169          "Lo is not <= Hi in range emission code!");
170
171   Type *Ty = V->getType();
172   if (Lo == Hi)
173     return Inside ? ConstantInt::getFalse(Ty) : ConstantInt::getTrue(Ty);
174
175   // V >= Min && V <  Hi --> V <  Hi
176   // V <  Min || V >= Hi --> V >= Hi
177   ICmpInst::Predicate Pred = Inside ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE;
178   if (isSigned ? Lo.isMinSignedValue() : Lo.isMinValue()) {
179     Pred = isSigned ? ICmpInst::getSignedPredicate(Pred) : Pred;
180     return Builder.CreateICmp(Pred, V, ConstantInt::get(Ty, Hi));
181   }
182
183   // V >= Lo && V <  Hi --> V - Lo u<  Hi - Lo
184   // V <  Lo || V >= Hi --> V - Lo u>= Hi - Lo
185   Value *VMinusLo =
186       Builder.CreateSub(V, ConstantInt::get(Ty, Lo), V->getName() + ".off");
187   Constant *HiMinusLo = ConstantInt::get(Ty, Hi - Lo);
188   return Builder.CreateICmp(Pred, VMinusLo, HiMinusLo);
189 }
190
191 /// Classify (icmp eq (A & B), C) and (icmp ne (A & B), C) as matching patterns
192 /// that can be simplified.
193 /// One of A and B is considered the mask. The other is the value. This is
194 /// described as the "AMask" or "BMask" part of the enum. If the enum contains
195 /// only "Mask", then both A and B can be considered masks. If A is the mask,
196 /// then it was proven that (A & C) == C. This is trivial if C == A or C == 0.
197 /// If both A and C are constants, this proof is also easy.
198 /// For the following explanations, we assume that A is the mask.
199 ///
200 /// "AllOnes" declares that the comparison is true only if (A & B) == A or all
201 /// bits of A are set in B.
202 ///   Example: (icmp eq (A & 3), 3) -> AMask_AllOnes
203 ///
204 /// "AllZeros" declares that the comparison is true only if (A & B) == 0 or all
205 /// bits of A are cleared in B.
206 ///   Example: (icmp eq (A & 3), 0) -> Mask_AllZeroes
207 ///
208 /// "Mixed" declares that (A & B) == C and C might or might not contain any
209 /// number of one bits and zero bits.
210 ///   Example: (icmp eq (A & 3), 1) -> AMask_Mixed
211 ///
212 /// "Not" means that in above descriptions "==" should be replaced by "!=".
213 ///   Example: (icmp ne (A & 3), 3) -> AMask_NotAllOnes
214 ///
215 /// If the mask A contains a single bit, then the following is equivalent:
216 ///    (icmp eq (A & B), A) equals (icmp ne (A & B), 0)
217 ///    (icmp ne (A & B), A) equals (icmp eq (A & B), 0)
218 enum MaskedICmpType {
219   AMask_AllOnes           =     1,
220   AMask_NotAllOnes        =     2,
221   BMask_AllOnes           =     4,
222   BMask_NotAllOnes        =     8,
223   Mask_AllZeros           =    16,
224   Mask_NotAllZeros        =    32,
225   AMask_Mixed             =    64,
226   AMask_NotMixed          =   128,
227   BMask_Mixed             =   256,
228   BMask_NotMixed          =   512
229 };
230
231 /// Return the set of patterns (from MaskedICmpType) that (icmp SCC (A & B), C)
232 /// satisfies.
233 static unsigned getMaskedICmpType(Value *A, Value *B, Value *C,
234                                   ICmpInst::Predicate Pred) {
235   ConstantInt *ACst = dyn_cast<ConstantInt>(A);
236   ConstantInt *BCst = dyn_cast<ConstantInt>(B);
237   ConstantInt *CCst = dyn_cast<ConstantInt>(C);
238   bool IsEq = (Pred == ICmpInst::ICMP_EQ);
239   bool IsAPow2 = (ACst && !ACst->isZero() && ACst->getValue().isPowerOf2());
240   bool IsBPow2 = (BCst && !BCst->isZero() && BCst->getValue().isPowerOf2());
241   unsigned MaskVal = 0;
242   if (CCst && CCst->isZero()) {
243     // if C is zero, then both A and B qualify as mask
244     MaskVal |= (IsEq ? (Mask_AllZeros | AMask_Mixed | BMask_Mixed)
245                      : (Mask_NotAllZeros | AMask_NotMixed | BMask_NotMixed));
246     if (IsAPow2)
247       MaskVal |= (IsEq ? (AMask_NotAllOnes | AMask_NotMixed)
248                        : (AMask_AllOnes | AMask_Mixed));
249     if (IsBPow2)
250       MaskVal |= (IsEq ? (BMask_NotAllOnes | BMask_NotMixed)
251                        : (BMask_AllOnes | BMask_Mixed));
252     return MaskVal;
253   }
254
255   if (A == C) {
256     MaskVal |= (IsEq ? (AMask_AllOnes | AMask_Mixed)
257                      : (AMask_NotAllOnes | AMask_NotMixed));
258     if (IsAPow2)
259       MaskVal |= (IsEq ? (Mask_NotAllZeros | AMask_NotMixed)
260                        : (Mask_AllZeros | AMask_Mixed));
261   } else if (ACst && CCst && ConstantExpr::getAnd(ACst, CCst) == CCst) {
262     MaskVal |= (IsEq ? AMask_Mixed : AMask_NotMixed);
263   }
264
265   if (B == C) {
266     MaskVal |= (IsEq ? (BMask_AllOnes | BMask_Mixed)
267                      : (BMask_NotAllOnes | BMask_NotMixed));
268     if (IsBPow2)
269       MaskVal |= (IsEq ? (Mask_NotAllZeros | BMask_NotMixed)
270                        : (Mask_AllZeros | BMask_Mixed));
271   } else if (BCst && CCst && ConstantExpr::getAnd(BCst, CCst) == CCst) {
272     MaskVal |= (IsEq ? BMask_Mixed : BMask_NotMixed);
273   }
274
275   return MaskVal;
276 }
277
278 /// Convert an analysis of a masked ICmp into its equivalent if all boolean
279 /// operations had the opposite sense. Since each "NotXXX" flag (recording !=)
280 /// is adjacent to the corresponding normal flag (recording ==), this just
281 /// involves swapping those bits over.
282 static unsigned conjugateICmpMask(unsigned Mask) {
283   unsigned NewMask;
284   NewMask = (Mask & (AMask_AllOnes | BMask_AllOnes | Mask_AllZeros |
285                      AMask_Mixed | BMask_Mixed))
286             << 1;
287
288   NewMask |= (Mask & (AMask_NotAllOnes | BMask_NotAllOnes | Mask_NotAllZeros |
289                       AMask_NotMixed | BMask_NotMixed))
290              >> 1;
291
292   return NewMask;
293 }
294
295 // Adapts the external decomposeBitTestICmp for local use.
296 static bool decomposeBitTestICmp(Value *LHS, Value *RHS, CmpInst::Predicate &Pred,
297                                  Value *&X, Value *&Y, Value *&Z) {
298   APInt Mask;
299   if (!llvm::decomposeBitTestICmp(LHS, RHS, Pred, X, Mask))
300     return false;
301
302   Y = ConstantInt::get(X->getType(), Mask);
303   Z = ConstantInt::get(X->getType(), 0);
304   return true;
305 }
306
307 /// Handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E).
308 /// Return the pattern classes (from MaskedICmpType) for the left hand side and
309 /// the right hand side as a pair.
310 /// LHS and RHS are the left hand side and the right hand side ICmps and PredL
311 /// and PredR are their predicates, respectively.
312 static
313 Optional<std::pair<unsigned, unsigned>>
314 getMaskedTypeForICmpPair(Value *&A, Value *&B, Value *&C,
315                          Value *&D, Value *&E, ICmpInst *LHS,
316                          ICmpInst *RHS,
317                          ICmpInst::Predicate &PredL,
318                          ICmpInst::Predicate &PredR) {
319   // vectors are not (yet?) supported. Don't support pointers either.
320   if (!LHS->getOperand(0)->getType()->isIntegerTy() ||
321       !RHS->getOperand(0)->getType()->isIntegerTy())
322     return None;
323
324   // Here comes the tricky part:
325   // LHS might be of the form L11 & L12 == X, X == L21 & L22,
326   // and L11 & L12 == L21 & L22. The same goes for RHS.
327   // Now we must find those components L** and R**, that are equal, so
328   // that we can extract the parameters A, B, C, D, and E for the canonical
329   // above.
330   Value *L1 = LHS->getOperand(0);
331   Value *L2 = LHS->getOperand(1);
332   Value *L11, *L12, *L21, *L22;
333   // Check whether the icmp can be decomposed into a bit test.
334   if (decomposeBitTestICmp(L1, L2, PredL, L11, L12, L2)) {
335     L21 = L22 = L1 = nullptr;
336   } else {
337     // Look for ANDs in the LHS icmp.
338     if (!match(L1, m_And(m_Value(L11), m_Value(L12)))) {
339       // Any icmp can be viewed as being trivially masked; if it allows us to
340       // remove one, it's worth it.
341       L11 = L1;
342       L12 = Constant::getAllOnesValue(L1->getType());
343     }
344
345     if (!match(L2, m_And(m_Value(L21), m_Value(L22)))) {
346       L21 = L2;
347       L22 = Constant::getAllOnesValue(L2->getType());
348     }
349   }
350
351   // Bail if LHS was a icmp that can't be decomposed into an equality.
352   if (!ICmpInst::isEquality(PredL))
353     return None;
354
355   Value *R1 = RHS->getOperand(0);
356   Value *R2 = RHS->getOperand(1);
357   Value *R11, *R12;
358   bool Ok = false;
359   if (decomposeBitTestICmp(R1, R2, PredR, R11, R12, R2)) {
360     if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
361       A = R11;
362       D = R12;
363     } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
364       A = R12;
365       D = R11;
366     } else {
367       return None;
368     }
369     E = R2;
370     R1 = nullptr;
371     Ok = true;
372   } else {
373     if (!match(R1, m_And(m_Value(R11), m_Value(R12)))) {
374       // As before, model no mask as a trivial mask if it'll let us do an
375       // optimization.
376       R11 = R1;
377       R12 = Constant::getAllOnesValue(R1->getType());
378     }
379
380     if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
381       A = R11;
382       D = R12;
383       E = R2;
384       Ok = true;
385     } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
386       A = R12;
387       D = R11;
388       E = R2;
389       Ok = true;
390     }
391   }
392
393   // Bail if RHS was a icmp that can't be decomposed into an equality.
394   if (!ICmpInst::isEquality(PredR))
395     return None;
396
397   // Look for ANDs on the right side of the RHS icmp.
398   if (!Ok) {
399     if (!match(R2, m_And(m_Value(R11), m_Value(R12)))) {
400       R11 = R2;
401       R12 = Constant::getAllOnesValue(R2->getType());
402     }
403
404     if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
405       A = R11;
406       D = R12;
407       E = R1;
408       Ok = true;
409     } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
410       A = R12;
411       D = R11;
412       E = R1;
413       Ok = true;
414     } else {
415       return None;
416     }
417   }
418   if (!Ok)
419     return None;
420
421   if (L11 == A) {
422     B = L12;
423     C = L2;
424   } else if (L12 == A) {
425     B = L11;
426     C = L2;
427   } else if (L21 == A) {
428     B = L22;
429     C = L1;
430   } else if (L22 == A) {
431     B = L21;
432     C = L1;
433   }
434
435   unsigned LeftType = getMaskedICmpType(A, B, C, PredL);
436   unsigned RightType = getMaskedICmpType(A, D, E, PredR);
437   return Optional<std::pair<unsigned, unsigned>>(std::make_pair(LeftType, RightType));
438 }
439
440 /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) into a single
441 /// (icmp(A & X) ==/!= Y), where the left-hand side is of type Mask_NotAllZeros
442 /// and the right hand side is of type BMask_Mixed. For example,
443 /// (icmp (A & 12) != 0) & (icmp (A & 15) == 8) -> (icmp (A & 15) == 8).
444 static Value * foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
445     ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
446     Value *A, Value *B, Value *C, Value *D, Value *E,
447     ICmpInst::Predicate PredL, ICmpInst::Predicate PredR,
448     llvm::InstCombiner::BuilderTy &Builder) {
449   // We are given the canonical form:
450   //   (icmp ne (A & B), 0) & (icmp eq (A & D), E).
451   // where D & E == E.
452   //
453   // If IsAnd is false, we get it in negated form:
454   //   (icmp eq (A & B), 0) | (icmp ne (A & D), E) ->
455   //      !((icmp ne (A & B), 0) & (icmp eq (A & D), E)).
456   //
457   // We currently handle the case of B, C, D, E are constant.
458   //
459   ConstantInt *BCst = dyn_cast<ConstantInt>(B);
460   if (!BCst)
461     return nullptr;
462   ConstantInt *CCst = dyn_cast<ConstantInt>(C);
463   if (!CCst)
464     return nullptr;
465   ConstantInt *DCst = dyn_cast<ConstantInt>(D);
466   if (!DCst)
467     return nullptr;
468   ConstantInt *ECst = dyn_cast<ConstantInt>(E);
469   if (!ECst)
470     return nullptr;
471
472   ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
473
474   // Update E to the canonical form when D is a power of two and RHS is
475   // canonicalized as,
476   // (icmp ne (A & D), 0) -> (icmp eq (A & D), D) or
477   // (icmp ne (A & D), D) -> (icmp eq (A & D), 0).
478   if (PredR != NewCC)
479     ECst = cast<ConstantInt>(ConstantExpr::getXor(DCst, ECst));
480
481   // If B or D is zero, skip because if LHS or RHS can be trivially folded by
482   // other folding rules and this pattern won't apply any more.
483   if (BCst->getValue() == 0 || DCst->getValue() == 0)
484     return nullptr;
485
486   // If B and D don't intersect, ie. (B & D) == 0, no folding because we can't
487   // deduce anything from it.
488   // For example,
489   // (icmp ne (A & 12), 0) & (icmp eq (A & 3), 1) -> no folding.
490   if ((BCst->getValue() & DCst->getValue()) == 0)
491     return nullptr;
492
493   // If the following two conditions are met:
494   //
495   // 1. mask B covers only a single bit that's not covered by mask D, that is,
496   // (B & (B ^ D)) is a power of 2 (in other words, B minus the intersection of
497   // B and D has only one bit set) and,
498   //
499   // 2. RHS (and E) indicates that the rest of B's bits are zero (in other
500   // words, the intersection of B and D is zero), that is, ((B & D) & E) == 0
501   //
502   // then that single bit in B must be one and thus the whole expression can be
503   // folded to
504   //   (A & (B | D)) == (B & (B ^ D)) | E.
505   //
506   // For example,
507   // (icmp ne (A & 12), 0) & (icmp eq (A & 7), 1) -> (icmp eq (A & 15), 9)
508   // (icmp ne (A & 15), 0) & (icmp eq (A & 7), 0) -> (icmp eq (A & 15), 8)
509   if ((((BCst->getValue() & DCst->getValue()) & ECst->getValue()) == 0) &&
510       (BCst->getValue() & (BCst->getValue() ^ DCst->getValue())).isPowerOf2()) {
511     APInt BorD = BCst->getValue() | DCst->getValue();
512     APInt BandBxorDorE = (BCst->getValue() & (BCst->getValue() ^ DCst->getValue())) |
513         ECst->getValue();
514     Value *NewMask = ConstantInt::get(BCst->getType(), BorD);
515     Value *NewMaskedValue = ConstantInt::get(BCst->getType(), BandBxorDorE);
516     Value *NewAnd = Builder.CreateAnd(A, NewMask);
517     return Builder.CreateICmp(NewCC, NewAnd, NewMaskedValue);
518   }
519
520   auto IsSubSetOrEqual = [](ConstantInt *C1, ConstantInt *C2) {
521     return (C1->getValue() & C2->getValue()) == C1->getValue();
522   };
523   auto IsSuperSetOrEqual = [](ConstantInt *C1, ConstantInt *C2) {
524     return (C1->getValue() & C2->getValue()) == C2->getValue();
525   };
526
527   // In the following, we consider only the cases where B is a superset of D, B
528   // is a subset of D, or B == D because otherwise there's at least one bit
529   // covered by B but not D, in which case we can't deduce much from it, so
530   // no folding (aside from the single must-be-one bit case right above.)
