]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp
Merge clang 7.0.1 and several follow-up changes
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / InstCombine / InstCombineLoadStoreAlloca.cpp
1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for load, store and alloca.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/MapVector.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/Loads.h"
19 #include "llvm/Transforms/Utils/Local.h"
20 #include "llvm/IR/ConstantRange.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/MDBuilder.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
27 using namespace llvm;
28 using namespace PatternMatch;
29
30 #define DEBUG_TYPE "instcombine"
31
32 STATISTIC(NumDeadStore,    "Number of dead stores eliminated");
33 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global");
34
35 /// pointsToConstantGlobal - Return true if V (possibly indirectly) points to
36 /// some part of a constant global variable.  This intentionally only accepts
37 /// constant expressions because we can't rewrite arbitrary instructions.
38 static bool pointsToConstantGlobal(Value *V) {
39   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
40     return GV->isConstant();
41
42   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
43     if (CE->getOpcode() == Instruction::BitCast ||
44         CE->getOpcode() == Instruction::AddrSpaceCast ||
45         CE->getOpcode() == Instruction::GetElementPtr)
46       return pointsToConstantGlobal(CE->getOperand(0));
47   }
48   return false;
49 }
50
51 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
52 /// pointer to an alloca.  Ignore any reads of the pointer, return false if we
53 /// see any stores or other unknown uses.  If we see pointer arithmetic, keep
54 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse
55 /// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
56 /// the alloca, and if the source pointer is a pointer to a constant global, we
57 /// can optimize this.
58 static bool
59 isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
60                                SmallVectorImpl<Instruction *> &ToDelete) {
61   // We track lifetime intrinsics as we encounter them.  If we decide to go
62   // ahead and replace the value with the global, this lets the caller quickly
63   // eliminate the markers.
64
65   SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect;
66   ValuesToInspect.emplace_back(V, false);
67   while (!ValuesToInspect.empty()) {
68     auto ValuePair = ValuesToInspect.pop_back_val();
69     const bool IsOffset = ValuePair.second;
70     for (auto &U : ValuePair.first->uses()) {
71       auto *I = cast<Instruction>(U.getUser());
72
73       if (auto *LI = dyn_cast<LoadInst>(I)) {
74         // Ignore non-volatile loads, they are always ok.
75         if (!LI->isSimple()) return false;
76         continue;
77       }
78
79       if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) {
80         // If uses of the bitcast are ok, we are ok.
81         ValuesToInspect.emplace_back(I, IsOffset);
82         continue;
83       }
84       if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
85         // If the GEP has all zero indices, it doesn't offset the pointer. If it
86         // doesn't, it does.
87         ValuesToInspect.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices());
88         continue;
89       }
90
91       if (auto CS = CallSite(I)) {
92         // If this is the function being called then we treat it like a load and
93         // ignore it.
94         if (CS.isCallee(&U))
95           continue;
96
97         unsigned DataOpNo = CS.getDataOperandNo(&U);
98         bool IsArgOperand = CS.isArgOperand(&U);
99
100         // Inalloca arguments are clobbered by the call.
101         if (IsArgOperand && CS.isInAllocaArgument(DataOpNo))
102           return false;
103
104         // If this is a readonly/readnone call site, then we know it is just a
105         // load (but one that potentially returns the value itself), so we can
106         // ignore it if we know that the value isn't captured.
107         if (CS.onlyReadsMemory() &&
108             (CS.getInstruction()->use_empty() || CS.doesNotCapture(DataOpNo)))
109           continue;
110
111         // If this is being passed as a byval argument, the caller is making a
112         // copy, so it is only a read of the alloca.
113         if (IsArgOperand && CS.isByValArgument(DataOpNo))
114           continue;
115       }
116
117       // Lifetime intrinsics can be handled by the caller.
118       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
119         if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
120             II->getIntrinsicID() == Intrinsic::lifetime_end) {
121           assert(II->use_empty() && "Lifetime markers have no result to use!");
122           ToDelete.push_back(II);
123           continue;
124         }
125       }
126
127       // If this is isn't our memcpy/memmove, reject it as something we can't
128       // handle.
129       MemTransferInst *MI = dyn_cast<MemTransferInst>(I);
130       if (!MI)
131         return false;
132
133       // If the transfer is using the alloca as a source of the transfer, then
134       // ignore it since it is a load (unless the transfer is volatile).
135       if (U.getOperandNo() == 1) {
136         if (MI->isVolatile()) return false;
137         continue;
138       }
139
140       // If we already have seen a copy, reject the second one.
141       if (TheCopy) return false;
142
143       // If the pointer has been offset from the start of the alloca, we can't
144       // safely handle this.
145       if (IsOffset) return false;
146
147       // If the memintrinsic isn't using the alloca as the dest, reject it.
148       if (U.getOperandNo() != 0) return false;
149
150       // If the source of the memcpy/move is not a constant global, reject it.
151       if (!pointsToConstantGlobal(MI->getSource()))
152         return false;
153
154       // Otherwise, the transform is safe.  Remember the copy instruction.
155       TheCopy = MI;
156     }
157   }
158   return true;
159 }
160
161 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
162 /// modified by a copy from a constant global.  If we can prove this, we can
163 /// replace any uses of the alloca with uses of the global directly.
164 static MemTransferInst *
165 isOnlyCopiedFromConstantGlobal(AllocaInst *AI,
166                                SmallVectorImpl<Instruction *> &ToDelete) {
167   MemTransferInst *TheCopy = nullptr;
168   if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete))
169     return TheCopy;
170   return nullptr;
171 }
172
173 /// Returns true if V is dereferenceable for size of alloca.
174 static bool isDereferenceableForAllocaSize(const Value *V, const AllocaInst *AI,
175                                            const DataLayout &DL) {
176   if (AI->isArrayAllocation())
177     return false;
178   uint64_t AllocaSize = DL.getTypeStoreSize(AI->getAllocatedType());
179   if (!AllocaSize)
180     return false;
181   return isDereferenceableAndAlignedPointer(V, AI->getAlignment(),
182                                             APInt(64, AllocaSize), DL);
183 }
184
185 static Instruction *simplifyAllocaArraySize(InstCombiner &IC, AllocaInst &AI) {
186   // Check for array size of 1 (scalar allocation).
187   if (!AI.isArrayAllocation()) {
188     // i32 1 is the canonical array size for scalar allocations.
189     if (AI.getArraySize()->getType()->isIntegerTy(32))
190       return nullptr;
191
192     // Canonicalize it.
193     Value *V = IC.Builder.getInt32(1);
194     AI.setOperand(0, V);
195     return &AI;
196   }
197
198   // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
199   if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
200     Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
201     AllocaInst *New = IC.Builder.CreateAlloca(NewTy, nullptr, AI.getName());
202     New->setAlignment(AI.getAlignment());
203
204     // Scan to the end of the allocation instructions, to skip over a block of
205     // allocas if possible...also skip interleaved debug info
206     //
207     BasicBlock::iterator It(New);
208     while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It))
209       ++It;
210
211     // Now that I is pointing to the first non-allocation-inst in the block,
212     // insert our getelementptr instruction...
