]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp
Merge llvm, clang, lld, lldb, compiler-rt and libc++ r304460, and update
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / InstCombine / InstCombineCompares.cpp
1 //===- InstCombineCompares.cpp --------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visitICmp and visitFCmp functions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/MemoryBuiltins.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/Analysis/VectorUtils.h"
23 #include "llvm/IR/ConstantRange.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/GetElementPtrTypeIterator.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/PatternMatch.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/KnownBits.h"
30
31 using namespace llvm;
32 using namespace PatternMatch;
33
34 #define DEBUG_TYPE "instcombine"
35
36 // How many times is a select replaced by one of its operands?
37 STATISTIC(NumSel, "Number of select opts");
38
39
40 static ConstantInt *extractElement(Constant *V, Constant *Idx) {
41   return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
42 }
43
44 static bool hasAddOverflow(ConstantInt *Result,
45                            ConstantInt *In1, ConstantInt *In2,
46                            bool IsSigned) {
47   if (!IsSigned)
48     return Result->getValue().ult(In1->getValue());
49
50   if (In2->isNegative())
51     return Result->getValue().sgt(In1->getValue());
52   return Result->getValue().slt(In1->getValue());
53 }
54
55 /// Compute Result = In1+In2, returning true if the result overflowed for this
56 /// type.
57 static bool addWithOverflow(Constant *&Result, Constant *In1,
58                             Constant *In2, bool IsSigned = false) {
59   Result = ConstantExpr::getAdd(In1, In2);
60
61   if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
62     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
63       Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
64       if (hasAddOverflow(extractElement(Result, Idx),
65                          extractElement(In1, Idx),
66                          extractElement(In2, Idx),
67                          IsSigned))
68         return true;
69     }
70     return false;
71   }
72
73   return hasAddOverflow(cast<ConstantInt>(Result),
74                         cast<ConstantInt>(In1), cast<ConstantInt>(In2),
75                         IsSigned);
76 }
77
78 static bool hasSubOverflow(ConstantInt *Result,
79                            ConstantInt *In1, ConstantInt *In2,
80                            bool IsSigned) {
81   if (!IsSigned)
82     return Result->getValue().ugt(In1->getValue());
83
84   if (In2->isNegative())
85     return Result->getValue().slt(In1->getValue());
86
87   return Result->getValue().sgt(In1->getValue());
88 }
89
90 /// Compute Result = In1-In2, returning true if the result overflowed for this
91 /// type.
92 static bool subWithOverflow(Constant *&Result, Constant *In1,
93                             Constant *In2, bool IsSigned = false) {
94   Result = ConstantExpr::getSub(In1, In2);
95
96   if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
97     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
98       Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
99       if (hasSubOverflow(extractElement(Result, Idx),
100                          extractElement(In1, Idx),
101                          extractElement(In2, Idx),
102                          IsSigned))
103         return true;
104     }
105     return false;
106   }
107
108   return hasSubOverflow(cast<ConstantInt>(Result),
109                         cast<ConstantInt>(In1), cast<ConstantInt>(In2),
110                         IsSigned);
111 }
112
113 /// Given an icmp instruction, return true if any use of this comparison is a
114 /// branch on sign bit comparison.
115 static bool isBranchOnSignBitCheck(ICmpInst &I, bool isSignBit) {
116   for (auto *U : I.users())
117     if (isa<BranchInst>(U))
118       return isSignBit;
119   return false;
120 }
121
122 /// Given an exploded icmp instruction, return true if the comparison only
123 /// checks the sign bit. If it only checks the sign bit, set TrueIfSigned if the
124 /// result of the comparison is true when the input value is signed.
125 static bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS,
126                            bool &TrueIfSigned) {
127   switch (Pred) {
128   case ICmpInst::ICMP_SLT:   // True if LHS s< 0
129     TrueIfSigned = true;
130     return RHS == 0;
131   case ICmpInst::ICMP_SLE:   // True if LHS s<= RHS and RHS == -1
132     TrueIfSigned = true;
133     return RHS.isAllOnesValue();
134   case ICmpInst::ICMP_SGT:   // True if LHS s> -1
135     TrueIfSigned = false;
136     return RHS.isAllOnesValue();
137   case ICmpInst::ICMP_UGT:
138     // True if LHS u> RHS and RHS == high-bit-mask - 1
139     TrueIfSigned = true;
140     return RHS.isMaxSignedValue();
141   case ICmpInst::ICMP_UGE:
142     // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
143     TrueIfSigned = true;
144     return RHS.isSignMask();
145   default:
146     return false;
147   }
148 }
149
150 /// Returns true if the exploded icmp can be expressed as a signed comparison
151 /// to zero and updates the predicate accordingly.
152 /// The signedness of the comparison is preserved.
153 /// TODO: Refactor with decomposeBitTestICmp()?
154 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) {
155   if (!ICmpInst::isSigned(Pred))
156     return false;
157
158   if (C == 0)
159     return ICmpInst::isRelational(Pred);
160
161   if (C == 1) {
162     if (Pred == ICmpInst::ICMP_SLT) {
163       Pred = ICmpInst::ICMP_SLE;
164       return true;
165     }
166   } else if (C.isAllOnesValue()) {
167     if (Pred == ICmpInst::ICMP_SGT) {
168       Pred = ICmpInst::ICMP_SGE;
169       return true;
170     }
171   }
172
173   return false;
174 }
175
176 /// Given a signed integer type and a set of known zero and one bits, compute
177 /// the maximum and minimum values that could have the specified known zero and
178 /// known one bits, returning them in Min/Max.
179 /// TODO: Move to method on KnownBits struct?
180 static void computeSignedMinMaxValuesFromKnownBits(const KnownBits &Known,
181                                                    APInt &Min, APInt &Max) {
182   assert(Known.getBitWidth() == Min.getBitWidth() &&
183          Known.getBitWidth() == Max.getBitWidth() &&
184          "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
185   APInt UnknownBits = ~(Known.Zero|Known.One);
186
187   // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
188   // bit if it is unknown.
189   Min = Known.One;
190   Max = Known.One|UnknownBits;
191
192   if (UnknownBits.isNegative()) { // Sign bit is unknown
193     Min.setSignBit();
194     Max.clearSignBit();
195   }
196 }
197
198 /// Given an unsigned integer type and a set of known zero and one bits, compute
199 /// the maximum and minimum values that could have the specified known zero and
200 /// known one bits, returning them in Min/Max.
201 /// TODO: Move to method on KnownBits struct?
202 static void computeUnsignedMinMaxValuesFromKnownBits(const KnownBits &Known,
203                                                      APInt &Min, APInt &Max) {
204   assert(Known.getBitWidth() == Min.getBitWidth() &&
205          Known.getBitWidth() == Max.getBitWidth() &&
206          "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
207   APInt UnknownBits = ~(Known.Zero|Known.One);
208
209   // The minimum value is when the unknown bits are all zeros.
210   Min = Known.One;
211   // The maximum value is when the unknown bits are all ones.
212   Max = Known.One|UnknownBits;
213 }
214
215 /// This is called when we see this pattern:
216 ///   cmp pred (load (gep GV, ...)), cmpcst
217 /// where GV is a global variable with a constant initializer. Try to simplify
218 /// this into some simple computation that does not need the load. For example
219 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
220 ///
221 /// If AndCst is non-null, then the loaded value is masked with that constant
222 /// before doing the comparison. This handles cases like "A[i]&4 == 0".
223 Instruction *InstCombiner::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
224                                                         GlobalVariable *GV,
225                                                         CmpInst &ICI,
226                                                         ConstantInt *AndCst) {
227   Constant *Init = GV->getInitializer();
228   if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
229     return nullptr;
230
231   uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
232   // Don't blow up on huge arrays.
233   if (ArrayElementCount > MaxArraySizeForCombine)
234     return nullptr;
235
236   // There are many forms of this optimization we can handle, for now, just do
237   // the simple index into a single-dimensional array.
238   //
239   // Require: GEP GV, 0, i {{, constant indices}}
240   if (GEP->getNumOperands() < 3 ||
241       !isa<ConstantInt>(GEP->getOperand(1)) ||
242       !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
243       isa<Constant>(GEP->getOperand(2)))
244     return nullptr;
245
246   // Check that indices after the variable are constants and in-range for the
247   // type they index.  Collect the indices.  This is typically for arrays of
248   // structs.
249   SmallVector<unsigned, 4> LaterIndices;
250
251   Type *EltTy = Init->getType()->getArrayElementType();
252   for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
253     ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
254     if (!Idx) return nullptr;  // Variable index.
255
256     uint64_t IdxVal = Idx->getZExtValue();
257     if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
258
259     if (StructType *STy = dyn_cast<StructType>(EltTy))
260       EltTy = STy->getElementType(IdxVal);
261     else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
262       if (IdxVal >= ATy->getNumElements()) return nullptr;
263       EltTy = ATy->getElementType();
264     } else {
265       return nullptr; // Unknown type.
266     }
267
268     LaterIndices.push_back(IdxVal);
269   }
270
271   enum { Overdefined = -3, Undefined = -2 };
272
273   // Variables for our state machines.
274
275   // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
276   // "i == 47 | i == 87", where 47 is the first index the condition is true for,
277   // and 87 is the second (and last) index.  FirstTrueElement is -2 when
278   // undefined, otherwise set to the first true element.  SecondTrueElement is
279   // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
280   int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
281
282   // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
283   // form "i != 47 & i != 87".  Same state transitions as for true elements.
284   int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
285
286   /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
287   /// define a state machine that triggers for ranges of values that the index
288   /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
289   /// This is -2 when undefined, -3 when overdefined, and otherwise the last
290   /// index in the range (inclusive).  We use -2 for undefined here because we
291   /// use relative comparisons and don't want 0-1 to match -1.
292   int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
293
294   // MagicBitvector - This is a magic bitvector where we set a bit if the
295   // comparison is true for element 'i'.  If there are 64 elements or less in
296   // the array, this will fully represent all the comparison results.
297   uint64_t MagicBitvector = 0;
298
299   // Scan the array and see if one of our patterns matches.
300   Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
301   for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
302     Constant *Elt = Init->getAggregateElement(i);
303     if (!Elt) return nullptr;
304
305     // If this is indexing an array of structures, get the structure element.
306     if (!LaterIndices.empty())
307       Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
308
309     // If the element is masked, handle it.
310     if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
311
312     // Find out if the comparison would be true or false for the i'th element.
313     Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
314                                                   CompareRHS, DL, &TLI);
315     // If the result is undef for this element, ignore it.
316     if (isa<UndefValue>(C)) {
317       // Extend range state machines to cover this element in case there is an
318       // undef in the middle of the range.
319       if (TrueRangeEnd == (int)i-1)
320         TrueRangeEnd = i;
321       if (FalseRangeEnd == (int)i-1)
322         FalseRangeEnd = i;
323       continue;
324     }
325
326     // If we can't compute the result for any of the elements, we have to give
327     // up evaluating the entire conditional.
328     if (!isa<ConstantInt>(C)) return nullptr;
329
330     // Otherwise, we know if the comparison is true or false for this element,
331     // update our state machines.
332     bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
333
334     // State machine for single/double/range index comparison.
335     if (IsTrueForElt) {
336       // Update the TrueElement state machine.
337       if (FirstTrueElement == Undefined)
338         FirstTrueElement = TrueRangeEnd = i;  // First true element.
339       else {
340         // Update double-compare state machine.
341         if (SecondTrueElement == Undefined)
342           SecondTrueElement = i;
343         else
344           SecondTrueElement = Overdefined;
345
346         // Update range state machine.
347         if (TrueRangeEnd == (int)i-1)
348           TrueRangeEnd = i;
349         else
350           TrueRangeEnd = Overdefined;
351       }
352     } else {
353       // Update the FalseElement state machine.
354       if (FirstFalseElement == Undefined)
355         FirstFalseElement = FalseRangeEnd = i; // First false element.
356       else {
357         // Update double-compare state machine.
358         if (SecondFalseElement == Undefined)
359           SecondFalseElement = i;
360         else
361           SecondFalseElement = Overdefined;
362
363         // Update range state machine.
364         if (FalseRangeEnd == (int)i-1)
365           FalseRangeEnd = i;
366         else
367           FalseRangeEnd = Overdefined;
368       }
369     }
370
371     // If this element is in range, update our magic bitvector.
372     if (i < 64 && IsTrueForElt)
373       MagicBitvector |= 1ULL << i;
374
375     // If all of our states become overdefined, bail out early.  Since the
376     // predicate is expensive, only check it every 8 elements.  This is only
377     // really useful for really huge arrays.
378     if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
379         SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
380         FalseRangeEnd == Overdefined)
381       return nullptr;
382   }
383
384   // Now that we've scanned the entire array, emit our new comparison(s).  We
385   // order the state machines in complexity of the generated code.
386   Value *Idx = GEP->getOperand(2);
387
388   // If the index is larger than the pointer size of the target, truncate the
389   // index down like the GEP would do implicitly.  We don't have to do this for
390   // an inbounds GEP because the index can't be out of range.
391   if (!GEP->isInBounds()) {
392     Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
393     unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
394     if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize)
395       Idx = Builder->CreateTrunc(Idx, IntPtrTy);
396   }
397
398   // If the comparison is only true for one or two elements, emit direct
399   // comparisons.
400   if (SecondTrueElement != Overdefined) {
401     // None true -> false.
402     if (FirstTrueElement == Undefined)
403       return replaceInstUsesWith(ICI, Builder->getFalse());
404
405     Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
406
407     // True for one element -> 'i == 47'.
408     if (SecondTrueElement == Undefined)
409       return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
410
411     // True for two elements -> 'i == 47 | i == 72'.
412     Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx);
413     Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
414     Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx);
415     return BinaryOperator::CreateOr(C1, C2);
416   }
417
418   // If the comparison is only false for one or two elements, emit direct
419   // comparisons.
420   if (SecondFalseElement != Overdefined) {
421     // None false -> true.
422     if (FirstFalseElement == Undefined)
423       return replaceInstUsesWith(ICI, Builder->getTrue());
424
425     Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
426
427     // False for one element -> 'i != 47'.
428     if (SecondFalseElement == Undefined)
429       return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
430
431     // False for two elements -> 'i != 47 & i != 72'.
432     Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx);
433     Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
434     Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx);
435     return BinaryOperator::CreateAnd(C1, C2);
436   }
437
438   // If the comparison can be replaced with a range comparison for the elements
439   // where it is true, emit the range check.
440   if (TrueRangeEnd != Overdefined) {
441     assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
442
443     // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
444     if (FirstTrueElement) {
445       Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
446       Idx = Builder->CreateAdd(Idx, Offs);
447     }
448
449     Value *End = ConstantInt::get(Idx->getType(),
450                                   TrueRangeEnd-FirstTrueElement+1);
451     return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
452   }
453
454   // False range check.
455   if (FalseRangeEnd != Overdefined) {
456     assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
457     // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
458     if (FirstFalseElement) {
459       Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
460       Idx = Builder->CreateAdd(Idx, Offs);
461     }
462
463     Value *End = ConstantInt::get(Idx->getType(),
464                                   FalseRangeEnd-FirstFalseElement);
465     return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
466   }
467
468   // If a magic bitvector captures the entire comparison state
469   // of this load, replace it with computation that does:
470   //   ((magic_cst >> i) & 1) != 0
471   {
472     Type *Ty = nullptr;
473
474     // Look for an appropriate type:
475     // - The type of Idx if the magic fits
476     // - The smallest fitting legal type if we have a DataLayout
477     // - Default to i32
478     if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
479       Ty = Idx->getType();
480     else
481       Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
482
483     if (Ty) {
484       Value *V = Builder->CreateIntCast(Idx, Ty, false);
485       V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
486       V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);
487       return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
488     }
489   }
490
491   return nullptr;
492 }
493
494 /// Return a value that can be used to compare the *offset* implied by a GEP to
495 /// zero. For example, if we have &A[i], we want to return 'i' for
496 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales
497 /// are involved. The above expression would also be legal to codegen as
498 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32).
499 /// This latter form is less amenable to optimization though, and we are allowed
500 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
501 ///
502 /// If we can't emit an optimized form for this expression, this returns null.
503 ///
504 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombiner &IC,
505                                           const DataLayout &DL) {
506   gep_type_iterator GTI = gep_type_begin(GEP);
507
508   // Check to see if this gep only has a single variable index.  If so, and if
509   // any constant indices are a multiple of its scale, then we can compute this
510   // in terms of the scale of the variable index.  For example, if the GEP
511   // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
512   // because the expression will cross zero at the same point.
513   unsigned i, e = GEP->getNumOperands();
514   int64_t Offset = 0;
515   for (i = 1; i != e; ++i, ++GTI) {
516     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
517       // Compute the aggregate offset of constant indices.
518       if (CI->isZero()) continue;
519
520       // Handle a struct index, which adds its field offset to the pointer.
521       if (StructType *STy = GTI.getStructTypeOrNull()) {
522         Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
523       } else {
524         uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
525         Offset += Size*CI->getSExtValue();
526       }
527     } else {
528       // Found our variable index.
529       break;
530     }
531   }
532
533   // If there are no variable indices, we must have a constant offset, just
534   // evaluate it the general way.
535   if (i == e) return nullptr;
536
537   Value *VariableIdx = GEP->getOperand(i);
538   // Determine the scale factor of the variable element.  For example, this is
539   // 4 if the variable index is into an array of i32.
540   uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
541
542   // Verify that there are no other variable indices.  If so, emit the hard way.
543   for (++i, ++GTI; i != e; ++i, ++GTI) {
544     ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
545     if (!CI) return nullptr;
546
547     // Compute the aggregate offset of constant indices.
548     if (CI->isZero()) continue;
549
550     // Handle a struct index, which adds its field offset to the pointer.
551     if (StructType *STy = GTI.getStructTypeOrNull()) {
552       Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
553     } else {
554       uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
555       Offset += Size*CI->getSExtValue();
556     }
557   }
558
559   // Okay, we know we have a single variable index, which must be a
560   // pointer/array/vector index.  If there is no offset, life is simple, return
561   // the index.
562   Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
563   unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
564   if (Offset == 0) {
565     // Cast to intptrty in case a truncation occurs.  If an extension is needed,
566     // we don't need to bother extending: the extension won't affect where the
567     // computation crosses zero.
568     if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
569       VariableIdx = IC.Builder->CreateTrunc(VariableIdx, IntPtrTy);
570     }
571     return VariableIdx;
572   }
573
574   // Otherwise, there is an index.  The computation we will do will be modulo
575   // the pointer size, so get it.
576   uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
577
578   Offset &= PtrSizeMask;
579   VariableScale &= PtrSizeMask;
580
581   // To do this transformation, any constant index must be a multiple of the
582   // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
583   // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
584   // multiple of the variable scale.
585   int64_t NewOffs = Offset / (int64_t)VariableScale;
586   if (Offset != NewOffs*(int64_t)VariableScale)
587     return nullptr;
588
589   // Okay, we can do this evaluation.  Start by converting the index to intptr.
590   if (VariableIdx->getType() != IntPtrTy)
591     VariableIdx = IC.Builder->CreateIntCast(VariableIdx, IntPtrTy,
592                                             true /*Signed*/);
593   Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
594   return IC.Builder->CreateAdd(VariableIdx, OffsetVal, "offset");
595 }
596
597 /// Returns true if we can rewrite Start as a GEP with pointer Base
598 /// and some integer offset. The nodes that need to be re-written
599 /// for this transformation will be added to Explored.
600 static bool canRewriteGEPAsOffset(Value *Start, Value *Base,
601                                   const DataLayout &DL,
602                                   SetVector<Value *> &Explored) {
603   SmallVector<Value *, 16> WorkList(1, Start);
604   Explored.insert(Base);
605
606   // The following traversal gives us an order which can be used
607   // when doing the final transformation. Since in the final
608   // transformation we create the PHI replacement instructions first,
609   // we don't have to get them in any particular order.
610   //
611   // However, for other instructions we will have to traverse the
612   // operands of an instruction first, which means that we have to
613   // do a post-order traversal.
614   while (!WorkList.empty()) {
615     SetVector<PHINode *> PHIs;
616
617     while (!WorkList.empty()) {
618       if (Explored.size() >= 100)
619         return false;
620
621       Value *V = WorkList.back();
622
623       if (Explored.count(V) != 0) {
624         WorkList.pop_back();
625         continue;
626       }
627
628       if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) &&
629           !isa<GetElementPtrInst>(V) && !isa<PHINode>(V))
630         // We've found some value that we can't explore which is different from
631         // the base. Therefore we can't do this transformation.
632         return false;
633
634       if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) {
635         auto *CI = dyn_cast<CastInst>(V);
636         if (!CI->isNoopCast(DL))
637           return false;
638
639         if (Explored.count(CI->getOperand(0)) == 0)
640           WorkList.push_back(CI->getOperand(0));
641       }
642
643       if (auto *GEP = dyn_cast<GEPOperator>(V)) {
644         // We're limiting the GEP to having one index. This will preserve
645         // the original pointer type. We could handle more cases in the
646         // future.
647         if (GEP->getNumIndices() != 1 || !GEP->isInBounds() ||
648             GEP->getType() != Start->getType())
649           return false;
650
651         if (Explored.count(GEP->getOperand(0)) == 0)
652           WorkList.push_back(GEP->getOperand(0));
653       }
654
655       if (WorkList.back() == V) {
656         WorkList.pop_back();
657         // We've finished visiting this node, mark it as such.
658         Explored.insert(V);
659       }
660
661       if (auto *PN = dyn_cast<PHINode>(V)) {
662         // We cannot transform PHIs on unsplittable basic blocks.
663         if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
664           return false;
665         Explored.insert(PN);
666         PHIs.insert(PN);
667       }
668     }
669
670     // Explore the PHI nodes further.
671     for (auto *PN : PHIs)
672       for (Value *Op : PN->incoming_values())
673         if (Explored.count(Op) == 0)
674           WorkList.push_back(Op);
675   }
676
677   // Make sure that we can do this. Since we can't insert GEPs in a basic
678   // block before a PHI node, we can't easily do this transformation if
679   // we have PHI node users of transformed instructions.
680   for (Value *Val : Explored) {
681     for (Value *Use : Val->uses()) {
682
683       auto *PHI = dyn_cast<PHINode>(Use);
684       auto *Inst = dyn_cast<Instruction>(Val);
685
686       if (Inst == Base || Inst == PHI || !Inst || !PHI ||
687           Explored.count(PHI) == 0)
688         continue;
689
690       if (PHI->getParent() == Inst->getParent())
691         return false;
692     }
693   }
694   return true;
695 }
696
697 // Sets the appropriate insert point on Builder where we can add
698 // a replacement Instruction for V (if that is possible).
699 static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
700                               bool Before = true) {
701   if (auto *PHI = dyn_cast<PHINode>(V)) {
702     Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt());
703     return;
704   }
705   if (auto *I = dyn_cast<Instruction>(V)) {
706     if (!Before)
707       I = &*std::next(I->getIterator());
708     Builder.SetInsertPoint(I);
709     return;
710   }
711   if (auto *A = dyn_cast<Argument>(V)) {
712     // Set the insertion point in the entry block.
713     BasicBlock &Entry = A->getParent()->getEntryBlock();
714     Builder.SetInsertPoint(&*Entry.getFirstInsertionPt());
715     return;
716   }
717   // Otherwise, this is a constant and we don't need to set a new
718   // insertion point.
719   assert(isa<Constant>(V) && "Setting insertion point for unknown value!");
720 }
721
722 /// Returns a re-written value of Start as an indexed GEP using Base as a
723 /// pointer.
724 static Value *rewriteGEPAsOffset(Value *Start, Value *Base,
725                                  const DataLayout &DL,
726                                  SetVector<Value *> &Explored) {
727   // Perform all the substitutions. This is a bit tricky because we can
728   // have cycles in our use-def chains.