531   // For example,
532   // (icmp ne (A & 14), 0) & (icmp eq (A & 3), 1) -> no folding.
533   if (!IsSubSetOrEqual(BCst, DCst) && !IsSuperSetOrEqual(BCst, DCst))
534     return nullptr;
535
536   // At this point, either B is a superset of D, B is a subset of D or B == D.
537
538   // If E is zero, if B is a subset of (or equal to) D, LHS and RHS contradict
539   // and the whole expression becomes false (or true if negated), otherwise, no
540   // folding.
541   // For example,
542   // (icmp ne (A & 3), 0) & (icmp eq (A & 7), 0) -> false.
543   // (icmp ne (A & 15), 0) & (icmp eq (A & 3), 0) -> no folding.
544   if (ECst->isZero()) {
545     if (IsSubSetOrEqual(BCst, DCst))
546       return ConstantInt::get(LHS->getType(), !IsAnd);
547     return nullptr;
548   }
549
550   // At this point, B, D, E aren't zero and (B & D) == B, (B & D) == D or B ==
551   // D. If B is a superset of (or equal to) D, since E is not zero, LHS is
552   // subsumed by RHS (RHS implies LHS.) So the whole expression becomes
553   // RHS. For example,
554   // (icmp ne (A & 255), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
555   // (icmp ne (A & 15), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
556   if (IsSuperSetOrEqual(BCst, DCst))
557     return RHS;
558   // Otherwise, B is a subset of D. If B and E have a common bit set,
559   // ie. (B & E) != 0, then LHS is subsumed by RHS. For example.
560   // (icmp ne (A & 12), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
561   assert(IsSubSetOrEqual(BCst, DCst) && "Precondition due to above code");
562   if ((BCst->getValue() & ECst->getValue()) != 0)
563     return RHS;
564   // Otherwise, LHS and RHS contradict and the whole expression becomes false
565   // (or true if negated.) For example,
566   // (icmp ne (A & 7), 0) & (icmp eq (A & 15), 8) -> false.
567   // (icmp ne (A & 6), 0) & (icmp eq (A & 15), 8) -> false.
568   return ConstantInt::get(LHS->getType(), !IsAnd);
569 }
570
571 /// Try to fold (icmp(A & B) ==/!= 0) &/| (icmp(A & D) ==/!= E) into a single
572 /// (icmp(A & X) ==/!= Y), where the left-hand side and the right hand side
573 /// aren't of the common mask pattern type.
574 static Value *foldLogOpOfMaskedICmpsAsymmetric(
575     ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
576     Value *A, Value *B, Value *C, Value *D, Value *E,
577     ICmpInst::Predicate PredL, ICmpInst::Predicate PredR,
578     unsigned LHSMask, unsigned RHSMask,
579     llvm::InstCombiner::BuilderTy &Builder) {
580   assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) &&
581          "Expected equality predicates for masked type of icmps.");
582   // Handle Mask_NotAllZeros-BMask_Mixed cases.
583   // (icmp ne/eq (A & B), C) &/| (icmp eq/ne (A & D), E), or
584   // (icmp eq/ne (A & B), C) &/| (icmp ne/eq (A & D), E)
585   //    which gets swapped to
586   //    (icmp ne/eq (A & D), E) &/| (icmp eq/ne (A & B), C).
587   if (!IsAnd) {
588     LHSMask = conjugateICmpMask(LHSMask);
589     RHSMask = conjugateICmpMask(RHSMask);
590   }
591   if ((LHSMask & Mask_NotAllZeros) && (RHSMask & BMask_Mixed)) {
592     if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
593             LHS, RHS, IsAnd, A, B, C, D, E,
594             PredL, PredR, Builder)) {
595       return V;
596     }
597   } else if ((LHSMask & BMask_Mixed) && (RHSMask & Mask_NotAllZeros)) {
598     if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
599             RHS, LHS, IsAnd, A, D, E, B, C,
600             PredR, PredL, Builder)) {
601       return V;
602     }
603   }
604   return nullptr;
605 }
606
607 /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
608 /// into a single (icmp(A & X) ==/!= Y).
609 static Value *foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
610                                      llvm::InstCombiner::BuilderTy &Builder) {
611   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr;
612   ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
613   Optional<std::pair<unsigned, unsigned>> MaskPair =
614       getMaskedTypeForICmpPair(A, B, C, D, E, LHS, RHS, PredL, PredR);
615   if (!MaskPair)
616     return nullptr;
617   assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) &&
618          "Expected equality predicates for masked type of icmps.");
619   unsigned LHSMask = MaskPair->first;
620   unsigned RHSMask = MaskPair->second;
621   unsigned Mask = LHSMask & RHSMask;
622   if (Mask == 0) {
623     // Even if the two sides don't share a common pattern, check if folding can
624     // still happen.
625     if (Value *V = foldLogOpOfMaskedICmpsAsymmetric(
626             LHS, RHS, IsAnd, A, B, C, D, E, PredL, PredR, LHSMask, RHSMask,
627             Builder))
628       return V;
629     return nullptr;
630   }
631
632   // In full generality:
633   //     (icmp (A & B) Op C) | (icmp (A & D) Op E)
634   // ==  ![ (icmp (A & B) !Op C) & (icmp (A & D) !Op E) ]
635   //
636   // If the latter can be converted into (icmp (A & X) Op Y) then the former is
637   // equivalent to (icmp (A & X) !Op Y).
638   //
639   // Therefore, we can pretend for the rest of this function that we're dealing
640   // with the conjunction, provided we flip the sense of any comparisons (both
641   // input and output).
642
643   // In most cases we're going to produce an EQ for the "&&" case.
644   ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
645   if (!IsAnd) {
646     // Convert the masking analysis into its equivalent with negated
647     // comparisons.
648     Mask = conjugateICmpMask(Mask);
649   }
650
651   if (Mask & Mask_AllZeros) {
652     // (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
653     // -> (icmp eq (A & (B|D)), 0)
654     Value *NewOr = Builder.CreateOr(B, D);
655     Value *NewAnd = Builder.CreateAnd(A, NewOr);
656     // We can't use C as zero because we might actually handle
657     //   (icmp ne (A & B), B) & (icmp ne (A & D), D)
658     // with B and D, having a single bit set.
659     Value *Zero = Constant::getNullValue(A->getType());
660     return Builder.CreateICmp(NewCC, NewAnd, Zero);
661   }
662   if (Mask & BMask_AllOnes) {
663     // (icmp eq (A & B), B) & (icmp eq (A & D), D)
664     // -> (icmp eq (A & (B|D)), (B|D))
665     Value *NewOr = Builder.CreateOr(B, D);
666     Value *NewAnd = Builder.CreateAnd(A, NewOr);
667     return Builder.CreateICmp(NewCC, NewAnd, NewOr);
668   }
669   if (Mask & AMask_AllOnes) {
670     // (icmp eq (A & B), A) & (icmp eq (A & D), A)
671     // -> (icmp eq (A & (B&D)), A)
672     Value *NewAnd1 = Builder.CreateAnd(B, D);
673     Value *NewAnd2 = Builder.CreateAnd(A, NewAnd1);
674     return Builder.CreateICmp(NewCC, NewAnd2, A);
675   }
676
677   // Remaining cases assume at least that B and D are constant, and depend on
678   // their actual values. This isn't strictly necessary, just a "handle the
679   // easy cases for now" decision.
680   ConstantInt *BCst = dyn_cast<ConstantInt>(B);
681   if (!BCst)
682     return nullptr;
683   ConstantInt *DCst = dyn_cast<ConstantInt>(D);
684   if (!DCst)
685     return nullptr;
686
687   if (Mask & (Mask_NotAllZeros | BMask_NotAllOnes)) {
688     // (icmp ne (A & B), 0) & (icmp ne (A & D), 0) and
689     // (icmp ne (A & B), B) & (icmp ne (A & D), D)
690     //     -> (icmp ne (A & B), 0) or (icmp ne (A & D), 0)
691     // Only valid if one of the masks is a superset of the other (check "B&D" is
692     // the same as either B or D).
693     APInt NewMask = BCst->getValue() & DCst->getValue();
694
695     if (NewMask == BCst->getValue())
696       return LHS;
697     else if (NewMask == DCst->getValue())
698       return RHS;
699   }
700
701   if (Mask & AMask_NotAllOnes) {
702     // (icmp ne (A & B), B) & (icmp ne (A & D), D)
703     //     -> (icmp ne (A & B), A) or (icmp ne (A & D), A)
704     // Only valid if one of the masks is a superset of the other (check "B|D" is
705     // the same as either B or D).
706     APInt NewMask = BCst->getValue() | DCst->getValue();
707
708     if (NewMask == BCst->getValue())
709       return LHS;
710     else if (NewMask == DCst->getValue())
711       return RHS;
712   }
713
714   if (Mask & BMask_Mixed) {
715     // (icmp eq (A & B), C) & (icmp eq (A & D), E)
716     // We already know that B & C == C && D & E == E.
717     // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of
718     // C and E, which are shared by both the mask B and the mask D, don't
719     // contradict, then we can transform to
720     // -> (icmp eq (A & (B|D)), (C|E))
721     // Currently, we only handle the case of B, C, D, and E being constant.
722     // We can't simply use C and E because we might actually handle
723     //   (icmp ne (A & B), B) & (icmp eq (A & D), D)
724     // with B and D, having a single bit set.
725     ConstantInt *CCst = dyn_cast<ConstantInt>(C);
726     if (!CCst)
727       return nullptr;
728     ConstantInt *ECst = dyn_cast<ConstantInt>(E);
729     if (!ECst)
730       return nullptr;
731     if (PredL != NewCC)
732       CCst = cast<ConstantInt>(ConstantExpr::getXor(BCst, CCst));
733     if (PredR != NewCC)
734       ECst = cast<ConstantInt>(ConstantExpr::getXor(DCst, ECst));
735
736     // If there is a conflict, we should actually return a false for the
737     // whole construct.
738     if (((BCst->getValue() & DCst->getValue()) &
739          (CCst->getValue() ^ ECst->getValue())).getBoolValue())
740       return ConstantInt::get(LHS->getType(), !IsAnd);
741
742     Value *NewOr1 = Builder.CreateOr(B, D);
743     Value *NewOr2 = ConstantExpr::getOr(CCst, ECst);
744     Value *NewAnd = Builder.CreateAnd(A, NewOr1);
745     return Builder.CreateICmp(NewCC, NewAnd, NewOr2);
746   }
747
748   return nullptr;
749 }
750
751 /// Try to fold a signed range checked with lower bound 0 to an unsigned icmp.
752 /// Example: (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
753 /// If \p Inverted is true then the check is for the inverted range, e.g.
754 /// (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
755 Value *InstCombiner::simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1,
756                                         bool Inverted) {
757   // Check the lower range comparison, e.g. x >= 0
758   // InstCombine already ensured that if there is a constant it's on the RHS.
759   ConstantInt *RangeStart = dyn_cast<ConstantInt>(Cmp0->getOperand(1));
760   if (!RangeStart)
761     return nullptr;
762
763   ICmpInst::Predicate Pred0 = (Inverted ? Cmp0->getInversePredicate() :
764                                Cmp0->getPredicate());
765
766   // Accept x > -1 or x >= 0 (after potentially inverting the predicate).
767   if (!((Pred0 == ICmpInst::ICMP_SGT && RangeStart->isMinusOne()) ||
768         (Pred0 == ICmpInst::ICMP_SGE && RangeStart->isZero())))
769     return nullptr;
770
771   ICmpInst::Predicate Pred1 = (Inverted ? Cmp1->getInversePredicate() :
772                                Cmp1->getPredicate());
773
774   Value *Input = Cmp0->getOperand(0);
775   Value *RangeEnd;
776   if (Cmp1->getOperand(0) == Input) {
777     // For the upper range compare we have: icmp x, n
778     RangeEnd = Cmp1->getOperand(1);
779   } else if (Cmp1->getOperand(1) == Input) {
780     // For the upper range compare we have: icmp n, x
781     RangeEnd = Cmp1->getOperand(0);
782     Pred1 = ICmpInst::getSwappedPredicate(Pred1);
783   } else {
784     return nullptr;
785   }
786
787   // Check the upper range comparison, e.g. x < n
788   ICmpInst::Predicate NewPred;
789   switch (Pred1) {
790     case ICmpInst::ICMP_SLT: NewPred = ICmpInst::ICMP_ULT; break;
791     case ICmpInst::ICMP_SLE: NewPred = ICmpInst::ICMP_ULE; break;
792     default: return nullptr;
793   }
794
795   // This simplification is only valid if the upper range is not negative.
796   KnownBits Known = computeKnownBits(RangeEnd, /*Depth=*/0, Cmp1);
797   if (!Known.isNonNegative())
798     return nullptr;
799
800   if (Inverted)
801     NewPred = ICmpInst::getInversePredicate(NewPred);
802
803   return Builder.CreateICmp(NewPred, Input, RangeEnd);
804 }
805
806 static Value *
807 foldAndOrOfEqualityCmpsWithConstants(ICmpInst *LHS, ICmpInst *RHS,
808                                      bool JoinedByAnd,
809                                      InstCombiner::BuilderTy &Builder) {
810   Value *X = LHS->getOperand(0);
811   if (X != RHS->getOperand(0))
812     return nullptr;
813
814   const APInt *C1, *C2;
815   if (!match(LHS->getOperand(1), m_APInt(C1)) ||
816       !match(RHS->getOperand(1), m_APInt(C2)))
817     return nullptr;
818
819   // We only handle (X != C1 && X != C2) and (X == C1 || X == C2).
820   ICmpInst::Predicate Pred = LHS->getPredicate();
821   if (Pred !=  RHS->getPredicate())
822     return nullptr;
823   if (JoinedByAnd && Pred != ICmpInst::ICMP_NE)
824     return nullptr;
825   if (!JoinedByAnd && Pred != ICmpInst::ICMP_EQ)
826     return nullptr;
827
828   // The larger unsigned constant goes on the right.
829   if (C1->ugt(*C2))
830     std::swap(C1, C2);
831
832   APInt Xor = *C1 ^ *C2;
833   if (Xor.isPowerOf2()) {
834     // If LHSC and RHSC differ by only one bit, then set that bit in X and
835     // compare against the larger constant:
836     // (X == C1 || X == C2) --> (X | (C1 ^ C2)) == C2
837     // (X != C1 && X != C2) --> (X | (C1 ^ C2)) != C2
838     // We choose an 'or' with a Pow2 constant rather than the inverse mask with
839     // 'and' because that may lead to smaller codegen from a smaller constant.
840     Value *Or = Builder.CreateOr(X, ConstantInt::get(X->getType(), Xor));
841     return Builder.CreateICmp(Pred, Or, ConstantInt::get(X->getType(), *C2));
842   }
843
844   // Special case: get the ordering right when the values wrap around zero.
845   // Ie, we assumed the constants were unsigned when swapping earlier.
846   if (C1->isNullValue() && C2->isAllOnesValue())
847     std::swap(C1, C2);
848
849   if (*C1 == *C2 - 1) {
850     // (X == 13 || X == 14) --> X - 13 <=u 1
851     // (X != 13 && X != 14) --> X - 13  >u 1
852     // An 'add' is the canonical IR form, so favor that over a 'sub'.