213     //
214     Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType());
215     Value *NullIdx = Constant::getNullValue(IdxTy);
216     Value *Idx[2] = {NullIdx, NullIdx};
217     Instruction *GEP =
218         GetElementPtrInst::CreateInBounds(New, Idx, New->getName() + ".sub");
219     IC.InsertNewInstBefore(GEP, *It);
220
221     // Now make everything use the getelementptr instead of the original
222     // allocation.
223     return IC.replaceInstUsesWith(AI, GEP);
224   }
225
226   if (isa<UndefValue>(AI.getArraySize()))
227     return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
228
229   // Ensure that the alloca array size argument has type intptr_t, so that
230   // any casting is exposed early.
231   Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType());
232   if (AI.getArraySize()->getType() != IntPtrTy) {
233     Value *V = IC.Builder.CreateIntCast(AI.getArraySize(), IntPtrTy, false);
234     AI.setOperand(0, V);
235     return &AI;
236   }
237
238   return nullptr;
239 }
240
241 namespace {
242 // If I and V are pointers in different address space, it is not allowed to
243 // use replaceAllUsesWith since I and V have different types. A
244 // non-target-specific transformation should not use addrspacecast on V since
245 // the two address space may be disjoint depending on target.
246 //
247 // This class chases down uses of the old pointer until reaching the load
248 // instructions, then replaces the old pointer in the load instructions with
249 // the new pointer. If during the chasing it sees bitcast or GEP, it will
250 // create new bitcast or GEP with the new pointer and use them in the load
251 // instruction.
252 class PointerReplacer {
253 public:
254   PointerReplacer(InstCombiner &IC) : IC(IC) {}
255   void replacePointer(Instruction &I, Value *V);
256
257 private:
258   void findLoadAndReplace(Instruction &I);
259   void replace(Instruction *I);
260   Value *getReplacement(Value *I);
261
262   SmallVector<Instruction *, 4> Path;
263   MapVector<Value *, Value *> WorkMap;
264   InstCombiner &IC;
265 };
266 } // end anonymous namespace
267
268 void PointerReplacer::findLoadAndReplace(Instruction &I) {
269   for (auto U : I.users()) {
270     auto *Inst = dyn_cast<Instruction>(&*U);
271     if (!Inst)
272       return;
273     LLVM_DEBUG(dbgs() << "Found pointer user: " << *U << '\n');
274     if (isa<LoadInst>(Inst)) {
275       for (auto P : Path)
276         replace(P);
277       replace(Inst);
278     } else if (isa<GetElementPtrInst>(Inst) || isa<BitCastInst>(Inst)) {
279       Path.push_back(Inst);
280       findLoadAndReplace(*Inst);
281       Path.pop_back();
282     } else {
283       return;
284     }
285   }
286 }
287
288 Value *PointerReplacer::getReplacement(Value *V) {
289   auto Loc = WorkMap.find(V);
290   if (Loc != WorkMap.end())
291     return Loc->second;
292   return nullptr;
293 }
294
295 void PointerReplacer::replace(Instruction *I) {
296   if (getReplacement(I))
297     return;
298
299   if (auto *LT = dyn_cast<LoadInst>(I)) {
300     auto *V = getReplacement(LT->getPointerOperand());
301     assert(V && "Operand not replaced");
302     auto *NewI = new LoadInst(V);
303     NewI->takeName(LT);
304     IC.InsertNewInstWith(NewI, *LT);
305     IC.replaceInstUsesWith(*LT, NewI);
306     WorkMap[LT] = NewI;
307   } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
308     auto *V = getReplacement(GEP->getPointerOperand());
309     assert(V && "Operand not replaced");
310     SmallVector<Value *, 8> Indices;
311     Indices.append(GEP->idx_begin(), GEP->idx_end());
312     auto *NewI = GetElementPtrInst::Create(
313         V->getType()->getPointerElementType(), V, Indices);
314     IC.InsertNewInstWith(NewI, *GEP);
315     NewI->takeName(GEP);
316     WorkMap[GEP] = NewI;
317   } else if (auto *BC = dyn_cast<BitCastInst>(I)) {
318     auto *V = getReplacement(BC->getOperand(0));
319     assert(V && "Operand not replaced");
320     auto *NewT = PointerType::get(BC->getType()->getPointerElementType(),
321                                   V->getType()->getPointerAddressSpace());
322     auto *NewI = new BitCastInst(V, NewT);
323     IC.InsertNewInstWith(NewI, *BC);
324     NewI->takeName(BC);
325     WorkMap[BC] = NewI;
326   } else {
327     llvm_unreachable("should never reach here");
328   }
329 }
330
331 void PointerReplacer::replacePointer(Instruction &I, Value *V) {
332 #ifndef NDEBUG
333   auto *PT = cast<PointerType>(I.getType());
334   auto *NT = cast<PointerType>(V->getType());
335   assert(PT != NT && PT->getElementType() == NT->getElementType() &&
336          "Invalid usage");
337 #endif
338   WorkMap[&I] = V;
339   findLoadAndReplace(I);
340 }
341
342 Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
343   if (auto *I = simplifyAllocaArraySize(*this, AI))
344     return I;
345
346   if (AI.getAllocatedType()->isSized()) {
347     // If the alignment is 0 (unspecified), assign it the preferred alignment.
348     if (AI.getAlignment() == 0)
349       AI.setAlignment(DL.getPrefTypeAlignment(AI.getAllocatedType()));
350
351     // Move all alloca's of zero byte objects to the entry block and merge them
352     // together.  Note that we only do this for alloca's, because malloc should
353     // allocate and return a unique pointer, even for a zero byte allocation.
354     if (DL.getTypeAllocSize(AI.getAllocatedType()) == 0) {
355       // For a zero sized alloca there is no point in doing an array allocation.
356       // This is helpful if the array size is a complicated expression not used
357       // elsewhere.
358       if (AI.isArrayAllocation()) {
359         AI.setOperand(0, ConstantInt::get(AI.getArraySize()->getType(), 1));
360         return &AI;
361       }
362
363       // Get the first instruction in the entry block.
364       BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock();
365       Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg();
366       if (FirstInst != &AI) {
367         // If the entry block doesn't start with a zero-size alloca then move
368         // this one to the start of the entry block.  There is no problem with
369         // dominance as the array size was forced to a constant earlier already.
370         AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst);
371         if (!EntryAI || !EntryAI->getAllocatedType()->isSized() ||
372             DL.getTypeAllocSize(EntryAI->getAllocatedType()) != 0) {
373           AI.moveBefore(FirstInst);
374           return &AI;
375         }
376
377         // If the alignment of the entry block alloca is 0 (unspecified),
378         // assign it the preferred alignment.