729   // 1. Create the PHI nodes without any incoming values.
730   // 2. Create all the other values.
731   // 3. Add the edges for the PHI nodes.
732   // 4. Emit GEPs to get the original pointers.
733   // 5. Remove the original instructions.
734   Type *IndexType = IntegerType::get(
735       Base->getContext(), DL.getPointerTypeSizeInBits(Start->getType()));
736
737   DenseMap<Value *, Value *> NewInsts;
738   NewInsts[Base] = ConstantInt::getNullValue(IndexType);
739
740   // Create the new PHI nodes, without adding any incoming values.
741   for (Value *Val : Explored) {
742     if (Val == Base)
743       continue;
744     // Create empty phi nodes. This avoids cyclic dependencies when creating
745     // the remaining instructions.
746     if (auto *PHI = dyn_cast<PHINode>(Val))
747       NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(),
748                                       PHI->getName() + ".idx", PHI);
749   }
750   IRBuilder<> Builder(Base->getContext());
751
752   // Create all the other instructions.
753   for (Value *Val : Explored) {
754
755     if (NewInsts.find(Val) != NewInsts.end())
756       continue;
757
758     if (auto *CI = dyn_cast<CastInst>(Val)) {
759       NewInsts[CI] = NewInsts[CI->getOperand(0)];
760       continue;
761     }
762     if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
763       Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)]
764                                                   : GEP->getOperand(1);
765       setInsertionPoint(Builder, GEP);
766       // Indices might need to be sign extended. GEPs will magically do
767       // this, but we need to do it ourselves here.
768       if (Index->getType()->getScalarSizeInBits() !=
769           NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) {
770         Index = Builder.CreateSExtOrTrunc(
771             Index, NewInsts[GEP->getOperand(0)]->getType(),
772             GEP->getOperand(0)->getName() + ".sext");
773       }
774
775       auto *Op = NewInsts[GEP->getOperand(0)];
776       if (isa<ConstantInt>(Op) && dyn_cast<ConstantInt>(Op)->isZero())
777         NewInsts[GEP] = Index;
778       else
779         NewInsts[GEP] = Builder.CreateNSWAdd(
780             Op, Index, GEP->getOperand(0)->getName() + ".add");
781       continue;
782     }
783     if (isa<PHINode>(Val))
784       continue;
785
786     llvm_unreachable("Unexpected instruction type");
787   }
788
789   // Add the incoming values to the PHI nodes.
790   for (Value *Val : Explored) {
791     if (Val == Base)
792       continue;
793     // All the instructions have been created, we can now add edges to the
794     // phi nodes.
795     if (auto *PHI = dyn_cast<PHINode>(Val)) {
796       PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
797       for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
798         Value *NewIncoming = PHI->getIncomingValue(I);
799
800         if (NewInsts.find(NewIncoming) != NewInsts.end())
801           NewIncoming = NewInsts[NewIncoming];
802
803         NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
804       }
805     }
806   }
807
808   for (Value *Val : Explored) {
809     if (Val == Base)
810       continue;
811
812     // Depending on the type, for external users we have to emit
813     // a GEP or a GEP + ptrtoint.
814     setInsertionPoint(Builder, Val, false);
815
816     // If required, create an inttoptr instruction for Base.
817     Value *NewBase = Base;
818     if (!Base->getType()->isPointerTy())
819       NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(),
820                                                Start->getName() + "to.ptr");
821
822     Value *GEP = Builder.CreateInBoundsGEP(
823         Start->getType()->getPointerElementType(), NewBase,
824         makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr");
825
826     if (!Val->getType()->isPointerTy()) {
827       Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(),
828                                               Val->getName() + ".conv");
829       GEP = Cast;
830     }
831     Val->replaceAllUsesWith(GEP);
832   }
833
834   return NewInsts[Start];
835 }
836
837 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
838 /// the input Value as a constant indexed GEP. Returns a pair containing
839 /// the GEPs Pointer and Index.
840 static std::pair<Value *, Value *>
841 getAsConstantIndexedAddress(Value *V, const DataLayout &DL) {
842   Type *IndexType = IntegerType::get(V->getContext(),
843                                      DL.getPointerTypeSizeInBits(V->getType()));
844
845   Constant *Index = ConstantInt::getNullValue(IndexType);
846   while (true) {
847     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
848       // We accept only inbouds GEPs here to exclude the possibility of
849       // overflow.
850       if (!GEP->isInBounds())
851         break;
852       if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 &&
853           GEP->getType() == V->getType()) {
854         V = GEP->getOperand(0);
855         Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1));
856         Index = ConstantExpr::getAdd(
857             Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType));
858         continue;
859       }
860       break;
861     }
862     if (auto *CI = dyn_cast<IntToPtrInst>(V)) {
863       if (!CI->isNoopCast(DL))
864         break;
865       V = CI->getOperand(0);
866       continue;
867     }
868     if (auto *CI = dyn_cast<PtrToIntInst>(V)) {
869       if (!CI->isNoopCast(DL))
870         break;
871       V = CI->getOperand(0);
872       continue;
873     }
874     break;
875   }
876   return {V, Index};
877 }
878
879 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
880 /// We can look through PHIs, GEPs and casts in order to determine a common base
881 /// between GEPLHS and RHS.
882 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
883                                               ICmpInst::Predicate Cond,
884                                               const DataLayout &DL) {
885   if (!GEPLHS->hasAllConstantIndices())
886     return nullptr;
887
888   // Make sure the pointers have the same type.
889   if (GEPLHS->getType() != RHS->getType())
890     return nullptr;
891
892   Value *PtrBase, *Index;
893   std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL);
894
895   // The set of nodes that will take part in this transformation.
896   SetVector<Value *> Nodes;
897
898   if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes))
899     return nullptr;
900
901   // We know we can re-write this as
902   //  ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
903   // Since we've only looked through inbouds GEPs we know that we
904   // can't have overflow on either side. We can therefore re-write
905   // this as:
906   //   OFFSET1 cmp OFFSET2
907   Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes);
908
909   // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
910   // GEP having PtrBase as the pointer base, and has returned in NewRHS the
911   // offset. Since Index is the offset of LHS to the base pointer, we will now
912   // compare the offsets instead of comparing the pointers.
913   return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS);
914 }
915
916 /// Fold comparisons between a GEP instruction and something else. At this point
917 /// we know that the GEP is on the LHS of the comparison.
918 Instruction *InstCombiner::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
919                                        ICmpInst::Predicate Cond,
920                                        Instruction &I) {
921   // Don't transform signed compares of GEPs into index compares. Even if the
922   // GEP is inbounds, the final add of the base pointer can have signed overflow
923   // and would change the result of the icmp.
924   // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
925   // the maximum signed value for the pointer type.
926   if (ICmpInst::isSigned(Cond))
927     return nullptr;
928
929   // Look through bitcasts and addrspacecasts. We do not however want to remove
930   // 0 GEPs.
931   if (!isa<GetElementPtrInst>(RHS))
932     RHS = RHS->stripPointerCasts();
933
934   Value *PtrBase = GEPLHS->getOperand(0);
935   if (PtrBase == RHS && GEPLHS->isInBounds()) {
936     // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
937     // This transformation (ignoring the base and scales) is valid because we
938     // know pointers can't overflow since the gep is inbounds.  See if we can
939     // output an optimized form.
940     Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL);
941
942     // If not, synthesize the offset the hard way.
943     if (!Offset)
944       Offset = EmitGEPOffset(GEPLHS);
945     return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
946                         Constant::getNullValue(Offset->getType()));
947   } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
948     // If the base pointers are different, but the indices are the same, just
949     // compare the base pointer.
950     if (PtrBase != GEPRHS->getOperand(0)) {
951       bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
952       IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
953                         GEPRHS->getOperand(0)->getType();
954       if (IndicesTheSame)
955         for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
956           if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
957             IndicesTheSame = false;
958             break;
959           }
960
961       // If all indices are the same, just compare the base pointers.
962       if (IndicesTheSame)
963         return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
964
965       // If we're comparing GEPs with two base pointers that only differ in type
966       // and both GEPs have only constant indices or just one use, then fold
967       // the compare with the adjusted indices.
968       if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
969           (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
970           (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
971           PtrBase->stripPointerCasts() ==
972               GEPRHS->getOperand(0)->stripPointerCasts()) {
973         Value *LOffset = EmitGEPOffset(GEPLHS);
974         Value *ROffset = EmitGEPOffset(GEPRHS);
975
976         // If we looked through an addrspacecast between different sized address
977         // spaces, the LHS and RHS pointers are different sized
978         // integers. Truncate to the smaller one.
979         Type *LHSIndexTy = LOffset->getType();
980         Type *RHSIndexTy = ROffset->getType();
981         if (LHSIndexTy != RHSIndexTy) {
982           if (LHSIndexTy->getPrimitiveSizeInBits() <
983               RHSIndexTy->getPrimitiveSizeInBits()) {
984             ROffset = Builder->CreateTrunc(ROffset, LHSIndexTy);
985           } else
986             LOffset = Builder->CreateTrunc(LOffset, RHSIndexTy);
987         }
988
989         Value *Cmp = Builder->CreateICmp(ICmpInst::getSignedPredicate(Cond),
990                                          LOffset, ROffset);
991         return replaceInstUsesWith(I, Cmp);
992       }
993
994       // Otherwise, the base pointers are different and the indices are
995       // different. Try convert this to an indexed compare by looking through
996       // PHIs/casts.
997       return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
998     }
999
1000     // If one of the GEPs has all zero indices, recurse.
1001     if (GEPLHS->hasAllZeroIndices())
1002       return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
1003                          ICmpInst::getSwappedPredicate(Cond), I);
1004
1005     // If the other GEP has all zero indices, recurse.
1006     if (GEPRHS->hasAllZeroIndices())
1007       return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
1008
1009     bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
1010     if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
1011       // If the GEPs only differ by one index, compare it.
1012       unsigned NumDifferences = 0;  // Keep track of # differences.
1013       unsigned DiffOperand = 0;     // The operand that differs.
1014       for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
1015         if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
1016           if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
1017                    GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
1018             // Irreconcilable differences.
1019             NumDifferences = 2;
1020             break;
1021           } else {
1022             if (NumDifferences++) break;
1023             DiffOperand = i;
1024           }
1025         }
1026
1027       if (NumDifferences == 0)   // SAME GEP?
1028         return replaceInstUsesWith(I, // No comparison is needed here.
1029                              Builder->getInt1(ICmpInst::isTrueWhenEqual(Cond)));
1030
1031       else if (NumDifferences == 1 && GEPsInBounds) {
1032         Value *LHSV = GEPLHS->getOperand(DiffOperand);
1033         Value *RHSV = GEPRHS->getOperand(DiffOperand);
1034         // Make sure we do a signed comparison here.
1035         return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
1036       }
1037     }
1038
1039     // Only lower this if the icmp is the only user of the GEP or if we expect
1040     // the result to fold to a constant!
1041     if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
1042         (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
1043       // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
1044       Value *L = EmitGEPOffset(GEPLHS);
1045       Value *R = EmitGEPOffset(GEPRHS);
1046       return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
1047     }
1048   }
1049
1050   // Try convert this to an indexed compare by looking through PHIs/casts as a
1051   // last resort.
1052   return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
1053 }
1054
1055 Instruction *InstCombiner::foldAllocaCmp(ICmpInst &ICI,
1056                                          const AllocaInst *Alloca,
1057                                          const Value *Other) {
1058   assert(ICI.isEquality() && "Cannot fold non-equality comparison.");
1059
1060   // It would be tempting to fold away comparisons between allocas and any
1061   // pointer not based on that alloca (e.g. an argument). However, even
1062   // though such pointers cannot alias, they can still compare equal.
1063   //
1064   // But LLVM doesn't specify where allocas get their memory, so if the alloca
1065   // doesn't escape we can argue that it's impossible to guess its value, and we
1066   // can therefore act as if any such guesses are wrong.
1067   //
1068   // The code below checks that the alloca doesn't escape, and that it's only
1069   // used in a comparison once (the current instruction). The
1070   // single-comparison-use condition ensures that we're trivially folding all
1071   // comparisons against the alloca consistently, and avoids the risk of
1072   // erroneously folding a comparison of the pointer with itself.
1073
1074   unsigned MaxIter = 32; // Break cycles and bound to constant-time.
1075
1076   SmallVector<const Use *, 32> Worklist;
1077   for (const Use &U : Alloca->uses()) {
1078     if (Worklist.size() >= MaxIter)
1079       return nullptr;
1080     Worklist.push_back(&U);
1081   }
1082
1083   unsigned NumCmps = 0;
1084   while (!Worklist.empty()) {
1085     assert(Worklist.size() <= MaxIter);
1086     const Use *U = Worklist.pop_back_val();
1087     const Value *V = U->getUser();
1088     --MaxIter;
1089
1090     if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
1091         isa<SelectInst>(V)) {
1092       // Track the uses.
1093     } else if (isa<LoadInst>(V)) {
1094       // Loading from the pointer doesn't escape it.
1095       continue;
1096     } else if (const auto *SI = dyn_cast<StoreInst>(V)) {
1097       // Storing *to* the pointer is fine, but storing the pointer escapes it.
1098       if (SI->getValueOperand() == U->get())
1099         return nullptr;
1100       continue;
1101     } else if (isa<ICmpInst>(V)) {
1102       if (NumCmps++)
1103         return nullptr; // Found more than one cmp.
1104       continue;
1105     } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
1106       switch (Intrin->getIntrinsicID()) {
1107         // These intrinsics don't escape or compare the pointer. Memset is safe
1108         // because we don't allow ptrtoint. Memcpy and memmove are safe because
1109         // we don't allow stores, so src cannot point to V.
1110         case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
1111         case Intrinsic::dbg_declare: case Intrinsic::dbg_value:
1112         case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset:
1113           continue;
1114         default:
1115           return nullptr;
1116       }
1117     } else {
1118       return nullptr;
1119     }
1120     for (const Use &U : V->uses()) {
1121       if (Worklist.size() >= MaxIter)
1122         return nullptr;
1123       Worklist.push_back(&U);
1124     }
1125   }
1126
1127   Type *CmpTy = CmpInst::makeCmpResultType(Other->getType());
1128   return replaceInstUsesWith(
1129       ICI,
1130       ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate())));
1131 }
1132
1133 /// Fold "icmp pred (X+CI), X".
1134 Instruction *InstCombiner::foldICmpAddOpConst(Instruction &ICI,
1135                                               Value *X, ConstantInt *CI,
1136                                               ICmpInst::Predicate Pred) {
1137   // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
1138   // so the values can never be equal.  Similarly for all other "or equals"
1139   // operators.
1140
1141   // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
1142   // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
1143   // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
1144   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
1145     Value *R =
1146       ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI);
1147     return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
1148   }
1149
1150   // (X+1) >u X        --> X <u (0-1)        --> X != 255
1151   // (X+2) >u X        --> X <u (0-2)        --> X <u 254
1152   // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
1153   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
1154     return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
1155
1156   unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
1157   ConstantInt *SMax = ConstantInt::get(X->getContext(),
1158                                        APInt::getSignedMaxValue(BitWidth));
1159
1160   // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
1161   // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
1162   // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
1163   // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
1164   // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
1165   // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
1166   if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1167     return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
1168
1169   // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
1170   // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
1171   // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
1172   // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
1173   // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
1174   // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
1175
1176   assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
1177   Constant *C = Builder->getInt(CI->getValue()-1);
1178   return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
1179 }
1180
1181 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
1182 /// (icmp eq/ne A, Log2(AP2/AP1)) ->
1183 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
1184 Instruction *InstCombiner::foldICmpShrConstConst(ICmpInst &I, Value *A,
1185                                                  const APInt &AP1,
1186                                                  const APInt &AP2) {
1187   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1188
1189   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1190     if (I.getPredicate() == I.ICMP_NE)
1191       Pred = CmpInst::getInversePredicate(Pred);
1192     return new ICmpInst(Pred, LHS, RHS);
1193   };
1194
1195   // Don't bother doing any work for cases which InstSimplify handles.
1196   if (AP2 == 0)
1197     return nullptr;
1198
1199   bool IsAShr = isa<AShrOperator>(I.getOperand(0));
1200   if (IsAShr) {
1201     if (AP2.isAllOnesValue())
1202       return nullptr;
1203     if (AP2.isNegative() != AP1.isNegative())
1204       return nullptr;
1205     if (AP2.sgt(AP1))
1206       return nullptr;
1207   }
1208
1209   if (!AP1)
1210     // 'A' must be large enough to shift out the highest set bit.
1211     return getICmp(I.ICMP_UGT, A,
1212                    ConstantInt::get(A->getType(), AP2.logBase2()));
1213
1214   if (AP1 == AP2)
1215     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1216
1217   int Shift;
1218   if (IsAShr && AP1.isNegative())
1219     Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
1220   else
1221     Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
1222
1223   if (Shift > 0) {
1224     if (IsAShr && AP1 == AP2.ashr(Shift)) {
1225       // There are multiple solutions if we are comparing against -1 and the LHS
1226       // of the ashr is not a power of two.
1227       if (AP1.isAllOnesValue() && !AP2.isPowerOf2())
1228         return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
1229       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1230     } else if (AP1 == AP2.lshr(Shift)) {
1231       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1232     }
1233   }
1234
1235   // Shifting const2 will never be equal to const1.
1236   // FIXME: This should always be handled by InstSimplify?
1237   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1238   return replaceInstUsesWith(I, TorF);
1239 }
1240
1241 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
1242 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
1243 Instruction *InstCombiner::foldICmpShlConstConst(ICmpInst &I, Value *A,
1244                                                  const APInt &AP1,
1245                                                  const APInt &AP2) {
1246   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1247
1248   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1249     if (I.getPredicate() == I.ICMP_NE)
1250       Pred = CmpInst::getInversePredicate(Pred);
1251     return new ICmpInst(Pred, LHS, RHS);
1252   };
1253
1254   // Don't bother doing any work for cases which InstSimplify handles.
1255   if (AP2 == 0)
1256     return nullptr;
1257
1258   unsigned AP2TrailingZeros = AP2.countTrailingZeros();
1259
1260   if (!AP1 && AP2TrailingZeros != 0)
1261     return getICmp(
1262         I.ICMP_UGE, A,
1263         ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
1264
1265   if (AP1 == AP2)
1266     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1267
1268   // Get the distance between the lowest bits that are set.
1269   int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
1270
1271   if (Shift > 0 && AP2.shl(Shift) == AP1)
1272     return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1273
1274   // Shifting const2 will never be equal to const1.
1275   // FIXME: This should always be handled by InstSimplify?
1276   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1277   return replaceInstUsesWith(I, TorF);
1278 }
1279
1280 /// The caller has matched a pattern of the form:
1281 ///   I = icmp ugt (add (add A, B), CI2), CI1
1282 /// If this is of the form:
1283 ///   sum = a + b
1284 ///   if (sum+128 >u 255)
1285 /// Then replace it with llvm.sadd.with.overflow.i8.
1286 ///
1287 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1288                                           ConstantInt *CI2, ConstantInt *CI1,
1289                                           InstCombiner &IC) {
1290   // The transformation we're trying to do here is to transform this into an
1291   // llvm.sadd.with.overflow.  To do this, we have to replace the original add
1292   // with a narrower add, and discard the add-with-constant that is part of the
1293   // range check (if we can't eliminate it, this isn't profitable).
1294
1295   // In order to eliminate the add-with-constant, the compare can be its only
1296   // use.
1297   Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1298   if (!AddWithCst->hasOneUse())
1299     return nullptr;
1300
1301   // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1302   if (!CI2->getValue().isPowerOf2())
1303     return nullptr;
1304   unsigned NewWidth = CI2->getValue().countTrailingZeros();
1305   if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
1306     return nullptr;
1307
1308   // The width of the new add formed is 1 more than the bias.
1309   ++NewWidth;
1310
1311   // Check to see that CI1 is an all-ones value with NewWidth bits.
1312   if (CI1->getBitWidth() == NewWidth ||
1313       CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1314     return nullptr;
1315
1316   // This is only really a signed overflow check if the inputs have been
1317   // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1318   // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1319   unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
1320   if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits ||
1321       IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits)
1322     return nullptr;
1323
1324   // In order to replace the original add with a narrower
1325   // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1326   // and truncates that discard the high bits of the add.  Verify that this is
1327   // the case.
1328   Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1329   for (User *U : OrigAdd->users()) {
1330     if (U == AddWithCst)
1331       continue;
1332
1333     // Only accept truncates for now.  We would really like a nice recursive
1334     // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1335     // chain to see which bits of a value are actually demanded.  If the
1336     // original add had another add which was then immediately truncated, we
1337     // could still do the transformation.
1338     TruncInst *TI = dyn_cast<TruncInst>(U);
1339     if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
1340       return nullptr;
1341   }
1342
1343   // If the pattern matches, truncate the inputs to the narrower type and
1344   // use the sadd_with_overflow intrinsic to efficiently compute both the
1345   // result and the overflow bit.
1346   Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1347   Value *F = Intrinsic::getDeclaration(I.getModule(),
1348                                        Intrinsic::sadd_with_overflow, NewType);
1349
1350   InstCombiner::BuilderTy *Builder = IC.Builder;
1351
1352   // Put the new code above the original add, in case there are any uses of the
1353   // add between the add and the compare.
1354   Builder->SetInsertPoint(OrigAdd);
1355
1356   Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName() + ".trunc");
1357   Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName() + ".trunc");
1358   CallInst *Call = Builder->CreateCall(F, {TruncA, TruncB}, "sadd");
1359   Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result");
1360   Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType());
1361
1362   // The inner add was the result of the narrow add, zero extended to the
1363   // wider type.  Replace it with the result computed by the intrinsic.
1364   IC.replaceInstUsesWith(*OrigAdd, ZExt);
1365
1366   // The original icmp gets replaced with the overflow value.
1367   return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1368 }
1369
1370 // Fold icmp Pred X, C.
1371 Instruction *InstCombiner::foldICmpWithConstant(ICmpInst &Cmp) {
1372   CmpInst::Predicate Pred = Cmp.getPredicate();
1373   Value *X = Cmp.getOperand(0);
1374
1375   const APInt *C;
1376   if (!match(Cmp.getOperand(1), m_APInt(C)))
1377     return nullptr;
1378
1379   Value *A = nullptr, *B = nullptr;
1380
1381   // Match the following pattern, which is a common idiom when writing
1382   // overflow-safe integer arithmetic functions. The source performs an addition
1383   // in wider type and explicitly checks for overflow using comparisons against
1384   // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
1385   //
1386   // TODO: This could probably be generalized to handle other overflow-safe
1387   // operations if we worked out the formulas to compute the appropriate magic
1388   // constants.
1389   //
1390   // sum = a + b
1391   // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
1392   {
1393     ConstantInt *CI2; // I = icmp ugt (add (add A, B), CI2), CI
1394     if (Pred == ICmpInst::ICMP_UGT &&
1395         match(X, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
1396       if (Instruction *Res = processUGT_ADDCST_ADD(
1397               Cmp, A, B, CI2, cast<ConstantInt>(Cmp.getOperand(1)), *this))
1398         return Res;
1399   }
1400
1401   // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
1402   if (*C == 0 && Pred == ICmpInst::ICMP_SGT) {
1403     SelectPatternResult SPR = matchSelectPattern(X, A, B);
1404     if (SPR.Flavor == SPF_SMIN) {
1405       if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT))
1406         return new ICmpInst(Pred, B, Cmp.getOperand(1));
1407       if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT))
1408         return new ICmpInst(Pred, A, Cmp.getOperand(1));
1409     }
1410   }
1411
1412   // FIXME: Use m_APInt to allow folds for splat constants.