853     Value *Add = Builder.CreateAdd(X, ConstantInt::get(X->getType(), -(*C1)));
854     auto NewPred = JoinedByAnd ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_ULE;
855     return Builder.CreateICmp(NewPred, Add, ConstantInt::get(X->getType(), 1));
856   }
857
858   return nullptr;
859 }
860
861 // Fold (iszero(A & K1) | iszero(A & K2)) -> (A & (K1 | K2)) != (K1 | K2)
862 // Fold (!iszero(A & K1) & !iszero(A & K2)) -> (A & (K1 | K2)) == (K1 | K2)
863 Value *InstCombiner::foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS, ICmpInst *RHS,
864                                                    bool JoinedByAnd,
865                                                    Instruction &CxtI) {
866   ICmpInst::Predicate Pred = LHS->getPredicate();
867   if (Pred != RHS->getPredicate())
868     return nullptr;
869   if (JoinedByAnd && Pred != ICmpInst::ICMP_NE)
870     return nullptr;
871   if (!JoinedByAnd && Pred != ICmpInst::ICMP_EQ)
872     return nullptr;
873
874   // TODO support vector splats
875   ConstantInt *LHSC = dyn_cast<ConstantInt>(LHS->getOperand(1));
876   ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS->getOperand(1));
877   if (!LHSC || !RHSC || !LHSC->isZero() || !RHSC->isZero())
878     return nullptr;
879
880   Value *A, *B, *C, *D;
881   if (match(LHS->getOperand(0), m_And(m_Value(A), m_Value(B))) &&
882       match(RHS->getOperand(0), m_And(m_Value(C), m_Value(D)))) {
883     if (A == D || B == D)
884       std::swap(C, D);
885     if (B == C)
886       std::swap(A, B);
887
888     if (A == C &&
889         isKnownToBeAPowerOfTwo(B, false, 0, &CxtI) &&
890         isKnownToBeAPowerOfTwo(D, false, 0, &CxtI)) {
891       Value *Mask = Builder.CreateOr(B, D);
892       Value *Masked = Builder.CreateAnd(A, Mask);
893       auto NewPred = JoinedByAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
894       return Builder.CreateICmp(NewPred, Masked, Mask);
895     }
896   }
897
898   return nullptr;
899 }
900
901 /// Fold (icmp)&(icmp) if possible.
902 Value *InstCombiner::foldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS,
903                                     Instruction &CxtI) {
904   // Fold (!iszero(A & K1) & !iszero(A & K2)) ->  (A & (K1 | K2)) == (K1 | K2)
905   // if K1 and K2 are a one-bit mask.
906   if (Value *V = foldAndOrOfICmpsOfAndWithPow2(LHS, RHS, true, CxtI))
907     return V;
908
909   ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
910
911   // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
912   if (PredicatesFoldable(PredL, PredR)) {
913     if (LHS->getOperand(0) == RHS->getOperand(1) &&
914         LHS->getOperand(1) == RHS->getOperand(0))
915       LHS->swapOperands();
916     if (LHS->getOperand(0) == RHS->getOperand(0) &&
917         LHS->getOperand(1) == RHS->getOperand(1)) {
918       Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
919       unsigned Code = getICmpCode(LHS) & getICmpCode(RHS);
920       bool isSigned = LHS->isSigned() || RHS->isSigned();
921       return getNewICmpValue(isSigned, Code, Op0, Op1, Builder);
922     }
923   }
924
925   // handle (roughly):  (icmp eq (A & B), C) & (icmp eq (A & D), E)
926   if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, true, Builder))
927     return V;
928
929   // E.g. (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
930   if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/false))
931     return V;
932
933   // E.g. (icmp slt x, n) & (icmp sge x, 0) --> icmp ult x, n
934   if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/false))
935     return V;
936
937   if (Value *V = foldAndOrOfEqualityCmpsWithConstants(LHS, RHS, true, Builder))
938     return V;
939
940   // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
941   Value *LHS0 = LHS->getOperand(0), *RHS0 = RHS->getOperand(0);
942   ConstantInt *LHSC = dyn_cast<ConstantInt>(LHS->getOperand(1));
943   ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS->getOperand(1));
944   if (!LHSC || !RHSC)
945     return nullptr;
946
947   if (LHSC == RHSC && PredL == PredR) {
948     // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
949     // where C is a power of 2 or
950     // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
951     if ((PredL == ICmpInst::ICMP_ULT && LHSC->getValue().isPowerOf2()) ||
952         (PredL == ICmpInst::ICMP_EQ && LHSC->isZero())) {
953       Value *NewOr = Builder.CreateOr(LHS0, RHS0);
954       return Builder.CreateICmp(PredL, NewOr, LHSC);
955     }
956   }
957
958   // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2
959   // where CMAX is the all ones value for the truncated type,
960   // iff the lower bits of C2 and CA are zero.
961   if (PredL == ICmpInst::ICMP_EQ && PredL == PredR && LHS->hasOneUse() &&
962       RHS->hasOneUse()) {
963     Value *V;
964     ConstantInt *AndC, *SmallC = nullptr, *BigC = nullptr;
965
966     // (trunc x) == C1 & (and x, CA) == C2
967     // (and x, CA) == C2 & (trunc x) == C1
968     if (match(RHS0, m_Trunc(m_Value(V))) &&
969         match(LHS0, m_And(m_Specific(V), m_ConstantInt(AndC)))) {
970       SmallC = RHSC;
971       BigC = LHSC;
972     } else if (match(LHS0, m_Trunc(m_Value(V))) &&
973                match(RHS0, m_And(m_Specific(V), m_ConstantInt(AndC)))) {
974       SmallC = LHSC;
975       BigC = RHSC;
976     }
977
978     if (SmallC && BigC) {
979       unsigned BigBitSize = BigC->getType()->getBitWidth();
980       unsigned SmallBitSize = SmallC->getType()->getBitWidth();
981
982       // Check that the low bits are zero.
983       APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize);
984       if ((Low & AndC->getValue()).isNullValue() &&
985           (Low & BigC->getValue()).isNullValue()) {
986         Value *NewAnd = Builder.CreateAnd(V, Low | AndC->getValue());
987         APInt N = SmallC->getValue().zext(BigBitSize) | BigC->getValue();
988         Value *NewVal = ConstantInt::get(AndC->getType()->getContext(), N);
989         return Builder.CreateICmp(PredL, NewAnd, NewVal);
990       }
991     }
992   }
993
994   // From here on, we only handle:
995   //    (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
996   if (LHS0 != RHS0)
997     return nullptr;
998
999   // ICMP_[US][GL]E X, C is folded to ICMP_[US][GL]T elsewhere.
1000   if (PredL == ICmpInst::ICMP_UGE || PredL == ICmpInst::ICMP_ULE ||
1001       PredR == ICmpInst::ICMP_UGE || PredR == ICmpInst::ICMP_ULE ||
1002       PredL == ICmpInst::ICMP_SGE || PredL == ICmpInst::ICMP_SLE ||
1003       PredR == ICmpInst::ICMP_SGE || PredR == ICmpInst::ICMP_SLE)
1004     return nullptr;
1005
1006   // We can't fold (ugt x, C) & (sgt x, C2).
1007   if (!PredicatesFoldable(PredL, PredR))
1008     return nullptr;
1009
1010   // Ensure that the larger constant is on the RHS.
1011   bool ShouldSwap;
1012   if (CmpInst::isSigned(PredL) ||
1013       (ICmpInst::isEquality(PredL) && CmpInst::isSigned(PredR)))
1014     ShouldSwap = LHSC->getValue().sgt(RHSC->getValue());
1015   else
1016     ShouldSwap = LHSC->getValue().ugt(RHSC->getValue());
1017
1018   if (ShouldSwap) {
1019     std::swap(LHS, RHS);
1020     std::swap(LHSC, RHSC);
1021     std::swap(PredL, PredR);
1022   }
1023
1024   // At this point, we know we have two icmp instructions
1025   // comparing a value against two constants and and'ing the result
1026   // together.  Because of the above check, we know that we only have
1027   // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
1028   // (from the icmp folding check above), that the two constants
1029   // are not equal and that the larger constant is on the RHS
1030   assert(LHSC != RHSC && "Compares not folded above?");
1031
1032   switch (PredL) {
1033   default:
1034     llvm_unreachable("Unknown integer condition code!");
1035   case ICmpInst::ICMP_NE:
1036     switch (PredR) {
1037     default:
1038       llvm_unreachable("Unknown integer condition code!");
1039     case ICmpInst::ICMP_ULT:
1040       if (LHSC == SubOne(RHSC)) // (X != 13 & X u< 14) -> X < 13
1041         return Builder.CreateICmpULT(LHS0, LHSC);
1042       if (LHSC->isZero()) // (X !=  0 & X u< 14) -> X-1 u< 13
1043         return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(),
1044                                false, true);
1045       break; // (X != 13 & X u< 15) -> no change
1046     case ICmpInst::ICMP_SLT:
1047       if (LHSC == SubOne(RHSC)) // (X != 13 & X s< 14) -> X < 13
1048         return Builder.CreateICmpSLT(LHS0, LHSC);
1049       break;                 // (X != 13 & X s< 15) -> no change
1050     case ICmpInst::ICMP_NE:
1051       // Potential folds for this case should already be handled.
1052       break;
1053     }
1054     break;
1055   case ICmpInst::ICMP_UGT:
1056     switch (PredR) {
1057     default:
1058       llvm_unreachable("Unknown integer condition code!");
1059     case ICmpInst::ICMP_NE:
1060       if (RHSC == AddOne(LHSC)) // (X u> 13 & X != 14) -> X u> 14
1061         return Builder.CreateICmp(PredL, LHS0, RHSC);
1062       break;                 // (X u> 13 & X != 15) -> no change
1063     case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) -> (X-14) <u 1
1064       return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(),
1065                              false, true);
1066     }
1067     break;
1068   case ICmpInst::ICMP_SGT:
1069     switch (PredR) {
1070     default:
1071       llvm_unreachable("Unknown integer condition code!");
1072     case ICmpInst::ICMP_NE:
1073       if (RHSC == AddOne(LHSC)) // (X s> 13 & X != 14) -> X s> 14
1074         return Builder.CreateICmp(PredL, LHS0, RHSC);
1075       break;                 // (X s> 13 & X != 15) -> no change
1076     case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) -> (X-14) s< 1
1077       return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(), true,
1078                              true);
1079     }
1080     break;
1081   }
1082
1083   return nullptr;
1084 }
1085
1086 Value *InstCombiner::foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) {
1087   Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
1088   Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
1089   FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1090
1091   if (LHS0 == RHS1 && RHS0 == LHS1) {
1092     // Swap RHS operands to match LHS.
1093     PredR = FCmpInst::getSwappedPredicate(PredR);
1094     std::swap(RHS0, RHS1);
1095   }
1096
1097   // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
1098   // Suppose the relation between x and y is R, where R is one of
1099   // U(1000), L(0100), G(0010) or E(0001), and CC0 and CC1 are the bitmasks for
1100   // testing the desired relations.
1101   //
1102   // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this:
1103   //    bool(R & CC0) && bool(R & CC1)
1104   //  = bool((R & CC0) & (R & CC1))
1105   //  = bool(R & (CC0 & CC1)) <= by re-association, commutation, and idempotency
1106   //
1107   // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this:
1108   //    bool(R & CC0) || bool(R & CC1)
1109   //  = bool((R & CC0) | (R & CC1))
1110   //  = bool(R & (CC0 | CC1)) <= by reversed distribution (contribution? ;)
1111   if (LHS0 == RHS0 && LHS1 == RHS1) {
1112     unsigned FCmpCodeL = getFCmpCode(PredL);
1113     unsigned FCmpCodeR = getFCmpCode(PredR);
1114     unsigned NewPred = IsAnd ? FCmpCodeL & FCmpCodeR : FCmpCodeL | FCmpCodeR;
1115     return getFCmpValue(NewPred, LHS0, LHS1, Builder);
1116   }
1117
1118   if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
1119       (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) {
1120     if (LHS0->getType() != RHS0->getType())
1121       return nullptr;
1122
1123     // FCmp canonicalization ensures that (fcmp ord/uno X, X) and
1124     // (fcmp ord/uno X, C) will be transformed to (fcmp X, +0.0).
1125     if (match(LHS1, m_PosZeroFP()) && match(RHS1, m_PosZeroFP()))
1126       // Ignore the constants because they are obviously not NANs:
1127       // (fcmp ord x, 0.0) & (fcmp ord y, 0.0)  -> (fcmp ord x, y)
1128       // (fcmp uno x, 0.0) | (fcmp uno y, 0.0)  -> (fcmp uno x, y)
1129       return Builder.CreateFCmp(PredL, LHS0, RHS0);
1130   }
1131
1132   return nullptr;
1133 }
1134
1135 /// Match De Morgan's Laws:
1136 /// (~A & ~B) == (~(A | B))
1137 /// (~A | ~B) == (~(A & B))
1138 static Instruction *matchDeMorgansLaws(BinaryOperator &I,
1139                                        InstCombiner::BuilderTy &Builder) {
1140   auto Opcode = I.getOpcode();
1141   assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
1142          "Trying to match De Morgan's Laws with something other than and/or");
1143
1144   // Flip the logic operation.
1145   Opcode = (Opcode == Instruction::And) ? Instruction::Or : Instruction::And;
1146
1147   Value *A, *B;
1148   if (match(I.getOperand(0), m_OneUse(m_Not(m_Value(A)))) &&
1149       match(I.getOperand(1), m_OneUse(m_Not(m_Value(B)))) &&
1150       !IsFreeToInvert(A, A->hasOneUse()) &&
1151       !IsFreeToInvert(B, B->hasOneUse())) {
1152     Value *AndOr = Builder.CreateBinOp(Opcode, A, B, I.getName() + ".demorgan");
1153     return BinaryOperator::CreateNot(AndOr);
1154   }
1155
1156   return nullptr;
1157 }
1158
1159 bool InstCombiner::shouldOptimizeCast(CastInst *CI) {
1160   Value *CastSrc = CI->getOperand(0);
1161
1162   // Noop casts and casts of constants should be eliminated trivially.
1163   if (CI->getSrcTy() == CI->getDestTy() || isa<Constant>(CastSrc))
1164     return false;
1165
1166   // If this cast is paired with another cast that can be eliminated, we prefer
1167   // to have it eliminated.
1168   if (const auto *PrecedingCI = dyn_cast<CastInst>(CastSrc))
1169     if (isEliminableCastPair(PrecedingCI, CI))
1170       return false;
1171
1172   return true;
1173 }
1174
1175 /// Fold {and,or,xor} (cast X), C.
1176 static Instruction *foldLogicCastConstant(BinaryOperator &Logic, CastInst *Cast,
1177                                           InstCombiner::BuilderTy &Builder) {
1178   Constant *C = dyn_cast<Constant>(Logic.getOperand(1));
1179   if (!C)
1180     return nullptr;
1181
1182   auto LogicOpc = Logic.getOpcode();
1183   Type *DestTy = Logic.getType();
1184   Type *SrcTy = Cast->getSrcTy();
1185
1186   // Move the logic operation ahead of a zext or sext if the constant is
1187   // unchanged in the smaller source type. Performing the logic in a smaller
1188   // type may provide more information to later folds, and the smaller logic
1189   // instruction may be cheaper (particularly in the case of vectors).
1190   Value *X;
1191   if (match(Cast, m_OneUse(m_ZExt(m_Value(X))))) {
1192     Constant *TruncC = ConstantExpr::getTrunc(C, SrcTy);
1193     Constant *ZextTruncC = ConstantExpr::getZExt(TruncC, DestTy);
1194     if (ZextTruncC == C) {
1195       // LogicOpc (zext X), C --> zext (LogicOpc X, C)
1196       Value *NewOp = Builder.CreateBinOp(LogicOpc, X, TruncC);
1197       return new ZExtInst(NewOp, DestTy);
1198     }
1199   }
1200
1201   if (match(Cast, m_OneUse(m_SExt(m_Value(X))))) {
1202     Constant *TruncC = ConstantExpr::getTrunc(C, SrcTy);
1203     Constant *SextTruncC = ConstantExpr::getSExt(TruncC, DestTy);
1204     if (SextTruncC == C) {
1205       // LogicOpc (sext X), C --> sext (LogicOpc X, C)
1206       Value *NewOp = Builder.CreateBinOp(LogicOpc, X, TruncC);
1207       return new SExtInst(NewOp, DestTy);
1208     }
1209   }
1210
1211   return nullptr;
1212 }
1213
1214 /// Fold {and,or,xor} (cast X), Y.