379         if (EntryAI->getAlignment() == 0)
380           EntryAI->setAlignment(
381               DL.getPrefTypeAlignment(EntryAI->getAllocatedType()));
382         // Replace this zero-sized alloca with the one at the start of the entry
383         // block after ensuring that the address will be aligned enough for both
384         // types.
385         unsigned MaxAlign = std::max(EntryAI->getAlignment(),
386                                      AI.getAlignment());
387         EntryAI->setAlignment(MaxAlign);
388         if (AI.getType() != EntryAI->getType())
389           return new BitCastInst(EntryAI, AI.getType());
390         return replaceInstUsesWith(AI, EntryAI);
391       }
392     }
393   }
394
395   if (AI.getAlignment()) {
396     // Check to see if this allocation is only modified by a memcpy/memmove from
397     // a constant global whose alignment is equal to or exceeds that of the
398     // allocation.  If this is the case, we can change all users to use
399     // the constant global instead.  This is commonly produced by the CFE by
400     // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
401     // is only subsequently read.
402     SmallVector<Instruction *, 4> ToDelete;
403     if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) {
404       unsigned SourceAlign = getOrEnforceKnownAlignment(
405           Copy->getSource(), AI.getAlignment(), DL, &AI, &AC, &DT);
406       if (AI.getAlignment() <= SourceAlign &&
407           isDereferenceableForAllocaSize(Copy->getSource(), &AI, DL)) {
408         LLVM_DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
409         LLVM_DEBUG(dbgs() << "  memcpy = " << *Copy << '\n');
410         for (unsigned i = 0, e = ToDelete.size(); i != e; ++i)
411           eraseInstFromFunction(*ToDelete[i]);
412         Constant *TheSrc = cast<Constant>(Copy->getSource());
413         auto *SrcTy = TheSrc->getType();
414         auto *DestTy = PointerType::get(AI.getType()->getPointerElementType(),
415                                         SrcTy->getPointerAddressSpace());
416         Constant *Cast =
417             ConstantExpr::getPointerBitCastOrAddrSpaceCast(TheSrc, DestTy);
418         if (AI.getType()->getPointerAddressSpace() ==
419             SrcTy->getPointerAddressSpace()) {
420           Instruction *NewI = replaceInstUsesWith(AI, Cast);
421           eraseInstFromFunction(*Copy);
422           ++NumGlobalCopies;
423           return NewI;
424         } else {
425           PointerReplacer PtrReplacer(*this);
426           PtrReplacer.replacePointer(AI, Cast);
427           ++NumGlobalCopies;
428         }
429       }
430     }
431   }
432
433   // At last, use the generic allocation site handler to aggressively remove
434   // unused allocas.
435   return visitAllocSite(AI);
436 }
437
438 // Are we allowed to form a atomic load or store of this type?
439 static bool isSupportedAtomicType(Type *Ty) {
440   return Ty->isIntOrPtrTy() || Ty->isFloatingPointTy();
441 }
442
443 /// Helper to combine a load to a new type.
444 ///
445 /// This just does the work of combining a load to a new type. It handles
446 /// metadata, etc., and returns the new instruction. The \c NewTy should be the
447 /// loaded *value* type. This will convert it to a pointer, cast the operand to
448 /// that pointer type, load it, etc.
449 ///
450 /// Note that this will create all of the instructions with whatever insert
451 /// point the \c InstCombiner currently is using.
452 static LoadInst *combineLoadToNewType(InstCombiner &IC, LoadInst &LI, Type *NewTy,
453                                       const Twine &Suffix = "") {
454   assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) &&
455          "can't fold an atomic load to requested type");
456
457   Value *Ptr = LI.getPointerOperand();
458   unsigned AS = LI.getPointerAddressSpace();
459   SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
460   LI.getAllMetadata(MD);
461
462   Value *NewPtr = nullptr;
463   if (!(match(Ptr, m_BitCast(m_Value(NewPtr))) &&
464         NewPtr->getType()->getPointerElementType() == NewTy &&
465         NewPtr->getType()->getPointerAddressSpace() == AS))
466     NewPtr = IC.Builder.CreateBitCast(Ptr, NewTy->getPointerTo(AS));
467
468   LoadInst *NewLoad = IC.Builder.CreateAlignedLoad(
469       NewPtr, LI.getAlignment(), LI.isVolatile(), LI.getName() + Suffix);
470   NewLoad->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
471   MDBuilder MDB(NewLoad->getContext());
472   for (const auto &MDPair : MD) {
473     unsigned ID = MDPair.first;
474     MDNode *N = MDPair.second;
475     // Note, essentially every kind of metadata should be preserved here! This
476     // routine is supposed to clone a load instruction changing *only its type*.
477     // The only metadata it makes sense to drop is metadata which is invalidated
478     // when the pointer type changes. This should essentially never be the case
479     // in LLVM, but we explicitly switch over only known metadata to be
480     // conservatively correct. If you are adding metadata to LLVM which pertains
481     // to loads, you almost certainly want to add it here.
482     switch (ID) {
483     case LLVMContext::MD_dbg:
484     case LLVMContext::MD_tbaa:
485     case LLVMContext::MD_prof:
486     case LLVMContext::MD_fpmath:
487     case LLVMContext::MD_tbaa_struct:
488     case LLVMContext::MD_invariant_load:
489     case LLVMContext::MD_alias_scope:
490     case LLVMContext::MD_noalias:
491     case LLVMContext::MD_nontemporal:
492     case LLVMContext::MD_mem_parallel_loop_access:
493       // All of these directly apply.
494       NewLoad->setMetadata(ID, N);
495       break;
496
497     case LLVMContext::MD_nonnull:
498       copyNonnullMetadata(LI, N, *NewLoad);
499       break;
500     case LLVMContext::MD_align:
501     case LLVMContext::MD_dereferenceable:
502     case LLVMContext::MD_dereferenceable_or_null:
503       // These only directly apply if the new type is also a pointer.
504       if (NewTy->isPointerTy())
505         NewLoad->setMetadata(ID, N);
506       break;
507     case LLVMContext::MD_range:
508       copyRangeMetadata(IC.getDataLayout(), LI, N, *NewLoad);
509       break;
510     }
511   }
512   return NewLoad;
513 }
514
515 /// Combine a store to a new type.
516 ///
517 /// Returns the newly created store instruction.
518 static StoreInst *combineStoreToNewValue(InstCombiner &IC, StoreInst &SI, Value *V) {
519   assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) &&
520          "can't fold an atomic store of requested type");
521
522   Value *Ptr = SI.getPointerOperand();
523   unsigned AS = SI.getPointerAddressSpace();
524   SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
525   SI.getAllMetadata(MD);
526
527   StoreInst *NewStore = IC.Builder.CreateAlignedStore(
528       V, IC.Builder.CreateBitCast(Ptr, V->getType()->getPointerTo(AS)),
529       SI.getAlignment(), SI.isVolatile());
530   NewStore->setAtomic(SI.getOrdering(), SI.getSyncScopeID());
531   for (const auto &MDPair : MD) {
532     unsigned ID = MDPair.first;
533     MDNode *N = MDPair.second;
534     // Note, essentially every kind of metadata should be preserved here! This
535     // routine is supposed to clone a store instruction changing *only its
536     // type*. The only metadata it makes sense to drop is metadata which is
537     // invalidated when the pointer type changes. This should essentially
538     // never be the case in LLVM, but we explicitly switch over only known
539     // metadata to be conservatively correct. If you are adding metadata to
540     // LLVM which pertains to stores, you almost certainly want to add it
541     // here.