1413   ConstantInt *CI = dyn_cast<ConstantInt>(Cmp.getOperand(1));
1414   if (!CI)
1415     return nullptr;
1416
1417   // Canonicalize icmp instructions based on dominating conditions.
1418   BasicBlock *Parent = Cmp.getParent();
1419   BasicBlock *Dom = Parent->getSinglePredecessor();
1420   auto *BI = Dom ? dyn_cast<BranchInst>(Dom->getTerminator()) : nullptr;
1421   ICmpInst::Predicate Pred2;
1422   BasicBlock *TrueBB, *FalseBB;
1423   ConstantInt *CI2;
1424   if (BI && match(BI, m_Br(m_ICmp(Pred2, m_Specific(X), m_ConstantInt(CI2)),
1425                            TrueBB, FalseBB)) &&
1426       TrueBB != FalseBB) {
1427     ConstantRange CR =
1428         ConstantRange::makeAllowedICmpRegion(Pred, CI->getValue());
1429     ConstantRange DominatingCR =
1430         (Parent == TrueBB)
1431             ? ConstantRange::makeExactICmpRegion(Pred2, CI2->getValue())
1432             : ConstantRange::makeExactICmpRegion(
1433                   CmpInst::getInversePredicate(Pred2), CI2->getValue());
1434     ConstantRange Intersection = DominatingCR.intersectWith(CR);
1435     ConstantRange Difference = DominatingCR.difference(CR);
1436     if (Intersection.isEmptySet())
1437       return replaceInstUsesWith(Cmp, Builder->getFalse());
1438     if (Difference.isEmptySet())
1439       return replaceInstUsesWith(Cmp, Builder->getTrue());
1440
1441     // If this is a normal comparison, it demands all bits. If it is a sign
1442     // bit comparison, it only demands the sign bit.
1443     bool UnusedBit;
1444     bool IsSignBit = isSignBitCheck(Pred, CI->getValue(), UnusedBit);
1445
1446     // Canonicalizing a sign bit comparison that gets used in a branch,
1447     // pessimizes codegen by generating branch on zero instruction instead
1448     // of a test and branch. So we avoid canonicalizing in such situations
1449     // because test and branch instruction has better branch displacement
1450     // than compare and branch instruction.
1451     if (!isBranchOnSignBitCheck(Cmp, IsSignBit) && !Cmp.isEquality()) {
1452       if (auto *AI = Intersection.getSingleElement())
1453         return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder->getInt(*AI));
1454       if (auto *AD = Difference.getSingleElement())
1455         return new ICmpInst(ICmpInst::ICMP_NE, X, Builder->getInt(*AD));
1456     }
1457   }
1458
1459   return nullptr;
1460 }
1461
1462 /// Fold icmp (trunc X, Y), C.
1463 Instruction *InstCombiner::foldICmpTruncConstant(ICmpInst &Cmp,
1464                                                  Instruction *Trunc,
1465                                                  const APInt *C) {
1466   ICmpInst::Predicate Pred = Cmp.getPredicate();
1467   Value *X = Trunc->getOperand(0);
1468   if (*C == 1 && C->getBitWidth() > 1) {
1469     // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1470     Value *V = nullptr;
1471     if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V))))
1472       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1473                           ConstantInt::get(V->getType(), 1));
1474   }
1475
1476   if (Cmp.isEquality() && Trunc->hasOneUse()) {
1477     // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1478     // of the high bits truncated out of x are known.
1479     unsigned DstBits = Trunc->getType()->getScalarSizeInBits(),
1480              SrcBits = X->getType()->getScalarSizeInBits();
1481     KnownBits Known = computeKnownBits(X, 0, &Cmp);
1482
1483     // If all the high bits are known, we can do this xform.
1484     if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) {
1485       // Pull in the high bits from known-ones set.
1486       APInt NewRHS = C->zext(SrcBits);
1487       NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits);
1488       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS));
1489     }
1490   }
1491
1492   return nullptr;
1493 }
1494
1495 /// Fold icmp (xor X, Y), C.
1496 Instruction *InstCombiner::foldICmpXorConstant(ICmpInst &Cmp,
1497                                                BinaryOperator *Xor,
1498                                                const APInt *C) {
1499   Value *X = Xor->getOperand(0);
1500   Value *Y = Xor->getOperand(1);
1501   const APInt *XorC;
1502   if (!match(Y, m_APInt(XorC)))
1503     return nullptr;
1504
1505   // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1506   // fold the xor.
1507   ICmpInst::Predicate Pred = Cmp.getPredicate();
1508   if ((Pred == ICmpInst::ICMP_SLT && *C == 0) ||
1509       (Pred == ICmpInst::ICMP_SGT && C->isAllOnesValue())) {
1510
1511     // If the sign bit of the XorCst is not set, there is no change to
1512     // the operation, just stop using the Xor.
1513     if (!XorC->isNegative()) {
1514       Cmp.setOperand(0, X);
1515       Worklist.Add(Xor);
1516       return &Cmp;
1517     }
1518
1519     // Was the old condition true if the operand is positive?
1520     bool isTrueIfPositive = Pred == ICmpInst::ICMP_SGT;
1521
1522     // If so, the new one isn't.
1523     isTrueIfPositive ^= true;
1524
1525     Constant *CmpConstant = cast<Constant>(Cmp.getOperand(1));
1526     if (isTrueIfPositive)
1527       return new ICmpInst(ICmpInst::ICMP_SGT, X, SubOne(CmpConstant));
1528     else
1529       return new ICmpInst(ICmpInst::ICMP_SLT, X, AddOne(CmpConstant));
1530   }
1531
1532   if (Xor->hasOneUse()) {
1533     // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask))
1534     if (!Cmp.isEquality() && XorC->isSignMask()) {
1535       Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
1536                             : Cmp.getSignedPredicate();
1537       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), *C ^ *XorC));
1538     }
1539
1540     // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask))
1541     if (!Cmp.isEquality() && XorC->isMaxSignedValue()) {
1542       Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
1543                             : Cmp.getSignedPredicate();
1544       Pred = Cmp.getSwappedPredicate(Pred);
1545       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), *C ^ *XorC));
1546     }
1547   }
1548
1549   // (icmp ugt (xor X, C), ~C) -> (icmp ult X, C)
1550   //   iff -C is a power of 2
1551   if (Pred == ICmpInst::ICMP_UGT && *XorC == ~(*C) && (*C + 1).isPowerOf2())
1552     return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
1553
1554   // (icmp ult (xor X, C), -C) -> (icmp uge X, C)
1555   //   iff -C is a power of 2
1556   if (Pred == ICmpInst::ICMP_ULT && *XorC == -(*C) && C->isPowerOf2())
1557     return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
1558
1559   return nullptr;
1560 }
1561
1562 /// Fold icmp (and (sh X, Y), C2), C1.
1563 Instruction *InstCombiner::foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And,
1564                                             const APInt *C1, const APInt *C2) {
1565   BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0));
1566   if (!Shift || !Shift->isShift())
1567     return nullptr;
1568
1569   // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
1570   // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
1571   // code produced by the clang front-end, for bitfield access.
1572   // This seemingly simple opportunity to fold away a shift turns out to be
1573   // rather complicated. See PR17827 for details.
1574   unsigned ShiftOpcode = Shift->getOpcode();
1575   bool IsShl = ShiftOpcode == Instruction::Shl;
1576   const APInt *C3;
1577   if (match(Shift->getOperand(1), m_APInt(C3))) {
1578     bool CanFold = false;
1579     if (ShiftOpcode == Instruction::AShr) {
1580       // There may be some constraints that make this possible, but nothing
1581       // simple has been discovered yet.
1582       CanFold = false;
1583     } else if (ShiftOpcode == Instruction::Shl) {
1584       // For a left shift, we can fold if the comparison is not signed. We can
1585       // also fold a signed comparison if the mask value and comparison value
1586       // are not negative. These constraints may not be obvious, but we can
1587       // prove that they are correct using an SMT solver.
1588       if (!Cmp.isSigned() || (!C2->isNegative() && !C1->isNegative()))
1589         CanFold = true;
1590     } else if (ShiftOpcode == Instruction::LShr) {
1591       // For a logical right shift, we can fold if the comparison is not signed.
1592       // We can also fold a signed comparison if the shifted mask value and the
1593       // shifted comparison value are not negative. These constraints may not be
1594       // obvious, but we can prove that they are correct using an SMT solver.
1595       if (!Cmp.isSigned() ||
1596           (!C2->shl(*C3).isNegative() && !C1->shl(*C3).isNegative()))
1597         CanFold = true;
1598     }
1599
1600     if (CanFold) {
1601       APInt NewCst = IsShl ? C1->lshr(*C3) : C1->shl(*C3);
1602       APInt SameAsC1 = IsShl ? NewCst.shl(*C3) : NewCst.lshr(*C3);
1603       // Check to see if we are shifting out any of the bits being compared.
1604       if (SameAsC1 != *C1) {
1605         // If we shifted bits out, the fold is not going to work out. As a
1606         // special case, check to see if this means that the result is always
1607         // true or false now.
1608         if (Cmp.getPredicate() == ICmpInst::ICMP_EQ)
1609           return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType()));
1610         if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
1611           return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType()));
1612       } else {
1613         Cmp.setOperand(1, ConstantInt::get(And->getType(), NewCst));
1614         APInt NewAndCst = IsShl ? C2->lshr(*C3) : C2->shl(*C3);
1615         And->setOperand(1, ConstantInt::get(And->getType(), NewAndCst));
1616         And->setOperand(0, Shift->getOperand(0));
1617         Worklist.Add(Shift); // Shift is dead.
1618         return &Cmp;
1619       }
1620     }
1621   }
1622
1623   // Turn ((X >> Y) & C2) == 0  into  (X & (C2 << Y)) == 0.  The latter is
1624   // preferable because it allows the C2 << Y expression to be hoisted out of a
1625   // loop if Y is invariant and X is not.
1626   if (Shift->hasOneUse() && *C1 == 0 && Cmp.isEquality() &&
1627       !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) {
1628     // Compute C2 << Y.
1629     Value *NewShift =
1630         IsShl ? Builder->CreateLShr(And->getOperand(1), Shift->getOperand(1))
1631               : Builder->CreateShl(And->getOperand(1), Shift->getOperand(1));
1632
1633     // Compute X & (C2 << Y).
1634     Value *NewAnd = Builder->CreateAnd(Shift->getOperand(0), NewShift);
1635     Cmp.setOperand(0, NewAnd);
1636     return &Cmp;
1637   }
1638
1639   return nullptr;
1640 }
1641
1642 /// Fold icmp (and X, C2), C1.
1643 Instruction *InstCombiner::foldICmpAndConstConst(ICmpInst &Cmp,
1644                                                  BinaryOperator *And,
1645                                                  const APInt *C1) {
1646   const APInt *C2;
1647   if (!match(And->getOperand(1), m_APInt(C2)))
1648     return nullptr;
1649
1650   if (!And->hasOneUse() || !And->getOperand(0)->hasOneUse())
1651     return nullptr;
1652
1653   // If the LHS is an 'and' of a truncate and we can widen the and/compare to
1654   // the input width without changing the value produced, eliminate the cast:
1655   //
1656   // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
1657   //
1658   // We can do this transformation if the constants do not have their sign bits
1659   // set or if it is an equality comparison. Extending a relational comparison
1660   // when we're checking the sign bit would not work.
1661   Value *W;
1662   if (match(And->getOperand(0), m_Trunc(m_Value(W))) &&
1663       (Cmp.isEquality() || (!C1->isNegative() && !C2->isNegative()))) {
1664     // TODO: Is this a good transform for vectors? Wider types may reduce
1665     // throughput. Should this transform be limited (even for scalars) by using
1666     // shouldChangeType()?
1667     if (!Cmp.getType()->isVectorTy()) {
1668       Type *WideType = W->getType();
1669       unsigned WideScalarBits = WideType->getScalarSizeInBits();
1670       Constant *ZextC1 = ConstantInt::get(WideType, C1->zext(WideScalarBits));
1671       Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits));
1672       Value *NewAnd = Builder->CreateAnd(W, ZextC2, And->getName());
1673       return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1);
1674     }
1675   }
1676
1677   if (Instruction *I = foldICmpAndShift(Cmp, And, C1, C2))
1678     return I;
1679
1680   // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
1681   // (icmp pred (and A, (or (shl 1, B), 1), 0))
1682   //
1683   // iff pred isn't signed
1684   if (!Cmp.isSigned() && *C1 == 0 && match(And->getOperand(1), m_One())) {
1685     Constant *One = cast<Constant>(And->getOperand(1));
1686     Value *Or = And->getOperand(0);
1687     Value *A, *B, *LShr;
1688     if (match(Or, m_Or(m_Value(LShr), m_Value(A))) &&
1689         match(LShr, m_LShr(m_Specific(A), m_Value(B)))) {
1690       unsigned UsesRemoved = 0;
1691       if (And->hasOneUse())
1692         ++UsesRemoved;
1693       if (Or->hasOneUse())
1694         ++UsesRemoved;
1695       if (LShr->hasOneUse())
1696         ++UsesRemoved;
1697
1698       // Compute A & ((1 << B) | 1)
1699       Value *NewOr = nullptr;
1700       if (auto *C = dyn_cast<Constant>(B)) {
1701         if (UsesRemoved >= 1)
1702           NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
1703       } else {
1704         if (UsesRemoved >= 3)
1705           NewOr = Builder->CreateOr(Builder->CreateShl(One, B, LShr->getName(),
1706                                                        /*HasNUW=*/true),
1707                                     One, Or->getName());
1708       }
1709       if (NewOr) {
1710         Value *NewAnd = Builder->CreateAnd(A, NewOr, And->getName());
1711         Cmp.setOperand(0, NewAnd);
1712         return &Cmp;
1713       }
1714     }
1715   }
1716
1717   // (X & C2) > C1 --> (X & C2) != 0, if any bit set in (X & C2) will produce a
1718   // result greater than C1.
1719   unsigned NumTZ = C2->countTrailingZeros();
1720   if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && NumTZ < C2->getBitWidth() &&
1721       APInt::getOneBitSet(C2->getBitWidth(), NumTZ).ugt(*C1)) {
1722     Constant *Zero = Constant::getNullValue(And->getType());
1723     return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
1724   }
1725
1726   return nullptr;
1727 }
1728
1729 /// Fold icmp (and X, Y), C.
1730 Instruction *InstCombiner::foldICmpAndConstant(ICmpInst &Cmp,
1731                                                BinaryOperator *And,
1732                                                const APInt *C) {
1733   if (Instruction *I = foldICmpAndConstConst(Cmp, And, C))
1734     return I;
1735
1736   // TODO: These all require that Y is constant too, so refactor with the above.
1737
1738   // Try to optimize things like "A[i] & 42 == 0" to index computations.
1739   Value *X = And->getOperand(0);
1740   Value *Y = And->getOperand(1);
1741   if (auto *LI = dyn_cast<LoadInst>(X))
1742     if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1743       if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1744         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1745             !LI->isVolatile() && isa<ConstantInt>(Y)) {
1746           ConstantInt *C2 = cast<ConstantInt>(Y);
1747           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2))
1748             return Res;
1749         }
1750
1751   if (!Cmp.isEquality())
1752     return nullptr;
1753
1754   // X & -C == -C -> X >  u ~C
1755   // X & -C != -C -> X <= u ~C
1756   //   iff C is a power of 2
1757   if (Cmp.getOperand(1) == Y && (-(*C)).isPowerOf2()) {
1758     auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT
1759                                                           : CmpInst::ICMP_ULE;
1760     return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1))));
1761   }
1762
1763   // (X & C2) == 0 -> (trunc X) >= 0
1764   // (X & C2) != 0 -> (trunc X) <  0
1765   //   iff C2 is a power of 2 and it masks the sign bit of a legal integer type.
1766   const APInt *C2;
1767   if (And->hasOneUse() && *C == 0 && match(Y, m_APInt(C2))) {
1768     int32_t ExactLogBase2 = C2->exactLogBase2();
1769     if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) {
1770       Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1);
1771       if (And->getType()->isVectorTy())
1772         NTy = VectorType::get(NTy, And->getType()->getVectorNumElements());
1773       Value *Trunc = Builder->CreateTrunc(X, NTy);
1774       auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE
1775                                                             : CmpInst::ICMP_SLT;
1776       return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy));
1777     }
1778   }
1779
1780   return nullptr;
1781 }
1782
1783 /// Fold icmp (or X, Y), C.
1784 Instruction *InstCombiner::foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or,
1785                                               const APInt *C) {
1786   ICmpInst::Predicate Pred = Cmp.getPredicate();
1787   if (*C == 1) {
1788     // icmp slt signum(V) 1 --> icmp slt V, 1
1789     Value *V = nullptr;
1790     if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V))))
1791       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1792                           ConstantInt::get(V->getType(), 1));
1793   }
1794
1795   // X | C == C --> X <=u C
1796   // X | C != C --> X  >u C
1797   //   iff C+1 is a power of 2 (C is a bitmask of the low bits)
1798   if (Cmp.isEquality() && Cmp.getOperand(1) == Or->getOperand(1) &&
1799       (*C + 1).isPowerOf2()) {
1800     Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT;
1801     return new ICmpInst(Pred, Or->getOperand(0), Or->getOperand(1));
1802   }
1803
1804   if (!Cmp.isEquality() || *C != 0 || !Or->hasOneUse())
1805     return nullptr;
1806
1807   Value *P, *Q;
1808   if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1809     // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1810     // -> and (icmp eq P, null), (icmp eq Q, null).
1811     Value *CmpP =
1812         Builder->CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType()));
1813     Value *CmpQ =
1814         Builder->CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType()));
1815     auto LogicOpc = Pred == ICmpInst::Predicate::ICMP_EQ ? Instruction::And
1816                                                          : Instruction::Or;
1817     return BinaryOperator::Create(LogicOpc, CmpP, CmpQ);
1818   }
1819
1820   return nullptr;
1821 }
1822
1823 /// Fold icmp (mul X, Y), C.
1824 Instruction *InstCombiner::foldICmpMulConstant(ICmpInst &Cmp,
1825                                                BinaryOperator *Mul,
1826                                                const APInt *C) {
1827   const APInt *MulC;
1828   if (!match(Mul->getOperand(1), m_APInt(MulC)))
1829     return nullptr;
1830
1831   // If this is a test of the sign bit and the multiply is sign-preserving with
1832   // a constant operand, use the multiply LHS operand instead.
1833   ICmpInst::Predicate Pred = Cmp.getPredicate();
1834   if (isSignTest(Pred, *C) && Mul->hasNoSignedWrap()) {
1835     if (MulC->isNegative())
1836       Pred = ICmpInst::getSwappedPredicate(Pred);
1837     return new ICmpInst(Pred, Mul->getOperand(0),
1838                         Constant::getNullValue(Mul->getType()));
1839   }
1840
1841   return nullptr;
1842 }
1843
1844 /// Fold icmp (shl 1, Y), C.
1845 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl,
1846                                    const APInt *C) {
1847   Value *Y;
1848   if (!match(Shl, m_Shl(m_One(), m_Value(Y))))
1849     return nullptr;
1850
1851   Type *ShiftType = Shl->getType();
1852   uint32_t TypeBits = C->getBitWidth();
1853   bool CIsPowerOf2 = C->isPowerOf2();
1854   ICmpInst::Predicate Pred = Cmp.getPredicate();
1855   if (Cmp.isUnsigned()) {
1856     // (1 << Y) pred C -> Y pred Log2(C)
1857     if (!CIsPowerOf2) {
1858       // (1 << Y) <  30 -> Y <= 4
1859       // (1 << Y) <= 30 -> Y <= 4
1860       // (1 << Y) >= 30 -> Y >  4
1861       // (1 << Y) >  30 -> Y >  4
1862       if (Pred == ICmpInst::ICMP_ULT)
1863         Pred = ICmpInst::ICMP_ULE;
1864       else if (Pred == ICmpInst::ICMP_UGE)
1865         Pred = ICmpInst::ICMP_UGT;
1866     }
1867
1868     // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31
1869     // (1 << Y) <  2147483648 -> Y <  31 -> Y != 31
1870     unsigned CLog2 = C->logBase2();
1871     if (CLog2 == TypeBits - 1) {
1872       if (Pred == ICmpInst::ICMP_UGE)
1873         Pred = ICmpInst::ICMP_EQ;
1874       else if (Pred == ICmpInst::ICMP_ULT)
1875         Pred = ICmpInst::ICMP_NE;
1876     }
1877     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2));
1878   } else if (Cmp.isSigned()) {
1879     Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1);
1880     if (C->isAllOnesValue()) {
1881       // (1 << Y) <= -1 -> Y == 31
1882       if (Pred == ICmpInst::ICMP_SLE)
1883         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
1884
1885       // (1 << Y) >  -1 -> Y != 31
1886       if (Pred == ICmpInst::ICMP_SGT)
1887         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
1888     } else if (!(*C)) {
1889       // (1 << Y) <  0 -> Y == 31
1890       // (1 << Y) <= 0 -> Y == 31
1891       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1892         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
1893
1894       // (1 << Y) >= 0 -> Y != 31
1895       // (1 << Y) >  0 -> Y != 31
1896       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
1897         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
1898     }
1899   } else if (Cmp.isEquality() && CIsPowerOf2) {
1900     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C->logBase2()));
1901   }
1902
1903   return nullptr;
1904 }
1905
1906 /// Fold icmp (shl X, Y), C.
1907 Instruction *InstCombiner::foldICmpShlConstant(ICmpInst &Cmp,
1908                                                BinaryOperator *Shl,
1909                                                const APInt *C) {
1910   const APInt *ShiftVal;
1911   if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal)))
1912     return foldICmpShlConstConst(Cmp, Shl->getOperand(1), *C, *ShiftVal);
1913
1914   const APInt *ShiftAmt;
1915   if (!match(Shl->getOperand(1), m_APInt(ShiftAmt)))
1916     return foldICmpShlOne(Cmp, Shl, C);
1917
1918   // Check that the shift amount is in range. If not, don't perform undefined
1919   // shifts. When the shift is visited, it will be simplified.
1920   unsigned TypeBits = C->getBitWidth();
1921   if (ShiftAmt->uge(TypeBits))
1922     return nullptr;
1923
1924   ICmpInst::Predicate Pred = Cmp.getPredicate();
1925   Value *X = Shl->getOperand(0);
1926   Type *ShType = Shl->getType();
1927
1928   // NSW guarantees that we are only shifting out sign bits from the high bits,
1929   // so we can ASHR the compare constant without needing a mask and eliminate
1930   // the shift.
1931   if (Shl->hasNoSignedWrap()) {
1932     if (Pred == ICmpInst::ICMP_SGT) {
1933       // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
1934       APInt ShiftedC = C->ashr(*ShiftAmt);
1935       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
1936     }
1937     if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) {
1938       // This is the same code as the SGT case, but assert the pre-condition
1939       // that is needed for this to work with equality predicates.
1940       assert(C->ashr(*ShiftAmt).shl(*ShiftAmt) == *C &&
1941              "Compare known true or false was not folded");
1942       APInt ShiftedC = C->ashr(*ShiftAmt);
1943       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
1944     }
1945     if (Pred == ICmpInst::ICMP_SLT) {
1946       // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
1947       // (X << S) <=s C is equiv to X <=s (C >> S) for all C
1948       // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
1949       // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
1950       assert(!C->isMinSignedValue() && "Unexpected icmp slt");
1951       APInt ShiftedC = (*C - 1).ashr(*ShiftAmt) + 1;
1952       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
1953     }
1954     // If this is a signed comparison to 0 and the shift is sign preserving,
1955     // use the shift LHS operand instead; isSignTest may change 'Pred', so only
1956     // do that if we're sure to not continue on in this function.