1215 Instruction *InstCombiner::foldCastedBitwiseLogic(BinaryOperator &I) {
1216   auto LogicOpc = I.getOpcode();
1217   assert(I.isBitwiseLogicOp() && "Unexpected opcode for bitwise logic folding");
1218
1219   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1220   CastInst *Cast0 = dyn_cast<CastInst>(Op0);
1221   if (!Cast0)
1222     return nullptr;
1223
1224   // This must be a cast from an integer or integer vector source type to allow
1225   // transformation of the logic operation to the source type.
1226   Type *DestTy = I.getType();
1227   Type *SrcTy = Cast0->getSrcTy();
1228   if (!SrcTy->isIntOrIntVectorTy())
1229     return nullptr;
1230
1231   if (Instruction *Ret = foldLogicCastConstant(I, Cast0, Builder))
1232     return Ret;
1233
1234   CastInst *Cast1 = dyn_cast<CastInst>(Op1);
1235   if (!Cast1)
1236     return nullptr;
1237
1238   // Both operands of the logic operation are casts. The casts must be of the
1239   // same type for reduction.
1240   auto CastOpcode = Cast0->getOpcode();
1241   if (CastOpcode != Cast1->getOpcode() || SrcTy != Cast1->getSrcTy())
1242     return nullptr;
1243
1244   Value *Cast0Src = Cast0->getOperand(0);
1245   Value *Cast1Src = Cast1->getOperand(0);
1246
1247   // fold logic(cast(A), cast(B)) -> cast(logic(A, B))
1248   if (shouldOptimizeCast(Cast0) && shouldOptimizeCast(Cast1)) {
1249     Value *NewOp = Builder.CreateBinOp(LogicOpc, Cast0Src, Cast1Src,
1250                                         I.getName());
1251     return CastInst::Create(CastOpcode, NewOp, DestTy);
1252   }
1253
1254   // For now, only 'and'/'or' have optimizations after this.
1255   if (LogicOpc == Instruction::Xor)
1256     return nullptr;
1257
1258   // If this is logic(cast(icmp), cast(icmp)), try to fold this even if the
1259   // cast is otherwise not optimizable.  This happens for vector sexts.
1260   ICmpInst *ICmp0 = dyn_cast<ICmpInst>(Cast0Src);
1261   ICmpInst *ICmp1 = dyn_cast<ICmpInst>(Cast1Src);
1262   if (ICmp0 && ICmp1) {
1263     Value *Res = LogicOpc == Instruction::And ? foldAndOfICmps(ICmp0, ICmp1, I)
1264                                               : foldOrOfICmps(ICmp0, ICmp1, I);
1265     if (Res)
1266       return CastInst::Create(CastOpcode, Res, DestTy);
1267     return nullptr;
1268   }
1269
1270   // If this is logic(cast(fcmp), cast(fcmp)), try to fold this even if the
1271   // cast is otherwise not optimizable.  This happens for vector sexts.
1272   FCmpInst *FCmp0 = dyn_cast<FCmpInst>(Cast0Src);
1273   FCmpInst *FCmp1 = dyn_cast<FCmpInst>(Cast1Src);
1274   if (FCmp0 && FCmp1)
1275     if (Value *R = foldLogicOfFCmps(FCmp0, FCmp1, LogicOpc == Instruction::And))
1276       return CastInst::Create(CastOpcode, R, DestTy);
1277
1278   return nullptr;
1279 }
1280
1281 static Instruction *foldAndToXor(BinaryOperator &I,
1282                                  InstCombiner::BuilderTy &Builder) {
1283   assert(I.getOpcode() == Instruction::And);
1284   Value *Op0 = I.getOperand(0);
1285   Value *Op1 = I.getOperand(1);
1286   Value *A, *B;
1287
1288   // Operand complexity canonicalization guarantees that the 'or' is Op0.
1289   // (A | B) & ~(A & B) --> A ^ B
1290   // (A | B) & ~(B & A) --> A ^ B
1291   if (match(&I, m_BinOp(m_Or(m_Value(A), m_Value(B)),
1292                         m_Not(m_c_And(m_Deferred(A), m_Deferred(B))))))
1293     return BinaryOperator::CreateXor(A, B);
1294
1295   // (A | ~B) & (~A | B) --> ~(A ^ B)
1296   // (A | ~B) & (B | ~A) --> ~(A ^ B)
1297   // (~B | A) & (~A | B) --> ~(A ^ B)
1298   // (~B | A) & (B | ~A) --> ~(A ^ B)
1299   if (Op0->hasOneUse() || Op1->hasOneUse())
1300     if (match(&I, m_BinOp(m_c_Or(m_Value(A), m_Not(m_Value(B))),
1301                           m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B)))))
1302       return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
1303
1304   return nullptr;
1305 }
1306
1307 static Instruction *foldOrToXor(BinaryOperator &I,
1308                                 InstCombiner::BuilderTy &Builder) {
1309   assert(I.getOpcode() == Instruction::Or);
1310   Value *Op0 = I.getOperand(0);
1311   Value *Op1 = I.getOperand(1);
1312   Value *A, *B;
1313
1314   // Operand complexity canonicalization guarantees that the 'and' is Op0.
1315   // (A & B) | ~(A | B) --> ~(A ^ B)
1316   // (A & B) | ~(B | A) --> ~(A ^ B)
1317   if (Op0->hasOneUse() || Op1->hasOneUse())
1318     if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1319         match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
1320       return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
1321
1322   // (A & ~B) | (~A & B) --> A ^ B
1323   // (A & ~B) | (B & ~A) --> A ^ B
1324   // (~B & A) | (~A & B) --> A ^ B
1325   // (~B & A) | (B & ~A) --> A ^ B
1326   if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
1327       match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))
1328     return BinaryOperator::CreateXor(A, B);
1329
1330   return nullptr;
1331 }
1332
1333 /// Return true if a constant shift amount is always less than the specified
1334 /// bit-width. If not, the shift could create poison in the narrower type.
1335 static bool canNarrowShiftAmt(Constant *C, unsigned BitWidth) {
1336   if (auto *ScalarC = dyn_cast<ConstantInt>(C))
1337     return ScalarC->getZExtValue() < BitWidth;
1338
1339   if (C->getType()->isVectorTy()) {
1340     // Check each element of a constant vector.
1341     unsigned NumElts = C->getType()->getVectorNumElements();
1342     for (unsigned i = 0; i != NumElts; ++i) {
1343       Constant *Elt = C->getAggregateElement(i);
1344       if (!Elt)
1345         return false;
1346       if (isa<UndefValue>(Elt))
1347         continue;
1348       auto *CI = dyn_cast<ConstantInt>(Elt);
1349       if (!CI || CI->getZExtValue() >= BitWidth)
1350         return false;
1351     }
1352     return true;
1353   }
1354
1355   // The constant is a constant expression or unknown.
1356   return false;
1357 }
1358
1359 /// Try to use narrower ops (sink zext ops) for an 'and' with binop operand and
1360 /// a common zext operand: and (binop (zext X), C), (zext X).
1361 Instruction *InstCombiner::narrowMaskedBinOp(BinaryOperator &And) {
1362   // This transform could also apply to {or, and, xor}, but there are better
1363   // folds for those cases, so we don't expect those patterns here. AShr is not
1364   // handled because it should always be transformed to LShr in this sequence.
1365   // The subtract transform is different because it has a constant on the left.
1366   // Add/mul commute the constant to RHS; sub with constant RHS becomes add.
1367   Value *Op0 = And.getOperand(0), *Op1 = And.getOperand(1);
1368   Constant *C;
1369   if (!match(Op0, m_OneUse(m_Add(m_Specific(Op1), m_Constant(C)))) &&
1370       !match(Op0, m_OneUse(m_Mul(m_Specific(Op1), m_Constant(C)))) &&
1371       !match(Op0, m_OneUse(m_LShr(m_Specific(Op1), m_Constant(C)))) &&
1372       !match(Op0, m_OneUse(m_Shl(m_Specific(Op1), m_Constant(C)))) &&
1373       !match(Op0, m_OneUse(m_Sub(m_Constant(C), m_Specific(Op1)))))
1374     return nullptr;
1375
1376   Value *X;
1377   if (!match(Op1, m_ZExt(m_Value(X))) || Op1->hasNUsesOrMore(3))
1378     return nullptr;
1379
1380   Type *Ty = And.getType();
1381   if (!isa<VectorType>(Ty) && !shouldChangeType(Ty, X->getType()))
1382     return nullptr;
1383
1384   // If we're narrowing a shift, the shift amount must be safe (less than the
1385   // width) in the narrower type. If the shift amount is greater, instsimplify
1386   // usually handles that case, but we can't guarantee/assert it.
1387   Instruction::BinaryOps Opc = cast<BinaryOperator>(Op0)->getOpcode();
1388   if (Opc == Instruction::LShr || Opc == Instruction::Shl)
1389     if (!canNarrowShiftAmt(C, X->getType()->getScalarSizeInBits()))
1390       return nullptr;
1391
1392   // and (sub C, (zext X)), (zext X) --> zext (and (sub C', X), X)
1393   // and (binop (zext X), C), (zext X) --> zext (and (binop X, C'), X)
1394   Value *NewC = ConstantExpr::getTrunc(C, X->getType());
1395   Value *NewBO = Opc == Instruction::Sub ? Builder.CreateBinOp(Opc, NewC, X)
1396                                          : Builder.CreateBinOp(Opc, X, NewC);
1397   return new ZExtInst(Builder.CreateAnd(NewBO, X), Ty);
1398 }
1399
1400 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
1401 // here. We should standardize that construct where it is needed or choose some
1402 // other way to ensure that commutated variants of patterns are not missed.
1403 Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
1404   if (Value *V = SimplifyAndInst(I.getOperand(0), I.getOperand(1),
1405                                  SQ.getWithInstruction(&I)))
1406     return replaceInstUsesWith(I, V);
1407
1408   if (SimplifyAssociativeOrCommutative(I))
1409     return &I;
1410
1411   if (Instruction *X = foldShuffledBinop(I))
1412     return X;
1413
1414   // See if we can simplify any instructions used by the instruction whose sole
1415   // purpose is to compute bits we don't care about.
1416   if (SimplifyDemandedInstructionBits(I))
1417     return &I;
1418
1419   // Do this before using distributive laws to catch simple and/or/not patterns.
1420   if (Instruction *Xor = foldAndToXor(I, Builder))
1421     return Xor;
1422
1423   // (A|B)&(A|C) -> A|(B&C) etc
1424   if (Value *V = SimplifyUsingDistributiveLaws(I))
1425     return replaceInstUsesWith(I, V);
1426
1427   if (Value *V = SimplifyBSwap(I, Builder))
1428     return replaceInstUsesWith(I, V);
1429
1430   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1431   const APInt *C;
1432   if (match(Op1, m_APInt(C))) {
1433     Value *X, *Y;
1434     if (match(Op0, m_OneUse(m_LogicalShift(m_One(), m_Value(X)))) &&
1435         C->isOneValue()) {
1436       // (1 << X) & 1 --> zext(X == 0)
1437       // (1 >> X) & 1 --> zext(X == 0)
1438       Value *IsZero = Builder.CreateICmpEQ(X, ConstantInt::get(I.getType(), 0));
1439       return new ZExtInst(IsZero, I.getType());
1440     }
1441
1442     const APInt *XorC;
1443     if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_APInt(XorC))))) {
1444       // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
1445       Constant *NewC = ConstantInt::get(I.getType(), *C & *XorC);
1446       Value *And = Builder.CreateAnd(X, Op1);
1447       And->takeName(Op0);
1448       return BinaryOperator::CreateXor(And, NewC);
1449     }
1450
1451     const APInt *OrC;
1452     if (match(Op0, m_OneUse(m_Or(m_Value(X), m_APInt(OrC))))) {
1453       // (X | C1) & C2 --> (X & C2^(C1&C2)) | (C1&C2)
1454       // NOTE: This reduces the number of bits set in the & mask, which
1455       // can expose opportunities for store narrowing for scalars.
1456       // NOTE: SimplifyDemandedBits should have already removed bits from C1
1457       // that aren't set in C2. Meaning we can replace (C1&C2) with C1 in
1458       // above, but this feels safer.
1459       APInt Together = *C & *OrC;
1460       Value *And = Builder.CreateAnd(X, ConstantInt::get(I.getType(),
1461                                                          Together ^ *C));
1462       And->takeName(Op0);
1463       return BinaryOperator::CreateOr(And, ConstantInt::get(I.getType(),
1464                                                             Together));
1465     }
1466
1467     // If the mask is only needed on one incoming arm, push the 'and' op up.
1468     if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_Value(Y)))) ||
1469         match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
1470       APInt NotAndMask(~(*C));
1471       BinaryOperator::BinaryOps BinOp = cast<BinaryOperator>(Op0)->getOpcode();
1472       if (MaskedValueIsZero(X, NotAndMask, 0, &I)) {
1473         // Not masking anything out for the LHS, move mask to RHS.
1474         // and ({x}or X, Y), C --> {x}or X, (and Y, C)
1475         Value *NewRHS = Builder.CreateAnd(Y, Op1, Y->getName() + ".masked");
1476         return BinaryOperator::Create(BinOp, X, NewRHS);
1477       }
1478       if (!isa<Constant>(Y) && MaskedValueIsZero(Y, NotAndMask, 0, &I)) {
1479         // Not masking anything out for the RHS, move mask to LHS.
1480         // and ({x}or X, Y), C --> {x}or (and X, C), Y
1481         Value *NewLHS = Builder.CreateAnd(X, Op1, X->getName() + ".masked");
1482         return BinaryOperator::Create(BinOp, NewLHS, Y);
1483       }
1484     }
1485
1486   }
1487
1488   if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
1489     const APInt &AndRHSMask = AndRHS->getValue();
1490
1491     // Optimize a variety of ((val OP C1) & C2) combinations...
1492     if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
1493       // ((C1 OP zext(X)) & C2) -> zext((C1-X) & C2) if C2 fits in the bitwidth
1494       // of X and OP behaves well when given trunc(C1) and X.
1495       switch (Op0I->getOpcode()) {
1496       default:
1497         break;
1498       case Instruction::Xor:
1499       case Instruction::Or:
1500       case Instruction::Mul:
1501       case Instruction::Add:
1502       case Instruction::Sub:
1503         Value *X;
1504         ConstantInt *C1;
1505         if (match(Op0I, m_c_BinOp(m_ZExt(m_Value(X)), m_ConstantInt(C1)))) {
1506           if (AndRHSMask.isIntN(X->getType()->getScalarSizeInBits())) {
1507             auto *TruncC1 = ConstantExpr::getTrunc(C1, X->getType());
1508             Value *BinOp;
1509             Value *Op0LHS = Op0I->getOperand(0);
1510             if (isa<ZExtInst>(Op0LHS))
1511               BinOp = Builder.CreateBinOp(Op0I->getOpcode(), X, TruncC1);
1512             else
1513               BinOp = Builder.CreateBinOp(Op0I->getOpcode(), TruncC1, X);
1514             auto *TruncC2 = ConstantExpr::getTrunc(AndRHS, X->getType());
1515             auto *And = Builder.CreateAnd(BinOp, TruncC2);
1516             return new ZExtInst(And, I.getType());
1517           }
1518         }
1519       }
1520
1521       if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
1522         if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
1523           return Res;
1524     }
1525
1526     // If this is an integer truncation, and if the source is an 'and' with
1527     // immediate, transform it.  This frequently occurs for bitfield accesses.
