]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp
Upgrade to OpenSSH 7.4p1.
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / InstCombine / InstCombineCasts.cpp
1 //===- InstCombineCasts.cpp -----------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for cast operations.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/Analysis/ConstantFolding.h"
17 #include "llvm/IR/DataLayout.h"
18 #include "llvm/IR/PatternMatch.h"
19 #include "llvm/Analysis/TargetLibraryInfo.h"
20 using namespace llvm;
21 using namespace PatternMatch;
22
23 #define DEBUG_TYPE "instcombine"
24
25 /// Analyze 'Val', seeing if it is a simple linear expression.
26 /// If so, decompose it, returning some value X, such that Val is
27 /// X*Scale+Offset.
28 ///
29 static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
30                                         uint64_t &Offset) {
31   if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
32     Offset = CI->getZExtValue();
33     Scale  = 0;
34     return ConstantInt::get(Val->getType(), 0);
35   }
36
37   if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
38     // Cannot look past anything that might overflow.
39     OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
40     if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) {
41       Scale = 1;
42       Offset = 0;
43       return Val;
44     }
45
46     if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
47       if (I->getOpcode() == Instruction::Shl) {
48         // This is a value scaled by '1 << the shift amt'.
49         Scale = UINT64_C(1) << RHS->getZExtValue();
50         Offset = 0;
51         return I->getOperand(0);
52       }
53
54       if (I->getOpcode() == Instruction::Mul) {
55         // This value is scaled by 'RHS'.
56         Scale = RHS->getZExtValue();
57         Offset = 0;
58         return I->getOperand(0);
59       }
60
61       if (I->getOpcode() == Instruction::Add) {
62         // We have X+C.  Check to see if we really have (X*C2)+C1,
63         // where C1 is divisible by C2.
64         unsigned SubScale;
65         Value *SubVal =
66           decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
67         Offset += RHS->getZExtValue();
68         Scale = SubScale;
69         return SubVal;
70       }
71     }
72   }
73
74   // Otherwise, we can't look past this.
75   Scale = 1;
76   Offset = 0;
77   return Val;
78 }
79
80 /// If we find a cast of an allocation instruction, try to eliminate the cast by
81 /// moving the type information into the alloc.
82 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
83                                                    AllocaInst &AI) {
84   PointerType *PTy = cast<PointerType>(CI.getType());
85
86   BuilderTy AllocaBuilder(*Builder);
87   AllocaBuilder.SetInsertPoint(&AI);
88
89   // Get the type really allocated and the type casted to.
90   Type *AllocElTy = AI.getAllocatedType();
91   Type *CastElTy = PTy->getElementType();
92   if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr;
93
94   unsigned AllocElTyAlign = DL.getABITypeAlignment(AllocElTy);
95   unsigned CastElTyAlign = DL.getABITypeAlignment(CastElTy);
96   if (CastElTyAlign < AllocElTyAlign) return nullptr;
97
98   // If the allocation has multiple uses, only promote it if we are strictly
99   // increasing the alignment of the resultant allocation.  If we keep it the
100   // same, we open the door to infinite loops of various kinds.
101   if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr;
102
103   uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy);
104   uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy);
105   if (CastElTySize == 0 || AllocElTySize == 0) return nullptr;
106
107   // If the allocation has multiple uses, only promote it if we're not
108   // shrinking the amount of memory being allocated.
109   uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy);
110   uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy);
111   if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr;
112
113   // See if we can satisfy the modulus by pulling a scale out of the array
114   // size argument.
115   unsigned ArraySizeScale;
116   uint64_t ArrayOffset;
117   Value *NumElements = // See if the array size is a decomposable linear expr.
118     decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
119
120   // If we can now satisfy the modulus, by using a non-1 scale, we really can
121   // do the xform.
122   if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
123       (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return nullptr;
124
125   unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
126   Value *Amt = nullptr;
127   if (Scale == 1) {
128     Amt = NumElements;
129   } else {
130     Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
131     // Insert before the alloca, not before the cast.
132     Amt = AllocaBuilder.CreateMul(Amt, NumElements);
133   }
134
135   if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
136     Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
137                                   Offset, true);
138     Amt = AllocaBuilder.CreateAdd(Amt, Off);
139   }
140
141   AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
142   New->setAlignment(AI.getAlignment());
143   New->takeName(&AI);
144   New->setUsedWithInAlloca(AI.isUsedWithInAlloca());
145
146   // If the allocation has multiple real uses, insert a cast and change all
147   // things that used it to use the new cast.  This will also hack on CI, but it
148   // will die soon.
149   if (!AI.hasOneUse()) {
150     // New is the allocation instruction, pointer typed. AI is the original
151     // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
152     Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
153     replaceInstUsesWith(AI, NewCast);
154   }
155   return replaceInstUsesWith(CI, New);
156 }
157
158 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns
159 /// true for, actually insert the code to evaluate the expression.
160 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
161                                              bool isSigned) {
162   if (Constant *C = dyn_cast<Constant>(V)) {
163     C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
164     // If we got a constantexpr back, try to simplify it with DL info.
165     if (Constant *FoldedC = ConstantFoldConstant(C, DL, &TLI))
166       C = FoldedC;
167     return C;
168   }
169
170   // Otherwise, it must be an instruction.
171   Instruction *I = cast<Instruction>(V);
172   Instruction *Res = nullptr;
173   unsigned Opc = I->getOpcode();
174   switch (Opc) {
175   case Instruction::Add:
176   case Instruction::Sub:
177   case Instruction::Mul:
178   case Instruction::And:
179   case Instruction::Or:
180   case Instruction::Xor:
181   case Instruction::AShr:
182   case Instruction::LShr:
183   case Instruction::Shl:
184   case Instruction::UDiv:
185   case Instruction::URem: {
186     Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
187     Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
188     Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
189     break;
190   }
191   case Instruction::Trunc:
192   case Instruction::ZExt:
193   case Instruction::SExt:
194     // If the source type of the cast is the type we're trying for then we can
195     // just return the source.  There's no need to insert it because it is not
196     // new.
197     if (I->getOperand(0)->getType() == Ty)
198       return I->getOperand(0);
199
200     // Otherwise, must be the same type of cast, so just reinsert a new one.
201     // This also handles the case of zext(trunc(x)) -> zext(x).
202     Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
203                                       Opc == Instruction::SExt);
204     break;
205   case Instruction::Select: {
206     Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
207     Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
208     Res = SelectInst::Create(I->getOperand(0), True, False);
209     break;
210   }
211   case Instruction::PHI: {
212     PHINode *OPN = cast<PHINode>(I);
213     PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
214     for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
215       Value *V =
216           EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
217       NPN->addIncoming(V, OPN->getIncomingBlock(i));
218     }
219     Res = NPN;
220     break;
221   }
222   default:
223     // TODO: Can handle more cases here.
224     llvm_unreachable("Unreachable!");
225   }
226
227   Res->takeName(I);
228   return InsertNewInstWith(Res, *I);
229 }
230
231 Instruction::CastOps InstCombiner::isEliminableCastPair(const CastInst *CI1,
232                                                         const CastInst *CI2) {
233   Type *SrcTy = CI1->getSrcTy();
234   Type *MidTy = CI1->getDestTy();
235   Type *DstTy = CI2->getDestTy();
236
237   Instruction::CastOps firstOp = Instruction::CastOps(CI1->getOpcode());
238   Instruction::CastOps secondOp = Instruction::CastOps(CI2->getOpcode());
239   Type *SrcIntPtrTy =
240       SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr;
241   Type *MidIntPtrTy =
242       MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr;
243   Type *DstIntPtrTy =
244       DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr;
245   unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
246                                                 DstTy, SrcIntPtrTy, MidIntPtrTy,
247                                                 DstIntPtrTy);
248
249   // We don't want to form an inttoptr or ptrtoint that converts to an integer
250   // type that differs from the pointer size.
251   if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
252       (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
253     Res = 0;
254
255   return Instruction::CastOps(Res);
256 }
257
258 /// @brief Implement the transforms common to all CastInst visitors.
259 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
260   Value *Src = CI.getOperand(0);
261
262   // Try to eliminate a cast of a cast.
263   if (auto *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
264     if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) {
265       // The first cast (CSrc) is eliminable so we need to fix up or replace
266       // the second cast (CI). CSrc will then have a good chance of being dead.
267       return CastInst::Create(NewOpc, CSrc->getOperand(0), CI.getType());
268     }
269   }
270
271   // If we are casting a select, then fold the cast into the select.
272   if (auto *SI = dyn_cast<SelectInst>(Src))
273     if (Instruction *NV = FoldOpIntoSelect(CI, SI))
274       return NV;
275
276   // If we are casting a PHI, then fold the cast into the PHI.
277   if (isa<PHINode>(Src)) {
278     // Don't do this if it would create a PHI node with an illegal type from a
279     // legal type.
280     if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() ||
281         ShouldChangeType(CI.getType(), Src->getType()))
282       if (Instruction *NV = FoldOpIntoPhi(CI))
283         return NV;
284   }
285
286   return nullptr;
287 }
288
289 /// Return true if we can evaluate the specified expression tree as type Ty
290 /// instead of its larger type, and arrive with the same value.
291 /// This is used by code that tries to eliminate truncates.
292 ///
293 /// Ty will always be a type smaller than V.  We should return true if trunc(V)
294 /// can be computed by computing V in the smaller type.  If V is an instruction,
295 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
296 /// makes sense if x and y can be efficiently truncated.
297 ///
298 /// This function works on both vectors and scalars.
299 ///
300 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC,
301                                  Instruction *CxtI) {
302   // We can always evaluate constants in another type.
303   if (isa<Constant>(V))
304     return true;
305
306   Instruction *I = dyn_cast<Instruction>(V);
307   if (!I) return false;
308
309   Type *OrigTy = V->getType();
310
311   // If this is an extension from the dest type, we can eliminate it, even if it
312   // has multiple uses.