542     switch (ID) {
543     case LLVMContext::MD_dbg:
544     case LLVMContext::MD_tbaa:
545     case LLVMContext::MD_prof:
546     case LLVMContext::MD_fpmath:
547     case LLVMContext::MD_tbaa_struct:
548     case LLVMContext::MD_alias_scope:
549     case LLVMContext::MD_noalias:
550     case LLVMContext::MD_nontemporal:
551     case LLVMContext::MD_mem_parallel_loop_access:
552       // All of these directly apply.
553       NewStore->setMetadata(ID, N);
554       break;
555
556     case LLVMContext::MD_invariant_load:
557     case LLVMContext::MD_nonnull:
558     case LLVMContext::MD_range:
559     case LLVMContext::MD_align:
560     case LLVMContext::MD_dereferenceable:
561     case LLVMContext::MD_dereferenceable_or_null:
562       // These don't apply for stores.
563       break;
564     }
565   }
566
567   return NewStore;
568 }
569
570 /// Returns true if instruction represent minmax pattern like:
571 ///   select ((cmp load V1, load V2), V1, V2).
572 static bool isMinMaxWithLoads(Value *V) {
573   assert(V->getType()->isPointerTy() && "Expected pointer type.");
574   // Ignore possible ty* to ixx* bitcast.
575   V = peekThroughBitcast(V);
576   // Check that select is select ((cmp load V1, load V2), V1, V2) - minmax
577   // pattern.
578   CmpInst::Predicate Pred;
579   Instruction *L1;
580   Instruction *L2;
581   Value *LHS;
582   Value *RHS;
583   if (!match(V, m_Select(m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2)),
584                          m_Value(LHS), m_Value(RHS))))
585     return false;
586   return (match(L1, m_Load(m_Specific(LHS))) &&
587           match(L2, m_Load(m_Specific(RHS)))) ||
588          (match(L1, m_Load(m_Specific(RHS))) &&
589           match(L2, m_Load(m_Specific(LHS))));
590 }
591
592 /// Combine loads to match the type of their uses' value after looking
593 /// through intervening bitcasts.
594 ///
595 /// The core idea here is that if the result of a load is used in an operation,
596 /// we should load the type most conducive to that operation. For example, when
597 /// loading an integer and converting that immediately to a pointer, we should
598 /// instead directly load a pointer.
599 ///
600 /// However, this routine must never change the width of a load or the number of
601 /// loads as that would introduce a semantic change. This combine is expected to
602 /// be a semantic no-op which just allows loads to more closely model the types
603 /// of their consuming operations.
604 ///
605 /// Currently, we also refuse to change the precise type used for an atomic load
606 /// or a volatile load. This is debatable, and might be reasonable to change
607 /// later. However, it is risky in case some backend or other part of LLVM is
608 /// relying on the exact type loaded to select appropriate atomic operations.
609 static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) {
610   // FIXME: We could probably with some care handle both volatile and ordered
611   // atomic loads here but it isn't clear that this is important.
612   if (!LI.isUnordered())
613     return nullptr;
614
615   if (LI.use_empty())
616     return nullptr;
617
618   // swifterror values can't be bitcasted.
619   if (LI.getPointerOperand()->isSwiftError())
620     return nullptr;
621
622   Type *Ty = LI.getType();
623   const DataLayout &DL = IC.getDataLayout();
624
625   // Try to canonicalize loads which are only ever stored to operate over
626   // integers instead of any other type. We only do this when the loaded type
627   // is sized and has a size exactly the same as its store size and the store
628   // size is a legal integer type.
629   // Do not perform canonicalization if minmax pattern is found (to avoid
630   // infinite loop).
631   if (!Ty->isIntegerTy() && Ty->isSized() &&
632       DL.isLegalInteger(DL.getTypeStoreSizeInBits(Ty)) &&
633       DL.getTypeStoreSizeInBits(Ty) == DL.getTypeSizeInBits(Ty) &&
634       !DL.isNonIntegralPointerType(Ty) &&
635       !isMinMaxWithLoads(
636           peekThroughBitcast(LI.getPointerOperand(), /*OneUseOnly=*/true))) {
637     if (all_of(LI.users(), [&LI](User *U) {
638           auto *SI = dyn_cast<StoreInst>(U);
639           return SI && SI->getPointerOperand() != &LI &&
640                  !SI->getPointerOperand()->isSwiftError();
641         })) {
642       LoadInst *NewLoad = combineLoadToNewType(
643           IC, LI,
644           Type::getIntNTy(LI.getContext(), DL.getTypeStoreSizeInBits(Ty)));
645       // Replace all the stores with stores of the newly loaded value.
646       for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) {
647         auto *SI = cast<StoreInst>(*UI++);
648         IC.Builder.SetInsertPoint(SI);
649         combineStoreToNewValue(IC, *SI, NewLoad);
650         IC.eraseInstFromFunction(*SI);
651       }
652       assert(LI.use_empty() && "Failed to remove all users of the load!");
653       // Return the old load so the combiner can delete it safely.
654       return &LI;
655     }
656   }
657
658   // Fold away bit casts of the loaded value by loading the desired type.
659   // We can do this for BitCastInsts as well as casts from and to pointer types,
660   // as long as those are noops (i.e., the source or dest type have the same
661   // bitwidth as the target's pointers).
662   if (LI.hasOneUse())
663     if (auto* CI = dyn_cast<CastInst>(LI.user_back()))
664       if (CI->isNoopCast(DL))
665         if (!LI.isAtomic() || isSupportedAtomicType(CI->getDestTy())) {
666           LoadInst *NewLoad = combineLoadToNewType(IC, LI, CI->getDestTy());
667           CI->replaceAllUsesWith(NewLoad);
668           IC.eraseInstFromFunction(*CI);
669           return &LI;
670         }
671
672   // FIXME: We should also canonicalize loads of vectors when their elements are
673   // cast to other types.
674   return nullptr;
675 }
676
677 static Instruction *unpackLoadToAggregate(InstCombiner &IC, LoadInst &LI) {
678   // FIXME: We could probably with some care handle both volatile and atomic
679   // stores here but it isn't clear that this is important.
680   if (!LI.isSimple())
681     return nullptr;
682
683   Type *T = LI.getType();
684   if (!T->isAggregateType())
685     return nullptr;
686
687   StringRef Name = LI.getName();
688   assert(LI.getAlignment() && "Alignment must be set at this point");
689
690   if (auto *ST = dyn_cast<StructType>(T)) {
691     // If the struct only have one element, we unpack.