1957     if (isSignTest(Pred, *C))
1958       return new ICmpInst(Pred, X, Constant::getNullValue(ShType));
1959   }
1960
1961   // NUW guarantees that we are only shifting out zero bits from the high bits,
1962   // so we can LSHR the compare constant without needing a mask and eliminate
1963   // the shift.
1964   if (Shl->hasNoUnsignedWrap()) {
1965     if (Pred == ICmpInst::ICMP_UGT) {
1966       // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
1967       APInt ShiftedC = C->lshr(*ShiftAmt);
1968       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
1969     }
1970     if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) {
1971       // This is the same code as the UGT case, but assert the pre-condition
1972       // that is needed for this to work with equality predicates.
1973       assert(C->lshr(*ShiftAmt).shl(*ShiftAmt) == *C &&
1974              "Compare known true or false was not folded");
1975       APInt ShiftedC = C->lshr(*ShiftAmt);
1976       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
1977     }
1978     if (Pred == ICmpInst::ICMP_ULT) {
1979       // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
1980       // (X << S) <=u C is equiv to X <=u (C >> S) for all C
1981       // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
1982       // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
1983       assert(C->ugt(0) && "ult 0 should have been eliminated");
1984       APInt ShiftedC = (*C - 1).lshr(*ShiftAmt) + 1;
1985       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
1986     }
1987   }
1988
1989   if (Cmp.isEquality() && Shl->hasOneUse()) {
1990     // Strength-reduce the shift into an 'and'.
1991     Constant *Mask = ConstantInt::get(
1992         ShType,
1993         APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
1994     Value *And = Builder->CreateAnd(X, Mask, Shl->getName() + ".mask");
1995     Constant *LShrC = ConstantInt::get(ShType, C->lshr(*ShiftAmt));
1996     return new ICmpInst(Pred, And, LShrC);
1997   }
1998
1999   // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
2000   bool TrueIfSigned = false;
2001   if (Shl->hasOneUse() && isSignBitCheck(Pred, *C, TrueIfSigned)) {
2002     // (X << 31) <s 0  --> (X & 1) != 0
2003     Constant *Mask = ConstantInt::get(
2004         ShType,
2005         APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1));
2006     Value *And = Builder->CreateAnd(X, Mask, Shl->getName() + ".mask");
2007     return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
2008                         And, Constant::getNullValue(ShType));
2009   }
2010
2011   // Transform (icmp pred iM (shl iM %v, N), C)
2012   // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
2013   // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
2014   // This enables us to get rid of the shift in favor of a trunc that may be
2015   // free on the target. It has the additional benefit of comparing to a
2016   // smaller constant that may be more target-friendly.
2017   unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1);
2018   if (Shl->hasOneUse() && Amt != 0 && C->countTrailingZeros() >= Amt &&
2019       DL.isLegalInteger(TypeBits - Amt)) {
2020     Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt);
2021     if (ShType->isVectorTy())
2022       TruncTy = VectorType::get(TruncTy, ShType->getVectorNumElements());
2023     Constant *NewC =
2024         ConstantInt::get(TruncTy, C->ashr(*ShiftAmt).trunc(TypeBits - Amt));
2025     return new ICmpInst(Pred, Builder->CreateTrunc(X, TruncTy), NewC);
2026   }
2027
2028   return nullptr;
2029 }
2030
2031 /// Fold icmp ({al}shr X, Y), C.
2032 Instruction *InstCombiner::foldICmpShrConstant(ICmpInst &Cmp,
2033                                                BinaryOperator *Shr,
2034                                                const APInt *C) {
2035   // An exact shr only shifts out zero bits, so:
2036   // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
2037   Value *X = Shr->getOperand(0);
2038   CmpInst::Predicate Pred = Cmp.getPredicate();
2039   if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() && *C == 0)
2040     return new ICmpInst(Pred, X, Cmp.getOperand(1));
2041
2042   const APInt *ShiftVal;
2043   if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal)))
2044     return foldICmpShrConstConst(Cmp, Shr->getOperand(1), *C, *ShiftVal);
2045
2046   const APInt *ShiftAmt;
2047   if (!match(Shr->getOperand(1), m_APInt(ShiftAmt)))
2048     return nullptr;
2049
2050   // Check that the shift amount is in range. If not, don't perform undefined
2051   // shifts. When the shift is visited it will be simplified.
2052   unsigned TypeBits = C->getBitWidth();
2053   unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits);
2054   if (ShAmtVal >= TypeBits || ShAmtVal == 0)
2055     return nullptr;
2056
2057   bool IsAShr = Shr->getOpcode() == Instruction::AShr;
2058   if (!Cmp.isEquality()) {
2059     // If we have an unsigned comparison and an ashr, we can't simplify this.
2060     // Similarly for signed comparisons with lshr.
2061     if (Cmp.isSigned() != IsAShr)
2062       return nullptr;
2063
2064     // Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv
2065     // by a power of 2.  Since we already have logic to simplify these,
2066     // transform to div and then simplify the resultant comparison.
2067     if (IsAShr && (!Shr->isExact() || ShAmtVal == TypeBits - 1))
2068       return nullptr;
2069
2070     // Revisit the shift (to delete it).
2071     Worklist.Add(Shr);
2072
2073     Constant *DivCst = ConstantInt::get(
2074         Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal));
2075
2076     Value *Tmp = IsAShr ? Builder->CreateSDiv(X, DivCst, "", Shr->isExact())
2077                         : Builder->CreateUDiv(X, DivCst, "", Shr->isExact());
2078
2079     Cmp.setOperand(0, Tmp);
2080
2081     // If the builder folded the binop, just return it.
2082     BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp);
2083     if (!TheDiv)
2084       return &Cmp;
2085
2086     // Otherwise, fold this div/compare.
2087     assert(TheDiv->getOpcode() == Instruction::SDiv ||
2088            TheDiv->getOpcode() == Instruction::UDiv);
2089
2090     Instruction *Res = foldICmpDivConstant(Cmp, TheDiv, C);
2091     assert(Res && "This div/cst should have folded!");
2092     return Res;
2093   }
2094
2095   // Handle equality comparisons of shift-by-constant.
2096
2097   // If the comparison constant changes with the shift, the comparison cannot
2098   // succeed (bits of the comparison constant cannot match the shifted value).
2099   // This should be known by InstSimplify and already be folded to true/false.
2100   assert(((IsAShr && C->shl(ShAmtVal).ashr(ShAmtVal) == *C) ||
2101           (!IsAShr && C->shl(ShAmtVal).lshr(ShAmtVal) == *C)) &&
2102          "Expected icmp+shr simplify did not occur.");
2103
2104   // Check if the bits shifted out are known to be zero. If so, we can compare
2105   // against the unshifted value:
2106   //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
2107   Constant *ShiftedCmpRHS = ConstantInt::get(Shr->getType(), *C << ShAmtVal);
2108   if (Shr->hasOneUse()) {
2109     if (Shr->isExact())
2110       return new ICmpInst(Pred, X, ShiftedCmpRHS);
2111
2112     // Otherwise strength reduce the shift into an 'and'.
2113     APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
2114     Constant *Mask = ConstantInt::get(Shr->getType(), Val);
2115     Value *And = Builder->CreateAnd(X, Mask, Shr->getName() + ".mask");
2116     return new ICmpInst(Pred, And, ShiftedCmpRHS);
2117   }
2118
2119   return nullptr;
2120 }
2121
2122 /// Fold icmp (udiv X, Y), C.
2123 Instruction *InstCombiner::foldICmpUDivConstant(ICmpInst &Cmp,
2124                                                 BinaryOperator *UDiv,
2125                                                 const APInt *C) {
2126   const APInt *C2;
2127   if (!match(UDiv->getOperand(0), m_APInt(C2)))
2128     return nullptr;
2129
2130   assert(C2 != 0 && "udiv 0, X should have been simplified already.");
2131
2132   // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
2133   Value *Y = UDiv->getOperand(1);
2134   if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) {
2135     assert(!C->isMaxValue() &&
2136            "icmp ugt X, UINT_MAX should have been simplified already.");
2137     return new ICmpInst(ICmpInst::ICMP_ULE, Y,
2138                         ConstantInt::get(Y->getType(), C2->udiv(*C + 1)));
2139   }
2140
2141   // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
2142   if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) {
2143     assert(C != 0 && "icmp ult X, 0 should have been simplified already.");
2144     return new ICmpInst(ICmpInst::ICMP_UGT, Y,
2145                         ConstantInt::get(Y->getType(), C2->udiv(*C)));
2146   }
2147
2148   return nullptr;
2149 }
2150
2151 /// Fold icmp ({su}div X, Y), C.
2152 Instruction *InstCombiner::foldICmpDivConstant(ICmpInst &Cmp,
2153                                                BinaryOperator *Div,
2154                                                const APInt *C) {
2155   // Fold: icmp pred ([us]div X, C2), C -> range test
2156   // Fold this div into the comparison, producing a range check.
2157   // Determine, based on the divide type, what the range is being
2158   // checked.  If there is an overflow on the low or high side, remember
2159   // it, otherwise compute the range [low, hi) bounding the new value.
2160   // See: InsertRangeTest above for the kinds of replacements possible.
2161   const APInt *C2;
2162   if (!match(Div->getOperand(1), m_APInt(C2)))
2163     return nullptr;
2164
2165   // FIXME: If the operand types don't match the type of the divide
2166   // then don't attempt this transform. The code below doesn't have the
2167   // logic to deal with a signed divide and an unsigned compare (and
2168   // vice versa). This is because (x /s C2) <s C  produces different
2169   // results than (x /s C2) <u C or (x /u C2) <s C or even
2170   // (x /u C2) <u C.  Simply casting the operands and result won't
2171   // work. :(  The if statement below tests that condition and bails
2172   // if it finds it.
2173   bool DivIsSigned = Div->getOpcode() == Instruction::SDiv;
2174   if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned())
2175     return nullptr;
2176
2177   // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
2178   // INT_MIN will also fail if the divisor is 1. Although folds of all these
2179   // division-by-constant cases should be present, we can not assert that they
2180   // have happened before we reach this icmp instruction.
2181   if (*C2 == 0 || *C2 == 1 || (DivIsSigned && C2->isAllOnesValue()))
2182     return nullptr;
2183
2184   // TODO: We could do all of the computations below using APInt.
2185   Constant *CmpRHS = cast<Constant>(Cmp.getOperand(1));
2186   Constant *DivRHS = cast<Constant>(Div->getOperand(1));
2187
2188   // Compute Prod = CmpRHS * DivRHS. We are essentially solving an equation of
2189   // form X / C2 = C. We solve for X by multiplying C2 (DivRHS) and C (CmpRHS).
2190   // By solving for X, we can turn this into a range check instead of computing
2191   // a divide.
2192   Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
2193
2194   // Determine if the product overflows by seeing if the product is not equal to
2195   // the divide. Make sure we do the same kind of divide as in the LHS
2196   // instruction that we're folding.
2197   bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS)
2198                              : ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
2199
2200   ICmpInst::Predicate Pred = Cmp.getPredicate();
2201
2202   // If the division is known to be exact, then there is no remainder from the
2203   // divide, so the covered range size is unit, otherwise it is the divisor.
2204   Constant *RangeSize =
2205       Div->isExact() ? ConstantInt::get(Div->getType(), 1) : DivRHS;
2206
2207   // Figure out the interval that is being checked.  For example, a comparison
2208   // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
2209   // Compute this interval based on the constants involved and the signedness of
2210   // the compare/divide.  This computes a half-open interval, keeping track of
2211   // whether either value in the interval overflows.  After analysis each
2212   // overflow variable is set to 0 if it's corresponding bound variable is valid
2213   // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
2214   int LoOverflow = 0, HiOverflow = 0;
2215   Constant *LoBound = nullptr, *HiBound = nullptr;
2216
2217   if (!DivIsSigned) {  // udiv
2218     // e.g. X/5 op 3  --> [15, 20)
2219     LoBound = Prod;
2220     HiOverflow = LoOverflow = ProdOV;
2221     if (!HiOverflow) {
2222       // If this is not an exact divide, then many values in the range collapse
2223       // to the same result value.
2224       HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false);
2225     }
2226   } else if (C2->isStrictlyPositive()) { // Divisor is > 0.
2227     if (*C == 0) {       // (X / pos) op 0
2228       // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
2229       LoBound = ConstantExpr::getNeg(SubOne(RangeSize));
2230       HiBound = RangeSize;
2231     } else if (C->isStrictlyPositive()) {   // (X / pos) op pos
2232       LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
2233       HiOverflow = LoOverflow = ProdOV;
2234       if (!HiOverflow)
2235         HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true);
2236     } else {                       // (X / pos) op neg
2237       // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
2238       HiBound = AddOne(Prod);
2239       LoOverflow = HiOverflow = ProdOV ? -1 : 0;
2240       if (!LoOverflow) {
2241         Constant *DivNeg = ConstantExpr::getNeg(RangeSize);
2242         LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
2243       }
2244     }
2245   } else if (C2->isNegative()) { // Divisor is < 0.
2246     if (Div->isExact())
2247       RangeSize = ConstantExpr::getNeg(RangeSize);
2248     if (*C == 0) {       // (X / neg) op 0
2249       // e.g. X/-5 op 0  --> [-4, 5)
2250       LoBound = AddOne(RangeSize);
2251       HiBound = ConstantExpr::getNeg(RangeSize);
2252       if (HiBound == DivRHS) {     // -INTMIN = INTMIN
2253         HiOverflow = 1;            // [INTMIN+1, overflow)
2254         HiBound = nullptr;         // e.g. X/INTMIN = 0 --> X > INTMIN
2255       }
2256     } else if (C->isStrictlyPositive()) {   // (X / neg) op pos
2257       // e.g. X/-5 op 3  --> [-19, -14)
2258       HiBound = AddOne(Prod);
2259       HiOverflow = LoOverflow = ProdOV ? -1 : 0;
2260       if (!LoOverflow)
2261         LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
2262     } else {                       // (X / neg) op neg
2263       LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
2264       LoOverflow = HiOverflow = ProdOV;
2265       if (!HiOverflow)
2266         HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true);
2267     }
2268
2269     // Dividing by a negative swaps the condition.  LT <-> GT
2270     Pred = ICmpInst::getSwappedPredicate(Pred);
2271   }
2272
2273   Value *X = Div->getOperand(0);
2274   switch (Pred) {
2275     default: llvm_unreachable("Unhandled icmp opcode!");
2276     case ICmpInst::ICMP_EQ:
2277       if (LoOverflow && HiOverflow)
2278         return replaceInstUsesWith(Cmp, Builder->getFalse());
2279       if (HiOverflow)
2280         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2281                             ICmpInst::ICMP_UGE, X, LoBound);
2282       if (LoOverflow)
2283         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2284                             ICmpInst::ICMP_ULT, X, HiBound);
2285       return replaceInstUsesWith(
2286           Cmp, insertRangeTest(X, LoBound->getUniqueInteger(),
2287                                HiBound->getUniqueInteger(), DivIsSigned, true));
2288     case ICmpInst::ICMP_NE:
2289       if (LoOverflow && HiOverflow)
2290         return replaceInstUsesWith(Cmp, Builder->getTrue());
2291       if (HiOverflow)
2292         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2293                             ICmpInst::ICMP_ULT, X, LoBound);
2294       if (LoOverflow)
2295         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2296                             ICmpInst::ICMP_UGE, X, HiBound);
2297       return replaceInstUsesWith(Cmp,
2298                                  insertRangeTest(X, LoBound->getUniqueInteger(),
2299                                                  HiBound->getUniqueInteger(),
2300                                                  DivIsSigned, false));
2301     case ICmpInst::ICMP_ULT:
2302     case ICmpInst::ICMP_SLT:
2303       if (LoOverflow == +1)   // Low bound is greater than input range.
2304         return replaceInstUsesWith(Cmp, Builder->getTrue());
2305       if (LoOverflow == -1)   // Low bound is less than input range.
2306         return replaceInstUsesWith(Cmp, Builder->getFalse());
2307       return new ICmpInst(Pred, X, LoBound);
2308     case ICmpInst::ICMP_UGT:
2309     case ICmpInst::ICMP_SGT:
2310       if (HiOverflow == +1)       // High bound greater than input range.
2311         return replaceInstUsesWith(Cmp, Builder->getFalse());
2312       if (HiOverflow == -1)       // High bound less than input range.
2313         return replaceInstUsesWith(Cmp, Builder->getTrue());
2314       if (Pred == ICmpInst::ICMP_UGT)
2315         return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
2316       return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
2317   }
2318
2319   return nullptr;
2320 }
2321
2322 /// Fold icmp (sub X, Y), C.
2323 Instruction *InstCombiner::foldICmpSubConstant(ICmpInst &Cmp,
2324                                                BinaryOperator *Sub,
2325                                                const APInt *C) {
2326   Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1);
2327   ICmpInst::Predicate Pred = Cmp.getPredicate();
2328
2329   // The following transforms are only worth it if the only user of the subtract
2330   // is the icmp.
2331   if (!Sub->hasOneUse())
2332     return nullptr;
2333
2334   if (Sub->hasNoSignedWrap()) {
2335     // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
2336     if (Pred == ICmpInst::ICMP_SGT && C->isAllOnesValue())
2337       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
2338
2339     // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
2340     if (Pred == ICmpInst::ICMP_SGT && *C == 0)
2341       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
2342
2343     // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
2344     if (Pred == ICmpInst::ICMP_SLT && *C == 0)
2345       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
2346
2347     // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
2348     if (Pred == ICmpInst::ICMP_SLT && *C == 1)
2349       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
2350   }
2351
2352   const APInt *C2;
2353   if (!match(X, m_APInt(C2)))
2354     return nullptr;
2355
2356   // C2 - Y <u C -> (Y | (C - 1)) == C2
2357   //   iff (C2 & (C - 1)) == C - 1 and C is a power of 2
2358   if (Pred == ICmpInst::ICMP_ULT && C->isPowerOf2() &&
2359       (*C2 & (*C - 1)) == (*C - 1))
2360     return new ICmpInst(ICmpInst::ICMP_EQ, Builder->CreateOr(Y, *C - 1), X);
2361
2362   // C2 - Y >u C -> (Y | C) != C2
2363   //   iff C2 & C == C and C + 1 is a power of 2
2364   if (Pred == ICmpInst::ICMP_UGT && (*C + 1).isPowerOf2() && (*C2 & *C) == *C)
2365     return new ICmpInst(ICmpInst::ICMP_NE, Builder->CreateOr(Y, *C), X);
2366
2367   return nullptr;
2368 }
2369
2370 /// Fold icmp (add X, Y), C.
2371 Instruction *InstCombiner::foldICmpAddConstant(ICmpInst &Cmp,
2372                                                BinaryOperator *Add,
2373                                                const APInt *C) {
2374   Value *Y = Add->getOperand(1);
2375   const APInt *C2;
2376   if (Cmp.isEquality() || !match(Y, m_APInt(C2)))
2377     return nullptr;
2378
2379   // Fold icmp pred (add X, C2), C.
2380   Value *X = Add->getOperand(0);
2381   Type *Ty = Add->getType();
2382   CmpInst::Predicate Pred = Cmp.getPredicate();
2383
2384   // If the add does not wrap, we can always adjust the compare by subtracting
2385   // the constants. Equality comparisons are handled elsewhere. SGE/SLE are
2386   // canonicalized to SGT/SLT.
2387   if (Add->hasNoSignedWrap() &&
2388       (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) {
2389     bool Overflow;
2390     APInt NewC = C->ssub_ov(*C2, Overflow);
2391     // If there is overflow, the result must be true or false.
2392     // TODO: Can we assert there is no overflow because InstSimplify always
2393     // handles those cases?
2394     if (!Overflow)
2395       // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2)
2396       return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC));
2397   }
2398
2399   auto CR = ConstantRange::makeExactICmpRegion(Pred, *C).subtract(*C2);
2400   const APInt &Upper = CR.getUpper();
2401   const APInt &Lower = CR.getLower();
2402   if (Cmp.isSigned()) {
2403     if (Lower.isSignMask())
2404       return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper));
2405     if (Upper.isSignMask())
2406       return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower));
2407   } else {
2408     if (Lower.isMinValue())
2409       return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper));
2410     if (Upper.isMinValue())
2411       return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower));
2412   }
2413
2414   if (!Add->hasOneUse())
2415     return nullptr;
2416
2417   // X+C <u C2 -> (X & -C2) == C
2418   //   iff C & (C2-1) == 0
2419   //       C2 is a power of 2
2420   if (Pred == ICmpInst::ICMP_ULT && C->isPowerOf2() && (*C2 & (*C - 1)) == 0)
2421     return new ICmpInst(ICmpInst::ICMP_EQ, Builder->CreateAnd(X, -(*C)),
2422                         ConstantExpr::getNeg(cast<Constant>(Y)));
2423
2424   // X+C >u C2 -> (X & ~C2) != C
2425   //   iff C & C2 == 0
2426   //       C2+1 is a power of 2
2427   if (Pred == ICmpInst::ICMP_UGT && (*C + 1).isPowerOf2() && (*C2 & *C) == 0)
2428     return new ICmpInst(ICmpInst::ICMP_NE, Builder->CreateAnd(X, ~(*C)),
2429                         ConstantExpr::getNeg(cast<Constant>(Y)));
2430
2431   return nullptr;
2432 }
2433
2434 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
2435 /// where X is some kind of instruction.
2436 Instruction *InstCombiner::foldICmpInstWithConstant(ICmpInst &Cmp) {
2437   const APInt *C;
2438   if (!match(Cmp.getOperand(1), m_APInt(C)))
2439     return nullptr;
2440
2441   BinaryOperator *BO;
2442   if (match(Cmp.getOperand(0), m_BinOp(BO))) {
2443     switch (BO->getOpcode()) {
2444     case Instruction::Xor:
2445       if (Instruction *I = foldICmpXorConstant(Cmp, BO, C))
2446         return I;
2447       break;
2448     case Instruction::And:
2449       if (Instruction *I = foldICmpAndConstant(Cmp, BO, C))
2450         return I;
2451       break;
2452     case Instruction::Or:
2453       if (Instruction *I = foldICmpOrConstant(Cmp, BO, C))
2454         return I;
2455       break;
2456     case Instruction::Mul:
2457       if (Instruction *I = foldICmpMulConstant(Cmp, BO, C))
2458         return I;
2459       break;
2460     case Instruction::Shl:
2461       if (Instruction *I = foldICmpShlConstant(Cmp, BO, C))
2462         return I;
2463       break;
2464     case Instruction::LShr:
2465     case Instruction::AShr:
2466       if (Instruction *I = foldICmpShrConstant(Cmp, BO, C))
2467         return I;
2468       break;
2469     case Instruction::UDiv:
2470       if (Instruction *I = foldICmpUDivConstant(Cmp, BO, C))
2471         return I;
2472       LLVM_FALLTHROUGH;
2473     case Instruction::SDiv:
2474       if (Instruction *I = foldICmpDivConstant(Cmp, BO, C))
2475         return I;
2476       break;
2477     case Instruction::Sub:
2478       if (Instruction *I = foldICmpSubConstant(Cmp, BO, C))
2479         return I;
2480       break;
2481     case Instruction::Add:
2482       if (Instruction *I = foldICmpAddConstant(Cmp, BO, C))
2483         return I;
2484       break;
2485     default:
2486       break;
2487     }
2488     // TODO: These folds could be refactored to be part of the above calls.
2489     if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, C))
2490       return I;
2491   }
2492
2493   Instruction *LHSI;
2494   if (match(Cmp.getOperand(0), m_Instruction(LHSI)) &&
2495       LHSI->getOpcode() == Instruction::Trunc)
2496     if (Instruction *I = foldICmpTruncConstant(Cmp, LHSI, C))
2497       return I;
2498
2499   if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, C))
2500     return I;
2501
2502   return nullptr;
2503 }
2504
2505 /// Fold an icmp equality instruction with binary operator LHS and constant RHS:
2506 /// icmp eq/ne BO, C.