313   if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
314       I->getOperand(0)->getType() == Ty)
315     return true;
316
317   // We can't extend or shrink something that has multiple uses: doing so would
318   // require duplicating the instruction in general, which isn't profitable.
319   if (!I->hasOneUse()) return false;
320
321   unsigned Opc = I->getOpcode();
322   switch (Opc) {
323   case Instruction::Add:
324   case Instruction::Sub:
325   case Instruction::Mul:
326   case Instruction::And:
327   case Instruction::Or:
328   case Instruction::Xor:
329     // These operators can all arbitrarily be extended or truncated.
330     return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
331            canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
332
333   case Instruction::UDiv:
334   case Instruction::URem: {
335     // UDiv and URem can be truncated if all the truncated bits are zero.
336     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
337     uint32_t BitWidth = Ty->getScalarSizeInBits();
338     if (BitWidth < OrigBitWidth) {
339       APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
340       if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) &&
341           IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) {
342         return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
343                canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
344       }
345     }
346     break;
347   }
348   case Instruction::Shl:
349     // If we are truncating the result of this SHL, and if it's a shift of a
350     // constant amount, we can always perform a SHL in a smaller type.
351     if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
352       uint32_t BitWidth = Ty->getScalarSizeInBits();
353       if (CI->getLimitedValue(BitWidth) < BitWidth)
354         return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
355     }
356     break;
357   case Instruction::LShr:
358     // If this is a truncate of a logical shr, we can truncate it to a smaller
359     // lshr iff we know that the bits we would otherwise be shifting in are
360     // already zeros.
361     if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
362       uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
363       uint32_t BitWidth = Ty->getScalarSizeInBits();
364       if (IC.MaskedValueIsZero(I->getOperand(0),
365             APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth), 0, CxtI) &&
366           CI->getLimitedValue(BitWidth) < BitWidth) {
367         return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
368       }
369     }
370     break;
371   case Instruction::Trunc:
372     // trunc(trunc(x)) -> trunc(x)
373     return true;
374   case Instruction::ZExt:
375   case Instruction::SExt:
376     // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
377     // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
378     return true;
379   case Instruction::Select: {
380     SelectInst *SI = cast<SelectInst>(I);
381     return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) &&
382            canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI);
383   }
384   case Instruction::PHI: {
385     // We can change a phi if we can change all operands.  Note that we never
386     // get into trouble with cyclic PHIs here because we only consider
387     // instructions with a single use.
388     PHINode *PN = cast<PHINode>(I);
389     for (Value *IncValue : PN->incoming_values())
390       if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI))
391         return false;
392     return true;
393   }
394   default:
395     // TODO: Can handle more cases here.
396     break;
397   }
398
399   return false;
400 }
401
402 /// Given a vector that is bitcast to an integer, optionally logically
403 /// right-shifted, and truncated, convert it to an extractelement.
404 /// Example (big endian):
405 ///   trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32
406 ///   --->
407 ///   extractelement <4 x i32> %X, 1
408 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, InstCombiner &IC,
409                                          const DataLayout &DL) {
410   Value *TruncOp = Trunc.getOperand(0);
411   Type *DestType = Trunc.getType();
412   if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType))
413     return nullptr;
414
415   Value *VecInput = nullptr;
416   ConstantInt *ShiftVal = nullptr;
417   if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)),
418                                   m_LShr(m_BitCast(m_Value(VecInput)),
419                                          m_ConstantInt(ShiftVal)))) ||
420       !isa<VectorType>(VecInput->getType()))
421     return nullptr;
422
423   VectorType *VecType = cast<VectorType>(VecInput->getType());
424   unsigned VecWidth = VecType->getPrimitiveSizeInBits();
425   unsigned DestWidth = DestType->getPrimitiveSizeInBits();
426   unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0;
427
428   if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0))
429     return nullptr;
430
431   // If the element type of the vector doesn't match the result type,
432   // bitcast it to a vector type that we can extract from.
433   unsigned NumVecElts = VecWidth / DestWidth;
434   if (VecType->getElementType() != DestType) {
435     VecType = VectorType::get(DestType, NumVecElts);
436     VecInput = IC.Builder->CreateBitCast(VecInput, VecType, "bc");
437   }
438
439   unsigned Elt = ShiftAmount / DestWidth;
440   if (DL.isBigEndian())
441     Elt = NumVecElts - 1 - Elt;
442
443   return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
444 }
445
446 /// Try to narrow the width of bitwise logic instructions with constants.
447 Instruction *InstCombiner::shrinkBitwiseLogic(TruncInst &Trunc) {
448   Type *SrcTy = Trunc.getSrcTy();
449   Type *DestTy = Trunc.getType();
450   if (isa<IntegerType>(SrcTy) && !ShouldChangeType(SrcTy, DestTy))
451     return nullptr;
452
453   BinaryOperator *LogicOp;
454   Constant *C;
455   if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(LogicOp))) ||
456       !LogicOp->isBitwiseLogicOp() ||
457       !match(LogicOp->getOperand(1), m_Constant(C)))
458     return nullptr;
459
460   // trunc (logic X, C) --> logic (trunc X, C')
461   Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
462   Value *NarrowOp0 = Builder->CreateTrunc(LogicOp->getOperand(0), DestTy);
463   return BinaryOperator::Create(LogicOp->getOpcode(), NarrowOp0, NarrowC);
464 }
465
466 Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
467   if (Instruction *Result = commonCastTransforms(CI))
468     return Result;
469
470   // Test if the trunc is the user of a select which is part of a
471   // minimum or maximum operation. If so, don't do any more simplification.
472   // Even simplifying demanded bits can break the canonical form of a
473   // min/max.
474   Value *LHS, *RHS;
475   if (SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0)))
476     if (matchSelectPattern(SI, LHS, RHS).Flavor != SPF_UNKNOWN)
477       return nullptr;
478
479   // See if we can simplify any instructions used by the input whose sole
480   // purpose is to compute bits we don't care about.
481   if (SimplifyDemandedInstructionBits(CI))
482     return &CI;
483
484   Value *Src = CI.getOperand(0);
485   Type *DestTy = CI.getType(), *SrcTy = Src->getType();
486
487   // Attempt to truncate the entire input expression tree to the destination
488   // type.   Only do this if the dest type is a simple type, don't convert the
489   // expression tree to something weird like i93 unless the source is also
490   // strange.
491   if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
492       canEvaluateTruncated(Src, DestTy, *this, &CI)) {
493
494     // If this cast is a truncate, evaluting in a different type always
495     // eliminates the cast, so it is always a win.
496     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
497           " to avoid cast: " << CI << '\n');
498     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
499     assert(Res->getType() == DestTy);
500     return replaceInstUsesWith(CI, Res);
501   }
502
503   // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
504   if (DestTy->getScalarSizeInBits() == 1) {
505     Constant *One = ConstantInt::get(SrcTy, 1);
506     Src = Builder->CreateAnd(Src, One);
507     Value *Zero = Constant::getNullValue(Src->getType());
508     return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
509   }
510
511   // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
512   Value *A = nullptr; ConstantInt *Cst = nullptr;
513   if (Src->hasOneUse() &&
514       match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
515     // We have three types to worry about here, the type of A, the source of
516     // the truncate (MidSize), and the destination of the truncate. We know that
517     // ASize < MidSize   and MidSize > ResultSize, but don't know the relation
518     // between ASize and ResultSize.
519     unsigned ASize = A->getType()->getPrimitiveSizeInBits();
520
521     // If the shift amount is larger than the size of A, then the result is
522     // known to be zero because all the input bits got shifted out.
523     if (Cst->getZExtValue() >= ASize)
524       return replaceInstUsesWith(CI, Constant::getNullValue(DestTy));
525
526     // Since we're doing an lshr and a zero extend, and know that the shift
527     // amount is smaller than ASize, it is always safe to do the shift in A's
528     // type, then zero extend or truncate to the result.
529     Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue());
530     Shift->takeName(Src);
531     return CastInst::CreateIntegerCast(Shift, DestTy, false);
532   }
533
534   // Transform trunc(lshr (sext A), Cst) to ashr A, Cst to eliminate type
535   // conversion.
536   // It works because bits coming from sign extension have the same value as
537   // the sign bit of the original value; performing ashr instead of lshr
538   // generates bits of the same value as the sign bit.
539   if (Src->hasOneUse() &&
540       match(Src, m_LShr(m_SExt(m_Value(A)), m_ConstantInt(Cst))) &&
541       cast<Instruction>(Src)->getOperand(0)->hasOneUse()) {
542     const unsigned ASize = A->getType()->getPrimitiveSizeInBits();
543     // This optimization can be only performed when zero bits generated by
544     // the original lshr aren't pulled into the value after truncation, so we
545     // can only shift by values smaller than the size of destination type (in
546     // bits).
547     if (Cst->getValue().ult(ASize)) {
548       Value *Shift = Builder->CreateAShr(A, Cst->getZExtValue());
549       Shift->takeName(Src);
550       return CastInst::CreateIntegerCast(Shift, CI.getType(), true);
551     }
552   }
553
554   if (Instruction *I = shrinkBitwiseLogic(CI))
555     return I;
556
557   if (Src->hasOneUse() && isa<IntegerType>(SrcTy) &&
558       ShouldChangeType(SrcTy, DestTy)) {
559     // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the
560     // dest type is native and cst < dest size.
561     if (match(Src, m_Shl(m_Value(A), m_ConstantInt(Cst))) &&
562         !match(A, m_Shr(m_Value(), m_Constant()))) {
563       // Skip shifts of shift by constants. It undoes a combine in
564       // FoldShiftByConstant and is the extend in reg pattern.
565       const unsigned DestSize = DestTy->getScalarSizeInBits();
566       if (Cst->getValue().ult(DestSize)) {
567         Value *NewTrunc = Builder->CreateTrunc(A, DestTy, A->getName() + ".tr");
568
569         return BinaryOperator::Create(
570           Instruction::Shl, NewTrunc,
571           ConstantInt::get(DestTy, Cst->getValue().trunc(DestSize)));
572       }
573     }
574   }
575
576   if (Instruction *I = foldVecTruncToExtElt(CI, *this, DL))
577     return I;
578
579   return nullptr;
580 }
581
582 Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, ZExtInst &CI,
583                                              bool DoTransform) {
584   // If we are just checking for a icmp eq of a single bit and zext'ing it
585   // to an integer, then shift the bit to the appropriate place and then
586   // cast to integer to avoid the comparison.