692     auto NumElements = ST->getNumElements();
693     if (NumElements == 1) {
694       LoadInst *NewLoad = combineLoadToNewType(IC, LI, ST->getTypeAtIndex(0U),
695                                                ".unpack");
696       AAMDNodes AAMD;
697       LI.getAAMetadata(AAMD);
698       NewLoad->setAAMetadata(AAMD);
699       return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue(
700         UndefValue::get(T), NewLoad, 0, Name));
701     }
702
703     // We don't want to break loads with padding here as we'd loose
704     // the knowledge that padding exists for the rest of the pipeline.
705     const DataLayout &DL = IC.getDataLayout();
706     auto *SL = DL.getStructLayout(ST);
707     if (SL->hasPadding())
708       return nullptr;
709
710     auto Align = LI.getAlignment();
711     if (!Align)
712       Align = DL.getABITypeAlignment(ST);
713
714     auto *Addr = LI.getPointerOperand();
715     auto *IdxType = Type::getInt32Ty(T->getContext());
716     auto *Zero = ConstantInt::get(IdxType, 0);
717
718     Value *V = UndefValue::get(T);
719     for (unsigned i = 0; i < NumElements; i++) {
720       Value *Indices[2] = {
721         Zero,
722         ConstantInt::get(IdxType, i),
723       };
724       auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
725                                                Name + ".elt");
726       auto EltAlign = MinAlign(Align, SL->getElementOffset(i));
727       auto *L = IC.Builder.CreateAlignedLoad(Ptr, EltAlign, Name + ".unpack");
728       // Propagate AA metadata. It'll still be valid on the narrowed load.
729       AAMDNodes AAMD;
730       LI.getAAMetadata(AAMD);
731       L->setAAMetadata(AAMD);
732       V = IC.Builder.CreateInsertValue(V, L, i);
733     }
734
735     V->setName(Name);
736     return IC.replaceInstUsesWith(LI, V);
737   }
738
739   if (auto *AT = dyn_cast<ArrayType>(T)) {
740     auto *ET = AT->getElementType();
741     auto NumElements = AT->getNumElements();
742     if (NumElements == 1) {
743       LoadInst *NewLoad = combineLoadToNewType(IC, LI, ET, ".unpack");
744       AAMDNodes AAMD;
745       LI.getAAMetadata(AAMD);
746       NewLoad->setAAMetadata(AAMD);
747       return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue(
748         UndefValue::get(T), NewLoad, 0, Name));
749     }
750
751     // Bail out if the array is too large. Ideally we would like to optimize
752     // arrays of arbitrary size but this has a terrible impact on compile time.
753     // The threshold here is chosen arbitrarily, maybe needs a little bit of
754     // tuning.
755     if (NumElements > IC.MaxArraySizeForCombine)
756       return nullptr;
757
758     const DataLayout &DL = IC.getDataLayout();
759     auto EltSize = DL.getTypeAllocSize(ET);
760     auto Align = LI.getAlignment();
761     if (!Align)
762       Align = DL.getABITypeAlignment(T);
763
764     auto *Addr = LI.getPointerOperand();
765     auto *IdxType = Type::getInt64Ty(T->getContext());
766     auto *Zero = ConstantInt::get(IdxType, 0);
767
768     Value *V = UndefValue::get(T);
769     uint64_t Offset = 0;
770     for (uint64_t i = 0; i < NumElements; i++) {
771       Value *Indices[2] = {
772         Zero,
773         ConstantInt::get(IdxType, i),
774       };
775       auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
776                                                Name + ".elt");
777       auto *L = IC.Builder.CreateAlignedLoad(Ptr, MinAlign(Align, Offset),
778                                              Name + ".unpack");
779       AAMDNodes AAMD;
780       LI.getAAMetadata(AAMD);
781       L->setAAMetadata(AAMD);
782       V = IC.Builder.CreateInsertValue(V, L, i);
783       Offset += EltSize;
784     }
785
786     V->setName(Name);
787     return IC.replaceInstUsesWith(LI, V);
788   }
789
790   return nullptr;
791 }
792
793 // If we can determine that all possible objects pointed to by the provided
794 // pointer value are, not only dereferenceable, but also definitively less than
795 // or equal to the provided maximum size, then return true. Otherwise, return
796 // false (constant global values and allocas fall into this category).
797 //
798 // FIXME: This should probably live in ValueTracking (or similar).
799 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize,
800                                      const DataLayout &DL) {
801   SmallPtrSet<Value *, 4> Visited;
802   SmallVector<Value *, 4> Worklist(1, V);
803
804   do {
805     Value *P = Worklist.pop_back_val();
806     P = P->stripPointerCasts();
807
808     if (!Visited.insert(P).second)
809       continue;
810
811     if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
812       Worklist.push_back(SI->getTrueValue());
813       Worklist.push_back(SI->getFalseValue());
814       continue;
815     }
816
817     if (PHINode *PN = dyn_cast<PHINode>(P)) {
818       for (Value *IncValue : PN->incoming_values())
819         Worklist.push_back(IncValue);
820       continue;
821     }
822
823     if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) {
824       if (GA->isInterposable())
825         return false;
826       Worklist.push_back(GA->getAliasee());
827       continue;
828     }
829
830     // If we know how big this object is, and it is less than MaxSize, continue
831     // searching. Otherwise, return false.
832     if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) {
833       if (!AI->getAllocatedType()->isSized())
834         return false;
835
836       ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize());
837       if (!CS)
838         return false;
839
840       uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType());
841       // Make sure that, even if the multiplication below would wrap as an
842       // uint64_t, we still do the right thing.
843       if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize))
844         return false;
845       continue;
846     }
847
848     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
849       if (!GV->hasDefinitiveInitializer() || !GV->isConstant())
850         return false;
851
852       uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType());
853       if (InitSize > MaxSize)
854         return false;
855       continue;
856     }
857
858     return false;
859   } while (!Worklist.empty());
860
861   return true;
862 }
863
864 // If we're indexing into an object of a known size, and the outer index is
865 // not a constant, but having any value but zero would lead to undefined
866 // behavior, replace it with zero.
867 //
868 // For example, if we have:
869 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4
870 // ...
871 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x
872 // ... = load i32* %arrayidx, align 4
873 // Then we know that we can replace %x in the GEP with i64 0.
874 //
875 // FIXME: We could fold any GEP index to zero that would cause UB if it were
876 // not zero. Currently, we only handle the first such index. Also, we could
877 // also search through non-zero constant indices if we kept track of the
878 // offsets those indices implied.
879 static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI,
880                                      Instruction *MemI, unsigned &Idx) {
881   if (GEPI->getNumOperands() < 2)
882     return false;
883
884   // Find the first non-zero index of a GEP. If all indices are zero, return
885   // one past the last index.