2507 Instruction *InstCombiner::foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp,
2508                                                              BinaryOperator *BO,
2509                                                              const APInt *C) {
2510   // TODO: Some of these folds could work with arbitrary constants, but this
2511   // function is limited to scalar and vector splat constants.
2512   if (!Cmp.isEquality())
2513     return nullptr;
2514
2515   ICmpInst::Predicate Pred = Cmp.getPredicate();
2516   bool isICMP_NE = Pred == ICmpInst::ICMP_NE;
2517   Constant *RHS = cast<Constant>(Cmp.getOperand(1));
2518   Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
2519
2520   switch (BO->getOpcode()) {
2521   case Instruction::SRem:
2522     // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
2523     if (*C == 0 && BO->hasOneUse()) {
2524       const APInt *BOC;
2525       if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) {
2526         Value *NewRem = Builder->CreateURem(BOp0, BOp1, BO->getName());
2527         return new ICmpInst(Pred, NewRem,
2528                             Constant::getNullValue(BO->getType()));
2529       }
2530     }
2531     break;
2532   case Instruction::Add: {
2533     // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
2534     const APInt *BOC;
2535     if (match(BOp1, m_APInt(BOC))) {
2536       if (BO->hasOneUse()) {
2537         Constant *SubC = ConstantExpr::getSub(RHS, cast<Constant>(BOp1));
2538         return new ICmpInst(Pred, BOp0, SubC);
2539       }
2540     } else if (*C == 0) {
2541       // Replace ((add A, B) != 0) with (A != -B) if A or B is
2542       // efficiently invertible, or if the add has just this one use.
2543       if (Value *NegVal = dyn_castNegVal(BOp1))
2544         return new ICmpInst(Pred, BOp0, NegVal);
2545       if (Value *NegVal = dyn_castNegVal(BOp0))
2546         return new ICmpInst(Pred, NegVal, BOp1);
2547       if (BO->hasOneUse()) {
2548         Value *Neg = Builder->CreateNeg(BOp1);
2549         Neg->takeName(BO);
2550         return new ICmpInst(Pred, BOp0, Neg);
2551       }
2552     }
2553     break;
2554   }
2555   case Instruction::Xor:
2556     if (BO->hasOneUse()) {
2557       if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
2558         // For the xor case, we can xor two constants together, eliminating
2559         // the explicit xor.
2560         return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC));
2561       } else if (*C == 0) {
2562         // Replace ((xor A, B) != 0) with (A != B)
2563         return new ICmpInst(Pred, BOp0, BOp1);
2564       }
2565     }
2566     break;
2567   case Instruction::Sub:
2568     if (BO->hasOneUse()) {
2569       const APInt *BOC;
2570       if (match(BOp0, m_APInt(BOC))) {
2571         // Replace ((sub BOC, B) != C) with (B != BOC-C).
2572         Constant *SubC = ConstantExpr::getSub(cast<Constant>(BOp0), RHS);
2573         return new ICmpInst(Pred, BOp1, SubC);
2574       } else if (*C == 0) {
2575         // Replace ((sub A, B) != 0) with (A != B).
2576         return new ICmpInst(Pred, BOp0, BOp1);
2577       }
2578     }
2579     break;
2580   case Instruction::Or: {
2581     const APInt *BOC;
2582     if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) {
2583       // Comparing if all bits outside of a constant mask are set?
2584       // Replace (X | C) == -1 with (X & ~C) == ~C.
2585       // This removes the -1 constant.
2586       Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1));
2587       Value *And = Builder->CreateAnd(BOp0, NotBOC);
2588       return new ICmpInst(Pred, And, NotBOC);
2589     }
2590     break;
2591   }
2592   case Instruction::And: {
2593     const APInt *BOC;
2594     if (match(BOp1, m_APInt(BOC))) {
2595       // If we have ((X & C) == C), turn it into ((X & C) != 0).
2596       if (C == BOC && C->isPowerOf2())
2597         return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
2598                             BO, Constant::getNullValue(RHS->getType()));
2599
2600       // Don't perform the following transforms if the AND has multiple uses
2601       if (!BO->hasOneUse())
2602         break;
2603
2604       // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
2605       if (BOC->isSignMask()) {
2606         Constant *Zero = Constant::getNullValue(BOp0->getType());
2607         auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
2608         return new ICmpInst(NewPred, BOp0, Zero);
2609       }
2610
2611       // ((X & ~7) == 0) --> X < 8
2612       if (*C == 0 && (~(*BOC) + 1).isPowerOf2()) {
2613         Constant *NegBOC = ConstantExpr::getNeg(cast<Constant>(BOp1));
2614         auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
2615         return new ICmpInst(NewPred, BOp0, NegBOC);
2616       }
2617     }
2618     break;
2619   }
2620   case Instruction::Mul:
2621     if (*C == 0 && BO->hasNoSignedWrap()) {
2622       const APInt *BOC;
2623       if (match(BOp1, m_APInt(BOC)) && *BOC != 0) {
2624         // The trivial case (mul X, 0) is handled by InstSimplify.
2625         // General case : (mul X, C) != 0 iff X != 0
2626         //                (mul X, C) == 0 iff X == 0
2627         return new ICmpInst(Pred, BOp0, Constant::getNullValue(RHS->getType()));
2628       }
2629     }
2630     break;
2631   case Instruction::UDiv:
2632     if (*C == 0) {
2633       // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
2634       auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
2635       return new ICmpInst(NewPred, BOp1, BOp0);
2636     }
2637     break;
2638   default:
2639     break;
2640   }
2641   return nullptr;
2642 }
2643
2644 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
2645 Instruction *InstCombiner::foldICmpIntrinsicWithConstant(ICmpInst &Cmp,
2646                                                          const APInt *C) {
2647   IntrinsicInst *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0));
2648   if (!II || !Cmp.isEquality())
2649     return nullptr;
2650
2651   // Handle icmp {eq|ne} <intrinsic>, intcst.
2652   switch (II->getIntrinsicID()) {
2653   case Intrinsic::bswap:
2654     Worklist.Add(II);
2655     Cmp.setOperand(0, II->getArgOperand(0));
2656     Cmp.setOperand(1, Builder->getInt(C->byteSwap()));
2657     return &Cmp;
2658   case Intrinsic::ctlz:
2659   case Intrinsic::cttz:
2660     // ctz(A) == bitwidth(A)  ->  A == 0 and likewise for !=
2661     if (*C == C->getBitWidth()) {
2662       Worklist.Add(II);
2663       Cmp.setOperand(0, II->getArgOperand(0));
2664       Cmp.setOperand(1, ConstantInt::getNullValue(II->getType()));
2665       return &Cmp;
2666     }
2667     break;
2668   case Intrinsic::ctpop: {
2669     // popcount(A) == 0  ->  A == 0 and likewise for !=
2670     // popcount(A) == bitwidth(A)  ->  A == -1 and likewise for !=
2671     bool IsZero = *C == 0;
2672     if (IsZero || *C == C->getBitWidth()) {
2673       Worklist.Add(II);
2674       Cmp.setOperand(0, II->getArgOperand(0));
2675       auto *NewOp = IsZero ? Constant::getNullValue(II->getType())
2676                            : Constant::getAllOnesValue(II->getType());
2677       Cmp.setOperand(1, NewOp);
2678       return &Cmp;
2679     }
2680     break;
2681   }
2682   default:
2683     break;
2684   }
2685   return nullptr;
2686 }
2687
2688 /// Handle icmp with constant (but not simple integer constant) RHS.
2689 Instruction *InstCombiner::foldICmpInstWithConstantNotInt(ICmpInst &I) {
2690   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2691   Constant *RHSC = dyn_cast<Constant>(Op1);
2692   Instruction *LHSI = dyn_cast<Instruction>(Op0);
2693   if (!RHSC || !LHSI)
2694     return nullptr;
2695
2696   switch (LHSI->getOpcode()) {
2697   case Instruction::GetElementPtr:
2698     // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
2699     if (RHSC->isNullValue() &&
2700         cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
2701       return new ICmpInst(
2702           I.getPredicate(), LHSI->getOperand(0),
2703           Constant::getNullValue(LHSI->getOperand(0)->getType()));
2704     break;
2705   case Instruction::PHI:
2706     // Only fold icmp into the PHI if the phi and icmp are in the same
2707     // block.  If in the same block, we're encouraging jump threading.  If
2708     // not, we are just pessimizing the code by making an i1 phi.
2709     if (LHSI->getParent() == I.getParent())
2710       if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
2711         return NV;
2712     break;
2713   case Instruction::Select: {
2714     // If either operand of the select is a constant, we can fold the
2715     // comparison into the select arms, which will cause one to be
2716     // constant folded and the select turned into a bitwise or.
2717     Value *Op1 = nullptr, *Op2 = nullptr;
2718     ConstantInt *CI = nullptr;
2719     if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
2720       Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2721       CI = dyn_cast<ConstantInt>(Op1);
2722     }
2723     if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
2724       Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2725       CI = dyn_cast<ConstantInt>(Op2);
2726     }
2727
2728     // We only want to perform this transformation if it will not lead to
2729     // additional code. This is true if either both sides of the select
2730     // fold to a constant (in which case the icmp is replaced with a select
2731     // which will usually simplify) or this is the only user of the
2732     // select (in which case we are trading a select+icmp for a simpler
2733     // select+icmp) or all uses of the select can be replaced based on
2734     // dominance information ("Global cases").
2735     bool Transform = false;
2736     if (Op1 && Op2)
2737       Transform = true;
2738     else if (Op1 || Op2) {
2739       // Local case
2740       if (LHSI->hasOneUse())
2741         Transform = true;
2742       // Global cases
2743       else if (CI && !CI->isZero())
2744         // When Op1 is constant try replacing select with second operand.
2745         // Otherwise Op2 is constant and try replacing select with first
2746         // operand.
2747         Transform =
2748             replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1);
2749     }
2750     if (Transform) {
2751       if (!Op1)
2752         Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC,
2753                                   I.getName());
2754       if (!Op2)
2755         Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC,
2756                                   I.getName());
2757       return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
2758     }
2759     break;
2760   }
2761   case Instruction::IntToPtr:
2762     // icmp pred inttoptr(X), null -> icmp pred X, 0
2763     if (RHSC->isNullValue() &&
2764         DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
2765       return new ICmpInst(
2766           I.getPredicate(), LHSI->getOperand(0),
2767           Constant::getNullValue(LHSI->getOperand(0)->getType()));
2768     break;
2769
2770   case Instruction::Load:
2771     // Try to optimize things like "A[i] > 4" to index computations.
2772     if (GetElementPtrInst *GEP =
2773             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
2774       if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
2775         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
2776             !cast<LoadInst>(LHSI)->isVolatile())
2777           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
2778             return Res;
2779     }
2780     break;
2781   }
2782
2783   return nullptr;
2784 }
2785
2786 /// Try to fold icmp (binop), X or icmp X, (binop).
2787 /// TODO: A large part of this logic is duplicated in InstSimplify's
2788 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code
2789 /// duplication.
2790 Instruction *InstCombiner::foldICmpBinOp(ICmpInst &I) {
2791   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2792
2793   // Special logic for binary operators.
2794   BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
2795   BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
2796   if (!BO0 && !BO1)
2797     return nullptr;
2798
2799   const CmpInst::Predicate Pred = I.getPredicate();
2800   bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
2801   if (BO0 && isa<OverflowingBinaryOperator>(BO0))
2802     NoOp0WrapProblem =
2803         ICmpInst::isEquality(Pred) ||
2804         (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
2805         (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
2806   if (BO1 && isa<OverflowingBinaryOperator>(BO1))
2807     NoOp1WrapProblem =
2808         ICmpInst::isEquality(Pred) ||
2809         (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
2810         (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
2811
2812   // Analyze the case when either Op0 or Op1 is an add instruction.
2813   // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
2814   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
2815   if (BO0 && BO0->getOpcode() == Instruction::Add) {
2816     A = BO0->getOperand(0);
2817     B = BO0->getOperand(1);
2818   }
2819   if (BO1 && BO1->getOpcode() == Instruction::Add) {
2820     C = BO1->getOperand(0);
2821     D = BO1->getOperand(1);
2822   }
2823
2824   // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2825   if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
2826     return new ICmpInst(Pred, A == Op1 ? B : A,
2827                         Constant::getNullValue(Op1->getType()));
2828
2829   // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2830   if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
2831     return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
2832                         C == Op0 ? D : C);
2833
2834   // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow.
2835   if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem &&
2836       NoOp1WrapProblem &&
2837       // Try not to increase register pressure.
2838       BO0->hasOneUse() && BO1->hasOneUse()) {
2839     // Determine Y and Z in the form icmp (X+Y), (X+Z).
2840     Value *Y, *Z;
2841     if (A == C) {
2842       // C + B == C + D  ->  B == D
2843       Y = B;
2844       Z = D;
2845     } else if (A == D) {
2846       // D + B == C + D  ->  B == C
2847       Y = B;
2848       Z = C;
2849     } else if (B == C) {
2850       // A + C == C + D  ->  A == D
2851       Y = A;
2852       Z = D;
2853     } else {
2854       assert(B == D);
2855       // A + D == C + D  ->  A == C
2856       Y = A;
2857       Z = C;
2858     }
2859     return new ICmpInst(Pred, Y, Z);
2860   }
2861
2862   // icmp slt (X + -1), Y -> icmp sle X, Y
2863   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
2864       match(B, m_AllOnes()))
2865     return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
2866
2867   // icmp sge (X + -1), Y -> icmp sgt X, Y
2868   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
2869       match(B, m_AllOnes()))
2870     return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
2871
2872   // icmp sle (X + 1), Y -> icmp slt X, Y
2873   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One()))
2874     return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
2875
2876   // icmp sgt (X + 1), Y -> icmp sge X, Y
2877   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One()))
2878     return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
2879
2880   // icmp sgt X, (Y + -1) -> icmp sge X, Y
2881   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
2882       match(D, m_AllOnes()))
2883     return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
2884
2885   // icmp sle X, (Y + -1) -> icmp slt X, Y
2886   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
2887       match(D, m_AllOnes()))
2888     return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
2889
2890   // icmp sge X, (Y + 1) -> icmp sgt X, Y
2891   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One()))
2892     return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
2893
2894   // icmp slt X, (Y + 1) -> icmp sle X, Y
2895   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One()))
2896     return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
2897
2898   // TODO: The subtraction-related identities shown below also hold, but
2899   // canonicalization from (X -nuw 1) to (X + -1) means that the combinations
2900   // wouldn't happen even if they were implemented.
2901   //
2902   // icmp ult (X - 1), Y -> icmp ule X, Y
2903   // icmp uge (X - 1), Y -> icmp ugt X, Y
2904   // icmp ugt X, (Y - 1) -> icmp uge X, Y
2905   // icmp ule X, (Y - 1) -> icmp ult X, Y
2906
2907   // icmp ule (X + 1), Y -> icmp ult X, Y
2908   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One()))
2909     return new ICmpInst(CmpInst::ICMP_ULT, A, Op1);
2910
2911   // icmp ugt (X + 1), Y -> icmp uge X, Y
2912   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One()))
2913     return new ICmpInst(CmpInst::ICMP_UGE, A, Op1);
2914
2915   // icmp uge X, (Y + 1) -> icmp ugt X, Y
2916   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One()))
2917     return new ICmpInst(CmpInst::ICMP_UGT, Op0, C);
2918
2919   // icmp ult X, (Y + 1) -> icmp ule X, Y
2920   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One()))
2921     return new ICmpInst(CmpInst::ICMP_ULE, Op0, C);
2922
2923   // if C1 has greater magnitude than C2:
2924   //  icmp (X + C1), (Y + C2) -> icmp (X + C3), Y
2925   //  s.t. C3 = C1 - C2
2926   //
2927   // if C2 has greater magnitude than C1:
2928   //  icmp (X + C1), (Y + C2) -> icmp X, (Y + C3)
2929   //  s.t. C3 = C2 - C1
2930   if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
2931       (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
2932     if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
2933       if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
2934         const APInt &AP1 = C1->getValue();
2935         const APInt &AP2 = C2->getValue();
2936         if (AP1.isNegative() == AP2.isNegative()) {
2937           APInt AP1Abs = C1->getValue().abs();
2938           APInt AP2Abs = C2->getValue().abs();
2939           if (AP1Abs.uge(AP2Abs)) {
2940             ConstantInt *C3 = Builder->getInt(AP1 - AP2);
2941             Value *NewAdd = Builder->CreateNSWAdd(A, C3);
2942             return new ICmpInst(Pred, NewAdd, C);
2943           } else {
2944             ConstantInt *C3 = Builder->getInt(AP2 - AP1);
2945             Value *NewAdd = Builder->CreateNSWAdd(C, C3);
2946             return new ICmpInst(Pred, A, NewAdd);
2947           }
2948         }
2949       }
2950
2951   // Analyze the case when either Op0 or Op1 is a sub instruction.
2952   // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
2953   A = nullptr;
2954   B = nullptr;
2955   C = nullptr;
2956   D = nullptr;
2957   if (BO0 && BO0->getOpcode() == Instruction::Sub) {
2958     A = BO0->getOperand(0);
2959     B = BO0->getOperand(1);
2960   }
2961   if (BO1 && BO1->getOpcode() == Instruction::Sub) {
2962     C = BO1->getOperand(0);
2963     D = BO1->getOperand(1);
2964   }
2965
2966   // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow.
2967   if (A == Op1 && NoOp0WrapProblem)
2968     return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
2969
2970   // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow.
2971   if (C == Op0 && NoOp1WrapProblem)
2972     return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
2973
2974   // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow.
2975   if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem &&
2976       // Try not to increase register pressure.
2977       BO0->hasOneUse() && BO1->hasOneUse())
2978     return new ICmpInst(Pred, A, C);
2979
2980   // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow.
2981   if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem &&
2982       // Try not to increase register pressure.
2983       BO0->hasOneUse() && BO1->hasOneUse())
2984     return new ICmpInst(Pred, D, B);
2985
2986   // icmp (0-X) < cst --> x > -cst
2987   if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
2988     Value *X;
2989     if (match(BO0, m_Neg(m_Value(X))))
2990       if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
2991         if (!RHSC->isMinValue(/*isSigned=*/true))
2992           return new ICmpInst(I.getSwappedPredicate(), X,
2993                               ConstantExpr::getNeg(RHSC));
2994   }
2995
2996   BinaryOperator *SRem = nullptr;
2997   // icmp (srem X, Y), Y
2998   if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1))
2999     SRem = BO0;
3000   // icmp Y, (srem X, Y)
3001   else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
3002            Op0 == BO1->getOperand(1))
3003     SRem = BO1;
3004   if (SRem) {
3005     // We don't check hasOneUse to avoid increasing register pressure because
3006     // the value we use is the same value this instruction was already using.
3007     switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
3008     default:
3009       break;
3010     case ICmpInst::ICMP_EQ:
3011       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3012     case ICmpInst::ICMP_NE:
3013       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3014     case ICmpInst::ICMP_SGT:
3015     case ICmpInst::ICMP_SGE:
3016       return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
3017                           Constant::getAllOnesValue(SRem->getType()));
3018     case ICmpInst::ICMP_SLT:
3019     case ICmpInst::ICMP_SLE:
3020       return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
3021                           Constant::getNullValue(SRem->getType()));
3022     }
3023   }
3024
3025   if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() &&
3026       BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) {
3027     switch (BO0->getOpcode()) {
3028     default:
3029       break;
3030     case Instruction::Add:
3031     case Instruction::Sub:
3032     case Instruction::Xor: {
3033       if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
3034         return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3035
3036       const APInt *C;
3037       if (match(BO0->getOperand(1), m_APInt(C))) {
3038         // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
3039         if (C->isSignMask()) {
3040           ICmpInst::Predicate NewPred =
3041               I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate();
3042           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
3043         }
3044
3045         // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b
3046         if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) {
3047           ICmpInst::Predicate NewPred =
3048               I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate();
3049           NewPred = I.getSwappedPredicate(NewPred);
3050           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
3051         }
3052       }
3053       break;
3054     }
3055     case Instruction::Mul: {
3056       if (!I.isEquality())
3057         break;
3058
3059       const APInt *C;
3060       if (match(BO0->getOperand(1), m_APInt(C)) && *C != 0 && *C != 1) {
3061         // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask)
3062         // Mask = -1 >> count-trailing-zeros(C).
3063         if (unsigned TZs = C->countTrailingZeros()) {
3064           Constant *Mask = ConstantInt::get(
3065               BO0->getType(),
3066               APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs));
3067           Value *And1 = Builder->CreateAnd(BO0->getOperand(0), Mask);
3068           Value *And2 = Builder->CreateAnd(BO1->getOperand(0), Mask);
3069           return new ICmpInst(Pred, And1, And2);
3070         }
3071         // If there are no trailing zeros in the multiplier, just eliminate
3072         // the multiplies (no masking is needed):
3073         // icmp eq/ne (X * C), (Y * C) --> icmp eq/ne X, Y
3074         return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3075       }
3076       break;
3077     }
3078     case Instruction::UDiv:
3079     case Instruction::LShr:
3080       if (I.isSigned() || !BO0->isExact() || !BO1->isExact())
3081         break;
3082       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3083
3084     case Instruction::SDiv:
3085       if (!I.isEquality() || !BO0->isExact() || !BO1->isExact())
3086         break;
3087       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3088
3089     case Instruction::AShr:
3090       if (!BO0->isExact() || !BO1->isExact())
3091         break;
3092       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3093
3094     case Instruction::Shl: {
3095       bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
3096       bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
3097       if (!NUW && !NSW)
3098         break;
3099       if (!NSW && I.isSigned())
3100         break;
3101       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3102     }
3103     }
3104   }
3105
3106   if (BO0) {
3107     // Transform  A & (L - 1) `ult` L --> L != 0
3108     auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
3109     auto BitwiseAnd =
3110         m_CombineOr(m_And(m_Value(), LSubOne), m_And(LSubOne, m_Value()));
3111
3112     if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) {
3113       auto *Zero = Constant::getNullValue(BO0->getType());
3114       return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
3115     }
3116   }
3117
3118   return nullptr;
3119 }
3120
3121 /// Fold icmp Pred min|max(X, Y), X.
3122 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) {
3123   ICmpInst::Predicate Pred = Cmp.getPredicate();
3124   Value *Op0 = Cmp.getOperand(0);
3125   Value *X = Cmp.getOperand(1);
3126
3127   // Canonicalize minimum or maximum operand to LHS of the icmp.