587   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
588     const APInt &Op1CV = Op1C->getValue();
589
590     // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
591     // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear.
592     if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
593         (ICI->getPredicate() == ICmpInst::ICMP_SGT && Op1CV.isAllOnesValue())) {
594       if (!DoTransform) return ICI;
595
596       Value *In = ICI->getOperand(0);
597       Value *Sh = ConstantInt::get(In->getType(),
598                                    In->getType()->getScalarSizeInBits() - 1);
599       In = Builder->CreateLShr(In, Sh, In->getName() + ".lobit");
600       if (In->getType() != CI.getType())
601         In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/);
602
603       if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
604         Constant *One = ConstantInt::get(In->getType(), 1);
605         In = Builder->CreateXor(In, One, In->getName() + ".not");
606       }
607
608       return replaceInstUsesWith(CI, In);
609     }
610
611     // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
612     // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
613     // zext (X == 1) to i32 --> X        iff X has only the low bit set.
614     // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set.
615     // zext (X != 0) to i32 --> X        iff X has only the low bit set.
616     // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
617     // zext (X != 1) to i32 --> X^1      iff X has only the low bit set.
618     // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
619     if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
620         // This only works for EQ and NE
621         ICI->isEquality()) {
622       // If Op1C some other power of two, convert:
623       uint32_t BitWidth = Op1C->getType()->getBitWidth();
624       APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
625       computeKnownBits(ICI->getOperand(0), KnownZero, KnownOne, 0, &CI);
626
627       APInt KnownZeroMask(~KnownZero);
628       if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
629         if (!DoTransform) return ICI;
630
631         bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
632         if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
633           // (X&4) == 2 --> false
634           // (X&4) != 2 --> true
635           Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
636                                            isNE);
637           Res = ConstantExpr::getZExt(Res, CI.getType());
638           return replaceInstUsesWith(CI, Res);
639         }
640
641         uint32_t ShAmt = KnownZeroMask.logBase2();
642         Value *In = ICI->getOperand(0);
643         if (ShAmt) {
644           // Perform a logical shr by shiftamt.
645           // Insert the shift to put the result in the low bit.
646           In = Builder->CreateLShr(In, ConstantInt::get(In->getType(), ShAmt),
647                                    In->getName() + ".lobit");
648         }
649
650         if ((Op1CV != 0) == isNE) { // Toggle the low bit.
651           Constant *One = ConstantInt::get(In->getType(), 1);
652           In = Builder->CreateXor(In, One);
653         }
654
655         if (CI.getType() == In->getType())
656           return replaceInstUsesWith(CI, In);
657
658         Value *IntCast = Builder->CreateIntCast(In, CI.getType(), false);
659         return replaceInstUsesWith(CI, IntCast);
660       }
661     }
662   }
663
664   // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
665   // It is also profitable to transform icmp eq into not(xor(A, B)) because that
666   // may lead to additional simplifications.
667   if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
668     if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
669       uint32_t BitWidth = ITy->getBitWidth();
670       Value *LHS = ICI->getOperand(0);
671       Value *RHS = ICI->getOperand(1);
672
673       APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0);
674       APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0);
675       computeKnownBits(LHS, KnownZeroLHS, KnownOneLHS, 0, &CI);
676       computeKnownBits(RHS, KnownZeroRHS, KnownOneRHS, 0, &CI);
677
678       if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) {
679         APInt KnownBits = KnownZeroLHS | KnownOneLHS;
680         APInt UnknownBit = ~KnownBits;
681         if (UnknownBit.countPopulation() == 1) {
682           if (!DoTransform) return ICI;
683
684           Value *Result = Builder->CreateXor(LHS, RHS);
685
686           // Mask off any bits that are set and won't be shifted away.
687           if (KnownOneLHS.uge(UnknownBit))
688             Result = Builder->CreateAnd(Result,
689                                         ConstantInt::get(ITy, UnknownBit));
690
691           // Shift the bit we're testing down to the lsb.
692           Result = Builder->CreateLShr(
693                Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
694
695           if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
696             Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1));
697           Result->takeName(ICI);
698           return replaceInstUsesWith(CI, Result);
699         }
700       }
701     }
702   }
703
704   return nullptr;
705 }
706
707 /// Determine if the specified value can be computed in the specified wider type
708 /// and produce the same low bits. If not, return false.
709 ///
710 /// If this function returns true, it can also return a non-zero number of bits
711 /// (in BitsToClear) which indicates that the value it computes is correct for
712 /// the zero extend, but that the additional BitsToClear bits need to be zero'd
713 /// out.  For example, to promote something like:
714 ///
715 ///   %B = trunc i64 %A to i32
716 ///   %C = lshr i32 %B, 8
717 ///   %E = zext i32 %C to i64
718 ///
719 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
720 /// set to 8 to indicate that the promoted value needs to have bits 24-31
721 /// cleared in addition to bits 32-63.  Since an 'and' will be generated to
722 /// clear the top bits anyway, doing this has no extra cost.
723 ///
724 /// This function works on both vectors and scalars.
725 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear,
726                              InstCombiner &IC, Instruction *CxtI) {
727   BitsToClear = 0;
728   if (isa<Constant>(V))
729     return true;
730
731   Instruction *I = dyn_cast<Instruction>(V);
732   if (!I) return false;
733
734   // If the input is a truncate from the destination type, we can trivially
735   // eliminate it.
736   if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
737     return true;
738
739   // We can't extend or shrink something that has multiple uses: doing so would
740   // require duplicating the instruction in general, which isn't profitable.
741   if (!I->hasOneUse()) return false;
742
743   unsigned Opc = I->getOpcode(), Tmp;
744   switch (Opc) {
745   case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
746   case Instruction::SExt:  // zext(sext(x)) -> sext(x).
747   case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
748     return true;
749   case Instruction::And:
750   case Instruction::Or:
751   case Instruction::Xor:
752   case Instruction::Add:
753   case Instruction::Sub:
754   case Instruction::Mul:
755     if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) ||
756         !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI))
757       return false;
758     // These can all be promoted if neither operand has 'bits to clear'.
759     if (BitsToClear == 0 && Tmp == 0)
760       return true;
761
762     // If the operation is an AND/OR/XOR and the bits to clear are zero in the
763     // other side, BitsToClear is ok.
764     if (Tmp == 0 && I->isBitwiseLogicOp()) {
765       // We use MaskedValueIsZero here for generality, but the case we care
766       // about the most is constant RHS.
767       unsigned VSize = V->getType()->getScalarSizeInBits();
768       if (IC.MaskedValueIsZero(I->getOperand(1),
769                                APInt::getHighBitsSet(VSize, BitsToClear),
770                                0, CxtI))
771         return true;
772     }
773
774     // Otherwise, we don't know how to analyze this BitsToClear case yet.
775     return false;
776
777   case Instruction::Shl:
778     // We can promote shl(x, cst) if we can promote x.  Since shl overwrites the
779     // upper bits we can reduce BitsToClear by the shift amount.
780     if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
781       if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
782         return false;
783       uint64_t ShiftAmt = Amt->getZExtValue();
784       BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
785       return true;
786     }
787     return false;
788   case Instruction::LShr:
789     // We can promote lshr(x, cst) if we can promote x.  This requires the
790     // ultimate 'and' to clear out the high zero bits we're clearing out though.
791     if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
792       if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
793         return false;
794       BitsToClear += Amt->getZExtValue();
795       if (BitsToClear > V->getType()->getScalarSizeInBits())
796         BitsToClear = V->getType()->getScalarSizeInBits();
797       return true;
798     }
799     // Cannot promote variable LSHR.
800     return false;
801   case Instruction::Select:
802     if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) ||
803         !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) ||
804         // TODO: If important, we could handle the case when the BitsToClear are
805         // known zero in the disagreeing side.
806         Tmp != BitsToClear)
807       return false;
808     return true;
809
810   case Instruction::PHI: {
811     // We can change a phi if we can change all operands.  Note that we never
812     // get into trouble with cyclic PHIs here because we only consider
813     // instructions with a single use.
814     PHINode *PN = cast<PHINode>(I);
815     if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI))
816       return false;
817     for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
818       if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) ||
819           // TODO: If important, we could handle the case when the BitsToClear
820           // are known zero in the disagreeing input.
821           Tmp != BitsToClear)
822         return false;
823     return true;
824   }
825   default:
826     // TODO: Can handle more cases here.
827     return false;
828   }
829 }
830
831 Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
832   // If this zero extend is only used by a truncate, let the truncate be
833   // eliminated before we try to optimize this zext.
834   if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
835     return nullptr;
836
837   // If one of the common conversion will work, do it.
838   if (Instruction *Result = commonCastTransforms(CI))
839     return Result;
840
841   // See if we can simplify any instructions used by the input whose sole
842   // purpose is to compute bits we don't care about.
843   if (SimplifyDemandedInstructionBits(CI))
844     return &CI;
845
846   Value *Src = CI.getOperand(0);
847   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
848
849   // Attempt to extend the entire input expression tree to the destination
850   // type.   Only do this if the dest type is a simple type, don't convert the
851   // expression tree to something weird like i93 unless the source is also
852   // strange.
853   unsigned BitsToClear;
854   if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
855       canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) {
856     assert(BitsToClear < SrcTy->getScalarSizeInBits() &&
857            "Unreasonable BitsToClear");
858
859     // Okay, we can transform this!  Insert the new expression now.
860     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
861           " to avoid zero extend: " << CI << '\n');
862     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
863     assert(Res->getType() == DestTy);
864
865     uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
866     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
867
868     // If the high bits are already filled with zeros, just replace this
869     // cast with the result.