886   auto FirstNZIdx = [](const GetElementPtrInst *GEPI) {
887     unsigned I = 1;
888     for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) {
889       Value *V = GEPI->getOperand(I);
890       if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
891         if (CI->isZero())
892           continue;
893
894       break;
895     }
896
897     return I;
898   };
899
900   // Skip through initial 'zero' indices, and find the corresponding pointer
901   // type. See if the next index is not a constant.
902   Idx = FirstNZIdx(GEPI);
903   if (Idx == GEPI->getNumOperands())
904     return false;
905   if (isa<Constant>(GEPI->getOperand(Idx)))
906     return false;
907
908   SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx);
909   Type *AllocTy =
910     GetElementPtrInst::getIndexedType(GEPI->getSourceElementType(), Ops);
911   if (!AllocTy || !AllocTy->isSized())
912     return false;
913   const DataLayout &DL = IC.getDataLayout();
914   uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy);
915
916   // If there are more indices after the one we might replace with a zero, make
917   // sure they're all non-negative. If any of them are negative, the overall
918   // address being computed might be before the base address determined by the
919   // first non-zero index.
920   auto IsAllNonNegative = [&]() {
921     for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) {
922       KnownBits Known = IC.computeKnownBits(GEPI->getOperand(i), 0, MemI);
923       if (Known.isNonNegative())
924         continue;
925       return false;
926     }
927
928     return true;
929   };
930
931   // FIXME: If the GEP is not inbounds, and there are extra indices after the
932   // one we'll replace, those could cause the address computation to wrap
933   // (rendering the IsAllNonNegative() check below insufficient). We can do
934   // better, ignoring zero indices (and other indices we can prove small
935   // enough not to wrap).
936   if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds())
937     return false;
938
939   // Note that isObjectSizeLessThanOrEq will return true only if the pointer is
940   // also known to be dereferenceable.
941   return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) &&
942          IsAllNonNegative();
943 }
944
945 // If we're indexing into an object with a variable index for the memory
946 // access, but the object has only one element, we can assume that the index
947 // will always be zero. If we replace the GEP, return it.
948 template <typename T>
949 static Instruction *replaceGEPIdxWithZero(InstCombiner &IC, Value *Ptr,
950                                           T &MemI) {
951   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) {
952     unsigned Idx;
953     if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) {
954       Instruction *NewGEPI = GEPI->clone();
955       NewGEPI->setOperand(Idx,
956         ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0));
957       NewGEPI->insertBefore(GEPI);
958       MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI);
959       return NewGEPI;
960     }
961   }
962
963   return nullptr;
964 }
965
966 static bool canSimplifyNullStoreOrGEP(StoreInst &SI) {
967   if (NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace()))
968     return false;
969
970   auto *Ptr = SI.getPointerOperand();
971   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr))
972     Ptr = GEPI->getOperand(0);
973   return (isa<ConstantPointerNull>(Ptr) &&
974           !NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace()));
975 }
976
977 static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op) {
978   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
979     const Value *GEPI0 = GEPI->getOperand(0);
980     if (isa<ConstantPointerNull>(GEPI0) &&
981         !NullPointerIsDefined(LI.getFunction(), GEPI->getPointerAddressSpace()))
982       return true;
983   }
984   if (isa<UndefValue>(Op) ||
985       (isa<ConstantPointerNull>(Op) &&
986        !NullPointerIsDefined(LI.getFunction(), LI.getPointerAddressSpace())))
987     return true;
988   return false;
989 }
990
991 Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
992   Value *Op = LI.getOperand(0);
993
994   // Try to canonicalize the loaded type.
995   if (Instruction *Res = combineLoadToOperationType(*this, LI))
996     return Res;
997
998   // Attempt to improve the alignment.
999   unsigned KnownAlign = getOrEnforceKnownAlignment(
1000       Op, DL.getPrefTypeAlignment(LI.getType()), DL, &LI, &AC, &DT);
1001   unsigned LoadAlign = LI.getAlignment();
1002   unsigned EffectiveLoadAlign =
1003       LoadAlign != 0 ? LoadAlign : DL.getABITypeAlignment(LI.getType());
1004
1005   if (KnownAlign > EffectiveLoadAlign)
1006     LI.setAlignment(KnownAlign);
1007   else if (LoadAlign == 0)
1008     LI.setAlignment(EffectiveLoadAlign);
1009
1010   // Replace GEP indices if possible.
1011   if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) {
1012       Worklist.Add(NewGEPI);
1013       return &LI;
1014   }
1015
1016   if (Instruction *Res = unpackLoadToAggregate(*this, LI))
1017     return Res;
1018
1019   // Do really simple store-to-load forwarding and load CSE, to catch cases
1020   // where there are several consecutive memory accesses to the same location,
1021   // separated by a few arithmetic operations.
1022   BasicBlock::iterator BBI(LI);
1023   bool IsLoadCSE = false;
1024   if (Value *AvailableVal = FindAvailableLoadedValue(
1025           &LI, LI.getParent(), BBI, DefMaxInstsToScan, AA, &IsLoadCSE)) {
1026     if (IsLoadCSE)
1027       combineMetadataForCSE(cast<LoadInst>(AvailableVal), &LI);
1028
1029     return replaceInstUsesWith(
1030         LI, Builder.CreateBitOrPointerCast(AvailableVal, LI.getType(),
1031                                            LI.getName() + ".cast"));
1032   }
1033
1034   // None of the following transforms are legal for volatile/ordered atomic
1035   // loads.  Most of them do apply for unordered atomics.
1036   if (!LI.isUnordered()) return nullptr;
1037
1038   // load(gep null, ...) -> unreachable
1039   // load null/undef -> unreachable
1040   // TODO: Consider a target hook for valid address spaces for this xforms.
1041   if (canSimplifyNullLoadOrGEP(LI, Op)) {
1042     // Insert a new store to null instruction before the load to indicate
1043     // that this code is not reachable.  We do this instead of inserting
1044     // an unreachable instruction directly because we cannot modify the
1045     // CFG.
1046     StoreInst *SI = new StoreInst(UndefValue::get(LI.getType()),
1047                                   Constant::getNullValue(Op->getType()), &LI);
1048     SI->setDebugLoc(LI.getDebugLoc());
1049     return replaceInstUsesWith(LI, UndefValue::get(LI.getType()));
1050   }
1051
1052   if (Op->hasOneUse()) {
1053     // Change select and PHI nodes to select values instead of addresses: this
1054     // helps alias analysis out a lot, allows many others simplifications, and
1055     // exposes redundancy in the code.
1056     //
1057     // Note that we cannot do the transformation unless we know that the
1058     // introduced loads cannot trap!  Something like this is valid as long as
1059     // the condition is always false: load (select bool %C, int* null, int* %G),
1060     // but it would not be valid if we transformed it to load from null
1061     // unconditionally.
1062     //
1063     if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
1064       // load (select (Cond, &V1, &V2))  --> select(Cond, load &V1, load &V2).