3128   if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) ||
3129       match(X, m_c_SMax(m_Specific(Op0), m_Value())) ||
3130       match(X, m_c_UMin(m_Specific(Op0), m_Value())) ||
3131       match(X, m_c_UMax(m_Specific(Op0), m_Value()))) {
3132     std::swap(Op0, X);
3133     Pred = Cmp.getSwappedPredicate();
3134   }
3135
3136   Value *Y;
3137   if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) {
3138     // smin(X, Y)  == X --> X s<= Y
3139     // smin(X, Y) s>= X --> X s<= Y
3140     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE)
3141       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
3142
3143     // smin(X, Y) != X --> X s> Y
3144     // smin(X, Y) s< X --> X s> Y
3145     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT)
3146       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
3147
3148     // These cases should be handled in InstSimplify:
3149     // smin(X, Y) s<= X --> true
3150     // smin(X, Y) s> X --> false
3151     return nullptr;
3152   }
3153
3154   if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) {
3155     // smax(X, Y)  == X --> X s>= Y
3156     // smax(X, Y) s<= X --> X s>= Y
3157     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE)
3158       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
3159
3160     // smax(X, Y) != X --> X s< Y
3161     // smax(X, Y) s> X --> X s< Y
3162     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT)
3163       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
3164
3165     // These cases should be handled in InstSimplify:
3166     // smax(X, Y) s>= X --> true
3167     // smax(X, Y) s< X --> false
3168     return nullptr;
3169   }
3170
3171   if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) {
3172     // umin(X, Y)  == X --> X u<= Y
3173     // umin(X, Y) u>= X --> X u<= Y
3174     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE)
3175       return new ICmpInst(ICmpInst::ICMP_ULE, X, Y);
3176
3177     // umin(X, Y) != X --> X u> Y
3178     // umin(X, Y) u< X --> X u> Y
3179     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT)
3180       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
3181
3182     // These cases should be handled in InstSimplify:
3183     // umin(X, Y) u<= X --> true
3184     // umin(X, Y) u> X --> false
3185     return nullptr;
3186   }
3187
3188   if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) {
3189     // umax(X, Y)  == X --> X u>= Y
3190     // umax(X, Y) u<= X --> X u>= Y
3191     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE)
3192       return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
3193
3194     // umax(X, Y) != X --> X u< Y
3195     // umax(X, Y) u> X --> X u< Y
3196     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT)
3197       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
3198
3199     // These cases should be handled in InstSimplify:
3200     // umax(X, Y) u>= X --> true
3201     // umax(X, Y) u< X --> false
3202     return nullptr;
3203   }
3204
3205   return nullptr;
3206 }
3207
3208 Instruction *InstCombiner::foldICmpEquality(ICmpInst &I) {
3209   if (!I.isEquality())
3210     return nullptr;
3211
3212   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3213   Value *A, *B, *C, *D;
3214   if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
3215     if (A == Op1 || B == Op1) { // (A^B) == A  ->  B == 0
3216       Value *OtherVal = A == Op1 ? B : A;
3217       return new ICmpInst(I.getPredicate(), OtherVal,
3218                           Constant::getNullValue(A->getType()));
3219     }
3220
3221     if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
3222       // A^c1 == C^c2 --> A == C^(c1^c2)
3223       ConstantInt *C1, *C2;
3224       if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) &&
3225           Op1->hasOneUse()) {
3226         Constant *NC = Builder->getInt(C1->getValue() ^ C2->getValue());
3227         Value *Xor = Builder->CreateXor(C, NC);
3228         return new ICmpInst(I.getPredicate(), A, Xor);
3229       }
3230
3231       // A^B == A^D -> B == D
3232       if (A == C)
3233         return new ICmpInst(I.getPredicate(), B, D);
3234       if (A == D)
3235         return new ICmpInst(I.getPredicate(), B, C);
3236       if (B == C)
3237         return new ICmpInst(I.getPredicate(), A, D);
3238       if (B == D)
3239         return new ICmpInst(I.getPredicate(), A, C);
3240     }
3241   }
3242
3243   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) {
3244     // A == (A^B)  ->  B == 0
3245     Value *OtherVal = A == Op0 ? B : A;
3246     return new ICmpInst(I.getPredicate(), OtherVal,
3247                         Constant::getNullValue(A->getType()));
3248   }
3249
3250   // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
3251   if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
3252       match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
3253     Value *X = nullptr, *Y = nullptr, *Z = nullptr;
3254
3255     if (A == C) {
3256       X = B;
3257       Y = D;
3258       Z = A;
3259     } else if (A == D) {
3260       X = B;
3261       Y = C;
3262       Z = A;
3263     } else if (B == C) {
3264       X = A;
3265       Y = D;
3266       Z = B;
3267     } else if (B == D) {
3268       X = A;
3269       Y = C;
3270       Z = B;
3271     }
3272
3273     if (X) { // Build (X^Y) & Z
3274       Op1 = Builder->CreateXor(X, Y);
3275       Op1 = Builder->CreateAnd(Op1, Z);
3276       I.setOperand(0, Op1);
3277       I.setOperand(1, Constant::getNullValue(Op1->getType()));
3278       return &I;
3279     }
3280   }
3281
3282   // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
3283   // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
3284   ConstantInt *Cst1;
3285   if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) &&
3286        match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
3287       (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
3288        match(Op1, m_ZExt(m_Value(A))))) {
3289     APInt Pow2 = Cst1->getValue() + 1;
3290     if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
3291         Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
3292       return new ICmpInst(I.getPredicate(), A,
3293                           Builder->CreateTrunc(B, A->getType()));
3294   }
3295
3296   // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
3297   // For lshr and ashr pairs.
3298   if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
3299        match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
3300       (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
3301        match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
3302     unsigned TypeBits = Cst1->getBitWidth();
3303     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
3304     if (ShAmt < TypeBits && ShAmt != 0) {
3305       ICmpInst::Predicate Pred = I.getPredicate() == ICmpInst::ICMP_NE
3306                                      ? ICmpInst::ICMP_UGE
3307                                      : ICmpInst::ICMP_ULT;
3308       Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted");
3309       APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
3310       return new ICmpInst(Pred, Xor, Builder->getInt(CmpVal));
3311     }
3312   }
3313
3314   // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
3315   if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
3316       match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
3317     unsigned TypeBits = Cst1->getBitWidth();
3318     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
3319     if (ShAmt < TypeBits && ShAmt != 0) {
3320       Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted");
3321       APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
3322       Value *And = Builder->CreateAnd(Xor, Builder->getInt(AndVal),
3323                                       I.getName() + ".mask");
3324       return new ICmpInst(I.getPredicate(), And,
3325                           Constant::getNullValue(Cst1->getType()));
3326     }
3327   }
3328
3329   // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
3330   // "icmp (and X, mask), cst"
3331   uint64_t ShAmt = 0;
3332   if (Op0->hasOneUse() &&
3333       match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) &&
3334       match(Op1, m_ConstantInt(Cst1)) &&
3335       // Only do this when A has multiple uses.  This is most important to do
3336       // when it exposes other optimizations.
3337       !A->hasOneUse()) {
3338     unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
3339
3340     if (ShAmt < ASize) {
3341       APInt MaskV =
3342           APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
3343       MaskV <<= ShAmt;
3344
3345       APInt CmpV = Cst1->getValue().zext(ASize);
3346       CmpV <<= ShAmt;
3347
3348       Value *Mask = Builder->CreateAnd(A, Builder->getInt(MaskV));
3349       return new ICmpInst(I.getPredicate(), Mask, Builder->getInt(CmpV));
3350     }
3351   }
3352
3353   return nullptr;
3354 }
3355
3356 /// Handle icmp (cast x to y), (cast/cst). We only handle extending casts so
3357 /// far.
3358 Instruction *InstCombiner::foldICmpWithCastAndCast(ICmpInst &ICmp) {
3359   const CastInst *LHSCI = cast<CastInst>(ICmp.getOperand(0));
3360   Value *LHSCIOp        = LHSCI->getOperand(0);
3361   Type *SrcTy     = LHSCIOp->getType();
3362   Type *DestTy    = LHSCI->getType();
3363   Value *RHSCIOp;
3364
3365   // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
3366   // integer type is the same size as the pointer type.
3367   if (LHSCI->getOpcode() == Instruction::PtrToInt &&
3368       DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth()) {
3369     Value *RHSOp = nullptr;
3370     if (auto *RHSC = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) {
3371       Value *RHSCIOp = RHSC->getOperand(0);
3372       if (RHSCIOp->getType()->getPointerAddressSpace() ==
3373           LHSCIOp->getType()->getPointerAddressSpace()) {
3374         RHSOp = RHSC->getOperand(0);
3375         // If the pointer types don't match, insert a bitcast.
3376         if (LHSCIOp->getType() != RHSOp->getType())
3377           RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
3378       }
3379     } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) {
3380       RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
3381     }
3382
3383     if (RHSOp)
3384       return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSOp);
3385   }
3386
3387   // The code below only handles extension cast instructions, so far.
3388   // Enforce this.
3389   if (LHSCI->getOpcode() != Instruction::ZExt &&
3390       LHSCI->getOpcode() != Instruction::SExt)
3391     return nullptr;
3392
3393   bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
3394   bool isSignedCmp = ICmp.isSigned();
3395
3396   if (auto *CI = dyn_cast<CastInst>(ICmp.getOperand(1))) {
3397     // Not an extension from the same type?
3398     RHSCIOp = CI->getOperand(0);
3399     if (RHSCIOp->getType() != LHSCIOp->getType())
3400       return nullptr;
3401
3402     // If the signedness of the two casts doesn't agree (i.e. one is a sext
3403     // and the other is a zext), then we can't handle this.
3404     if (CI->getOpcode() != LHSCI->getOpcode())
3405       return nullptr;
3406
3407     // Deal with equality cases early.
3408     if (ICmp.isEquality())
3409       return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSCIOp);
3410
3411     // A signed comparison of sign extended values simplifies into a
3412     // signed comparison.
3413     if (isSignedCmp && isSignedExt)
3414       return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSCIOp);
3415
3416     // The other three cases all fold into an unsigned comparison.
3417     return new ICmpInst(ICmp.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
3418   }
3419
3420   // If we aren't dealing with a constant on the RHS, exit early.
3421   auto *C = dyn_cast<Constant>(ICmp.getOperand(1));
3422   if (!C)
3423     return nullptr;
3424
3425   // Compute the constant that would happen if we truncated to SrcTy then
3426   // re-extended to DestTy.
3427   Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy);
3428   Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy);
3429
3430   // If the re-extended constant didn't change...
3431   if (Res2 == C) {
3432     // Deal with equality cases early.
3433     if (ICmp.isEquality())
3434       return new ICmpInst(ICmp.getPredicate(), LHSCIOp, Res1);
3435
3436     // A signed comparison of sign extended values simplifies into a
3437     // signed comparison.
3438     if (isSignedExt && isSignedCmp)
3439       return new ICmpInst(ICmp.getPredicate(), LHSCIOp, Res1);
3440
3441     // The other three cases all fold into an unsigned comparison.
3442     return new ICmpInst(ICmp.getUnsignedPredicate(), LHSCIOp, Res1);
3443   }
3444
3445   // The re-extended constant changed, partly changed (in the case of a vector),
3446   // or could not be determined to be equal (in the case of a constant
3447   // expression), so the constant cannot be represented in the shorter type.
3448   // Consequently, we cannot emit a simple comparison.
3449   // All the cases that fold to true or false will have already been handled
3450   // by SimplifyICmpInst, so only deal with the tricky case.
3451
3452   if (isSignedCmp || !isSignedExt || !isa<ConstantInt>(C))
3453     return nullptr;
3454
3455   // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
3456   // should have been folded away previously and not enter in here.
3457
3458   // We're performing an unsigned comp with a sign extended value.
3459   // This is true if the input is >= 0. [aka >s -1]
3460   Constant *NegOne = Constant::getAllOnesValue(SrcTy);
3461   Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICmp.getName());
3462
3463   // Finally, return the value computed.
3464   if (ICmp.getPredicate() == ICmpInst::ICMP_ULT)
3465     return replaceInstUsesWith(ICmp, Result);
3466
3467   assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
3468   return BinaryOperator::CreateNot(Result);
3469 }
3470
3471 bool InstCombiner::OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS,
3472                                          Value *RHS, Instruction &OrigI,
3473                                          Value *&Result, Constant *&Overflow) {
3474   if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
3475     std::swap(LHS, RHS);
3476
3477   auto SetResult = [&](Value *OpResult, Constant *OverflowVal, bool ReuseName) {
3478     Result = OpResult;
3479     Overflow = OverflowVal;
3480     if (ReuseName)
3481       Result->takeName(&OrigI);
3482     return true;
3483   };
3484
3485   // If the overflow check was an add followed by a compare, the insertion point
3486   // may be pointing to the compare.  We want to insert the new instructions
3487   // before the add in case there are uses of the add between the add and the
3488   // compare.
3489   Builder->SetInsertPoint(&OrigI);
3490
3491   switch (OCF) {
3492   case OCF_INVALID:
3493     llvm_unreachable("bad overflow check kind!");
3494
3495   case OCF_UNSIGNED_ADD: {
3496     OverflowResult OR = computeOverflowForUnsignedAdd(LHS, RHS, &OrigI);
3497     if (OR == OverflowResult::NeverOverflows)
3498       return SetResult(Builder->CreateNUWAdd(LHS, RHS), Builder->getFalse(),
3499                        true);
3500
3501     if (OR == OverflowResult::AlwaysOverflows)
3502       return SetResult(Builder->CreateAdd(LHS, RHS), Builder->getTrue(), true);
3503
3504     // Fall through uadd into sadd
3505     LLVM_FALLTHROUGH;
3506   }
3507   case OCF_SIGNED_ADD: {
3508     // X + 0 -> {X, false}
3509     if (match(RHS, m_Zero()))
3510       return SetResult(LHS, Builder->getFalse(), false);
3511
3512     // We can strength reduce this signed add into a regular add if we can prove
3513     // that it will never overflow.
3514     if (OCF == OCF_SIGNED_ADD)
3515       if (willNotOverflowSignedAdd(LHS, RHS, OrigI))
3516         return SetResult(Builder->CreateNSWAdd(LHS, RHS), Builder->getFalse(),
3517                          true);
3518     break;
3519   }
3520
3521   case OCF_UNSIGNED_SUB:
3522   case OCF_SIGNED_SUB: {
3523     // X - 0 -> {X, false}
3524     if (match(RHS, m_Zero()))
3525       return SetResult(LHS, Builder->getFalse(), false);
3526
3527     if (OCF == OCF_SIGNED_SUB) {
3528       if (willNotOverflowSignedSub(LHS, RHS, OrigI))
3529         return SetResult(Builder->CreateNSWSub(LHS, RHS), Builder->getFalse(),
3530                          true);
3531     } else {
3532       if (willNotOverflowUnsignedSub(LHS, RHS, OrigI))
3533         return SetResult(Builder->CreateNUWSub(LHS, RHS), Builder->getFalse(),
3534                          true);
3535     }
3536     break;
3537   }
3538
3539   case OCF_UNSIGNED_MUL: {
3540     OverflowResult OR = computeOverflowForUnsignedMul(LHS, RHS, &OrigI);
3541     if (OR == OverflowResult::NeverOverflows)
3542       return SetResult(Builder->CreateNUWMul(LHS, RHS), Builder->getFalse(),
3543                        true);
3544     if (OR == OverflowResult::AlwaysOverflows)
3545       return SetResult(Builder->CreateMul(LHS, RHS), Builder->getTrue(), true);
3546     LLVM_FALLTHROUGH;
3547   }
3548   case OCF_SIGNED_MUL:
3549     // X * undef -> undef
3550     if (isa<UndefValue>(RHS))
3551       return SetResult(RHS, UndefValue::get(Builder->getInt1Ty()), false);
3552
3553     // X * 0 -> {0, false}
3554     if (match(RHS, m_Zero()))
3555       return SetResult(RHS, Builder->getFalse(), false);
3556
3557     // X * 1 -> {X, false}
3558     if (match(RHS, m_One()))
3559       return SetResult(LHS, Builder->getFalse(), false);
3560
3561     if (OCF == OCF_SIGNED_MUL)
3562       if (willNotOverflowSignedMul(LHS, RHS, OrigI))
3563         return SetResult(Builder->CreateNSWMul(LHS, RHS), Builder->getFalse(),
3564                          true);
3565     break;
3566   }
3567
3568   return false;
3569 }
3570
3571 /// \brief Recognize and process idiom involving test for multiplication
3572 /// overflow.
3573 ///
3574 /// The caller has matched a pattern of the form:
3575 ///   I = cmp u (mul(zext A, zext B), V
3576 /// The function checks if this is a test for overflow and if so replaces
3577 /// multiplication with call to 'mul.with.overflow' intrinsic.
3578 ///
3579 /// \param I Compare instruction.
3580 /// \param MulVal Result of 'mult' instruction.  It is one of the arguments of
3581 ///               the compare instruction.  Must be of integer type.
3582 /// \param OtherVal The other argument of compare instruction.
3583 /// \returns Instruction which must replace the compare instruction, NULL if no
3584 ///          replacement required.
3585 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal,
3586                                          Value *OtherVal, InstCombiner &IC) {
3587   // Don't bother doing this transformation for pointers, don't do it for
3588   // vectors.
3589   if (!isa<IntegerType>(MulVal->getType()))
3590     return nullptr;
3591
3592   assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
3593   assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
3594   auto *MulInstr = dyn_cast<Instruction>(MulVal);
3595   if (!MulInstr)
3596     return nullptr;
3597   assert(MulInstr->getOpcode() == Instruction::Mul);
3598
3599   auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
3600        *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
3601   assert(LHS->getOpcode() == Instruction::ZExt);
3602   assert(RHS->getOpcode() == Instruction::ZExt);
3603   Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
3604
3605   // Calculate type and width of the result produced by mul.with.overflow.
3606   Type *TyA = A->getType(), *TyB = B->getType();
3607   unsigned WidthA = TyA->getPrimitiveSizeInBits(),
3608            WidthB = TyB->getPrimitiveSizeInBits();
3609   unsigned MulWidth;
3610   Type *MulType;
3611   if (WidthB > WidthA) {
3612     MulWidth = WidthB;
3613     MulType = TyB;
3614   } else {
3615     MulWidth = WidthA;
3616     MulType = TyA;
3617   }
3618
3619   // In order to replace the original mul with a narrower mul.with.overflow,
3620   // all uses must ignore upper bits of the product.  The number of used low
3621   // bits must be not greater than the width of mul.with.overflow.
3622   if (MulVal->hasNUsesOrMore(2))
3623     for (User *U : MulVal->users()) {
3624       if (U == &I)
3625         continue;
3626       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
3627         // Check if truncation ignores bits above MulWidth.
3628         unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
3629         if (TruncWidth > MulWidth)
3630           return nullptr;
3631       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
3632         // Check if AND ignores bits above MulWidth.
3633         if (BO->getOpcode() != Instruction::And)
3634           return nullptr;
3635         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
3636           const APInt &CVal = CI->getValue();
3637           if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
3638             return nullptr;
3639         }
3640       } else {
3641         // Other uses prohibit this transformation.
3642         return nullptr;
3643       }
3644     }
3645
3646   // Recognize patterns
3647   switch (I.getPredicate()) {
3648   case ICmpInst::ICMP_EQ:
3649   case ICmpInst::ICMP_NE:
3650     // Recognize pattern:
3651     //   mulval = mul(zext A, zext B)
3652     //   cmp eq/neq mulval, zext trunc mulval
3653     if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal))
3654       if (Zext->hasOneUse()) {
3655         Value *ZextArg = Zext->getOperand(0);
3656         if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg))
3657           if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth)
3658             break; //Recognized
3659       }
3660
3661     // Recognize pattern:
3662     //   mulval = mul(zext A, zext B)
3663     //   cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
3664     ConstantInt *CI;
3665     Value *ValToMask;
3666     if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
3667       if (ValToMask != MulVal)
3668         return nullptr;
3669       const APInt &CVal = CI->getValue() + 1;
3670       if (CVal.isPowerOf2()) {
3671         unsigned MaskWidth = CVal.logBase2();
3672         if (MaskWidth == MulWidth)
3673           break; // Recognized
3674       }
3675     }
3676     return nullptr;
3677
3678   case ICmpInst::ICMP_UGT:
3679     // Recognize pattern:
3680     //   mulval = mul(zext A, zext B)
3681     //   cmp ugt mulval, max
3682     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
3683       APInt MaxVal = APInt::getMaxValue(MulWidth);
3684       MaxVal = MaxVal.zext(CI->getBitWidth());
3685       if (MaxVal.eq(CI->getValue()))
3686         break; // Recognized
3687     }
3688     return nullptr;
3689
3690   case ICmpInst::ICMP_UGE:
3691     // Recognize pattern:
3692     //   mulval = mul(zext A, zext B)
3693     //   cmp uge mulval, max+1
3694     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
3695       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
3696       if (MaxVal.eq(CI->getValue()))
3697         break; // Recognized
3698     }
3699     return nullptr;
3700
3701   case ICmpInst::ICMP_ULE:
3702     // Recognize pattern:
3703     //   mulval = mul(zext A, zext B)
3704     //   cmp ule mulval, max
3705     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
3706       APInt MaxVal = APInt::getMaxValue(MulWidth);
3707       MaxVal = MaxVal.zext(CI->getBitWidth());
3708       if (MaxVal.eq(CI->getValue()))
3709         break; // Recognized
3710     }
3711     return nullptr;
3712
3713   case ICmpInst::ICMP_ULT:
3714     // Recognize pattern:
3715     //   mulval = mul(zext A, zext B)
3716     //   cmp ule mulval, max + 1
3717     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
3718       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
3719       if (MaxVal.eq(CI->getValue()))
3720         break; // Recognized
3721     }
3722     return nullptr;
3723
3724   default:
3725     return nullptr;
3726   }
3727
3728   InstCombiner::BuilderTy *Builder = IC.Builder;
3729   Builder->SetInsertPoint(MulInstr);
3730
3731   // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
3732   Value *MulA = A, *MulB = B;
3733   if (WidthA < MulWidth)
3734     MulA = Builder->CreateZExt(A, MulType);
3735   if (WidthB < MulWidth)
3736     MulB = Builder->CreateZExt(B, MulType);
3737   Value *F = Intrinsic::getDeclaration(I.getModule(),
3738                                        Intrinsic::umul_with_overflow, MulType);
3739   CallInst *Call = Builder->CreateCall(F, {MulA, MulB}, "umul");
3740   IC.Worklist.Add(MulInstr);
3741
3742   // If there are uses of mul result other than the comparison, we know that
3743   // they are truncation or binary AND. Change them to use result of
3744   // mul.with.overflow and adjust properly mask/size.
3745   if (MulVal->hasNUsesOrMore(2)) {
3746     Value *Mul = Builder->CreateExtractValue(Call, 0, "umul.value");
3747     for (User *U : MulVal->users()) {
3748       if (U == &I || U == OtherVal)
3749         continue;
3750       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
3751         if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
3752           IC.replaceInstUsesWith(*TI, Mul);
3753         else
3754           TI->setOperand(0, Mul);
3755       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
3756         assert(BO->getOpcode() == Instruction::And);
3757         // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
3758         ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
3759         APInt ShortMask = CI->getValue().trunc(MulWidth);
3760         Value *ShortAnd = Builder->CreateAnd(Mul, ShortMask);
3761         Instruction *Zext =
3762             cast<Instruction>(Builder->CreateZExt(ShortAnd, BO->getType()));
3763         IC.Worklist.Add(Zext);
3764         IC.replaceInstUsesWith(*BO, Zext);
3765       } else {
3766         llvm_unreachable("Unexpected Binary operation");
3767       }
3768       IC.Worklist.Add(cast<Instruction>(U));
3769     }
3770   }
3771   if (isa<Instruction>(OtherVal))
3772     IC.Worklist.Add(cast<Instruction>(OtherVal));
3773
3774   // The original icmp gets replaced with the overflow value, maybe inverted
3775   // depending on predicate.
3776   bool Inverse = false;
3777   switch (I.getPredicate()) {
3778   case ICmpInst::ICMP_NE:
3779     break;
3780   case ICmpInst::ICMP_EQ:
3781     Inverse = true;
3782     break;
3783   case ICmpInst::ICMP_UGT:
3784   case ICmpInst::ICMP_UGE:
3785     if (I.getOperand(0) == MulVal)
3786       break;
3787     Inverse = true;
3788     break;
3789   case ICmpInst::ICMP_ULT:
3790   case ICmpInst::ICMP_ULE:
3791     if (I.getOperand(1) == MulVal)
3792       break;
3793     Inverse = true;
3794     break;
3795   default:
3796     llvm_unreachable("Unexpected predicate");
3797   }
3798   if (Inverse) {
3799     Value *Res = Builder->CreateExtractValue(Call, 1);
3800     return BinaryOperator::CreateNot(Res);
3801   }
3802
3803   return ExtractValueInst::Create(Call, 1);
3804 }
3805
3806 /// When performing a comparison against a constant, it is possible that not all
3807 /// the bits in the LHS are demanded. This helper method computes the mask that
3808 /// IS demanded.