870     if (MaskedValueIsZero(Res,
871                           APInt::getHighBitsSet(DestBitSize,
872                                                 DestBitSize-SrcBitsKept),
873                              0, &CI))
874       return replaceInstUsesWith(CI, Res);
875
876     // We need to emit an AND to clear the high bits.
877     Constant *C = ConstantInt::get(Res->getType(),
878                                APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
879     return BinaryOperator::CreateAnd(Res, C);
880   }
881
882   // If this is a TRUNC followed by a ZEXT then we are dealing with integral
883   // types and if the sizes are just right we can convert this into a logical
884   // 'and' which will be much cheaper than the pair of casts.
885   if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
886     // TODO: Subsume this into EvaluateInDifferentType.
887
888     // Get the sizes of the types involved.  We know that the intermediate type
889     // will be smaller than A or C, but don't know the relation between A and C.
890     Value *A = CSrc->getOperand(0);
891     unsigned SrcSize = A->getType()->getScalarSizeInBits();
892     unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
893     unsigned DstSize = CI.getType()->getScalarSizeInBits();
894     // If we're actually extending zero bits, then if
895     // SrcSize <  DstSize: zext(a & mask)
896     // SrcSize == DstSize: a & mask
897     // SrcSize  > DstSize: trunc(a) & mask
898     if (SrcSize < DstSize) {
899       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
900       Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
901       Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
902       return new ZExtInst(And, CI.getType());
903     }
904
905     if (SrcSize == DstSize) {
906       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
907       return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
908                                                            AndValue));
909     }
910     if (SrcSize > DstSize) {
911       Value *Trunc = Builder->CreateTrunc(A, CI.getType());
912       APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
913       return BinaryOperator::CreateAnd(Trunc,
914                                        ConstantInt::get(Trunc->getType(),
915                                                         AndValue));
916     }
917   }
918
919   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
920     return transformZExtICmp(ICI, CI);
921
922   BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
923   if (SrcI && SrcI->getOpcode() == Instruction::Or) {
924     // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) if at least one
925     // of the (zext icmp) can be eliminated. If so, immediately perform the
926     // according elimination.
927     ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
928     ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
929     if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
930         (transformZExtICmp(LHS, CI, false) ||
931          transformZExtICmp(RHS, CI, false))) {
932       // zext (or icmp, icmp) -> or (zext icmp), (zext icmp)
933       Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName());
934       Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName());
935       BinaryOperator *Or = BinaryOperator::Create(Instruction::Or, LCast, RCast);
936
937       // Perform the elimination.
938       if (auto *LZExt = dyn_cast<ZExtInst>(LCast))
939         transformZExtICmp(LHS, *LZExt);
940       if (auto *RZExt = dyn_cast<ZExtInst>(RCast))
941         transformZExtICmp(RHS, *RZExt);
942
943       return Or;
944     }
945   }
946
947   // zext(trunc(X) & C) -> (X & zext(C)).
948   Constant *C;
949   Value *X;
950   if (SrcI &&
951       match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
952       X->getType() == CI.getType())
953     return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType()));
954
955   // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
956   Value *And;
957   if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
958       match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
959       X->getType() == CI.getType()) {
960     Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
961     return BinaryOperator::CreateXor(Builder->CreateAnd(X, ZC), ZC);
962   }
963
964   return nullptr;
965 }
966
967 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp.
968 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
969   Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
970   ICmpInst::Predicate Pred = ICI->getPredicate();
971
972   // Don't bother if Op1 isn't of vector or integer type.
973   if (!Op1->getType()->isIntOrIntVectorTy())
974     return nullptr;
975
976   if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
977     // (x <s  0) ? -1 : 0 -> ashr x, 31        -> all ones if negative
978     // (x >s -1) ? -1 : 0 -> not (ashr x, 31)  -> all ones if positive
979     if ((Pred == ICmpInst::ICMP_SLT && Op1C->isNullValue()) ||
980         (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) {
981
982       Value *Sh = ConstantInt::get(Op0->getType(),
983                                    Op0->getType()->getScalarSizeInBits()-1);
984       Value *In = Builder->CreateAShr(Op0, Sh, Op0->getName()+".lobit");
985       if (In->getType() != CI.getType())
986         In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/);
987
988       if (Pred == ICmpInst::ICMP_SGT)
989         In = Builder->CreateNot(In, In->getName()+".not");
990       return replaceInstUsesWith(CI, In);
991     }
992   }
993
994   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
995     // If we know that only one bit of the LHS of the icmp can be set and we
996     // have an equality comparison with zero or a power of 2, we can transform
997     // the icmp and sext into bitwise/integer operations.
998     if (ICI->hasOneUse() &&
999         ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
1000       unsigned BitWidth = Op1C->getType()->getBitWidth();
1001       APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
1002       computeKnownBits(Op0, KnownZero, KnownOne, 0, &CI);
1003
1004       APInt KnownZeroMask(~KnownZero);
1005       if (KnownZeroMask.isPowerOf2()) {
1006         Value *In = ICI->getOperand(0);
1007
1008         // If the icmp tests for a known zero bit we can constant fold it.
1009         if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
1010           Value *V = Pred == ICmpInst::ICMP_NE ?
1011                        ConstantInt::getAllOnesValue(CI.getType()) :
1012                        ConstantInt::getNullValue(CI.getType());
1013           return replaceInstUsesWith(CI, V);
1014         }
1015
1016         if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
1017           // sext ((x & 2^n) == 0)   -> (x >> n) - 1
1018           // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
1019           unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
1020           // Perform a right shift to place the desired bit in the LSB.
1021           if (ShiftAmt)
1022             In = Builder->CreateLShr(In,
1023                                      ConstantInt::get(In->getType(), ShiftAmt));
1024
1025           // At this point "In" is either 1 or 0. Subtract 1 to turn
1026           // {1, 0} -> {0, -1}.
1027           In = Builder->CreateAdd(In,
1028                                   ConstantInt::getAllOnesValue(In->getType()),
1029                                   "sext");
1030         } else {
1031           // sext ((x & 2^n) != 0)   -> (x << bitwidth-n) a>> bitwidth-1
1032           // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
1033           unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
1034           // Perform a left shift to place the desired bit in the MSB.
1035           if (ShiftAmt)
1036             In = Builder->CreateShl(In,
1037                                     ConstantInt::get(In->getType(), ShiftAmt));
1038
1039           // Distribute the bit over the whole bit width.
1040           In = Builder->CreateAShr(In, ConstantInt::get(In->getType(),
1041                                                         BitWidth - 1), "sext");
1042         }
1043
1044         if (CI.getType() == In->getType())
1045           return replaceInstUsesWith(CI, In);
1046         return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
1047       }
1048     }
1049   }
1050
1051   return nullptr;
1052 }
1053
1054 /// Return true if we can take the specified value and return it as type Ty
1055 /// without inserting any new casts and without changing the value of the common
1056 /// low bits.  This is used by code that tries to promote integer operations to
1057 /// a wider types will allow us to eliminate the extension.
1058 ///
1059 /// This function works on both vectors and scalars.
1060 ///
1061 static bool canEvaluateSExtd(Value *V, Type *Ty) {
1062   assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
1063          "Can't sign extend type to a smaller type");
1064   // If this is a constant, it can be trivially promoted.
1065   if (isa<Constant>(V))
1066     return true;
1067
1068   Instruction *I = dyn_cast<Instruction>(V);
1069   if (!I) return false;
1070
1071   // If this is a truncate from the dest type, we can trivially eliminate it.
1072   if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
1073     return true;
1074
1075   // We can't extend or shrink something that has multiple uses: doing so would
1076   // require duplicating the instruction in general, which isn't profitable.
1077   if (!I->hasOneUse()) return false;
1078
1079   switch (I->getOpcode()) {
1080   case Instruction::SExt:  // sext(sext(x)) -> sext(x)
1081   case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
1082   case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
1083     return true;
1084   case Instruction::And:
1085   case Instruction::Or:
1086   case Instruction::Xor:
1087   case Instruction::Add:
1088   case Instruction::Sub:
1089   case Instruction::Mul:
1090     // These operators can all arbitrarily be extended if their inputs can.
1091     return canEvaluateSExtd(I->getOperand(0), Ty) &&
1092            canEvaluateSExtd(I->getOperand(1), Ty);
1093
1094   //case Instruction::Shl:   TODO
1095   //case Instruction::LShr:  TODO
1096
1097   case Instruction::Select:
1098     return canEvaluateSExtd(I->getOperand(1), Ty) &&
1099            canEvaluateSExtd(I->getOperand(2), Ty);
1100
1101   case Instruction::PHI: {
1102     // We can change a phi if we can change all operands.  Note that we never
1103     // get into trouble with cyclic PHIs here because we only consider
1104     // instructions with a single use.
1105     PHINode *PN = cast<PHINode>(I);
1106     for (Value *IncValue : PN->incoming_values())
1107       if (!canEvaluateSExtd(IncValue, Ty)) return false;
1108     return true;
1109   }
1110   default:
1111     // TODO: Can handle more cases here.
1112     break;
1113   }
1114
1115   return false;
1116 }
1117
1118 Instruction *InstCombiner::visitSExt(SExtInst &CI) {
1119   // If this sign extend is only used by a truncate, let the truncate be
1120   // eliminated before we try to optimize this sext.
1121   if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
1122     return nullptr;
1123
1124   if (Instruction *I = commonCastTransforms(CI))
1125     return I;
1126
1127   // See if we can simplify any instructions used by the input whose sole
1128   // purpose is to compute bits we don't care about.
1129   if (SimplifyDemandedInstructionBits(CI))
1130     return &CI;
1131
1132   Value *Src = CI.getOperand(0);
1133   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
1134
1135   // If we know that the value being extended is positive, we can use a zext
1136   // instead.