1528     {
1529       Value *X = nullptr; ConstantInt *YC = nullptr;
1530       if (match(Op0, m_Trunc(m_And(m_Value(X), m_ConstantInt(YC))))) {
1531         // Change: and (trunc (and X, YC) to T), C2
1532         // into  : and (trunc X to T), trunc(YC) & C2
1533         // This will fold the two constants together, which may allow
1534         // other simplifications.
1535         Value *NewCast = Builder.CreateTrunc(X, I.getType(), "and.shrunk");
1536         Constant *C3 = ConstantExpr::getTrunc(YC, I.getType());
1537         C3 = ConstantExpr::getAnd(C3, AndRHS);
1538         return BinaryOperator::CreateAnd(NewCast, C3);
1539       }
1540     }
1541   }
1542
1543   if (Instruction *Z = narrowMaskedBinOp(I))
1544     return Z;
1545
1546   if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
1547     return FoldedLogic;
1548
1549   if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder))
1550     return DeMorgan;
1551
1552   {
1553     Value *A, *B, *C;
1554     // A & (A ^ B) --> A & ~B
1555     if (match(Op1, m_OneUse(m_c_Xor(m_Specific(Op0), m_Value(B)))))
1556       return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(B));
1557     // (A ^ B) & A --> A & ~B
1558     if (match(Op0, m_OneUse(m_c_Xor(m_Specific(Op1), m_Value(B)))))
1559       return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(B));
1560
1561     // (A ^ B) & ((B ^ C) ^ A) -> (A ^ B) & ~C
1562     if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
1563       if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A))))
1564         if (Op1->hasOneUse() || IsFreeToInvert(C, C->hasOneUse()))
1565           return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(C));
1566
1567     // ((A ^ C) ^ B) & (B ^ A) -> (B ^ A) & ~C
1568     if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))))
1569       if (match(Op1, m_Xor(m_Specific(B), m_Specific(A))))
1570         if (Op0->hasOneUse() || IsFreeToInvert(C, C->hasOneUse()))
1571           return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(C));
1572
1573     // (A | B) & ((~A) ^ B) -> (A & B)
1574     // (A | B) & (B ^ (~A)) -> (A & B)
1575     // (B | A) & ((~A) ^ B) -> (A & B)
1576     // (B | A) & (B ^ (~A)) -> (A & B)
1577     if (match(Op1, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
1578         match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
1579       return BinaryOperator::CreateAnd(A, B);
1580
1581     // ((~A) ^ B) & (A | B) -> (A & B)
1582     // ((~A) ^ B) & (B | A) -> (A & B)
1583     // (B ^ (~A)) & (A | B) -> (A & B)
1584     // (B ^ (~A)) & (B | A) -> (A & B)
1585     if (match(Op0, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
1586         match(Op1, m_c_Or(m_Specific(A), m_Specific(B))))
1587       return BinaryOperator::CreateAnd(A, B);
1588   }
1589
1590   {
1591     ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
1592     ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
1593     if (LHS && RHS)
1594       if (Value *Res = foldAndOfICmps(LHS, RHS, I))
1595         return replaceInstUsesWith(I, Res);
1596
1597     // TODO: Make this recursive; it's a little tricky because an arbitrary
1598     // number of 'and' instructions might have to be created.
1599     Value *X, *Y;
1600     if (LHS && match(Op1, m_OneUse(m_And(m_Value(X), m_Value(Y))))) {
1601       if (auto *Cmp = dyn_cast<ICmpInst>(X))
1602         if (Value *Res = foldAndOfICmps(LHS, Cmp, I))
1603           return replaceInstUsesWith(I, Builder.CreateAnd(Res, Y));
1604       if (auto *Cmp = dyn_cast<ICmpInst>(Y))
1605         if (Value *Res = foldAndOfICmps(LHS, Cmp, I))
1606           return replaceInstUsesWith(I, Builder.CreateAnd(Res, X));
1607     }
1608     if (RHS && match(Op0, m_OneUse(m_And(m_Value(X), m_Value(Y))))) {
1609       if (auto *Cmp = dyn_cast<ICmpInst>(X))
1610         if (Value *Res = foldAndOfICmps(Cmp, RHS, I))
1611           return replaceInstUsesWith(I, Builder.CreateAnd(Res, Y));
1612       if (auto *Cmp = dyn_cast<ICmpInst>(Y))
1613         if (Value *Res = foldAndOfICmps(Cmp, RHS, I))
1614           return replaceInstUsesWith(I, Builder.CreateAnd(Res, X));
1615     }
1616   }
1617
1618   if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
1619     if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
1620       if (Value *Res = foldLogicOfFCmps(LHS, RHS, true))
1621         return replaceInstUsesWith(I, Res);
1622
1623   if (Instruction *CastedAnd = foldCastedBitwiseLogic(I))
1624     return CastedAnd;
1625
1626   // and(sext(A), B) / and(B, sext(A)) --> A ? B : 0, where A is i1 or <N x i1>.
1627   Value *A;
1628   if (match(Op0, m_OneUse(m_SExt(m_Value(A)))) &&
1629       A->getType()->isIntOrIntVectorTy(1))
1630     return SelectInst::Create(A, Op1, Constant::getNullValue(I.getType()));
1631   if (match(Op1, m_OneUse(m_SExt(m_Value(A)))) &&
1632       A->getType()->isIntOrIntVectorTy(1))
1633     return SelectInst::Create(A, Op0, Constant::getNullValue(I.getType()));
1634
1635   return nullptr;
1636 }
1637
1638 /// Given an OR instruction, check to see if this is a bswap idiom. If so,
1639 /// insert the new intrinsic and return it.
1640 Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
1641   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1642
1643   // Look through zero extends.
1644   if (Instruction *Ext = dyn_cast<ZExtInst>(Op0))
1645     Op0 = Ext->getOperand(0);
1646
1647   if (Instruction *Ext = dyn_cast<ZExtInst>(Op1))
1648     Op1 = Ext->getOperand(0);
1649
1650   // (A | B) | C  and  A | (B | C)                  -> bswap if possible.
1651   bool OrOfOrs = match(Op0, m_Or(m_Value(), m_Value())) ||
1652                  match(Op1, m_Or(m_Value(), m_Value()));
1653
1654   // (A >> B) | (C << D)  and  (A << B) | (B >> C)  -> bswap if possible.
1655   bool OrOfShifts = match(Op0, m_LogicalShift(m_Value(), m_Value())) &&
1656                     match(Op1, m_LogicalShift(m_Value(), m_Value()));
1657
1658   // (A & B) | (C & D)                              -> bswap if possible.
1659   bool OrOfAnds = match(Op0, m_And(m_Value(), m_Value())) &&
1660                   match(Op1, m_And(m_Value(), m_Value()));
1661
1662   // (A << B) | (C & D)                              -> bswap if possible.
1663   // The bigger pattern here is ((A & C1) << C2) | ((B >> C2) & C1), which is a
1664   // part of the bswap idiom for specific values of C1, C2 (e.g. C1 = 16711935,
1665   // C2 = 8 for i32).
1666   // This pattern can occur when the operands of the 'or' are not canonicalized
1667   // for some reason (not having only one use, for example).
1668   bool OrOfAndAndSh = (match(Op0, m_LogicalShift(m_Value(), m_Value())) &&
1669                        match(Op1, m_And(m_Value(), m_Value()))) ||
1670                       (match(Op0, m_And(m_Value(), m_Value())) &&
1671                        match(Op1, m_LogicalShift(m_Value(), m_Value())));
1672
1673   if (!OrOfOrs && !OrOfShifts && !OrOfAnds && !OrOfAndAndSh)
1674     return nullptr;
1675
1676   SmallVector<Instruction*, 4> Insts;
1677   if (!recognizeBSwapOrBitReverseIdiom(&I, true, false, Insts))
1678     return nullptr;
1679   Instruction *LastInst = Insts.pop_back_val();
1680   LastInst->removeFromParent();
1681
1682   for (auto *Inst : Insts)
1683     Worklist.Add(Inst);
1684   return LastInst;
1685 }
1686
1687 /// If all elements of two constant vectors are 0/-1 and inverses, return true.
1688 static bool areInverseVectorBitmasks(Constant *C1, Constant *C2) {
1689   unsigned NumElts = C1->getType()->getVectorNumElements();
1690   for (unsigned i = 0; i != NumElts; ++i) {
1691     Constant *EltC1 = C1->getAggregateElement(i);
1692     Constant *EltC2 = C2->getAggregateElement(i);
1693     if (!EltC1 || !EltC2)
1694       return false;
1695
1696     // One element must be all ones, and the other must be all zeros.
1697     if (!((match(EltC1, m_Zero()) && match(EltC2, m_AllOnes())) ||
1698           (match(EltC2, m_Zero()) && match(EltC1, m_AllOnes()))))
1699       return false;
1700   }
1701   return true;
1702 }
1703
1704 /// We have an expression of the form (A & C) | (B & D). If A is a scalar or
1705 /// vector composed of all-zeros or all-ones values and is the bitwise 'not' of
1706 /// B, it can be used as the condition operand of a select instruction.
1707 static Value *getSelectCondition(Value *A, Value *B,
1708                                  InstCombiner::BuilderTy &Builder) {
1709   // If these are scalars or vectors of i1, A can be used directly.
1710   Type *Ty = A->getType();
1711   if (match(A, m_Not(m_Specific(B))) && Ty->isIntOrIntVectorTy(1))
1712     return A;
1713
1714   // If A and B are sign-extended, look through the sexts to find the booleans.
1715   Value *Cond;
1716   Value *NotB;
1717   if (match(A, m_SExt(m_Value(Cond))) &&
1718       Cond->getType()->isIntOrIntVectorTy(1) &&
1719       match(B, m_OneUse(m_Not(m_Value(NotB))))) {
1720     NotB = peekThroughBitcast(NotB, true);
1721     if (match(NotB, m_SExt(m_Specific(Cond))))
1722       return Cond;
1723   }
1724
1725   // All scalar (and most vector) possibilities should be handled now.
1726   // Try more matches that only apply to non-splat constant vectors.
1727   if (!Ty->isVectorTy())
1728     return nullptr;
1729
1730   // If both operands are constants, see if the constants are inverse bitmasks.
1731   Constant *AC, *BC;
1732   if (match(A, m_Constant(AC)) && match(B, m_Constant(BC)) &&
1733       areInverseVectorBitmasks(AC, BC)) {
1734     return Builder.CreateZExtOrTrunc(AC, CmpInst::makeCmpResultType(Ty));
1735   }
1736
1737   // If both operands are xor'd with constants using the same sexted boolean
1738   // operand, see if the constants are inverse bitmasks.
1739   if (match(A, (m_Xor(m_SExt(m_Value(Cond)), m_Constant(AC)))) &&
1740       match(B, (m_Xor(m_SExt(m_Specific(Cond)), m_Constant(BC)))) &&
1741       Cond->getType()->isIntOrIntVectorTy(1) &&
1742       areInverseVectorBitmasks(AC, BC)) {
1743     AC = ConstantExpr::getTrunc(AC, CmpInst::makeCmpResultType(Ty));
1744     return Builder.CreateXor(Cond, AC);
1745   }
1746   return nullptr;
1747 }
1748
1749 /// We have an expression of the form (A & C) | (B & D). Try to simplify this
1750 /// to "A' ? C : D", where A' is a boolean or vector of booleans.
1751 static Value *matchSelectFromAndOr(Value *A, Value *C, Value *B, Value *D,
1752                                    InstCombiner::BuilderTy &Builder) {
1753   // The potential condition of the select may be bitcasted. In that case, look
1754   // through its bitcast and the corresponding bitcast of the 'not' condition.
1755   Type *OrigType = A->getType();
1756   A = peekThroughBitcast(A, true);
1757   B = peekThroughBitcast(B, true);
1758
1759   if (Value *Cond = getSelectCondition(A, B, Builder)) {
1760     // ((bc Cond) & C) | ((bc ~Cond) & D) --> bc (select Cond, (bc C), (bc D))
1761     // The bitcasts will either all exist or all not exist. The builder will
1762     // not create unnecessary casts if the types already match.
1763     Value *BitcastC = Builder.CreateBitCast(C, A->getType());
1764     Value *BitcastD = Builder.CreateBitCast(D, A->getType());
1765     Value *Select = Builder.CreateSelect(Cond, BitcastC, BitcastD);
1766     return Builder.CreateBitCast(Select, OrigType);
1767   }
1768
1769   return nullptr;
1770 }
1771
1772 /// Fold (icmp)|(icmp) if possible.
1773 Value *InstCombiner::foldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS,
1774                                    Instruction &CxtI) {
1775   // Fold (iszero(A & K1) | iszero(A & K2)) ->  (A & (K1 | K2)) != (K1 | K2)
1776   // if K1 and K2 are a one-bit mask.
1777   if (Value *V = foldAndOrOfICmpsOfAndWithPow2(LHS, RHS, false, CxtI))
1778     return V;
1779
1780   ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1781
1782   ConstantInt *LHSC = dyn_cast<ConstantInt>(LHS->getOperand(1));
1783   ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS->getOperand(1));
1784
1785   // Fold (icmp ult/ule (A + C1), C3) | (icmp ult/ule (A + C2), C3)
1786   //                   -->  (icmp ult/ule ((A & ~(C1 ^ C2)) + max(C1, C2)), C3)
1787   // The original condition actually refers to the following two ranges:
1788   // [MAX_UINT-C1+1, MAX_UINT-C1+1+C3] and [MAX_UINT-C2+1, MAX_UINT-C2+1+C3]
1789   // We can fold these two ranges if:
1790   // 1) C1 and C2 is unsigned greater than C3.
1791   // 2) The two ranges are separated.
1792   // 3) C1 ^ C2 is one-bit mask.
1793   // 4) LowRange1 ^ LowRange2 and HighRange1 ^ HighRange2 are one-bit mask.
1794   // This implies all values in the two ranges differ by exactly one bit.