3809 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth,
3810                                     bool isSignCheck) {
3811   if (isSignCheck)
3812     return APInt::getSignMask(BitWidth);
3813
3814   ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
3815   if (!CI) return APInt::getAllOnesValue(BitWidth);
3816   const APInt &RHS = CI->getValue();
3817
3818   switch (I.getPredicate()) {
3819   // For a UGT comparison, we don't care about any bits that
3820   // correspond to the trailing ones of the comparand.  The value of these
3821   // bits doesn't impact the outcome of the comparison, because any value
3822   // greater than the RHS must differ in a bit higher than these due to carry.
3823   case ICmpInst::ICMP_UGT: {
3824     unsigned trailingOnes = RHS.countTrailingOnes();
3825     return APInt::getBitsSetFrom(BitWidth, trailingOnes);
3826   }
3827
3828   // Similarly, for a ULT comparison, we don't care about the trailing zeros.
3829   // Any value less than the RHS must differ in a higher bit because of carries.
3830   case ICmpInst::ICMP_ULT: {
3831     unsigned trailingZeros = RHS.countTrailingZeros();
3832     return APInt::getBitsSetFrom(BitWidth, trailingZeros);
3833   }
3834
3835   default:
3836     return APInt::getAllOnesValue(BitWidth);
3837   }
3838 }
3839
3840 /// \brief Check if the order of \p Op0 and \p Op1 as operand in an ICmpInst
3841 /// should be swapped.
3842 /// The decision is based on how many times these two operands are reused
3843 /// as subtract operands and their positions in those instructions.
3844 /// The rational is that several architectures use the same instruction for
3845 /// both subtract and cmp, thus it is better if the order of those operands
3846 /// match.
3847 /// \return true if Op0 and Op1 should be swapped.
3848 static bool swapMayExposeCSEOpportunities(const Value * Op0,
3849                                           const Value * Op1) {
3850   // Filter out pointer value as those cannot appears directly in subtract.
3851   // FIXME: we may want to go through inttoptrs or bitcasts.
3852   if (Op0->getType()->isPointerTy())
3853     return false;
3854   // Count every uses of both Op0 and Op1 in a subtract.
3855   // Each time Op0 is the first operand, count -1: swapping is bad, the
3856   // subtract has already the same layout as the compare.
3857   // Each time Op0 is the second operand, count +1: swapping is good, the
3858   // subtract has a different layout as the compare.
3859   // At the end, if the benefit is greater than 0, Op0 should come second to
3860   // expose more CSE opportunities.
3861   int GlobalSwapBenefits = 0;
3862   for (const User *U : Op0->users()) {
3863     const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(U);
3864     if (!BinOp || BinOp->getOpcode() != Instruction::Sub)
3865       continue;
3866     // If Op0 is the first argument, this is not beneficial to swap the
3867     // arguments.
3868     int LocalSwapBenefits = -1;
3869     unsigned Op1Idx = 1;
3870     if (BinOp->getOperand(Op1Idx) == Op0) {
3871       Op1Idx = 0;
3872       LocalSwapBenefits = 1;
3873     }
3874     if (BinOp->getOperand(Op1Idx) != Op1)
3875       continue;
3876     GlobalSwapBenefits += LocalSwapBenefits;
3877   }
3878   return GlobalSwapBenefits > 0;
3879 }
3880
3881 /// \brief Check that one use is in the same block as the definition and all
3882 /// other uses are in blocks dominated by a given block.
3883 ///
3884 /// \param DI Definition
3885 /// \param UI Use
3886 /// \param DB Block that must dominate all uses of \p DI outside
3887 ///           the parent block
3888 /// \return true when \p UI is the only use of \p DI in the parent block
3889 /// and all other uses of \p DI are in blocks dominated by \p DB.
3890 ///
3891 bool InstCombiner::dominatesAllUses(const Instruction *DI,
3892                                     const Instruction *UI,
3893                                     const BasicBlock *DB) const {
3894   assert(DI && UI && "Instruction not defined\n");
3895   // Ignore incomplete definitions.
3896   if (!DI->getParent())
3897     return false;
3898   // DI and UI must be in the same block.
3899   if (DI->getParent() != UI->getParent())
3900     return false;
3901   // Protect from self-referencing blocks.
3902   if (DI->getParent() == DB)
3903     return false;
3904   for (const User *U : DI->users()) {
3905     auto *Usr = cast<Instruction>(U);
3906     if (Usr != UI && !DT.dominates(DB, Usr->getParent()))
3907       return false;
3908   }
3909   return true;
3910 }
3911
3912 /// Return true when the instruction sequence within a block is select-cmp-br.
3913 static bool isChainSelectCmpBranch(const SelectInst *SI) {
3914   const BasicBlock *BB = SI->getParent();
3915   if (!BB)
3916     return false;
3917   auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
3918   if (!BI || BI->getNumSuccessors() != 2)
3919     return false;
3920   auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
3921   if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
3922     return false;
3923   return true;
3924 }
3925
3926 /// \brief True when a select result is replaced by one of its operands
3927 /// in select-icmp sequence. This will eventually result in the elimination
3928 /// of the select.
3929 ///
3930 /// \param SI    Select instruction
3931 /// \param Icmp  Compare instruction
3932 /// \param SIOpd Operand that replaces the select
3933 ///
3934 /// Notes:
3935 /// - The replacement is global and requires dominator information
3936 /// - The caller is responsible for the actual replacement
3937 ///
3938 /// Example:
3939 ///
3940 /// entry:
3941 ///  %4 = select i1 %3, %C* %0, %C* null
3942 ///  %5 = icmp eq %C* %4, null
3943 ///  br i1 %5, label %9, label %7
3944 ///  ...
3945 ///  ; <label>:7                                       ; preds = %entry
3946 ///  %8 = getelementptr inbounds %C* %4, i64 0, i32 0
3947 ///  ...
3948 ///
3949 /// can be transformed to
3950 ///
3951 ///  %5 = icmp eq %C* %0, null
3952 ///  %6 = select i1 %3, i1 %5, i1 true
3953 ///  br i1 %6, label %9, label %7
3954 ///  ...
3955 ///  ; <label>:7                                       ; preds = %entry
3956 ///  %8 = getelementptr inbounds %C* %0, i64 0, i32 0  // replace by %0!
3957 ///
3958 /// Similar when the first operand of the select is a constant or/and
3959 /// the compare is for not equal rather than equal.
3960 ///
3961 /// NOTE: The function is only called when the select and compare constants
3962 /// are equal, the optimization can work only for EQ predicates. This is not a
3963 /// major restriction since a NE compare should be 'normalized' to an equal
3964 /// compare, which usually happens in the combiner and test case
3965 /// select-cmp-br.ll checks for it.
3966 bool InstCombiner::replacedSelectWithOperand(SelectInst *SI,
3967                                              const ICmpInst *Icmp,
3968                                              const unsigned SIOpd) {
3969   assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
3970   if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
3971     BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
3972     // The check for the single predecessor is not the best that can be
3973     // done. But it protects efficiently against cases like when SI's
3974     // home block has two successors, Succ and Succ1, and Succ1 predecessor
3975     // of Succ. Then SI can't be replaced by SIOpd because the use that gets
3976     // replaced can be reached on either path. So the uniqueness check
3977     // guarantees that the path all uses of SI (outside SI's parent) are on
3978     // is disjoint from all other paths out of SI. But that information
3979     // is more expensive to compute, and the trade-off here is in favor
3980     // of compile-time. It should also be noticed that we check for a single
3981     // predecessor and not only uniqueness. This to handle the situation when
3982     // Succ and Succ1 points to the same basic block.
3983     if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
3984       NumSel++;
3985       SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
3986       return true;
3987     }
3988   }
3989   return false;
3990 }
3991
3992 /// Try to fold the comparison based on range information we can get by checking
3993 /// whether bits are known to be zero or one in the inputs.
3994 Instruction *InstCombiner::foldICmpUsingKnownBits(ICmpInst &I) {
3995   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3996   Type *Ty = Op0->getType();
3997   ICmpInst::Predicate Pred = I.getPredicate();
3998
3999   // Get scalar or pointer size.
4000   unsigned BitWidth = Ty->isIntOrIntVectorTy()
4001                           ? Ty->getScalarSizeInBits()
4002                           : DL.getTypeSizeInBits(Ty->getScalarType());
4003
4004   if (!BitWidth)
4005     return nullptr;
4006
4007   // If this is a normal comparison, it demands all bits. If it is a sign bit
4008   // comparison, it only demands the sign bit.
4009   bool IsSignBit = false;
4010   const APInt *CmpC;
4011   if (match(Op1, m_APInt(CmpC))) {
4012     bool UnusedBit;
4013     IsSignBit = isSignBitCheck(Pred, *CmpC, UnusedBit);
4014   }
4015
4016   KnownBits Op0Known(BitWidth);
4017   KnownBits Op1Known(BitWidth);
4018
4019   if (SimplifyDemandedBits(&I, 0,
4020                            getDemandedBitsLHSMask(I, BitWidth, IsSignBit),
4021                            Op0Known, 0))
4022     return &I;
4023
4024   if (SimplifyDemandedBits(&I, 1, APInt::getAllOnesValue(BitWidth),
4025                            Op1Known, 0))
4026     return &I;
4027
4028   // Given the known and unknown bits, compute a range that the LHS could be
4029   // in.  Compute the Min, Max and RHS values based on the known bits. For the
4030   // EQ and NE we use unsigned values.
4031   APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
4032   APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
4033   if (I.isSigned()) {
4034     computeSignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max);
4035     computeSignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max);
4036   } else {
4037     computeUnsignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max);
4038     computeUnsignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max);
4039   }
4040
4041   // If Min and Max are known to be the same, then SimplifyDemandedBits
4042   // figured out that the LHS is a constant. Constant fold this now, so that
4043   // code below can assume that Min != Max.
4044   if (!isa<Constant>(Op0) && Op0Min == Op0Max)
4045     return new ICmpInst(Pred, ConstantInt::get(Op0->getType(), Op0Min), Op1);
4046   if (!isa<Constant>(Op1) && Op1Min == Op1Max)
4047     return new ICmpInst(Pred, Op0, ConstantInt::get(Op1->getType(), Op1Min));
4048
4049   // Based on the range information we know about the LHS, see if we can
4050   // simplify this comparison.  For example, (x&4) < 8 is always true.
4051   switch (Pred) {
4052   default:
4053     llvm_unreachable("Unknown icmp opcode!");
4054   case ICmpInst::ICMP_EQ:
4055   case ICmpInst::ICMP_NE: {
4056     if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) {
4057       return Pred == CmpInst::ICMP_EQ
4058                  ? replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()))
4059                  : replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4060     }
4061
4062     // If all bits are known zero except for one, then we know at most one bit
4063     // is set. If the comparison is against zero, then this is a check to see if
4064     // *that* bit is set.
4065     APInt Op0KnownZeroInverted = ~Op0Known.Zero;
4066     if (Op1Known.isZero()) {
4067       // If the LHS is an AND with the same constant, look through it.
4068       Value *LHS = nullptr;
4069       const APInt *LHSC;
4070       if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) ||
4071           *LHSC != Op0KnownZeroInverted)
4072         LHS = Op0;
4073
4074       Value *X;
4075       if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
4076         APInt ValToCheck = Op0KnownZeroInverted;
4077         Type *XTy = X->getType();
4078         if (ValToCheck.isPowerOf2()) {
4079           // ((1 << X) & 8) == 0 -> X != 3
4080           // ((1 << X) & 8) != 0 -> X == 3
4081           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
4082           auto NewPred = ICmpInst::getInversePredicate(Pred);
4083           return new ICmpInst(NewPred, X, CmpC);
4084         } else if ((++ValToCheck).isPowerOf2()) {
4085           // ((1 << X) & 7) == 0 -> X >= 3
4086           // ((1 << X) & 7) != 0 -> X  < 3
4087           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
4088           auto NewPred =
4089               Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT;
4090           return new ICmpInst(NewPred, X, CmpC);
4091         }
4092       }
4093
4094       // Check if the LHS is 8 >>u x and the result is a power of 2 like 1.
4095       const APInt *CI;
4096       if (Op0KnownZeroInverted == 1 &&
4097           match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) {
4098         // ((8 >>u X) & 1) == 0 -> X != 3
4099         // ((8 >>u X) & 1) != 0 -> X == 3
4100         unsigned CmpVal = CI->countTrailingZeros();
4101         auto NewPred = ICmpInst::getInversePredicate(Pred);
4102         return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal));
4103       }
4104     }
4105     break;
4106   }
4107   case ICmpInst::ICMP_ULT: {
4108     if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
4109       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4110     if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
4111       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4112     if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
4113       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
4114
4115     const APInt *CmpC;
4116     if (match(Op1, m_APInt(CmpC))) {
4117       // A <u C -> A == C-1 if min(A)+1 == C
4118       if (Op1Max == Op0Min + 1) {
4119         Constant *CMinus1 = ConstantInt::get(Op0->getType(), *CmpC - 1);
4120         return new ICmpInst(ICmpInst::ICMP_EQ, Op0, CMinus1);
4121       }
4122     }
4123     break;
4124   }
4125   case ICmpInst::ICMP_UGT: {
4126     if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
4127       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4128
4129     if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
4130       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4131
4132     if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
4133       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
4134
4135     const APInt *CmpC;
4136     if (match(Op1, m_APInt(CmpC))) {
4137       // A >u C -> A == C+1 if max(a)-1 == C
4138       if (*CmpC == Op0Max - 1)
4139         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
4140                             ConstantInt::get(Op1->getType(), *CmpC + 1));
4141     }
4142     break;
4143   }
4144   case ICmpInst::ICMP_SLT:
4145     if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
4146       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4147     if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
4148       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4149     if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
4150       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
4151     if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
4152       if (Op1Max == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C
4153         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
4154                             Builder->getInt(CI->getValue() - 1));
4155     }
4156     break;
4157   case ICmpInst::ICMP_SGT:
4158     if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
4159       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4160     if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
4161       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4162
4163     if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
4164       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
4165     if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
4166       if (Op1Min == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C
4167         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
4168                             Builder->getInt(CI->getValue() + 1));
4169     }
4170     break;
4171   case ICmpInst::ICMP_SGE:
4172     assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
4173     if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
4174       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4175     if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
4176       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4177     break;
4178   case ICmpInst::ICMP_SLE:
4179     assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
4180     if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
4181       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4182     if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
4183       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4184     break;
4185   case ICmpInst::ICMP_UGE:
4186     assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
4187     if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
4188       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4189     if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
4190       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4191     break;
4192   case ICmpInst::ICMP_ULE:
4193     assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
4194     if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
4195       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4196     if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
4197       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4198     break;
4199   }
4200
4201   // Turn a signed comparison into an unsigned one if both operands are known to
4202   // have the same sign.
4203   if (I.isSigned() &&
4204       ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) ||
4205        (Op0Known.One.isNegative() && Op1Known.One.isNegative())))
4206     return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
4207
4208   return nullptr;
4209 }
4210
4211 /// If we have an icmp le or icmp ge instruction with a constant operand, turn
4212 /// it into the appropriate icmp lt or icmp gt instruction. This transform
4213 /// allows them to be folded in visitICmpInst.
4214 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) {
4215   ICmpInst::Predicate Pred = I.getPredicate();
4216   if (Pred != ICmpInst::ICMP_SLE && Pred != ICmpInst::ICMP_SGE &&
4217       Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_UGE)
4218     return nullptr;
4219
4220   Value *Op0 = I.getOperand(0);
4221   Value *Op1 = I.getOperand(1);
4222   auto *Op1C = dyn_cast<Constant>(Op1);
4223   if (!Op1C)
4224     return nullptr;
4225
4226   // Check if the constant operand can be safely incremented/decremented without
4227   // overflowing/underflowing. For scalars, SimplifyICmpInst has already handled
4228   // the edge cases for us, so we just assert on them. For vectors, we must
4229   // handle the edge cases.
4230   Type *Op1Type = Op1->getType();
4231   bool IsSigned = I.isSigned();
4232   bool IsLE = (Pred == ICmpInst::ICMP_SLE || Pred == ICmpInst::ICMP_ULE);
4233   auto *CI = dyn_cast<ConstantInt>(Op1C);
4234   if (CI) {
4235     // A <= MAX -> TRUE ; A >= MIN -> TRUE
4236     assert(IsLE ? !CI->isMaxValue(IsSigned) : !CI->isMinValue(IsSigned));
4237   } else if (Op1Type->isVectorTy()) {
4238     // TODO? If the edge cases for vectors were guaranteed to be handled as they
4239     // are for scalar, we could remove the min/max checks. However, to do that,
4240     // we would have to use insertelement/shufflevector to replace edge values.
4241     unsigned NumElts = Op1Type->getVectorNumElements();
4242     for (unsigned i = 0; i != NumElts; ++i) {
4243       Constant *Elt = Op1C->getAggregateElement(i);
4244       if (!Elt)
4245         return nullptr;
4246
4247       if (isa<UndefValue>(Elt))
4248         continue;
4249
4250       // Bail out if we can't determine if this constant is min/max or if we
4251       // know that this constant is min/max.
4252       auto *CI = dyn_cast<ConstantInt>(Elt);
4253       if (!CI || (IsLE ? CI->isMaxValue(IsSigned) : CI->isMinValue(IsSigned)))
4254         return nullptr;
4255     }
4256   } else {
4257     // ConstantExpr?
4258     return nullptr;
4259   }
4260
4261   // Increment or decrement the constant and set the new comparison predicate:
4262   // ULE -> ULT ; UGE -> UGT ; SLE -> SLT ; SGE -> SGT
4263   Constant *OneOrNegOne = ConstantInt::get(Op1Type, IsLE ? 1 : -1, true);
4264   CmpInst::Predicate NewPred = IsLE ? ICmpInst::ICMP_ULT: ICmpInst::ICMP_UGT;
4265   NewPred = IsSigned ? ICmpInst::getSignedPredicate(NewPred) : NewPred;
4266   return new ICmpInst(NewPred, Op0, ConstantExpr::getAdd(Op1C, OneOrNegOne));
4267 }
4268
4269 /// Integer compare with boolean values can always be turned into bitwise ops.
4270 static Instruction *canonicalizeICmpBool(ICmpInst &I,
4271                                          InstCombiner::BuilderTy &Builder) {
4272   Value *A = I.getOperand(0), *B = I.getOperand(1);
4273   assert(A->getType()->getScalarType()->isIntegerTy(1) && "Bools only");
4274
4275   // A boolean compared to true/false can be simplified to Op0/true/false in
4276   // 14 out of the 20 (10 predicates * 2 constants) possible combinations.
4277   // Cases not handled by InstSimplify are always 'not' of Op0.
4278   if (match(B, m_Zero())) {
4279     switch (I.getPredicate()) {
4280       case CmpInst::ICMP_EQ:  // A ==   0 -> !A
4281       case CmpInst::ICMP_ULE: // A <=u  0 -> !A
4282       case CmpInst::ICMP_SGE: // A >=s  0 -> !A
4283         return BinaryOperator::CreateNot(A);
4284       default:
4285         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
4286     }
4287   } else if (match(B, m_One())) {
4288     switch (I.getPredicate()) {
4289       case CmpInst::ICMP_NE:  // A !=  1 -> !A
4290       case CmpInst::ICMP_ULT: // A <u  1 -> !A
4291       case CmpInst::ICMP_SGT: // A >s -1 -> !A
4292         return BinaryOperator::CreateNot(A);
4293       default:
4294         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
4295     }
4296   }
4297
4298   switch (I.getPredicate()) {
4299   default:
4300     llvm_unreachable("Invalid icmp instruction!");
4301   case ICmpInst::ICMP_EQ:
4302     // icmp eq i1 A, B -> ~(A ^ B)
4303     return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
4304
4305   case ICmpInst::ICMP_NE:
4306     // icmp ne i1 A, B -> A ^ B
4307     return BinaryOperator::CreateXor(A, B);
4308
4309   case ICmpInst::ICMP_UGT:
4310     // icmp ugt -> icmp ult
4311     std::swap(A, B);
4312     LLVM_FALLTHROUGH;
4313   case ICmpInst::ICMP_ULT:
4314     // icmp ult i1 A, B -> ~A & B
4315     return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
4316
4317   case ICmpInst::ICMP_SGT:
4318     // icmp sgt -> icmp slt
4319     std::swap(A, B);
4320     LLVM_FALLTHROUGH;
4321   case ICmpInst::ICMP_SLT:
4322     // icmp slt i1 A, B -> A & ~B
4323     return BinaryOperator::CreateAnd(Builder.CreateNot(B), A);
4324
4325   case ICmpInst::ICMP_UGE:
4326     // icmp uge -> icmp ule
4327     std::swap(A, B);
4328     LLVM_FALLTHROUGH;
4329   case ICmpInst::ICMP_ULE:
4330     // icmp ule i1 A, B -> ~A | B
4331     return BinaryOperator::CreateOr(Builder.CreateNot(A), B);
4332
4333   case ICmpInst::ICMP_SGE:
4334     // icmp sge -> icmp sle
4335     std::swap(A, B);
4336     LLVM_FALLTHROUGH;
4337   case ICmpInst::ICMP_SLE:
4338     // icmp sle i1 A, B -> A | ~B
4339     return BinaryOperator::CreateOr(Builder.CreateNot(B), A);
4340   }
4341 }
4342
4343 Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
4344   bool Changed = false;
4345   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4346   unsigned Op0Cplxity = getComplexity(Op0);
4347   unsigned Op1Cplxity = getComplexity(Op1);
4348
4349   /// Orders the operands of the compare so that they are listed from most
4350   /// complex to least complex.  This puts constants before unary operators,
4351   /// before binary operators.
4352   if (Op0Cplxity < Op1Cplxity ||
4353       (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) {
4354     I.swapOperands();
4355     std::swap(Op0, Op1);
4356     Changed = true;
4357   }
4358
4359   if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1,
4360                                   SQ.getWithInstruction(&I)))
4361     return replaceInstUsesWith(I, V);
4362
4363   // comparing -val or val with non-zero is the same as just comparing val
4364   // ie, abs(val) != 0 -> val != 0
4365   if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) {
4366     Value *Cond, *SelectTrue, *SelectFalse;
4367     if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
4368                             m_Value(SelectFalse)))) {
4369       if (Value *V = dyn_castNegVal(SelectTrue)) {
4370         if (V == SelectFalse)
4371           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
4372       }
4373       else if (Value *V = dyn_castNegVal(SelectFalse)) {
4374         if (V == SelectTrue)
4375           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
4376       }
4377     }
4378   }
4379
4380   if (Op0->getType()->getScalarType()->isIntegerTy(1))
4381     if (Instruction *Res = canonicalizeICmpBool(I, *Builder))
4382       return Res;
4383
4384   if (ICmpInst *NewICmp = canonicalizeCmpWithConstant(I))
4385     return NewICmp;
4386
4387   if (Instruction *Res = foldICmpWithConstant(I))
4388     return Res;
4389
4390   if (Instruction *Res = foldICmpUsingKnownBits(I))
4391     return Res;
4392
4393   // Test if the ICmpInst instruction is used exclusively by a select as
4394   // part of a minimum or maximum operation. If so, refrain from doing
4395   // any other folding. This helps out other analyses which understand
4396   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
4397   // and CodeGen. And in this case, at least one of the comparison
4398   // operands has at least one user besides the compare (the select),
4399   // which would often largely negate the benefit of folding anyway.