1137   bool KnownZero, KnownOne;
1138   ComputeSignBit(Src, KnownZero, KnownOne, 0, &CI);
1139   if (KnownZero) {
1140     Value *ZExt = Builder->CreateZExt(Src, DestTy);
1141     return replaceInstUsesWith(CI, ZExt);
1142   }
1143
1144   // Attempt to extend the entire input expression tree to the destination
1145   // type.   Only do this if the dest type is a simple type, don't convert the
1146   // expression tree to something weird like i93 unless the source is also
1147   // strange.
1148   if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
1149       canEvaluateSExtd(Src, DestTy)) {
1150     // Okay, we can transform this!  Insert the new expression now.
1151     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1152           " to avoid sign extend: " << CI << '\n');
1153     Value *Res = EvaluateInDifferentType(Src, DestTy, true);
1154     assert(Res->getType() == DestTy);
1155
1156     uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1157     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1158
1159     // If the high bits are already filled with sign bit, just replace this
1160     // cast with the result.
1161     if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize)
1162       return replaceInstUsesWith(CI, Res);
1163
1164     // We need to emit a shl + ashr to do the sign extend.
1165     Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1166     return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"),
1167                                       ShAmt);
1168   }
1169
1170   // If this input is a trunc from our destination, then turn sext(trunc(x))
1171   // into shifts.
1172   if (TruncInst *TI = dyn_cast<TruncInst>(Src))
1173     if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) {
1174       uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1175       uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1176
1177       // We need to emit a shl + ashr to do the sign extend.
1178       Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1179       Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext");
1180       return BinaryOperator::CreateAShr(Res, ShAmt);
1181     }
1182
1183   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
1184     return transformSExtICmp(ICI, CI);
1185
1186   // If the input is a shl/ashr pair of a same constant, then this is a sign
1187   // extension from a smaller value.  If we could trust arbitrary bitwidth
1188   // integers, we could turn this into a truncate to the smaller bit and then
1189   // use a sext for the whole extension.  Since we don't, look deeper and check
1190   // for a truncate.  If the source and dest are the same type, eliminate the
1191   // trunc and extend and just do shifts.  For example, turn:
1192   //   %a = trunc i32 %i to i8
1193   //   %b = shl i8 %a, 6
1194   //   %c = ashr i8 %b, 6
1195   //   %d = sext i8 %c to i32
1196   // into:
1197   //   %a = shl i32 %i, 30
1198   //   %d = ashr i32 %a, 30
1199   Value *A = nullptr;
1200   // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
1201   ConstantInt *BA = nullptr, *CA = nullptr;
1202   if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
1203                         m_ConstantInt(CA))) &&
1204       BA == CA && A->getType() == CI.getType()) {
1205     unsigned MidSize = Src->getType()->getScalarSizeInBits();
1206     unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
1207     unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
1208     Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
1209     A = Builder->CreateShl(A, ShAmtV, CI.getName());
1210     return BinaryOperator::CreateAShr(A, ShAmtV);
1211   }
1212
1213   return nullptr;
1214 }
1215
1216
1217 /// Return a Constant* for the specified floating-point constant if it fits
1218 /// in the specified FP type without changing its value.
1219 static Constant *fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
1220   bool losesInfo;
1221   APFloat F = CFP->getValueAPF();
1222   (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1223   if (!losesInfo)
1224     return ConstantFP::get(CFP->getContext(), F);
1225   return nullptr;
1226 }
1227
1228 /// If this is a floating-point extension instruction, look
1229 /// through it until we get the source value.
1230 static Value *lookThroughFPExtensions(Value *V) {
1231   if (Instruction *I = dyn_cast<Instruction>(V))
1232     if (I->getOpcode() == Instruction::FPExt)
1233       return lookThroughFPExtensions(I->getOperand(0));
1234
1235   // If this value is a constant, return the constant in the smallest FP type
1236   // that can accurately represent it.  This allows us to turn
1237   // (float)((double)X+2.0) into x+2.0f.
1238   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1239     if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
1240       return V;  // No constant folding of this.
1241     // See if the value can be truncated to half and then reextended.
1242     if (Value *V = fitsInFPType(CFP, APFloat::IEEEhalf()))
1243       return V;
1244     // See if the value can be truncated to float and then reextended.
1245     if (Value *V = fitsInFPType(CFP, APFloat::IEEEsingle()))
1246       return V;
1247     if (CFP->getType()->isDoubleTy())
1248       return V;  // Won't shrink.
1249     if (Value *V = fitsInFPType(CFP, APFloat::IEEEdouble()))
1250       return V;
1251     // Don't try to shrink to various long double types.
1252   }
1253
1254   return V;
1255 }
1256
1257 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
1258   if (Instruction *I = commonCastTransforms(CI))
1259     return I;
1260   // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
1261   // simplify this expression to avoid one or more of the trunc/extend
1262   // operations if we can do so without changing the numerical results.
1263   //
1264   // The exact manner in which the widths of the operands interact to limit
1265   // what we can and cannot do safely varies from operation to operation, and
1266   // is explained below in the various case statements.
1267   BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
1268   if (OpI && OpI->hasOneUse()) {
1269     Value *LHSOrig = lookThroughFPExtensions(OpI->getOperand(0));
1270     Value *RHSOrig = lookThroughFPExtensions(OpI->getOperand(1));
1271     unsigned OpWidth = OpI->getType()->getFPMantissaWidth();
1272     unsigned LHSWidth = LHSOrig->getType()->getFPMantissaWidth();
1273     unsigned RHSWidth = RHSOrig->getType()->getFPMantissaWidth();
1274     unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
1275     unsigned DstWidth = CI.getType()->getFPMantissaWidth();
1276     switch (OpI->getOpcode()) {
1277       default: break;
1278       case Instruction::FAdd:
1279       case Instruction::FSub:
1280         // For addition and subtraction, the infinitely precise result can
1281         // essentially be arbitrarily wide; proving that double rounding
1282         // will not occur because the result of OpI is exact (as we will for
1283         // FMul, for example) is hopeless.  However, we *can* nonetheless
1284         // frequently know that double rounding cannot occur (or that it is
1285         // innocuous) by taking advantage of the specific structure of
1286         // infinitely-precise results that admit double rounding.
1287         //
1288         // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
1289         // to represent both sources, we can guarantee that the double
1290         // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
1291         // "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
1292         // for proof of this fact).
1293         //
1294         // Note: Figueroa does not consider the case where DstFormat !=
1295         // SrcFormat.  It's possible (likely even!) that this analysis
1296         // could be tightened for those cases, but they are rare (the main
1297         // case of interest here is (float)((double)float + float)).
1298         if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
1299           if (LHSOrig->getType() != CI.getType())
1300             LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
1301           if (RHSOrig->getType() != CI.getType())
1302             RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
1303           Instruction *RI =
1304             BinaryOperator::Create(OpI->getOpcode(), LHSOrig, RHSOrig);
1305           RI->copyFastMathFlags(OpI);
1306           return RI;
1307         }
1308         break;
1309       case Instruction::FMul:
1310         // For multiplication, the infinitely precise result has at most
1311         // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
1312         // that such a value can be exactly represented, then no double
1313         // rounding can possibly occur; we can safely perform the operation
1314         // in the destination format if it can represent both sources.
1315         if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
1316           if (LHSOrig->getType() != CI.getType())
1317             LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
1318           if (RHSOrig->getType() != CI.getType())
1319             RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
1320           Instruction *RI =
1321             BinaryOperator::CreateFMul(LHSOrig, RHSOrig);
1322           RI->copyFastMathFlags(OpI);
1323           return RI;
1324         }
1325         break;
1326       case Instruction::FDiv:
1327         // For division, we use again use the bound from Figueroa's
1328         // dissertation.  I am entirely certain that this bound can be
1329         // tightened in the unbalanced operand case by an analysis based on
1330         // the diophantine rational approximation bound, but the well-known
1331         // condition used here is a good conservative first pass.
1332         // TODO: Tighten bound via rigorous analysis of the unbalanced case.
1333         if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
1334           if (LHSOrig->getType() != CI.getType())
1335             LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
1336           if (RHSOrig->getType() != CI.getType())
1337             RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
1338           Instruction *RI =
1339             BinaryOperator::CreateFDiv(LHSOrig, RHSOrig);
1340           RI->copyFastMathFlags(OpI);
1341           return RI;
1342         }
1343         break;
1344       case Instruction::FRem:
1345         // Remainder is straightforward.  Remainder is always exact, so the
1346         // type of OpI doesn't enter into things at all.  We simply evaluate
1347         // in whichever source type is larger, then convert to the
1348         // destination type.
1349         if (SrcWidth == OpWidth)
1350           break;
1351         if (LHSWidth < SrcWidth)
1352           LHSOrig = Builder->CreateFPExt(LHSOrig, RHSOrig->getType());
1353         else if (RHSWidth <= SrcWidth)
1354           RHSOrig = Builder->CreateFPExt(RHSOrig, LHSOrig->getType());
1355         if (LHSOrig != OpI->getOperand(0) || RHSOrig != OpI->getOperand(1)) {
1356           Value *ExactResult = Builder->CreateFRem(LHSOrig, RHSOrig);
1357           if (Instruction *RI = dyn_cast<Instruction>(ExactResult))
1358             RI->copyFastMathFlags(OpI);
1359           return CastInst::CreateFPCast(ExactResult, CI.getType());
1360         }
1361     }
1362
1363     // (fptrunc (fneg x)) -> (fneg (fptrunc x))
1364     if (BinaryOperator::isFNeg(OpI)) {
1365       Value *InnerTrunc = Builder->CreateFPTrunc(OpI->getOperand(1),
1366                                                  CI.getType());
1367       Instruction *RI = BinaryOperator::CreateFNeg(InnerTrunc);
1368       RI->copyFastMathFlags(OpI);
1369       return RI;
1370     }
1371   }
1372
1373   // (fptrunc (select cond, R1, Cst)) -->
1374   // (select cond, (fptrunc R1), (fptrunc Cst))
1375   //
1376   //  - but only if this isn't part of a min/max operation, else we'll
1377   // ruin min/max canonical form which is to have the select and
1378   // compare's operands be of the same type with no casts to look through.