1065       unsigned Align = LI.getAlignment();
1066       if (isSafeToLoadUnconditionally(SI->getOperand(1), Align, DL, SI) &&
1067           isSafeToLoadUnconditionally(SI->getOperand(2), Align, DL, SI)) {
1068         LoadInst *V1 = Builder.CreateLoad(SI->getOperand(1),
1069                                           SI->getOperand(1)->getName()+".val");
1070         LoadInst *V2 = Builder.CreateLoad(SI->getOperand(2),
1071                                           SI->getOperand(2)->getName()+".val");
1072         assert(LI.isUnordered() && "implied by above");
1073         V1->setAlignment(Align);
1074         V1->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
1075         V2->setAlignment(Align);
1076         V2->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
1077         return SelectInst::Create(SI->getCondition(), V1, V2);
1078       }
1079
1080       // load (select (cond, null, P)) -> load P
1081       if (isa<ConstantPointerNull>(SI->getOperand(1)) &&
1082           !NullPointerIsDefined(SI->getFunction(),
1083                                 LI.getPointerAddressSpace())) {
1084         LI.setOperand(0, SI->getOperand(2));
1085         return &LI;
1086       }
1087
1088       // load (select (cond, P, null)) -> load P
1089       if (isa<ConstantPointerNull>(SI->getOperand(2)) &&
1090           !NullPointerIsDefined(SI->getFunction(),
1091                                 LI.getPointerAddressSpace())) {
1092         LI.setOperand(0, SI->getOperand(1));
1093         return &LI;
1094       }
1095     }
1096   }
1097   return nullptr;
1098 }
1099
1100 /// Look for extractelement/insertvalue sequence that acts like a bitcast.
1101 ///
1102 /// \returns underlying value that was "cast", or nullptr otherwise.
1103 ///
1104 /// For example, if we have:
1105 ///
1106 ///     %E0 = extractelement <2 x double> %U, i32 0
1107 ///     %V0 = insertvalue [2 x double] undef, double %E0, 0
1108 ///     %E1 = extractelement <2 x double> %U, i32 1
1109 ///     %V1 = insertvalue [2 x double] %V0, double %E1, 1
1110 ///
1111 /// and the layout of a <2 x double> is isomorphic to a [2 x double],
1112 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U.
1113 /// Note that %U may contain non-undef values where %V1 has undef.
1114 static Value *likeBitCastFromVector(InstCombiner &IC, Value *V) {
1115   Value *U = nullptr;
1116   while (auto *IV = dyn_cast<InsertValueInst>(V)) {
1117     auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand());
1118     if (!E)
1119       return nullptr;
1120     auto *W = E->getVectorOperand();
1121     if (!U)
1122       U = W;
1123     else if (U != W)
1124       return nullptr;
1125     auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand());
1126     if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin())
1127       return nullptr;
1128     V = IV->getAggregateOperand();
1129   }
1130   if (!isa<UndefValue>(V) ||!U)
1131     return nullptr;
1132
1133   auto *UT = cast<VectorType>(U->getType());
1134   auto *VT = V->getType();
1135   // Check that types UT and VT are bitwise isomorphic.
1136   const auto &DL = IC.getDataLayout();
1137   if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) {
1138     return nullptr;
1139   }
1140   if (auto *AT = dyn_cast<ArrayType>(VT)) {
1141     if (AT->getNumElements() != UT->getNumElements())
1142       return nullptr;
1143   } else {
1144     auto *ST = cast<StructType>(VT);
1145     if (ST->getNumElements() != UT->getNumElements())
1146       return nullptr;
1147     for (const auto *EltT : ST->elements()) {
1148       if (EltT != UT->getElementType())
1149         return nullptr;
1150     }
1151   }
1152   return U;
1153 }
1154
1155 /// Combine stores to match the type of value being stored.
1156 ///
1157 /// The core idea here is that the memory does not have any intrinsic type and
1158 /// where we can we should match the type of a store to the type of value being
1159 /// stored.
1160 ///
1161 /// However, this routine must never change the width of a store or the number of
1162 /// stores as that would introduce a semantic change. This combine is expected to
1163 /// be a semantic no-op which just allows stores to more closely model the types
1164 /// of their incoming values.
1165 ///
1166 /// Currently, we also refuse to change the precise type used for an atomic or
1167 /// volatile store. This is debatable, and might be reasonable to change later.
1168 /// However, it is risky in case some backend or other part of LLVM is relying
1169 /// on the exact type stored to select appropriate atomic operations.
1170 ///
1171 /// \returns true if the store was successfully combined away. This indicates
1172 /// the caller must erase the store instruction. We have to let the caller erase
1173 /// the store instruction as otherwise there is no way to signal whether it was
1174 /// combined or not: IC.EraseInstFromFunction returns a null pointer.
1175 static bool combineStoreToValueType(InstCombiner &IC, StoreInst &SI) {
1176   // FIXME: We could probably with some care handle both volatile and ordered
1177   // atomic stores here but it isn't clear that this is important.
1178   if (!SI.isUnordered())
1179     return false;
1180
1181   // swifterror values can't be bitcasted.
1182   if (SI.getPointerOperand()->isSwiftError())
1183     return false;
1184
1185   Value *V = SI.getValueOperand();
1186
1187   // Fold away bit casts of the stored value by storing the original type.
1188   if (auto *BC = dyn_cast<BitCastInst>(V)) {
1189     V = BC->getOperand(0);
1190     if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) {
1191       combineStoreToNewValue(IC, SI, V);
1192       return true;
1193     }
1194   }
1195
1196   if (Value *U = likeBitCastFromVector(IC, V))
1197     if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) {
1198       combineStoreToNewValue(IC, SI, U);
1199       return true;
1200     }
1201
1202   // FIXME: We should also canonicalize stores of vectors when their elements
1203   // are cast to other types.
1204   return false;
1205 }
1206
1207 static bool unpackStoreToAggregate(InstCombiner &IC, StoreInst &SI) {
1208   // FIXME: We could probably with some care handle both volatile and atomic
1209   // stores here but it isn't clear that this is important.
1210   if (!SI.isSimple())
1211     return false;
1212
1213   Value *V = SI.getValueOperand();
1214   Type *T = V->getType();
1215
1216   if (!T->isAggregateType())
1217     return false;
1218
1219   if (auto *ST = dyn_cast<StructType>(T)) {
1220     // If the struct only have one element, we unpack.
1221     unsigned Count = ST->getNumElements();
1222     if (Count == 1) {
1223       V = IC.Builder.CreateExtractValue(V, 0);
1224       combineStoreToNewValue(IC, SI, V);
1225       return true;
1226     }
1227
1228     // We don't want to break loads with padding here as we'd loose
1229     // the knowledge that padding exists for the rest of the pipeline.