1795
1796   if ((PredL == ICmpInst::ICMP_ULT || PredL == ICmpInst::ICMP_ULE) &&
1797       PredL == PredR && LHSC && RHSC && LHS->hasOneUse() && RHS->hasOneUse() &&
1798       LHSC->getType() == RHSC->getType() &&
1799       LHSC->getValue() == (RHSC->getValue())) {
1800
1801     Value *LAdd = LHS->getOperand(0);
1802     Value *RAdd = RHS->getOperand(0);
1803
1804     Value *LAddOpnd, *RAddOpnd;
1805     ConstantInt *LAddC, *RAddC;
1806     if (match(LAdd, m_Add(m_Value(LAddOpnd), m_ConstantInt(LAddC))) &&
1807         match(RAdd, m_Add(m_Value(RAddOpnd), m_ConstantInt(RAddC))) &&
1808         LAddC->getValue().ugt(LHSC->getValue()) &&
1809         RAddC->getValue().ugt(LHSC->getValue())) {
1810
1811       APInt DiffC = LAddC->getValue() ^ RAddC->getValue();
1812       if (LAddOpnd == RAddOpnd && DiffC.isPowerOf2()) {
1813         ConstantInt *MaxAddC = nullptr;
1814         if (LAddC->getValue().ult(RAddC->getValue()))
1815           MaxAddC = RAddC;
1816         else
1817           MaxAddC = LAddC;
1818
1819         APInt RRangeLow = -RAddC->getValue();
1820         APInt RRangeHigh = RRangeLow + LHSC->getValue();
1821         APInt LRangeLow = -LAddC->getValue();
1822         APInt LRangeHigh = LRangeLow + LHSC->getValue();
1823         APInt LowRangeDiff = RRangeLow ^ LRangeLow;
1824         APInt HighRangeDiff = RRangeHigh ^ LRangeHigh;
1825         APInt RangeDiff = LRangeLow.sgt(RRangeLow) ? LRangeLow - RRangeLow
1826                                                    : RRangeLow - LRangeLow;
1827
1828         if (LowRangeDiff.isPowerOf2() && LowRangeDiff == HighRangeDiff &&
1829             RangeDiff.ugt(LHSC->getValue())) {
1830           Value *MaskC = ConstantInt::get(LAddC->getType(), ~DiffC);
1831
1832           Value *NewAnd = Builder.CreateAnd(LAddOpnd, MaskC);
1833           Value *NewAdd = Builder.CreateAdd(NewAnd, MaxAddC);
1834           return Builder.CreateICmp(LHS->getPredicate(), NewAdd, LHSC);
1835         }
1836       }
1837     }
1838   }
1839
1840   // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
1841   if (PredicatesFoldable(PredL, PredR)) {
1842     if (LHS->getOperand(0) == RHS->getOperand(1) &&
1843         LHS->getOperand(1) == RHS->getOperand(0))
1844       LHS->swapOperands();
1845     if (LHS->getOperand(0) == RHS->getOperand(0) &&
1846         LHS->getOperand(1) == RHS->getOperand(1)) {
1847       Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
1848       unsigned Code = getICmpCode(LHS) | getICmpCode(RHS);
1849       bool isSigned = LHS->isSigned() || RHS->isSigned();
1850       return getNewICmpValue(isSigned, Code, Op0, Op1, Builder);
1851     }
1852   }
1853
1854   // handle (roughly):
1855   // (icmp ne (A & B), C) | (icmp ne (A & D), E)
1856   if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, false, Builder))
1857     return V;
1858
1859   Value *LHS0 = LHS->getOperand(0), *RHS0 = RHS->getOperand(0);
1860   if (LHS->hasOneUse() || RHS->hasOneUse()) {
1861     // (icmp eq B, 0) | (icmp ult A, B) -> (icmp ule A, B-1)
1862     // (icmp eq B, 0) | (icmp ugt B, A) -> (icmp ule A, B-1)
1863     Value *A = nullptr, *B = nullptr;
1864     if (PredL == ICmpInst::ICMP_EQ && LHSC && LHSC->isZero()) {
1865       B = LHS0;
1866       if (PredR == ICmpInst::ICMP_ULT && LHS0 == RHS->getOperand(1))
1867         A = RHS0;
1868       else if (PredR == ICmpInst::ICMP_UGT && LHS0 == RHS0)
1869         A = RHS->getOperand(1);
1870     }
1871     // (icmp ult A, B) | (icmp eq B, 0) -> (icmp ule A, B-1)
1872     // (icmp ugt B, A) | (icmp eq B, 0) -> (icmp ule A, B-1)
1873     else if (PredR == ICmpInst::ICMP_EQ && RHSC && RHSC->isZero()) {
1874       B = RHS0;
1875       if (PredL == ICmpInst::ICMP_ULT && RHS0 == LHS->getOperand(1))
1876         A = LHS0;
1877       else if (PredL == ICmpInst::ICMP_UGT && LHS0 == RHS0)
1878         A = LHS->getOperand(1);
1879     }
1880     if (A && B)
1881       return Builder.CreateICmp(
1882           ICmpInst::ICMP_UGE,
1883           Builder.CreateAdd(B, ConstantInt::getSigned(B->getType(), -1)), A);
1884   }
1885
1886   // E.g. (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
1887   if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/true))
1888     return V;
1889
1890   // E.g. (icmp sgt x, n) | (icmp slt x, 0) --> icmp ugt x, n
1891   if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/true))
1892     return V;
1893
1894   if (Value *V = foldAndOrOfEqualityCmpsWithConstants(LHS, RHS, false, Builder))
1895     return V;
1896
1897   // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
1898   if (!LHSC || !RHSC)
1899     return nullptr;
1900
1901   if (LHSC == RHSC && PredL == PredR) {
1902     // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0)
1903     if (PredL == ICmpInst::ICMP_NE && LHSC->isZero()) {
1904       Value *NewOr = Builder.CreateOr(LHS0, RHS0);
1905       return Builder.CreateICmp(PredL, NewOr, LHSC);
1906     }
1907   }
1908
1909   // (icmp ult (X + CA), C1) | (icmp eq X, C2) -> (icmp ule (X + CA), C1)
1910   //   iff C2 + CA == C1.
1911   if (PredL == ICmpInst::ICMP_ULT && PredR == ICmpInst::ICMP_EQ) {
1912     ConstantInt *AddC;
1913     if (match(LHS0, m_Add(m_Specific(RHS0), m_ConstantInt(AddC))))
1914       if (RHSC->getValue() + AddC->getValue() == LHSC->getValue())
1915         return Builder.CreateICmpULE(LHS0, LHSC);
1916   }
1917
1918   // From here on, we only handle:
1919   //    (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
1920   if (LHS0 != RHS0)
1921     return nullptr;
1922
1923   // ICMP_[US][GL]E X, C is folded to ICMP_[US][GL]T elsewhere.
1924   if (PredL == ICmpInst::ICMP_UGE || PredL == ICmpInst::ICMP_ULE ||
1925       PredR == ICmpInst::ICMP_UGE || PredR == ICmpInst::ICMP_ULE ||
1926       PredL == ICmpInst::ICMP_SGE || PredL == ICmpInst::ICMP_SLE ||
1927       PredR == ICmpInst::ICMP_SGE || PredR == ICmpInst::ICMP_SLE)
1928     return nullptr;
1929
1930   // We can't fold (ugt x, C) | (sgt x, C2).
1931   if (!PredicatesFoldable(PredL, PredR))
1932     return nullptr;
1933
1934   // Ensure that the larger constant is on the RHS.
1935   bool ShouldSwap;
1936   if (CmpInst::isSigned(PredL) ||
1937       (ICmpInst::isEquality(PredL) && CmpInst::isSigned(PredR)))
1938     ShouldSwap = LHSC->getValue().sgt(RHSC->getValue());
1939   else
1940     ShouldSwap = LHSC->getValue().ugt(RHSC->getValue());
1941
1942   if (ShouldSwap) {
1943     std::swap(LHS, RHS);
1944     std::swap(LHSC, RHSC);
1945     std::swap(PredL, PredR);
1946   }
1947
1948   // At this point, we know we have two icmp instructions
1949   // comparing a value against two constants and or'ing the result
1950   // together.  Because of the above check, we know that we only have
1951   // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
1952   // icmp folding check above), that the two constants are not
1953   // equal.
1954   assert(LHSC != RHSC && "Compares not folded above?");
1955
1956   switch (PredL) {
1957   default:
1958     llvm_unreachable("Unknown integer condition code!");
1959   case ICmpInst::ICMP_EQ:
1960     switch (PredR) {
1961     default:
1962       llvm_unreachable("Unknown integer condition code!");
1963     case ICmpInst::ICMP_EQ:
1964       // Potential folds for this case should already be handled.
1965       break;
1966     case ICmpInst::ICMP_UGT: // (X == 13 | X u> 14) -> no change
1967     case ICmpInst::ICMP_SGT: // (X == 13 | X s> 14) -> no change
1968       break;
1969     }
1970     break;
1971   case ICmpInst::ICMP_ULT:
1972     switch (PredR) {
1973     default:
1974       llvm_unreachable("Unknown integer condition code!");
1975     case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change
1976       break;
1977     case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) -> (X-13) u> 2
1978       assert(!RHSC->isMaxValue(false) && "Missed icmp simplification");
1979       return insertRangeTest(LHS0, LHSC->getValue(), RHSC->getValue() + 1,
1980                              false, false);
1981     }
1982     break;
1983   case ICmpInst::ICMP_SLT:
1984     switch (PredR) {
1985     default:
1986       llvm_unreachable("Unknown integer condition code!");
1987     case ICmpInst::ICMP_EQ: // (X s< 13 | X == 14) -> no change
1988       break;
1989     case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) -> (X-13) s> 2
1990       assert(!RHSC->isMaxValue(true) && "Missed icmp simplification");
1991       return insertRangeTest(LHS0, LHSC->getValue(), RHSC->getValue() + 1, true,
1992                              false);
1993     }
1994     break;
1995   }
1996   return nullptr;
1997 }
1998
1999 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
2000 // here. We should standardize that construct where it is needed or choose some
2001 // other way to ensure that commutated variants of patterns are not missed.
2002 Instruction *InstCombiner::visitOr(BinaryOperator &I) {
2003   if (Value *V = SimplifyOrInst(I.getOperand(0), I.getOperand(1),
2004                                 SQ.getWithInstruction(&I)))
2005     return replaceInstUsesWith(I, V);
2006
2007   if (SimplifyAssociativeOrCommutative(I))
2008     return &I;
2009
2010   if (Instruction *X = foldShuffledBinop(I))
2011     return X;
2012
2013   // See if we can simplify any instructions used by the instruction whose sole
2014   // purpose is to compute bits we don't care about.
2015   if (SimplifyDemandedInstructionBits(I))
2016     return &I;
2017
2018   // Do this before using distributive laws to catch simple and/or/not patterns.
2019   if (Instruction *Xor = foldOrToXor(I, Builder))
2020     return Xor;
2021
2022   // (A&B)|(A&C) -> A&(B|C) etc
2023   if (Value *V = SimplifyUsingDistributiveLaws(I))
2024     return replaceInstUsesWith(I, V);
2025
2026   if (Value *V = SimplifyBSwap(I, Builder))
2027     return replaceInstUsesWith(I, V);
2028
2029   if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
2030     return FoldedLogic;
2031
2032   // Given an OR instruction, check to see if this is a bswap.
2033   if (Instruction *BSwap = MatchBSwap(I))
2034     return BSwap;
2035
2036   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2037   {
2038     Value *A;
2039     const APInt *C;
2040     // (X^C)|Y -> (X|Y)^C iff Y&C == 0
2041     if (match(Op0, m_OneUse(m_Xor(m_Value(A), m_APInt(C)))) &&
2042         MaskedValueIsZero(Op1, *C, 0, &I)) {
2043       Value *NOr = Builder.CreateOr(A, Op1);
2044       NOr->takeName(Op0);
2045       return BinaryOperator::CreateXor(NOr,
2046                                        ConstantInt::get(NOr->getType(), *C));
2047     }
2048
2049     // Y|(X^C) -> (X|Y)^C iff Y&C == 0
2050     if (match(Op1, m_OneUse(m_Xor(m_Value(A), m_APInt(C)))) &&
2051         MaskedValueIsZero(Op0, *C, 0, &I)) {
2052       Value *NOr = Builder.CreateOr(A, Op0);
2053       NOr->takeName(Op0);
2054       return BinaryOperator::CreateXor(NOr,
2055                                        ConstantInt::get(NOr->getType(), *C));
2056     }
2057   }
2058
2059   Value *A, *B;
2060
2061   // (A & C)|(B & D)
2062   Value *C = nullptr, *D = nullptr;
2063   if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
2064       match(Op1, m_And(m_Value(B), m_Value(D)))) {
2065     ConstantInt *C1 = dyn_cast<ConstantInt>(C);
2066     ConstantInt *C2 = dyn_cast<ConstantInt>(D);
2067     if (C1 && C2) {  // (A & C1)|(B & C2)
2068       Value *V1 = nullptr, *V2 = nullptr;
2069       if ((C1->getValue() & C2->getValue()).isNullValue()) {
2070         // ((V | N) & C1) | (V & C2) --> (V|N) & (C1|C2)
2071         // iff (C1&C2) == 0 and (N&~C1) == 0
2072         if (match(A, m_Or(m_Value(V1), m_Value(V2))) &&
2073             ((V1 == B &&
2074               MaskedValueIsZero(V2, ~C1->getValue(), 0, &I)) || // (V|N)
2075              (V2 == B &&
2076               MaskedValueIsZero(V1, ~C1->getValue(), 0, &I))))  // (N|V)
2077           return BinaryOperator::CreateAnd(A,
2078                                 Builder.getInt(C1->getValue()|C2->getValue()));
2079         // Or commutes, try both ways.
2080         if (match(B, m_Or(m_Value(V1), m_Value(V2))) &&
2081             ((V1 == A &&
2082               MaskedValueIsZero(V2, ~C2->getValue(), 0, &I)) || // (V|N)
2083              (V2 == A &&
2084               MaskedValueIsZero(V1, ~C2->getValue(), 0, &I))))  // (N|V)
2085           return BinaryOperator::CreateAnd(B,
2086                                  Builder.getInt(C1->getValue()|C2->getValue()));
2087
2088         // ((V|C3)&C1) | ((V|C4)&C2) --> (V|C3|C4)&(C1|C2)
2089         // iff (C1&C2) == 0 and (C3&~C1) == 0 and (C4&~C2) == 0.
2090         ConstantInt *C3 = nullptr, *C4 = nullptr;
2091         if (match(A, m_Or(m_Value(V1), m_ConstantInt(C3))) &&
2092             (C3->getValue() & ~C1->getValue()).isNullValue() &&
2093             match(B, m_Or(m_Specific(V1), m_ConstantInt(C4))) &&
2094             (C4->getValue() & ~C2->getValue()).isNullValue()) {
2095           V2 = Builder.CreateOr(V1, ConstantExpr::getOr(C3, C4), "bitfield");
2096           return BinaryOperator::CreateAnd(V2,
2097                                  Builder.getInt(C1->getValue()|C2->getValue()));
2098         }
2099       }
2100
2101       if (C1->getValue() == ~C2->getValue()) {
2102         Value *X;
2103
2104         // ((X|B)&C1)|(B&C2) -> (X&C1) | B iff C1 == ~C2
2105         if (match(A, m_c_Or(m_Value(X), m_Specific(B))))
2106           return BinaryOperator::CreateOr(Builder.CreateAnd(X, C1), B);
2107         // (A&C2)|((X|A)&C1) -> (X&C2) | A iff C1 == ~C2
2108         if (match(B, m_c_Or(m_Specific(A), m_Value(X))))
2109           return BinaryOperator::CreateOr(Builder.CreateAnd(X, C2), A);
2110
2111         // ((X^B)&C1)|(B&C2) -> (X&C1) ^ B iff C1 == ~C2
2112         if (match(A, m_c_Xor(m_Value(X), m_Specific(B))))
2113           return BinaryOperator::CreateXor(Builder.CreateAnd(X, C1), B);
2114         // (A&C2)|((X^A)&C1) -> (X&C2) ^ A iff C1 == ~C2
2115         if (match(B, m_c_Xor(m_Specific(A), m_Value(X))))
2116           return BinaryOperator::CreateXor(Builder.CreateAnd(X, C2), A);
2117       }
2118     }
2119
2120     // Don't try to form a select if it's unlikely that we'll get rid of at
2121     // least one of the operands. A select is generally more expensive than the
2122     // 'or' that it is replacing.
2123     if (Op0->hasOneUse() || Op1->hasOneUse()) {
2124       // (Cond & C) | (~Cond & D) -> Cond ? C : D, and commuted variants.