1379   Value *LHS, *RHS;
1380   SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0));
1381   if (SI &&
1382       (isa<ConstantFP>(SI->getOperand(1)) ||
1383        isa<ConstantFP>(SI->getOperand(2))) &&
1384       matchSelectPattern(SI, LHS, RHS).Flavor == SPF_UNKNOWN) {
1385     Value *LHSTrunc = Builder->CreateFPTrunc(SI->getOperand(1),
1386                                              CI.getType());
1387     Value *RHSTrunc = Builder->CreateFPTrunc(SI->getOperand(2),
1388                                              CI.getType());
1389     return SelectInst::Create(SI->getOperand(0), LHSTrunc, RHSTrunc);
1390   }
1391
1392   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI.getOperand(0));
1393   if (II) {
1394     switch (II->getIntrinsicID()) {
1395       default: break;
1396       case Intrinsic::fabs: {
1397         // (fptrunc (fabs x)) -> (fabs (fptrunc x))
1398         Value *InnerTrunc = Builder->CreateFPTrunc(II->getArgOperand(0),
1399                                                    CI.getType());
1400         Type *IntrinsicType[] = { CI.getType() };
1401         Function *Overload = Intrinsic::getDeclaration(
1402             CI.getModule(), II->getIntrinsicID(), IntrinsicType);
1403
1404         SmallVector<OperandBundleDef, 1> OpBundles;
1405         II->getOperandBundlesAsDefs(OpBundles);
1406
1407         Value *Args[] = { InnerTrunc };
1408         return CallInst::Create(Overload, Args, OpBundles, II->getName());
1409       }
1410     }
1411   }
1412
1413   return nullptr;
1414 }
1415
1416 Instruction *InstCombiner::visitFPExt(CastInst &CI) {
1417   return commonCastTransforms(CI);
1418 }
1419
1420 // fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X)
1421 // This is safe if the intermediate type has enough bits in its mantissa to
1422 // accurately represent all values of X.  For example, this won't work with
1423 // i64 -> float -> i64.
1424 Instruction *InstCombiner::FoldItoFPtoI(Instruction &FI) {
1425   if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0)))
1426     return nullptr;
1427   Instruction *OpI = cast<Instruction>(FI.getOperand(0));
1428
1429   Value *SrcI = OpI->getOperand(0);
1430   Type *FITy = FI.getType();
1431   Type *OpITy = OpI->getType();
1432   Type *SrcTy = SrcI->getType();
1433   bool IsInputSigned = isa<SIToFPInst>(OpI);
1434   bool IsOutputSigned = isa<FPToSIInst>(FI);
1435
1436   // We can safely assume the conversion won't overflow the output range,
1437   // because (for example) (uint8_t)18293.f is undefined behavior.
1438
1439   // Since we can assume the conversion won't overflow, our decision as to
1440   // whether the input will fit in the float should depend on the minimum
1441   // of the input range and output range.
1442
1443   // This means this is also safe for a signed input and unsigned output, since
1444   // a negative input would lead to undefined behavior.
1445   int InputSize = (int)SrcTy->getScalarSizeInBits() - IsInputSigned;
1446   int OutputSize = (int)FITy->getScalarSizeInBits() - IsOutputSigned;
1447   int ActualSize = std::min(InputSize, OutputSize);
1448
1449   if (ActualSize <= OpITy->getFPMantissaWidth()) {
1450     if (FITy->getScalarSizeInBits() > SrcTy->getScalarSizeInBits()) {
1451       if (IsInputSigned && IsOutputSigned)
1452         return new SExtInst(SrcI, FITy);
1453       return new ZExtInst(SrcI, FITy);
1454     }
1455     if (FITy->getScalarSizeInBits() < SrcTy->getScalarSizeInBits())
1456       return new TruncInst(SrcI, FITy);
1457     if (SrcTy == FITy)
1458       return replaceInstUsesWith(FI, SrcI);
1459     return new BitCastInst(SrcI, FITy);
1460   }
1461   return nullptr;
1462 }
1463
1464 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
1465   Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1466   if (!OpI)
1467     return commonCastTransforms(FI);
1468
1469   if (Instruction *I = FoldItoFPtoI(FI))
1470     return I;
1471
1472   return commonCastTransforms(FI);
1473 }
1474
1475 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
1476   Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1477   if (!OpI)
1478     return commonCastTransforms(FI);
1479
1480   if (Instruction *I = FoldItoFPtoI(FI))
1481     return I;
1482
1483   return commonCastTransforms(FI);
1484 }
1485
1486 Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
1487   return commonCastTransforms(CI);
1488 }
1489
1490 Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
1491   return commonCastTransforms(CI);
1492 }
1493
1494 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
1495   // If the source integer type is not the intptr_t type for this target, do a
1496   // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
1497   // cast to be exposed to other transforms.
1498   unsigned AS = CI.getAddressSpace();
1499   if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
1500       DL.getPointerSizeInBits(AS)) {
1501     Type *Ty = DL.getIntPtrType(CI.getContext(), AS);
1502     if (CI.getType()->isVectorTy()) // Handle vectors of pointers.
1503       Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements());
1504
1505     Value *P = Builder->CreateZExtOrTrunc(CI.getOperand(0), Ty);
1506     return new IntToPtrInst(P, CI.getType());
1507   }
1508
1509   if (Instruction *I = commonCastTransforms(CI))
1510     return I;
1511
1512   return nullptr;
1513 }
1514
1515 /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
1516 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
1517   Value *Src = CI.getOperand(0);
1518
1519   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
1520     // If casting the result of a getelementptr instruction with no offset, turn
1521     // this into a cast of the original pointer!
1522     if (GEP->hasAllZeroIndices() &&
1523         // If CI is an addrspacecast and GEP changes the poiner type, merging
1524         // GEP into CI would undo canonicalizing addrspacecast with different
1525         // pointer types, causing infinite loops.
1526         (!isa<AddrSpaceCastInst>(CI) ||
1527           GEP->getType() == GEP->getPointerOperand()->getType())) {
1528       // Changing the cast operand is usually not a good idea but it is safe
1529       // here because the pointer operand is being replaced with another
1530       // pointer operand so the opcode doesn't need to change.
1531       Worklist.Add(GEP);
1532       CI.setOperand(0, GEP->getOperand(0));
1533       return &CI;
1534     }
1535   }
1536
1537   return commonCastTransforms(CI);
1538 }
1539
1540 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
1541   // If the destination integer type is not the intptr_t type for this target,
1542   // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
1543   // to be exposed to other transforms.
1544
1545   Type *Ty = CI.getType();
1546   unsigned AS = CI.getPointerAddressSpace();
1547
1548   if (Ty->getScalarSizeInBits() == DL.getPointerSizeInBits(AS))
1549     return commonPointerCastTransforms(CI);
1550
1551   Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS);
1552   if (Ty->isVectorTy()) // Handle vectors of pointers.
1553     PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements());
1554
1555   Value *P = Builder->CreatePtrToInt(CI.getOperand(0), PtrTy);
1556   return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
1557 }
1558
1559 /// This input value (which is known to have vector type) is being zero extended
1560 /// or truncated to the specified vector type.
1561 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible.
1562 ///
1563 /// The source and destination vector types may have different element types.
1564 static Instruction *optimizeVectorResize(Value *InVal, VectorType *DestTy,
1565                                          InstCombiner &IC) {
1566   // We can only do this optimization if the output is a multiple of the input
1567   // element size, or the input is a multiple of the output element size.
1568   // Convert the input type to have the same element type as the output.
1569   VectorType *SrcTy = cast<VectorType>(InVal->getType());
1570
1571   if (SrcTy->getElementType() != DestTy->getElementType()) {
1572     // The input types don't need to be identical, but for now they must be the
1573     // same size.  There is no specific reason we couldn't handle things like
1574     // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
1575     // there yet.
1576     if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
1577         DestTy->getElementType()->getPrimitiveSizeInBits())
1578       return nullptr;
1579
1580     SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
1581     InVal = IC.Builder->CreateBitCast(InVal, SrcTy);
1582   }
1583
1584   // Now that the element types match, get the shuffle mask and RHS of the
1585   // shuffle to use, which depends on whether we're increasing or decreasing the
1586   // size of the input.
1587   SmallVector<uint32_t, 16> ShuffleMask;
1588   Value *V2;
1589
1590   if (SrcTy->getNumElements() > DestTy->getNumElements()) {
1591     // If we're shrinking the number of elements, just shuffle in the low
1592     // elements from the input and use undef as the second shuffle input.
1593     V2 = UndefValue::get(SrcTy);
1594     for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
1595       ShuffleMask.push_back(i);
1596
1597   } else {
1598     // If we're increasing the number of elements, shuffle in all of the
1599     // elements from InVal and fill the rest of the result elements with zeros
1600     // from a constant zero.
1601     V2 = Constant::getNullValue(SrcTy);
1602     unsigned SrcElts = SrcTy->getNumElements();
1603     for (unsigned i = 0, e = SrcElts; i != e; ++i)
1604       ShuffleMask.push_back(i);
1605
1606     // The excess elements reference the first element of the zero input.
1607     for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i)
1608       ShuffleMask.push_back(SrcElts);
1609   }
1610
1611   return new ShuffleVectorInst(InVal, V2,
1612                                ConstantDataVector::get(V2->getContext(),
1613                                                        ShuffleMask));
1614 }
1615
1616 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
1617   return Value % Ty->getPrimitiveSizeInBits() == 0;
1618 }
1619
1620 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
1621   return Value / Ty->getPrimitiveSizeInBits();
1622 }
1623
1624 /// V is a value which is inserted into a vector of VecEltTy.
1625 /// Look through the value to see if we can decompose it into
1626 /// insertions into the vector.  See the example in the comment for
1627 /// OptimizeIntegerToVectorInsertions for the pattern this handles.
1628 /// The type of V is always a non-zero multiple of VecEltTy's size.
1629 /// Shift is the number of bits between the lsb of V and the lsb of
1630 /// the vector.