4400   if (I.hasOneUse())
4401     if (SelectInst *SI = dyn_cast<SelectInst>(*I.user_begin()))
4402       if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
4403           (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
4404         return nullptr;
4405
4406   // FIXME: We only do this after checking for min/max to prevent infinite
4407   // looping caused by a reverse canonicalization of these patterns for min/max.
4408   // FIXME: The organization of folds is a mess. These would naturally go into
4409   // canonicalizeCmpWithConstant(), but we can't move all of the above folds
4410   // down here after the min/max restriction.
4411   ICmpInst::Predicate Pred = I.getPredicate();
4412   const APInt *C;
4413   if (match(Op1, m_APInt(C))) {
4414     // For i32: x >u 2147483647 -> x <s 0  -> true if sign bit set
4415     if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) {
4416       Constant *Zero = Constant::getNullValue(Op0->getType());
4417       return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero);
4418     }
4419
4420     // For i32: x <u 2147483648 -> x >s -1  -> true if sign bit clear
4421     if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) {
4422       Constant *AllOnes = Constant::getAllOnesValue(Op0->getType());
4423       return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes);
4424     }
4425   }
4426
4427   if (Instruction *Res = foldICmpInstWithConstant(I))
4428     return Res;
4429
4430   if (Instruction *Res = foldICmpInstWithConstantNotInt(I))
4431     return Res;
4432
4433   // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
4434   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
4435     if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I))
4436       return NI;
4437   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
4438     if (Instruction *NI = foldGEPICmp(GEP, Op0,
4439                            ICmpInst::getSwappedPredicate(I.getPredicate()), I))
4440       return NI;
4441
4442   // Try to optimize equality comparisons against alloca-based pointers.
4443   if (Op0->getType()->isPointerTy() && I.isEquality()) {
4444     assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
4445     if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op0, DL)))
4446       if (Instruction *New = foldAllocaCmp(I, Alloca, Op1))
4447         return New;
4448     if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op1, DL)))
4449       if (Instruction *New = foldAllocaCmp(I, Alloca, Op0))
4450         return New;
4451   }
4452
4453   // Test to see if the operands of the icmp are casted versions of other
4454   // values.  If the ptr->ptr cast can be stripped off both arguments, we do so
4455   // now.
4456   if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
4457     if (Op0->getType()->isPointerTy() &&
4458         (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
4459       // We keep moving the cast from the left operand over to the right
4460       // operand, where it can often be eliminated completely.
4461       Op0 = CI->getOperand(0);
4462
4463       // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
4464       // so eliminate it as well.
4465       if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
4466         Op1 = CI2->getOperand(0);
4467
4468       // If Op1 is a constant, we can fold the cast into the constant.
4469       if (Op0->getType() != Op1->getType()) {
4470         if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
4471           Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
4472         } else {
4473           // Otherwise, cast the RHS right before the icmp
4474           Op1 = Builder->CreateBitCast(Op1, Op0->getType());
4475         }
4476       }
4477       return new ICmpInst(I.getPredicate(), Op0, Op1);
4478     }
4479   }
4480
4481   if (isa<CastInst>(Op0)) {
4482     // Handle the special case of: icmp (cast bool to X), <cst>
4483     // This comes up when you have code like
4484     //   int X = A < B;
4485     //   if (X) ...
4486     // For generality, we handle any zero-extension of any operand comparison
4487     // with a constant or another cast from the same type.
4488     if (isa<Constant>(Op1) || isa<CastInst>(Op1))
4489       if (Instruction *R = foldICmpWithCastAndCast(I))
4490         return R;
4491   }
4492
4493   if (Instruction *Res = foldICmpBinOp(I))
4494     return Res;
4495
4496   if (Instruction *Res = foldICmpWithMinMax(I))
4497     return Res;
4498
4499   {
4500     Value *A, *B;
4501     // Transform (A & ~B) == 0 --> (A & B) != 0
4502     // and       (A & ~B) != 0 --> (A & B) == 0
4503     // if A is a power of 2.
4504     if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
4505         match(Op1, m_Zero()) &&
4506         isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality())
4507       return new ICmpInst(I.getInversePredicate(),
4508                           Builder->CreateAnd(A, B),
4509                           Op1);
4510
4511     // ~x < ~y --> y < x
4512     // ~x < cst --> ~cst < x
4513     if (match(Op0, m_Not(m_Value(A)))) {
4514       if (match(Op1, m_Not(m_Value(B))))
4515         return new ICmpInst(I.getPredicate(), B, A);
4516       if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
4517         return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A);
4518     }
4519
4520     Instruction *AddI = nullptr;
4521     if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
4522                                      m_Instruction(AddI))) &&
4523         isa<IntegerType>(A->getType())) {
4524       Value *Result;
4525       Constant *Overflow;
4526       if (OptimizeOverflowCheck(OCF_UNSIGNED_ADD, A, B, *AddI, Result,
4527                                 Overflow)) {
4528         replaceInstUsesWith(*AddI, Result);
4529         return replaceInstUsesWith(I, Overflow);
4530       }
4531     }
4532
4533     // (zext a) * (zext b)  --> llvm.umul.with.overflow.
4534     if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
4535       if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this))
4536         return R;
4537     }
4538     if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
4539       if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this))
4540         return R;
4541     }
4542   }
4543
4544   if (Instruction *Res = foldICmpEquality(I))
4545     return Res;
4546
4547   // The 'cmpxchg' instruction returns an aggregate containing the old value and
4548   // an i1 which indicates whether or not we successfully did the swap.
4549   //
4550   // Replace comparisons between the old value and the expected value with the
4551   // indicator that 'cmpxchg' returns.
4552   //
4553   // N.B.  This transform is only valid when the 'cmpxchg' is not permitted to
4554   // spuriously fail.  In those cases, the old value may equal the expected
4555   // value but it is possible for the swap to not occur.
4556   if (I.getPredicate() == ICmpInst::ICMP_EQ)
4557     if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
4558       if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
4559         if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
4560             !ACXI->isWeak())
4561           return ExtractValueInst::Create(ACXI, 1);
4562
4563   {
4564     Value *X; ConstantInt *Cst;
4565     // icmp X+Cst, X
4566     if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X)
4567       return foldICmpAddOpConst(I, X, Cst, I.getPredicate());
4568
4569     // icmp X, X+Cst
4570     if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X)
4571       return foldICmpAddOpConst(I, X, Cst, I.getSwappedPredicate());
4572   }
4573   return Changed ? &I : nullptr;
4574 }
4575
4576 /// Fold fcmp ([us]itofp x, cst) if possible.
4577 Instruction *InstCombiner::foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI,
4578                                                 Constant *RHSC) {
4579   if (!isa<ConstantFP>(RHSC)) return nullptr;
4580   const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
4581
4582   // Get the width of the mantissa.  We don't want to hack on conversions that
4583   // might lose information from the integer, e.g. "i64 -> float"
4584   int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
4585   if (MantissaWidth == -1) return nullptr;  // Unknown.
4586
4587   IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
4588
4589   bool LHSUnsigned = isa<UIToFPInst>(LHSI);
4590
4591   if (I.isEquality()) {
4592     FCmpInst::Predicate P = I.getPredicate();
4593     bool IsExact = false;
4594     APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
4595     RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
4596
4597     // If the floating point constant isn't an integer value, we know if we will
4598     // ever compare equal / not equal to it.
4599     if (!IsExact) {
4600       // TODO: Can never be -0.0 and other non-representable values
4601       APFloat RHSRoundInt(RHS);
4602       RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
4603       if (RHS.compare(RHSRoundInt) != APFloat::cmpEqual) {
4604         if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
4605           return replaceInstUsesWith(I, Builder->getFalse());
4606
4607         assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
4608         return replaceInstUsesWith(I, Builder->getTrue());
4609       }
4610     }
4611
4612     // TODO: If the constant is exactly representable, is it always OK to do
4613     // equality compares as integer?
4614   }
4615
4616   // Check to see that the input is converted from an integer type that is small
4617   // enough that preserves all bits.  TODO: check here for "known" sign bits.
4618   // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
4619   unsigned InputSize = IntTy->getScalarSizeInBits();
4620
4621   // Following test does NOT adjust InputSize downwards for signed inputs,
4622   // because the most negative value still requires all the mantissa bits
4623   // to distinguish it from one less than that value.
4624   if ((int)InputSize > MantissaWidth) {
4625     // Conversion would lose accuracy. Check if loss can impact comparison.
4626     int Exp = ilogb(RHS);
4627     if (Exp == APFloat::IEK_Inf) {
4628       int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
4629       if (MaxExponent < (int)InputSize - !LHSUnsigned)
4630         // Conversion could create infinity.
4631         return nullptr;
4632     } else {
4633       // Note that if RHS is zero or NaN, then Exp is negative
4634       // and first condition is trivially false.
4635       if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
4636         // Conversion could affect comparison.
4637         return nullptr;
4638     }
4639   }
4640
4641   // Otherwise, we can potentially simplify the comparison.  We know that it
4642   // will always come through as an integer value and we know the constant is
4643   // not a NAN (it would have been previously simplified).
4644   assert(!RHS.isNaN() && "NaN comparison not already folded!");
4645
4646   ICmpInst::Predicate Pred;
4647   switch (I.getPredicate()) {
4648   default: llvm_unreachable("Unexpected predicate!");
4649   case FCmpInst::FCMP_UEQ:
4650   case FCmpInst::FCMP_OEQ:
4651     Pred = ICmpInst::ICMP_EQ;
4652     break;
4653   case FCmpInst::FCMP_UGT:
4654   case FCmpInst::FCMP_OGT:
4655     Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
4656     break;
4657   case FCmpInst::FCMP_UGE:
4658   case FCmpInst::FCMP_OGE:
4659     Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
4660     break;
4661   case FCmpInst::FCMP_ULT:
4662   case FCmpInst::FCMP_OLT:
4663     Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
4664     break;
4665   case FCmpInst::FCMP_ULE:
4666   case FCmpInst::FCMP_OLE:
4667     Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
4668     break;
4669   case FCmpInst::FCMP_UNE:
4670   case FCmpInst::FCMP_ONE:
4671     Pred = ICmpInst::ICMP_NE;
4672     break;
4673   case FCmpInst::FCMP_ORD:
4674     return replaceInstUsesWith(I, Builder->getTrue());
4675   case FCmpInst::FCMP_UNO:
4676     return replaceInstUsesWith(I, Builder->getFalse());
4677   }
4678
4679   // Now we know that the APFloat is a normal number, zero or inf.
4680
4681   // See if the FP constant is too large for the integer.  For example,
4682   // comparing an i8 to 300.0.
4683   unsigned IntWidth = IntTy->getScalarSizeInBits();
4684
4685   if (!LHSUnsigned) {
4686     // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
4687     // and large values.
4688     APFloat SMax(RHS.getSemantics());
4689     SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
4690                           APFloat::rmNearestTiesToEven);
4691     if (SMax.compare(RHS) == APFloat::cmpLessThan) {  // smax < 13123.0
4692       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
4693           Pred == ICmpInst::ICMP_SLE)
4694         return replaceInstUsesWith(I, Builder->getTrue());
4695       return replaceInstUsesWith(I, Builder->getFalse());
4696     }
4697   } else {
4698     // If the RHS value is > UnsignedMax, fold the comparison. This handles
4699     // +INF and large values.
4700     APFloat UMax(RHS.getSemantics());
4701     UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
4702                           APFloat::rmNearestTiesToEven);
4703     if (UMax.compare(RHS) == APFloat::cmpLessThan) {  // umax < 13123.0
4704       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
4705           Pred == ICmpInst::ICMP_ULE)
4706         return replaceInstUsesWith(I, Builder->getTrue());
4707       return replaceInstUsesWith(I, Builder->getFalse());
4708     }
4709   }
4710
4711   if (!LHSUnsigned) {
4712     // See if the RHS value is < SignedMin.
4713     APFloat SMin(RHS.getSemantics());
4714     SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
4715                           APFloat::rmNearestTiesToEven);
4716     if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
4717       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
4718           Pred == ICmpInst::ICMP_SGE)
4719         return replaceInstUsesWith(I, Builder->getTrue());
4720       return replaceInstUsesWith(I, Builder->getFalse());
4721     }
4722   } else {
4723     // See if the RHS value is < UnsignedMin.
4724     APFloat SMin(RHS.getSemantics());
4725     SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true,
4726                           APFloat::rmNearestTiesToEven);
4727     if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0
4728       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
4729           Pred == ICmpInst::ICMP_UGE)
4730         return replaceInstUsesWith(I, Builder->getTrue());
4731       return replaceInstUsesWith(I, Builder->getFalse());
4732     }
4733   }
4734
4735   // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
4736   // [0, UMAX], but it may still be fractional.  See if it is fractional by
4737   // casting the FP value to the integer value and back, checking for equality.
4738   // Don't do this for zero, because -0.0 is not fractional.
4739   Constant *RHSInt = LHSUnsigned
4740     ? ConstantExpr::getFPToUI(RHSC, IntTy)
4741     : ConstantExpr::getFPToSI(RHSC, IntTy);
4742   if (!RHS.isZero()) {
4743     bool Equal = LHSUnsigned
4744       ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
4745       : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
4746     if (!Equal) {
4747       // If we had a comparison against a fractional value, we have to adjust
4748       // the compare predicate and sometimes the value.  RHSC is rounded towards
4749       // zero at this point.
4750       switch (Pred) {
4751       default: llvm_unreachable("Unexpected integer comparison!");
4752       case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
4753         return replaceInstUsesWith(I, Builder->getTrue());
4754       case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
4755         return replaceInstUsesWith(I, Builder->getFalse());
4756       case ICmpInst::ICMP_ULE:
4757         // (float)int <= 4.4   --> int <= 4
4758         // (float)int <= -4.4  --> false
4759         if (RHS.isNegative())
4760           return replaceInstUsesWith(I, Builder->getFalse());
4761         break;
4762       case ICmpInst::ICMP_SLE:
4763         // (float)int <= 4.4   --> int <= 4
4764         // (float)int <= -4.4  --> int < -4
4765         if (RHS.isNegative())
4766           Pred = ICmpInst::ICMP_SLT;
4767         break;
4768       case ICmpInst::ICMP_ULT:
4769         // (float)int < -4.4   --> false
4770         // (float)int < 4.4    --> int <= 4
4771         if (RHS.isNegative())
4772           return replaceInstUsesWith(I, Builder->getFalse());
4773         Pred = ICmpInst::ICMP_ULE;
4774         break;
4775       case ICmpInst::ICMP_SLT:
4776         // (float)int < -4.4   --> int < -4
4777         // (float)int < 4.4    --> int <= 4
4778         if (!RHS.isNegative())
4779           Pred = ICmpInst::ICMP_SLE;
4780         break;
4781       case ICmpInst::ICMP_UGT:
4782         // (float)int > 4.4    --> int > 4
4783         // (float)int > -4.4   --> true
4784         if (RHS.isNegative())
4785           return replaceInstUsesWith(I, Builder->getTrue());
4786         break;
4787       case ICmpInst::ICMP_SGT:
4788         // (float)int > 4.4    --> int > 4
4789         // (float)int > -4.4   --> int >= -4
4790         if (RHS.isNegative())
4791           Pred = ICmpInst::ICMP_SGE;
4792         break;
4793       case ICmpInst::ICMP_UGE:
4794         // (float)int >= -4.4   --> true
4795         // (float)int >= 4.4    --> int > 4
4796         if (RHS.isNegative())
4797           return replaceInstUsesWith(I, Builder->getTrue());
4798         Pred = ICmpInst::ICMP_UGT;
4799         break;
4800       case ICmpInst::ICMP_SGE:
4801         // (float)int >= -4.4   --> int >= -4
4802         // (float)int >= 4.4    --> int > 4
4803         if (!RHS.isNegative())
4804           Pred = ICmpInst::ICMP_SGT;
4805         break;
4806       }
4807     }
4808   }
4809
4810   // Lower this FP comparison into an appropriate integer version of the
4811   // comparison.
4812   return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
4813 }
4814
4815 Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
4816   bool Changed = false;
4817
4818   /// Orders the operands of the compare so that they are listed from most
4819   /// complex to least complex.  This puts constants before unary operators,
4820   /// before binary operators.
4821   if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
4822     I.swapOperands();
4823     Changed = true;
4824   }
4825
4826   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4827
4828   if (Value *V =
4829           SimplifyFCmpInst(I.getPredicate(), Op0, Op1, I.getFastMathFlags(),
4830                            SQ.getWithInstruction(&I)))
4831     return replaceInstUsesWith(I, V);
4832
4833   // Simplify 'fcmp pred X, X'
4834   if (Op0 == Op1) {
4835     switch (I.getPredicate()) {
4836     default: llvm_unreachable("Unknown predicate!");
4837     case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
4838     case FCmpInst::FCMP_ULT:    // True if unordered or less than
4839     case FCmpInst::FCMP_UGT:    // True if unordered or greater than
4840     case FCmpInst::FCMP_UNE:    // True if unordered or not equal
4841       // Canonicalize these to be 'fcmp uno %X, 0.0'.
4842       I.setPredicate(FCmpInst::FCMP_UNO);
4843       I.setOperand(1, Constant::getNullValue(Op0->getType()));
4844       return &I;
4845
4846     case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
4847     case FCmpInst::FCMP_OEQ:    // True if ordered and equal
4848     case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
4849     case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
4850       // Canonicalize these to be 'fcmp ord %X, 0.0'.
4851       I.setPredicate(FCmpInst::FCMP_ORD);
4852       I.setOperand(1, Constant::getNullValue(Op0->getType()));
4853       return &I;
4854     }
4855   }
4856
4857   // Test if the FCmpInst instruction is used exclusively by a select as
4858   // part of a minimum or maximum operation. If so, refrain from doing
4859   // any other folding. This helps out other analyses which understand
4860   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
4861   // and CodeGen. And in this case, at least one of the comparison
4862   // operands has at least one user besides the compare (the select),
4863   // which would often largely negate the benefit of folding anyway.
4864   if (I.hasOneUse())
4865     if (SelectInst *SI = dyn_cast<SelectInst>(*I.user_begin()))
4866       if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
4867           (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
4868         return nullptr;
4869
4870   // Handle fcmp with constant RHS
4871   if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
4872     if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
4873       switch (LHSI->getOpcode()) {
4874       case Instruction::FPExt: {
4875         // fcmp (fpext x), C -> fcmp x, (fptrunc C) if fptrunc is lossless
4876         FPExtInst *LHSExt = cast<FPExtInst>(LHSI);
4877         ConstantFP *RHSF = dyn_cast<ConstantFP>(RHSC);
4878         if (!RHSF)
4879           break;
4880
4881         const fltSemantics *Sem;
4882         // FIXME: This shouldn't be here.
4883         if (LHSExt->getSrcTy()->isHalfTy())
4884           Sem = &APFloat::IEEEhalf();
4885         else if (LHSExt->getSrcTy()->isFloatTy())
4886           Sem = &APFloat::IEEEsingle();
4887         else if (LHSExt->getSrcTy()->isDoubleTy())
4888           Sem = &APFloat::IEEEdouble();
4889         else if (LHSExt->getSrcTy()->isFP128Ty())
4890           Sem = &APFloat::IEEEquad();
4891         else if (LHSExt->getSrcTy()->isX86_FP80Ty())
4892           Sem = &APFloat::x87DoubleExtended();
4893         else if (LHSExt->getSrcTy()->isPPC_FP128Ty())
4894           Sem = &APFloat::PPCDoubleDouble();
4895         else
4896           break;
4897
4898         bool Lossy;
4899         APFloat F = RHSF->getValueAPF();
4900         F.convert(*Sem, APFloat::rmNearestTiesToEven, &Lossy);
4901
4902         // Avoid lossy conversions and denormals. Zero is a special case
4903         // that's OK to convert.
4904         APFloat Fabs = F;
4905         Fabs.clearSign();
4906         if (!Lossy &&
4907             ((Fabs.compare(APFloat::getSmallestNormalized(*Sem)) !=
4908                  APFloat::cmpLessThan) || Fabs.isZero()))
4909
4910           return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
4911                               ConstantFP::get(RHSC->getContext(), F));
4912         break;
4913       }
4914       case Instruction::PHI:
4915         // Only fold fcmp into the PHI if the phi and fcmp are in the same
4916         // block.  If in the same block, we're encouraging jump threading.  If
4917         // not, we are just pessimizing the code by making an i1 phi.
4918         if (LHSI->getParent() == I.getParent())
4919           if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
4920             return NV;
4921         break;
4922       case Instruction::SIToFP:
4923       case Instruction::UIToFP:
4924         if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC))
4925           return NV;
4926         break;
4927       case Instruction::FSub: {
4928         // fcmp pred (fneg x), C -> fcmp swap(pred) x, -C
4929         Value *Op;
4930         if (match(LHSI, m_FNeg(m_Value(Op))))
4931           return new FCmpInst(I.getSwappedPredicate(), Op,
4932                               ConstantExpr::getFNeg(RHSC));
4933         break;
4934       }
4935       case Instruction::Load:
4936         if (GetElementPtrInst *GEP =
4937             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
4938           if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
4939             if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
4940                 !cast<LoadInst>(LHSI)->isVolatile())
4941               if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
4942                 return Res;
4943         }
4944         break;
4945       case Instruction::Call: {
4946         if (!RHSC->isNullValue())
4947           break;
4948
4949         CallInst *CI = cast<CallInst>(LHSI);
4950         Intrinsic::ID IID = getIntrinsicForCallSite(CI, &TLI);
4951         if (IID != Intrinsic::fabs)
4952           break;
4953
4954         // Various optimization for fabs compared with zero.
4955         switch (I.getPredicate()) {
4956         default:
4957           break;
4958         // fabs(x) < 0 --> false
4959         case FCmpInst::FCMP_OLT:
4960           llvm_unreachable("handled by SimplifyFCmpInst");
4961         // fabs(x) > 0 --> x != 0
4962         case FCmpInst::FCMP_OGT:
4963           return new FCmpInst(FCmpInst::FCMP_ONE, CI->getArgOperand(0), RHSC);
4964         // fabs(x) <= 0 --> x == 0
4965         case FCmpInst::FCMP_OLE:
4966           return new FCmpInst(FCmpInst::FCMP_OEQ, CI->getArgOperand(0), RHSC);
4967         // fabs(x) >= 0 --> !isnan(x)
4968         case FCmpInst::FCMP_OGE:
4969           return new FCmpInst(FCmpInst::FCMP_ORD, CI->getArgOperand(0), RHSC);
4970         // fabs(x) == 0 --> x == 0
4971         // fabs(x) != 0 --> x != 0
4972         case FCmpInst::FCMP_OEQ:
4973         case FCmpInst::FCMP_UEQ:
4974         case FCmpInst::FCMP_ONE:
4975         case FCmpInst::FCMP_UNE:
4976           return new FCmpInst(I.getPredicate(), CI->getArgOperand(0), RHSC);
4977         }
4978       }
4979       }
4980   }
4981
4982   // fcmp pred (fneg x), (fneg y) -> fcmp swap(pred) x, y
4983   Value *X, *Y;
4984   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
4985     return new FCmpInst(I.getSwappedPredicate(), X, Y);
4986
4987   // fcmp (fpext x), (fpext y) -> fcmp x, y
4988   if (FPExtInst *LHSExt = dyn_cast<FPExtInst>(Op0))
4989     if (FPExtInst *RHSExt = dyn_cast<FPExtInst>(Op1))
4990       if (LHSExt->getSrcTy() == RHSExt->getSrcTy())
4991         return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
4992                             RHSExt->getOperand(0));
4993
4994   return Changed ? &I : nullptr;
4995 }