2125       if (Value *V = matchSelectFromAndOr(A, C, B, D, Builder))
2126         return replaceInstUsesWith(I, V);
2127       if (Value *V = matchSelectFromAndOr(A, C, D, B, Builder))
2128         return replaceInstUsesWith(I, V);
2129       if (Value *V = matchSelectFromAndOr(C, A, B, D, Builder))
2130         return replaceInstUsesWith(I, V);
2131       if (Value *V = matchSelectFromAndOr(C, A, D, B, Builder))
2132         return replaceInstUsesWith(I, V);
2133       if (Value *V = matchSelectFromAndOr(B, D, A, C, Builder))
2134         return replaceInstUsesWith(I, V);
2135       if (Value *V = matchSelectFromAndOr(B, D, C, A, Builder))
2136         return replaceInstUsesWith(I, V);
2137       if (Value *V = matchSelectFromAndOr(D, B, A, C, Builder))
2138         return replaceInstUsesWith(I, V);
2139       if (Value *V = matchSelectFromAndOr(D, B, C, A, Builder))
2140         return replaceInstUsesWith(I, V);
2141     }
2142   }
2143
2144   // (A ^ B) | ((B ^ C) ^ A) -> (A ^ B) | C
2145   if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
2146     if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A))))
2147       return BinaryOperator::CreateOr(Op0, C);
2148
2149   // ((A ^ C) ^ B) | (B ^ A) -> (B ^ A) | C
2150   if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))))
2151     if (match(Op1, m_Xor(m_Specific(B), m_Specific(A))))
2152       return BinaryOperator::CreateOr(Op1, C);
2153
2154   // ((B | C) & A) | B -> B | (A & C)
2155   if (match(Op0, m_And(m_Or(m_Specific(Op1), m_Value(C)), m_Value(A))))
2156     return BinaryOperator::CreateOr(Op1, Builder.CreateAnd(A, C));
2157
2158   if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder))
2159     return DeMorgan;
2160
2161   // Canonicalize xor to the RHS.
2162   bool SwappedForXor = false;
2163   if (match(Op0, m_Xor(m_Value(), m_Value()))) {
2164     std::swap(Op0, Op1);
2165     SwappedForXor = true;
2166   }
2167
2168   // A | ( A ^ B) -> A |  B
2169   // A | (~A ^ B) -> A | ~B
2170   // (A & B) | (A ^ B)
2171   if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
2172     if (Op0 == A || Op0 == B)
2173       return BinaryOperator::CreateOr(A, B);
2174
2175     if (match(Op0, m_And(m_Specific(A), m_Specific(B))) ||
2176         match(Op0, m_And(m_Specific(B), m_Specific(A))))
2177       return BinaryOperator::CreateOr(A, B);
2178
2179     if (Op1->hasOneUse() && match(A, m_Not(m_Specific(Op0)))) {
2180       Value *Not = Builder.CreateNot(B, B->getName() + ".not");
2181       return BinaryOperator::CreateOr(Not, Op0);
2182     }
2183     if (Op1->hasOneUse() && match(B, m_Not(m_Specific(Op0)))) {
2184       Value *Not = Builder.CreateNot(A, A->getName() + ".not");
2185       return BinaryOperator::CreateOr(Not, Op0);
2186     }
2187   }
2188
2189   // A | ~(A | B) -> A | ~B
2190   // A | ~(A ^ B) -> A | ~B
2191   if (match(Op1, m_Not(m_Value(A))))
2192     if (BinaryOperator *B = dyn_cast<BinaryOperator>(A))
2193       if ((Op0 == B->getOperand(0) || Op0 == B->getOperand(1)) &&
2194           Op1->hasOneUse() && (B->getOpcode() == Instruction::Or ||
2195                                B->getOpcode() == Instruction::Xor)) {
2196         Value *NotOp = Op0 == B->getOperand(0) ? B->getOperand(1) :
2197                                                  B->getOperand(0);
2198         Value *Not = Builder.CreateNot(NotOp, NotOp->getName() + ".not");
2199         return BinaryOperator::CreateOr(Not, Op0);
2200       }
2201
2202   if (SwappedForXor)
2203     std::swap(Op0, Op1);
2204
2205   {
2206     ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
2207     ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
2208     if (LHS && RHS)
2209       if (Value *Res = foldOrOfICmps(LHS, RHS, I))
2210         return replaceInstUsesWith(I, Res);
2211
2212     // TODO: Make this recursive; it's a little tricky because an arbitrary
2213     // number of 'or' instructions might have to be created.
2214     Value *X, *Y;
2215     if (LHS && match(Op1, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
2216       if (auto *Cmp = dyn_cast<ICmpInst>(X))
2217         if (Value *Res = foldOrOfICmps(LHS, Cmp, I))
2218           return replaceInstUsesWith(I, Builder.CreateOr(Res, Y));
2219       if (auto *Cmp = dyn_cast<ICmpInst>(Y))
2220         if (Value *Res = foldOrOfICmps(LHS, Cmp, I))
2221           return replaceInstUsesWith(I, Builder.CreateOr(Res, X));
2222     }
2223     if (RHS && match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
2224       if (auto *Cmp = dyn_cast<ICmpInst>(X))
2225         if (Value *Res = foldOrOfICmps(Cmp, RHS, I))
2226           return replaceInstUsesWith(I, Builder.CreateOr(Res, Y));
2227       if (auto *Cmp = dyn_cast<ICmpInst>(Y))
2228         if (Value *Res = foldOrOfICmps(Cmp, RHS, I))
2229           return replaceInstUsesWith(I, Builder.CreateOr(Res, X));
2230     }
2231   }
2232
2233   if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
2234     if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
2235       if (Value *Res = foldLogicOfFCmps(LHS, RHS, false))
2236         return replaceInstUsesWith(I, Res);
2237
2238   if (Instruction *CastedOr = foldCastedBitwiseLogic(I))
2239     return CastedOr;
2240
2241   // or(sext(A), B) / or(B, sext(A)) --> A ? -1 : B, where A is i1 or <N x i1>.
2242   if (match(Op0, m_OneUse(m_SExt(m_Value(A)))) &&
2243       A->getType()->isIntOrIntVectorTy(1))
2244     return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op1);
2245   if (match(Op1, m_OneUse(m_SExt(m_Value(A)))) &&
2246       A->getType()->isIntOrIntVectorTy(1))
2247     return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op0);
2248
2249   // Note: If we've gotten to the point of visiting the outer OR, then the
2250   // inner one couldn't be simplified.  If it was a constant, then it won't
2251   // be simplified by a later pass either, so we try swapping the inner/outer
2252   // ORs in the hopes that we'll be able to simplify it this way.
2253   // (X|C) | V --> (X|V) | C
2254   ConstantInt *C1;
2255   if (Op0->hasOneUse() && !isa<ConstantInt>(Op1) &&
2256       match(Op0, m_Or(m_Value(A), m_ConstantInt(C1)))) {
2257     Value *Inner = Builder.CreateOr(A, Op1);
2258     Inner->takeName(Op0);
2259     return BinaryOperator::CreateOr(Inner, C1);
2260   }
2261
2262   // Change (or (bool?A:B),(bool?C:D)) --> (bool?(or A,C):(or B,D))
2263   // Since this OR statement hasn't been optimized further yet, we hope
2264   // that this transformation will allow the new ORs to be optimized.
2265   {
2266     Value *X = nullptr, *Y = nullptr;
2267     if (Op0->hasOneUse() && Op1->hasOneUse() &&
2268         match(Op0, m_Select(m_Value(X), m_Value(A), m_Value(B))) &&
2269         match(Op1, m_Select(m_Value(Y), m_Value(C), m_Value(D))) && X == Y) {
2270       Value *orTrue = Builder.CreateOr(A, C);
2271       Value *orFalse = Builder.CreateOr(B, D);
2272       return SelectInst::Create(X, orTrue, orFalse);
2273     }
2274   }
2275
2276   return nullptr;
2277 }
2278
2279 /// A ^ B can be specified using other logic ops in a variety of patterns. We
2280 /// can fold these early and efficiently by morphing an existing instruction.
2281 static Instruction *foldXorToXor(BinaryOperator &I,
2282                                  InstCombiner::BuilderTy &Builder) {
2283   assert(I.getOpcode() == Instruction::Xor);
2284   Value *Op0 = I.getOperand(0);
2285   Value *Op1 = I.getOperand(1);
2286   Value *A, *B;
2287
2288   // There are 4 commuted variants for each of the basic patterns.
2289
2290   // (A & B) ^ (A | B) -> A ^ B
2291   // (A & B) ^ (B | A) -> A ^ B
2292   // (A | B) ^ (A & B) -> A ^ B
2293   // (A | B) ^ (B & A) -> A ^ B
2294   if (match(&I, m_c_Xor(m_And(m_Value(A), m_Value(B)),
2295                         m_c_Or(m_Deferred(A), m_Deferred(B))))) {
2296     I.setOperand(0, A);
2297     I.setOperand(1, B);
2298     return &I;
2299   }
2300
2301   // (A | ~B) ^ (~A | B) -> A ^ B
2302   // (~B | A) ^ (~A | B) -> A ^ B
2303   // (~A | B) ^ (A | ~B) -> A ^ B
2304   // (B | ~A) ^ (A | ~B) -> A ^ B
2305   if (match(&I, m_Xor(m_c_Or(m_Value(A), m_Not(m_Value(B))),
2306                       m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B))))) {
2307     I.setOperand(0, A);
2308     I.setOperand(1, B);
2309     return &I;
2310   }
2311
2312   // (A & ~B) ^ (~A & B) -> A ^ B
2313   // (~B & A) ^ (~A & B) -> A ^ B
2314   // (~A & B) ^ (A & ~B) -> A ^ B
2315   // (B & ~A) ^ (A & ~B) -> A ^ B
2316   if (match(&I, m_Xor(m_c_And(m_Value(A), m_Not(m_Value(B))),
2317                       m_c_And(m_Not(m_Deferred(A)), m_Deferred(B))))) {
2318     I.setOperand(0, A);
2319     I.setOperand(1, B);
2320     return &I;
2321   }
2322
2323   // For the remaining cases we need to get rid of one of the operands.
2324   if (!Op0->hasOneUse() && !Op1->hasOneUse())
2325     return nullptr;
2326
2327   // (A | B) ^ ~(A & B) -> ~(A ^ B)
2328   // (A | B) ^ ~(B & A) -> ~(A ^ B)
2329   // (A & B) ^ ~(A | B) -> ~(A ^ B)
2330   // (A & B) ^ ~(B | A) -> ~(A ^ B)
2331   // Complexity sorting ensures the not will be on the right side.
2332   if ((match(Op0, m_Or(m_Value(A), m_Value(B))) &&
2333        match(Op1, m_Not(m_c_And(m_Specific(A), m_Specific(B))))) ||
2334       (match(Op0, m_And(m_Value(A), m_Value(B))) &&
2335        match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))))
2336     return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
2337
2338   return nullptr;
2339 }
2340
2341 Value *InstCombiner::foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
2342   if (PredicatesFoldable(LHS->getPredicate(), RHS->getPredicate())) {
2343     if (LHS->getOperand(0) == RHS->getOperand(1) &&
2344         LHS->getOperand(1) == RHS->getOperand(0))
2345       LHS->swapOperands();
2346     if (LHS->getOperand(0) == RHS->getOperand(0) &&
2347         LHS->getOperand(1) == RHS->getOperand(1)) {
2348       // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
2349       Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
2350       unsigned Code = getICmpCode(LHS) ^ getICmpCode(RHS);
2351       bool isSigned = LHS->isSigned() || RHS->isSigned();
2352       return getNewICmpValue(isSigned, Code, Op0, Op1, Builder);
2353     }
2354   }
2355
2356   // TODO: This can be generalized to compares of non-signbits using
2357   // decomposeBitTestICmp(). It could be enhanced more by using (something like)
2358   // foldLogOpOfMaskedICmps().
2359   ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
2360   Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
2361   Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
2362   if ((LHS->hasOneUse() || RHS->hasOneUse()) &&
2363       LHS0->getType() == RHS0->getType()) {
2364     // (X > -1) ^ (Y > -1) --> (X ^ Y) < 0
2365     // (X <  0) ^ (Y <  0) --> (X ^ Y) < 0
2366     if ((PredL == CmpInst::ICMP_SGT && match(LHS1, m_AllOnes()) &&
2367          PredR == CmpInst::ICMP_SGT && match(RHS1, m_AllOnes())) ||
2368         (PredL == CmpInst::ICMP_SLT && match(LHS1, m_Zero()) &&
2369          PredR == CmpInst::ICMP_SLT && match(RHS1, m_Zero()))) {
2370       Value *Zero = ConstantInt::getNullValue(LHS0->getType());
2371       return Builder.CreateICmpSLT(Builder.CreateXor(LHS0, RHS0), Zero);
2372     }
2373     // (X > -1) ^ (Y <  0) --> (X ^ Y) > -1
2374     // (X <  0) ^ (Y > -1) --> (X ^ Y) > -1
2375     if ((PredL == CmpInst::ICMP_SGT && match(LHS1, m_AllOnes()) &&
2376          PredR == CmpInst::ICMP_SLT && match(RHS1, m_Zero())) ||
2377         (PredL == CmpInst::ICMP_SLT && match(LHS1, m_Zero()) &&
2378          PredR == CmpInst::ICMP_SGT && match(RHS1, m_AllOnes()))) {
2379       Value *MinusOne = ConstantInt::getAllOnesValue(LHS0->getType());
2380       return Builder.CreateICmpSGT(Builder.CreateXor(LHS0, RHS0), MinusOne);
2381     }
2382   }
2383
2384   // Instead of trying to imitate the folds for and/or, decompose this 'xor'
2385   // into those logic ops. That is, try to turn this into an and-of-icmps
2386   // because we have many folds for that pattern.
2387   //
2388   // This is based on a truth table definition of xor:
2389   // X ^ Y --> (X | Y) & !(X & Y)
2390   if (Value *OrICmp = SimplifyBinOp(Instruction::Or, LHS, RHS, SQ)) {
2391     // TODO: If OrICmp is true, then the definition of xor simplifies to !(X&Y).
2392     // TODO: If OrICmp is false, the whole thing is false (InstSimplify?).
2393     if (Value *AndICmp = SimplifyBinOp(Instruction::And, LHS, RHS, SQ)) {
2394       // TODO: Independently handle cases where the 'and' side is a constant.
2395       if (OrICmp == LHS && AndICmp == RHS && RHS->hasOneUse()) {
2396         // (LHS | RHS) & !(LHS & RHS) --> LHS & !RHS
2397         RHS->setPredicate(RHS->getInversePredicate());
2398         return Builder.CreateAnd(LHS, RHS);
2399       }
2400       if (OrICmp == RHS && AndICmp == LHS && LHS->hasOneUse()) {
2401         // !(LHS & RHS) & (LHS | RHS) --> !LHS & RHS
2402         LHS->setPredicate(LHS->getInversePredicate());
2403         return Builder.CreateAnd(LHS, RHS);
2404       }
2405     }
2406   }
2407
2408   return nullptr;
2409 }
2410
2411 /// If we have a masked merge, in the canonical form of:
2412 /// (assuming that A only has one use.)
2413 ///   |        A  |  |B|
2414 ///   ((x ^ y) & M) ^ y
2415 ///    |  D  |
2416 /// * If M is inverted:
2417 ///      |  D  |
2418 ///     ((x ^ y) & ~M) ^ y
2419 ///   We can canonicalize by swapping the final xor operand
2420 ///   to eliminate the 'not' of the mask.
2421 ///     ((x ^ y) & M) ^ x
2422 /// * If M is a constant, and D has one use, we transform to 'and' / 'or' ops
2423 ///   because that shortens the dependency chain and improves analysis:
2424 ///     (x & M) | (y & ~M)
2425 static Instruction *visitMaskedMerge(BinaryOperator &I,
2426                                      InstCombiner::BuilderTy &Builder) {
2427   Value *B, *X, *D;
2428   Value *M;
2429   if (!match(&I, m_c_Xor(m_Value(B),
2430                          m_OneUse(m_c_And(
2431                              m_CombineAnd(m_c_Xor(m_Deferred(B), m_Value(X)),
2432                                           m_Value(D)),
2433                              m_Value(M))))))
2434     return nullptr;
2435
2436   Value *NotM;
2437   if (match(M, m_Not(m_Value(NotM)))) {
2438     // De-invert the mask and swap the value in B part.
2439     Value *NewA = Builder.CreateAnd(D, NotM);
2440     return BinaryOperator::CreateXor(NewA, X);
2441   }
2442
2443   Constant *C;
2444   if (D->hasOneUse() && match(M, m_Constant(C))) {
2445     // Unfold.