1631 ///
1632 /// This returns false if the pattern can't be matched or true if it can,
1633 /// filling in Elements with the elements found here.
1634 static bool collectInsertionElements(Value *V, unsigned Shift,
1635                                      SmallVectorImpl<Value *> &Elements,
1636                                      Type *VecEltTy, bool isBigEndian) {
1637   assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
1638          "Shift should be a multiple of the element type size");
1639
1640   // Undef values never contribute useful bits to the result.
1641   if (isa<UndefValue>(V)) return true;
1642
1643   // If we got down to a value of the right type, we win, try inserting into the
1644   // right element.
1645   if (V->getType() == VecEltTy) {
1646     // Inserting null doesn't actually insert any elements.
1647     if (Constant *C = dyn_cast<Constant>(V))
1648       if (C->isNullValue())
1649         return true;
1650
1651     unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
1652     if (isBigEndian)
1653       ElementIndex = Elements.size() - ElementIndex - 1;
1654
1655     // Fail if multiple elements are inserted into this slot.
1656     if (Elements[ElementIndex])
1657       return false;
1658
1659     Elements[ElementIndex] = V;
1660     return true;
1661   }
1662
1663   if (Constant *C = dyn_cast<Constant>(V)) {
1664     // Figure out the # elements this provides, and bitcast it or slice it up
1665     // as required.
1666     unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
1667                                         VecEltTy);
1668     // If the constant is the size of a vector element, we just need to bitcast
1669     // it to the right type so it gets properly inserted.
1670     if (NumElts == 1)
1671       return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
1672                                       Shift, Elements, VecEltTy, isBigEndian);
1673
1674     // Okay, this is a constant that covers multiple elements.  Slice it up into
1675     // pieces and insert each element-sized piece into the vector.
1676     if (!isa<IntegerType>(C->getType()))
1677       C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
1678                                        C->getType()->getPrimitiveSizeInBits()));
1679     unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
1680     Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
1681
1682     for (unsigned i = 0; i != NumElts; ++i) {
1683       unsigned ShiftI = Shift+i*ElementSize;
1684       Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
1685                                                                   ShiftI));
1686       Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
1687       if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy,
1688                                     isBigEndian))
1689         return false;
1690     }
1691     return true;
1692   }
1693
1694   if (!V->hasOneUse()) return false;
1695
1696   Instruction *I = dyn_cast<Instruction>(V);
1697   if (!I) return false;
1698   switch (I->getOpcode()) {
1699   default: return false; // Unhandled case.
1700   case Instruction::BitCast:
1701     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1702                                     isBigEndian);
1703   case Instruction::ZExt:
1704     if (!isMultipleOfTypeSize(
1705                           I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
1706                               VecEltTy))
1707       return false;
1708     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1709                                     isBigEndian);
1710   case Instruction::Or:
1711     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1712                                     isBigEndian) &&
1713            collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy,
1714                                     isBigEndian);
1715   case Instruction::Shl: {
1716     // Must be shifting by a constant that is a multiple of the element size.
1717     ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
1718     if (!CI) return false;
1719     Shift += CI->getZExtValue();
1720     if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
1721     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1722                                     isBigEndian);
1723   }
1724
1725   }
1726 }
1727
1728
1729 /// If the input is an 'or' instruction, we may be doing shifts and ors to
1730 /// assemble the elements of the vector manually.
1731 /// Try to rip the code out and replace it with insertelements.  This is to
1732 /// optimize code like this:
1733 ///
1734 ///    %tmp37 = bitcast float %inc to i32
1735 ///    %tmp38 = zext i32 %tmp37 to i64
1736 ///    %tmp31 = bitcast float %inc5 to i32
1737 ///    %tmp32 = zext i32 %tmp31 to i64
1738 ///    %tmp33 = shl i64 %tmp32, 32
1739 ///    %ins35 = or i64 %tmp33, %tmp38
1740 ///    %tmp43 = bitcast i64 %ins35 to <2 x float>
1741 ///
1742 /// Into two insertelements that do "buildvector{%inc, %inc5}".
1743 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI,
1744                                                 InstCombiner &IC) {
1745   VectorType *DestVecTy = cast<VectorType>(CI.getType());
1746   Value *IntInput = CI.getOperand(0);
1747
1748   SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
1749   if (!collectInsertionElements(IntInput, 0, Elements,
1750                                 DestVecTy->getElementType(),
1751                                 IC.getDataLayout().isBigEndian()))
1752     return nullptr;
1753
1754   // If we succeeded, we know that all of the element are specified by Elements
1755   // or are zero if Elements has a null entry.  Recast this as a set of
1756   // insertions.
1757   Value *Result = Constant::getNullValue(CI.getType());
1758   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
1759     if (!Elements[i]) continue;  // Unset element.
1760
1761     Result = IC.Builder->CreateInsertElement(Result, Elements[i],
1762                                              IC.Builder->getInt32(i));
1763   }
1764
1765   return Result;
1766 }
1767
1768 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the
1769 /// vector followed by extract element. The backend tends to handle bitcasts of
1770 /// vectors better than bitcasts of scalars because vector registers are
1771 /// usually not type-specific like scalar integer or scalar floating-point.
1772 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast,
1773                                               InstCombiner &IC,
1774                                               const DataLayout &DL) {
1775   // TODO: Create and use a pattern matcher for ExtractElementInst.
1776   auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0));
1777   if (!ExtElt || !ExtElt->hasOneUse())
1778     return nullptr;
1779
1780   // The bitcast must be to a vectorizable type, otherwise we can't make a new
1781   // type to extract from.
1782   Type *DestType = BitCast.getType();
1783   if (!VectorType::isValidElementType(DestType))
1784     return nullptr;
1785
1786   unsigned NumElts = ExtElt->getVectorOperandType()->getNumElements();
1787   auto *NewVecType = VectorType::get(DestType, NumElts);
1788   auto *NewBC = IC.Builder->CreateBitCast(ExtElt->getVectorOperand(),
1789                                           NewVecType, "bc");
1790   return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand());
1791 }
1792
1793 /// Change the type of a bitwise logic operation if we can eliminate a bitcast.
1794 static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast,
1795                                             InstCombiner::BuilderTy &Builder) {
1796   Type *DestTy = BitCast.getType();
1797   BinaryOperator *BO;
1798   if (!DestTy->getScalarType()->isIntegerTy() ||
1799       !match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) ||
1800       !BO->isBitwiseLogicOp())
1801     return nullptr;
1802   
1803   // FIXME: This transform is restricted to vector types to avoid backend
1804   // problems caused by creating potentially illegal operations. If a fix-up is
1805   // added to handle that situation, we can remove this check.
1806   if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy())
1807     return nullptr;
1808   
1809   Value *X;
1810   if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) &&
1811       X->getType() == DestTy && !isa<Constant>(X)) {
1812     // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y))
1813     Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy);
1814     return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1);
1815   }
1816
1817   if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) &&
1818       X->getType() == DestTy && !isa<Constant>(X)) {
1819     // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X)
1820     Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
1821     return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X);
1822   }
1823
1824   return nullptr;
1825 }
1826
1827 /// Change the type of a select if we can eliminate a bitcast.
1828 static Instruction *foldBitCastSelect(BitCastInst &BitCast,
1829                                       InstCombiner::BuilderTy &Builder) {
1830   Value *Cond, *TVal, *FVal;
1831   if (!match(BitCast.getOperand(0),
1832              m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
1833     return nullptr;
1834
1835   // A vector select must maintain the same number of elements in its operands.
1836   Type *CondTy = Cond->getType();
1837   Type *DestTy = BitCast.getType();
1838   if (CondTy->isVectorTy()) {
1839     if (!DestTy->isVectorTy())
1840       return nullptr;
1841     if (DestTy->getVectorNumElements() != CondTy->getVectorNumElements())
1842       return nullptr;
1843   }
1844
1845   // FIXME: This transform is restricted from changing the select between
1846   // scalars and vectors to avoid backend problems caused by creating
1847   // potentially illegal operations. If a fix-up is added to handle that
1848   // situation, we can remove this check.
1849   if (DestTy->isVectorTy() != TVal->getType()->isVectorTy())
1850     return nullptr;
1851
1852   auto *Sel = cast<Instruction>(BitCast.getOperand(0));
1853   Value *X;
1854   if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
1855       !isa<Constant>(X)) {
1856     // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y))
1857     Value *CastedVal = Builder.CreateBitCast(FVal, DestTy);
1858     return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel);
1859   }
1860
1861   if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
1862       !isa<Constant>(X)) {
1863     // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X)
1864     Value *CastedVal = Builder.CreateBitCast(TVal, DestTy);
1865     return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel);
1866   }
1867
1868   return nullptr;
1869 }
1870
1871 /// Check if all users of CI are StoreInsts.
1872 static bool hasStoreUsersOnly(CastInst &CI) {
1873   for (User *U : CI.users()) {
1874     if (!isa<StoreInst>(U))
1875       return false;
1876   }
1877   return true;
1878 }
1879
1880 /// This function handles following case
1881 ///
1882 ///     A  ->  B    cast
1883 ///     PHI
1884 ///     B  ->  A    cast
1885 ///
1886 /// All the related PHI nodes can be replaced by new PHI nodes with type A.
1887 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN.
1888 Instruction *InstCombiner::optimizeBitCastFromPhi(CastInst &CI, PHINode *PN) {
1889   // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp.
1890   if (hasStoreUsersOnly(CI))
1891     return nullptr;
1892
1893   Value *Src = CI.getOperand(0);
1894   Type *SrcTy = Src->getType();         // Type B
1895   Type *DestTy = CI.getType();          // Type A
1896
1897   SmallVector<PHINode *, 4> PhiWorklist;
1898   SmallSetVector<PHINode *, 4> OldPhiNodes;
1899
1900   // Find all of the A->B casts and PHI nodes.
1901   // We need to inpect all related PHI nodes, but PHIs can be cyclic, so
1902   // OldPhiNodes is used to track all known PHI nodes, before adding a new
1903   // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first.
1904   PhiWorklist.push_back(PN);
1905   OldPhiNodes.insert(PN);
1906   while (!PhiWorklist.empty()) {
1907     auto *OldPN = PhiWorklist.pop_back_val();
1908     for (Value *IncValue : OldPN->incoming_values()) {
1909       if (isa<Constant>(IncValue))
1910         continue;
1911
1912       if (auto *LI = dyn_cast<LoadInst>(IncValue)) {
1913         // If there is a sequence of one or more load instructions, each loaded
1914         // value is used as address of later load instruction, bitcast is
1915         // necessary to change the value type, don't optimize it. For
1916         // simplicity we give up if the load address comes from another load.
1917         Value *Addr = LI->getOperand(0);
1918         if (Addr == &CI || isa<LoadInst>(Addr))
1919           return nullptr;
1920         if (LI->hasOneUse() && LI->isSimple())
1921           continue;
1922         // If a LoadInst has more than one use, changing the type of loaded
1923         // value may create another bitcast.
1924         return nullptr;
1925       }
1926
1927       if (auto *PNode = dyn_cast<PHINode>(IncValue)) {
1928         if (OldPhiNodes.insert(PNode))
1929           PhiWorklist.push_back(PNode);
1930         continue;
1931       }
1932
1933       auto *BCI = dyn_cast<BitCastInst>(IncValue);
1934       // We can't handle other instructions.
1935       if (!BCI)
1936         return nullptr;
1937
1938       // Verify it's a A->B cast.
1939       Type *TyA = BCI->getOperand(0)->getType();
1940       Type *TyB = BCI->getType();
1941       if (TyA != DestTy || TyB != SrcTy)
1942         return nullptr;
1943     }
1944   }
1945
1946   // For each old PHI node, create a corresponding new PHI node with a type A.
1947   SmallDenseMap<PHINode *, PHINode *> NewPNodes;
1948   for (auto *OldPN : OldPhiNodes) {
1949     Builder->SetInsertPoint(OldPN);
1950     PHINode *NewPN = Builder->CreatePHI(DestTy, OldPN->getNumOperands());
1951     NewPNodes[OldPN] = NewPN;
1952   }
1953
1954   // Fill in the operands of new PHI nodes.
1955   for (auto *OldPN : OldPhiNodes) {
1956     PHINode *NewPN = NewPNodes[OldPN];
1957     for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) {
1958       Value *V = OldPN->getOperand(j);
1959       Value *NewV = nullptr;
1960       if (auto *C = dyn_cast<Constant>(V)) {
1961         NewV = ConstantExpr::getBitCast(C, DestTy);
1962       } else if (auto *LI = dyn_cast<LoadInst>(V)) {
1963         Builder->SetInsertPoint(LI->getNextNode());
1964         NewV = Builder->CreateBitCast(LI, DestTy);
1965         Worklist.Add(LI);
1966       } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
1967         NewV = BCI->getOperand(0);
1968       } else if (auto *PrevPN = dyn_cast<PHINode>(V)) {
1969         NewV = NewPNodes[PrevPN];
1970       }
1971       assert(NewV);
1972       NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j));
1973     }
1974   }
1975
1976   // If there is a store with type B, change it to type A.
1977   for (User *U : PN->users()) {
1978     auto *SI = dyn_cast<StoreInst>(U);
1979     if (SI && SI->isSimple() && SI->getOperand(0) == PN) {
1980       Builder->SetInsertPoint(SI);
1981       auto *NewBC =
1982           cast<BitCastInst>(Builder->CreateBitCast(NewPNodes[PN], SrcTy));
1983       SI->setOperand(0, NewBC);
1984       Worklist.Add(SI);
1985       assert(hasStoreUsersOnly(*NewBC));
1986     }
1987   }
1988
1989   return replaceInstUsesWith(CI, NewPNodes[PN]);
1990 }
1991
1992 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
1993   // If the operands are integer typed then apply the integer transforms,
1994   // otherwise just apply the common ones.
1995   Value *Src = CI.getOperand(0);
1996   Type *SrcTy = Src->getType();
1997   Type *DestTy = CI.getType();
1998
1999   // Get rid of casts from one type to the same type. These are useless and can
2000   // be replaced by the operand.
2001   if (DestTy == Src->getType())
2002     return replaceInstUsesWith(CI, Src);
2003
2004   if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
2005     PointerType *SrcPTy = cast<PointerType>(SrcTy);
2006     Type *DstElTy = DstPTy->getElementType();
2007     Type *SrcElTy = SrcPTy->getElementType();
2008
2009     // If we are casting a alloca to a pointer to a type of the same
2010     // size, rewrite the allocation instruction to allocate the "right" type.
2011     // There is no need to modify malloc calls because it is their bitcast that
2012     // needs to be cleaned up.
2013     if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
2014       if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
2015         return V;
2016
2017     // When the type pointed to is not sized the cast cannot be
2018     // turned into a gep.
2019     Type *PointeeType =
2020         cast<PointerType>(Src->getType()->getScalarType())->getElementType();
2021     if (!PointeeType->isSized())
2022       return nullptr;
2023
2024     // If the source and destination are pointers, and this cast is equivalent
2025     // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
2026     // This can enhance SROA and other transforms that want type-safe pointers.
2027     unsigned NumZeros = 0;
2028     while (SrcElTy != DstElTy &&
2029            isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
2030            SrcElTy->getNumContainedTypes() /* not "{}" */) {
2031       SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(0U);
2032       ++NumZeros;
2033     }
2034
2035     // If we found a path from the src to dest, create the getelementptr now.
2036     if (SrcElTy == DstElTy) {
2037       SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder->getInt32(0));
2038       return GetElementPtrInst::CreateInBounds(Src, Idxs);
2039     }
2040   }
2041
2042   if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
2043     if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
2044       Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
2045       return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
2046                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2047       // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
2048     }
2049
2050     if (isa<IntegerType>(SrcTy)) {
2051       // If this is a cast from an integer to vector, check to see if the input
2052       // is a trunc or zext of a bitcast from vector.  If so, we can replace all
2053       // the casts with a shuffle and (potentially) a bitcast.
2054       if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
2055         CastInst *SrcCast = cast<CastInst>(Src);
2056         if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
2057           if (isa<VectorType>(BCIn->getOperand(0)->getType()))
2058             if (Instruction *I = optimizeVectorResize(BCIn->getOperand(0),
2059                                                cast<VectorType>(DestTy), *this))
2060               return I;
2061       }
2062
2063       // If the input is an 'or' instruction, we may be doing shifts and ors to
2064       // assemble the elements of the vector manually.  Try to rip the code out
2065       // and replace it with insertelements.
2066       if (Value *V = optimizeIntegerToVectorInsertions(CI, *this))
2067         return replaceInstUsesWith(CI, V);
2068     }
2069   }
2070
2071   if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
2072     if (SrcVTy->getNumElements() == 1) {
2073       // If our destination is not a vector, then make this a straight
2074       // scalar-scalar cast.
2075       if (!DestTy->isVectorTy()) {
2076         Value *Elem =
2077           Builder->CreateExtractElement(Src,
2078                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2079         return CastInst::Create(Instruction::BitCast, Elem, DestTy);
2080       }
2081
2082       // Otherwise, see if our source is an insert. If so, then use the scalar
2083       // component directly.
2084       if (InsertElementInst *IEI =
2085             dyn_cast<InsertElementInst>(CI.getOperand(0)))
2086         return CastInst::Create(Instruction::BitCast, IEI->getOperand(1),
2087                                 DestTy);
2088     }
2089   }
2090
2091   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
2092     // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
2093     // a bitcast to a vector with the same # elts.
2094     if (SVI->hasOneUse() && DestTy->isVectorTy() &&
2095         DestTy->getVectorNumElements() == SVI->getType()->getNumElements() &&
2096         SVI->getType()->getNumElements() ==
2097         SVI->getOperand(0)->getType()->getVectorNumElements()) {
2098       BitCastInst *Tmp;
2099       // If either of the operands is a cast from CI.getType(), then
2100       // evaluating the shuffle in the casted destination's type will allow
2101       // us to eliminate at least one cast.
2102       if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
2103            Tmp->getOperand(0)->getType() == DestTy) ||
2104           ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
2105            Tmp->getOperand(0)->getType() == DestTy)) {
2106         Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
2107         Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
2108         // Return a new shuffle vector.  Use the same element ID's, as we
2109         // know the vector types match #elts.
2110         return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
2111       }
2112     }
2113   }
2114
2115   // Handle the A->B->A cast, and there is an intervening PHI node.
2116   if (PHINode *PN = dyn_cast<PHINode>(Src))
2117     if (Instruction *I = optimizeBitCastFromPhi(CI, PN))
2118       return I;
2119
2120   if (Instruction *I = canonicalizeBitCastExtElt(CI, *this, DL))
2121     return I;
2122
2123   if (Instruction *I = foldBitCastBitwiseLogic(CI, *Builder))
2124     return I;
2125
2126   if (Instruction *I = foldBitCastSelect(CI, *Builder))
2127     return I;
2128
2129   if (SrcTy->isPointerTy())
2130     return commonPointerCastTransforms(CI);
2131   return commonCastTransforms(CI);
2132 }
2133
2134 Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
2135   // If the destination pointer element type is not the same as the source's
2136   // first do a bitcast to the destination type, and then the addrspacecast.
2137   // This allows the cast to be exposed to other transforms.
2138   Value *Src = CI.getOperand(0);
2139   PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType());
2140   PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType());
2141
2142   Type *DestElemTy = DestTy->getElementType();
2143   if (SrcTy->getElementType() != DestElemTy) {
2144     Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace());
2145     if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) {
2146       // Handle vectors of pointers.
2147       MidTy = VectorType::get(MidTy, VT->getNumElements());
2148     }
2149
2150     Value *NewBitCast = Builder->CreateBitCast(Src, MidTy);
2151     return new AddrSpaceCastInst(NewBitCast, CI.getType());
2152   }
2153
2154   return commonPointerCastTransforms(CI);
2155 }