2446     Value *LHS = Builder.CreateAnd(X, C);
2447     Value *NotC = Builder.CreateNot(C);
2448     Value *RHS = Builder.CreateAnd(B, NotC);
2449     return BinaryOperator::CreateOr(LHS, RHS);
2450   }
2451
2452   return nullptr;
2453 }
2454
2455 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
2456 // here. We should standardize that construct where it is needed or choose some
2457 // other way to ensure that commutated variants of patterns are not missed.
2458 Instruction *InstCombiner::visitXor(BinaryOperator &I) {
2459   if (Value *V = SimplifyXorInst(I.getOperand(0), I.getOperand(1),
2460                                  SQ.getWithInstruction(&I)))
2461     return replaceInstUsesWith(I, V);
2462
2463   if (SimplifyAssociativeOrCommutative(I))
2464     return &I;
2465
2466   if (Instruction *X = foldShuffledBinop(I))
2467     return X;
2468
2469   if (Instruction *NewXor = foldXorToXor(I, Builder))
2470     return NewXor;
2471
2472   // (A&B)^(A&C) -> A&(B^C) etc
2473   if (Value *V = SimplifyUsingDistributiveLaws(I))
2474     return replaceInstUsesWith(I, V);
2475
2476   // See if we can simplify any instructions used by the instruction whose sole
2477   // purpose is to compute bits we don't care about.
2478   if (SimplifyDemandedInstructionBits(I))
2479     return &I;
2480
2481   if (Value *V = SimplifyBSwap(I, Builder))
2482     return replaceInstUsesWith(I, V);
2483
2484   // A^B --> A|B iff A and B have no bits set in common.
2485   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2486   if (haveNoCommonBitsSet(Op0, Op1, DL, &AC, &I, &DT))
2487     return BinaryOperator::CreateOr(Op0, Op1);
2488
2489   // Apply DeMorgan's Law for 'nand' / 'nor' logic with an inverted operand.
2490   Value *X, *Y;
2491
2492   // We must eliminate the and/or (one-use) for these transforms to not increase
2493   // the instruction count.
2494   // ~(~X & Y) --> (X | ~Y)
2495   // ~(Y & ~X) --> (X | ~Y)
2496   if (match(&I, m_Not(m_OneUse(m_c_And(m_Not(m_Value(X)), m_Value(Y)))))) {
2497     Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
2498     return BinaryOperator::CreateOr(X, NotY);
2499   }
2500   // ~(~X | Y) --> (X & ~Y)
2501   // ~(Y | ~X) --> (X & ~Y)
2502   if (match(&I, m_Not(m_OneUse(m_c_Or(m_Not(m_Value(X)), m_Value(Y)))))) {
2503     Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
2504     return BinaryOperator::CreateAnd(X, NotY);
2505   }
2506
2507   if (Instruction *Xor = visitMaskedMerge(I, Builder))
2508     return Xor;
2509
2510   // Is this a 'not' (~) fed by a binary operator?
2511   BinaryOperator *NotVal;
2512   if (match(&I, m_Not(m_BinOp(NotVal)))) {
2513     if (NotVal->getOpcode() == Instruction::And ||
2514         NotVal->getOpcode() == Instruction::Or) {
2515       // Apply DeMorgan's Law when inverts are free:
2516       // ~(X & Y) --> (~X | ~Y)
2517       // ~(X | Y) --> (~X & ~Y)
2518       if (IsFreeToInvert(NotVal->getOperand(0),
2519                          NotVal->getOperand(0)->hasOneUse()) &&
2520           IsFreeToInvert(NotVal->getOperand(1),
2521                          NotVal->getOperand(1)->hasOneUse())) {
2522         Value *NotX = Builder.CreateNot(NotVal->getOperand(0), "notlhs");
2523         Value *NotY = Builder.CreateNot(NotVal->getOperand(1), "notrhs");
2524         if (NotVal->getOpcode() == Instruction::And)
2525           return BinaryOperator::CreateOr(NotX, NotY);
2526         return BinaryOperator::CreateAnd(NotX, NotY);
2527       }
2528     }
2529
2530     // ~(X - Y) --> ~X + Y
2531     if (match(NotVal, m_OneUse(m_Sub(m_Value(X), m_Value(Y)))))
2532       return BinaryOperator::CreateAdd(Builder.CreateNot(X), Y);
2533
2534     // ~(~X >>s Y) --> (X >>s Y)
2535     if (match(NotVal, m_AShr(m_Not(m_Value(X)), m_Value(Y))))
2536       return BinaryOperator::CreateAShr(X, Y);
2537
2538     // If we are inverting a right-shifted constant, we may be able to eliminate
2539     // the 'not' by inverting the constant and using the opposite shift type.
2540     // Canonicalization rules ensure that only a negative constant uses 'ashr',
2541     // but we must check that in case that transform has not fired yet.
2542     Constant *C;
2543     if (match(NotVal, m_AShr(m_Constant(C), m_Value(Y))) &&
2544         match(C, m_Negative())) {
2545       // ~(C >>s Y) --> ~C >>u Y (when inverting the replicated sign bits)
2546       Constant *NotC = ConstantExpr::getNot(C);
2547       return BinaryOperator::CreateLShr(NotC, Y);
2548     }
2549
2550     if (match(NotVal, m_LShr(m_Constant(C), m_Value(Y))) &&
2551         match(C, m_NonNegative())) {
2552       // ~(C >>u Y) --> ~C >>s Y (when inverting the replicated sign bits)
2553       Constant *NotC = ConstantExpr::getNot(C);
2554       return BinaryOperator::CreateAShr(NotC, Y);
2555     }
2556   }
2557
2558   // not (cmp A, B) = !cmp A, B
2559   CmpInst::Predicate Pred;
2560   if (match(&I, m_Not(m_OneUse(m_Cmp(Pred, m_Value(), m_Value()))))) {
2561     cast<CmpInst>(Op0)->setPredicate(CmpInst::getInversePredicate(Pred));
2562     return replaceInstUsesWith(I, Op0);
2563   }
2564
2565   {
2566     const APInt *RHSC;
2567     if (match(Op1, m_APInt(RHSC))) {
2568       Value *X;
2569       const APInt *C;
2570       if (match(Op0, m_Sub(m_APInt(C), m_Value(X)))) {
2571         // ~(c-X) == X-c-1 == X+(-c-1)
2572         if (RHSC->isAllOnesValue()) {
2573           Constant *NewC = ConstantInt::get(I.getType(), -(*C) - 1);
2574           return BinaryOperator::CreateAdd(X, NewC);
2575         }
2576         if (RHSC->isSignMask()) {
2577           // (C - X) ^ signmask -> (C + signmask - X)
2578           Constant *NewC = ConstantInt::get(I.getType(), *C + *RHSC);
2579           return BinaryOperator::CreateSub(NewC, X);
2580         }
2581       } else if (match(Op0, m_Add(m_Value(X), m_APInt(C)))) {
2582         // ~(X-c) --> (-c-1)-X
2583         if (RHSC->isAllOnesValue()) {
2584           Constant *NewC = ConstantInt::get(I.getType(), -(*C) - 1);
2585           return BinaryOperator::CreateSub(NewC, X);
2586         }
2587         if (RHSC->isSignMask()) {
2588           // (X + C) ^ signmask -> (X + C + signmask)
2589           Constant *NewC = ConstantInt::get(I.getType(), *C + *RHSC);
2590           return BinaryOperator::CreateAdd(X, NewC);
2591         }
2592       }
2593
2594       // (X|C1)^C2 -> X^(C1^C2) iff X&~C1 == 0
2595       if (match(Op0, m_Or(m_Value(X), m_APInt(C))) &&
2596           MaskedValueIsZero(X, *C, 0, &I)) {
2597         Constant *NewC = ConstantInt::get(I.getType(), *C ^ *RHSC);
2598         Worklist.Add(cast<Instruction>(Op0));
2599         I.setOperand(0, X);
2600         I.setOperand(1, NewC);
2601         return &I;
2602       }
2603     }
2604   }
2605
2606   if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1)) {
2607     if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
2608       if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
2609         if (Op0I->getOpcode() == Instruction::LShr) {
2610           // ((X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3)
2611           // E1 = "X ^ C1"
2612           BinaryOperator *E1;
2613           ConstantInt *C1;
2614           if (Op0I->hasOneUse() &&
2615               (E1 = dyn_cast<BinaryOperator>(Op0I->getOperand(0))) &&
2616               E1->getOpcode() == Instruction::Xor &&
2617               (C1 = dyn_cast<ConstantInt>(E1->getOperand(1)))) {
2618             // fold (C1 >> C2) ^ C3
2619             ConstantInt *C2 = Op0CI, *C3 = RHSC;
2620             APInt FoldConst = C1->getValue().lshr(C2->getValue());
2621             FoldConst ^= C3->getValue();
2622             // Prepare the two operands.
2623             Value *Opnd0 = Builder.CreateLShr(E1->getOperand(0), C2);
2624             Opnd0->takeName(Op0I);
2625             cast<Instruction>(Opnd0)->setDebugLoc(I.getDebugLoc());
2626             Value *FoldVal = ConstantInt::get(Opnd0->getType(), FoldConst);
2627
2628             return BinaryOperator::CreateXor(Opnd0, FoldVal);
2629           }
2630         }
2631       }
2632     }
2633   }
2634
2635   if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
2636     return FoldedLogic;
2637
2638   {
2639     Value *A, *B;
2640     if (match(Op1, m_OneUse(m_Or(m_Value(A), m_Value(B))))) {
2641       if (A == Op0) {                                      // A^(A|B) == A^(B|A)
2642         cast<BinaryOperator>(Op1)->swapOperands();
2643         std::swap(A, B);
2644       }
2645       if (B == Op0) {                                      // A^(B|A) == (B|A)^A
2646         I.swapOperands();     // Simplified below.
2647         std::swap(Op0, Op1);
2648       }
2649     } else if (match(Op1, m_OneUse(m_And(m_Value(A), m_Value(B))))) {
2650       if (A == Op0) {                                      // A^(A&B) -> A^(B&A)
2651         cast<BinaryOperator>(Op1)->swapOperands();
2652         std::swap(A, B);
2653       }
2654       if (B == Op0) {                                      // A^(B&A) -> (B&A)^A
2655         I.swapOperands();     // Simplified below.
2656         std::swap(Op0, Op1);
2657       }
2658     }
2659   }
2660
2661   {
2662     Value *A, *B;
2663     if (match(Op0, m_OneUse(m_Or(m_Value(A), m_Value(B))))) {
2664       if (A == Op1)                                  // (B|A)^B == (A|B)^B
2665         std::swap(A, B);
2666       if (B == Op1)                                  // (A|B)^B == A & ~B
2667         return BinaryOperator::CreateAnd(A, Builder.CreateNot(Op1));
2668     } else if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B))))) {
2669       if (A == Op1)                                        // (A&B)^A -> (B&A)^A
2670         std::swap(A, B);
2671       const APInt *C;
2672       if (B == Op1 &&                                      // (B&A)^A == ~B & A
2673           !match(Op1, m_APInt(C))) {  // Canonical form is (B&C)^C
2674         return BinaryOperator::CreateAnd(Builder.CreateNot(A), Op1);
2675       }
2676     }
2677   }
2678
2679   {
2680     Value *A, *B, *C, *D;
2681     // (A ^ C)^(A | B) -> ((~A) & B) ^ C
2682     if (match(Op0, m_Xor(m_Value(D), m_Value(C))) &&
2683         match(Op1, m_Or(m_Value(A), m_Value(B)))) {
2684       if (D == A)
2685         return BinaryOperator::CreateXor(
2686             Builder.CreateAnd(Builder.CreateNot(A), B), C);
2687       if (D == B)
2688         return BinaryOperator::CreateXor(
2689             Builder.CreateAnd(Builder.CreateNot(B), A), C);
2690     }
2691     // (A | B)^(A ^ C) -> ((~A) & B) ^ C
2692     if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
2693         match(Op1, m_Xor(m_Value(D), m_Value(C)))) {
2694       if (D == A)
2695         return BinaryOperator::CreateXor(
2696             Builder.CreateAnd(Builder.CreateNot(A), B), C);
2697       if (D == B)
2698         return BinaryOperator::CreateXor(
2699             Builder.CreateAnd(Builder.CreateNot(B), A), C);
2700     }
2701     // (A & B) ^ (A ^ B) -> (A | B)
2702     if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
2703         match(Op1, m_c_Xor(m_Specific(A), m_Specific(B))))
2704       return BinaryOperator::CreateOr(A, B);
2705     // (A ^ B) ^ (A & B) -> (A | B)
2706     if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
2707         match(Op1, m_c_And(m_Specific(A), m_Specific(B))))
2708       return BinaryOperator::CreateOr(A, B);
2709   }
2710
2711   // (A & ~B) ^ ~A -> ~(A & B)
2712   // (~B & A) ^ ~A -> ~(A & B)
2713   Value *A, *B;
2714   if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
2715       match(Op1, m_Not(m_Specific(A))))
2716     return BinaryOperator::CreateNot(Builder.CreateAnd(A, B));
2717
2718   if (auto *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
2719     if (auto *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
2720       if (Value *V = foldXorOfICmps(LHS, RHS))
2721         return replaceInstUsesWith(I, V);
2722
2723   if (Instruction *CastedXor = foldCastedBitwiseLogic(I))
2724     return CastedXor;
2725
2726   // Canonicalize a shifty way to code absolute value to the common pattern.
2727   // There are 4 potential commuted variants. Move the 'ashr' candidate to Op1.
2728   // We're relying on the fact that we only do this transform when the shift has
2729   // exactly 2 uses and the add has exactly 1 use (otherwise, we might increase
2730   // instructions).
2731   if (Op0->hasNUses(2))
2732     std::swap(Op0, Op1);
2733
2734   const APInt *ShAmt;
2735   Type *Ty = I.getType();
2736   if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) &&
2737       Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 &&
2738       match(Op0, m_OneUse(m_c_Add(m_Specific(A), m_Specific(Op1))))) {
2739     // B = ashr i32 A, 31 ; smear the sign bit
2740     // xor (add A, B), B  ; add -1 and flip bits if negative
2741     // --> (A < 0) ? -A : A
2742     Value *Cmp = Builder.CreateICmpSLT(A, ConstantInt::getNullValue(Ty));
2743     // Copy the nuw/nsw flags from the add to the negate.
2744     auto *Add = cast<BinaryOperator>(Op0);
2745     Value *Neg = Builder.CreateNeg(A, "", Add->hasNoUnsignedWrap(),
2746                                    Add->hasNoSignedWrap());
2747     return SelectInst::Create(Cmp, Neg, A);
2748   }
2749
2750   // Eliminate a bitwise 'not' op of 'not' min/max by inverting the min/max:
2751   //
2752   //   %notx = xor i32 %x, -1
2753   //   %cmp1 = icmp sgt i32 %notx, %y
2754   //   %smax = select i1 %cmp1, i32 %notx, i32 %y
2755   //   %res = xor i32 %smax, -1
2756   // =>
2757   //   %noty = xor i32 %y, -1
2758   //   %cmp2 = icmp slt %x, %noty
2759   //   %res = select i1 %cmp2, i32 %x, i32 %noty
2760   //
2761   // Same is applicable for smin/umax/umin.
2762   {
2763     Value *LHS, *RHS;
2764     SelectPatternFlavor SPF = matchSelectPattern(Op0, LHS, RHS).Flavor;
2765     if (Op0->hasOneUse() && SelectPatternResult::isMinOrMax(SPF) &&
2766         match(Op1, m_AllOnes())) {
2767
2768       Value *X;
2769       if (match(RHS, m_Not(m_Value(X))))
2770         std::swap(RHS, LHS);
2771
2772       if (match(LHS, m_Not(m_Value(X)))) {
2773         Value *NotY = Builder.CreateNot(RHS);
2774         return SelectInst::Create(
2775             Builder.CreateICmp(getInverseMinMaxPred(SPF), X, NotY), X, NotY);
2776       }
2777     }
2778   }
2779
2780   return nullptr;
2781 }