1230     const DataLayout &DL = IC.getDataLayout();
1231     auto *SL = DL.getStructLayout(ST);
1232     if (SL->hasPadding())
1233       return false;
1234
1235     auto Align = SI.getAlignment();
1236     if (!Align)
1237       Align = DL.getABITypeAlignment(ST);
1238
1239     SmallString<16> EltName = V->getName();
1240     EltName += ".elt";
1241     auto *Addr = SI.getPointerOperand();
1242     SmallString<16> AddrName = Addr->getName();
1243     AddrName += ".repack";
1244
1245     auto *IdxType = Type::getInt32Ty(ST->getContext());
1246     auto *Zero = ConstantInt::get(IdxType, 0);
1247     for (unsigned i = 0; i < Count; i++) {
1248       Value *Indices[2] = {
1249         Zero,
1250         ConstantInt::get(IdxType, i),
1251       };
1252       auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
1253                                                AddrName);
1254       auto *Val = IC.Builder.CreateExtractValue(V, i, EltName);
1255       auto EltAlign = MinAlign(Align, SL->getElementOffset(i));
1256       llvm::Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign);
1257       AAMDNodes AAMD;
1258       SI.getAAMetadata(AAMD);
1259       NS->setAAMetadata(AAMD);
1260     }
1261
1262     return true;
1263   }
1264
1265   if (auto *AT = dyn_cast<ArrayType>(T)) {
1266     // If the array only have one element, we unpack.
1267     auto NumElements = AT->getNumElements();
1268     if (NumElements == 1) {
1269       V = IC.Builder.CreateExtractValue(V, 0);
1270       combineStoreToNewValue(IC, SI, V);
1271       return true;
1272     }
1273
1274     // Bail out if the array is too large. Ideally we would like to optimize
1275     // arrays of arbitrary size but this has a terrible impact on compile time.
1276     // The threshold here is chosen arbitrarily, maybe needs a little bit of
1277     // tuning.
1278     if (NumElements > IC.MaxArraySizeForCombine)
1279       return false;
1280
1281     const DataLayout &DL = IC.getDataLayout();
1282     auto EltSize = DL.getTypeAllocSize(AT->getElementType());
1283     auto Align = SI.getAlignment();
1284     if (!Align)
1285       Align = DL.getABITypeAlignment(T);
1286
1287     SmallString<16> EltName = V->getName();
1288     EltName += ".elt";
1289     auto *Addr = SI.getPointerOperand();
1290     SmallString<16> AddrName = Addr->getName();
1291     AddrName += ".repack";
1292
1293     auto *IdxType = Type::getInt64Ty(T->getContext());
1294     auto *Zero = ConstantInt::get(IdxType, 0);
1295
1296     uint64_t Offset = 0;
1297     for (uint64_t i = 0; i < NumElements; i++) {
1298       Value *Indices[2] = {
1299         Zero,
1300         ConstantInt::get(IdxType, i),
1301       };
1302       auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
1303                                                AddrName);
1304       auto *Val = IC.Builder.CreateExtractValue(V, i, EltName);
1305       auto EltAlign = MinAlign(Align, Offset);
1306       Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign);
1307       AAMDNodes AAMD;
1308       SI.getAAMetadata(AAMD);
1309       NS->setAAMetadata(AAMD);
1310       Offset += EltSize;
1311     }
1312
1313     return true;
1314   }
1315
1316   return false;
1317 }
1318
1319 /// equivalentAddressValues - Test if A and B will obviously have the same
1320 /// value. This includes recognizing that %t0 and %t1 will have the same
1321 /// value in code like this:
1322 ///   %t0 = getelementptr \@a, 0, 3
1323 ///   store i32 0, i32* %t0
1324 ///   %t1 = getelementptr \@a, 0, 3
1325 ///   %t2 = load i32* %t1
1326 ///
1327 static bool equivalentAddressValues(Value *A, Value *B) {
1328   // Test if the values are trivially equivalent.
1329   if (A == B) return true;
1330
1331   // Test if the values come form identical arithmetic instructions.
1332   // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
1333   // its only used to compare two uses within the same basic block, which
1334   // means that they'll always either have the same value or one of them
1335   // will have an undefined value.
1336   if (isa<BinaryOperator>(A) ||
1337       isa<CastInst>(A) ||
1338       isa<PHINode>(A) ||
1339       isa<GetElementPtrInst>(A))
1340     if (Instruction *BI = dyn_cast<Instruction>(B))
1341       if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
1342         return true;
1343
1344   // Otherwise they may not be equivalent.
1345   return false;
1346 }
1347
1348 /// Converts store (bitcast (load (bitcast (select ...)))) to
1349 /// store (load (select ...)), where select is minmax:
1350 /// select ((cmp load V1, load V2), V1, V2).
1351 static bool removeBitcastsFromLoadStoreOnMinMax(InstCombiner &IC,
1352                                                 StoreInst &SI) {
1353   // bitcast?
1354   if (!match(SI.getPointerOperand(), m_BitCast(m_Value())))
1355     return false;
1356   // load? integer?
1357   Value *LoadAddr;
1358   if (!match(SI.getValueOperand(), m_Load(m_BitCast(m_Value(LoadAddr)))))
1359     return false;
1360   auto *LI = cast<LoadInst>(SI.getValueOperand());
1361   if (!LI->getType()->isIntegerTy())
1362     return false;
1363   if (!isMinMaxWithLoads(LoadAddr))
1364     return false;
1365
1366   if (!all_of(LI->users(), [LI, LoadAddr](User *U) {
1367         auto *SI = dyn_cast<StoreInst>(U);
1368         return SI && SI->getPointerOperand() != LI &&
1369                peekThroughBitcast(SI->getPointerOperand()) != LoadAddr &&
1370                !SI->getPointerOperand()->isSwiftError();
1371       }))
1372     return false;
1373
1374   IC.Builder.SetInsertPoint(LI);
1375   LoadInst *NewLI = combineLoadToNewType(
1376       IC, *LI, LoadAddr->getType()->getPointerElementType());
1377   // Replace all the stores with stores of the newly loaded value.
1378   for (auto *UI : LI->users()) {
1379     auto *USI = cast<StoreInst>(UI);
1380     IC.Builder.SetInsertPoint(USI);
1381     combineStoreToNewValue(IC, *USI, NewLI);
1382   }
1383   IC.replaceInstUsesWith(*LI, UndefValue::get(LI->getType()));
1384   IC.eraseInstFromFunction(*LI);
1385   return true;
1386 }
1387
1388 Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
1389   Value *Val = SI.getOperand(0);
1390   Value *Ptr = SI.getOperand(1);
1391
1392   // Try to canonicalize the stored type.
1393   if (combineStoreToValueType(*this, SI))
1394     return eraseInstFromFunction(SI);
1395
1396   // Attempt to improve the alignment.
1397   unsigned KnownAlign = getOrEnforceKnownAlignment(
1398       Ptr, DL.getPrefTypeAlignment(Val->getType()), DL, &SI, &AC, &DT);
1399   unsigned StoreAlign = SI.getAlignment();
1400   unsigned EffectiveStoreAlign =
1401       StoreAlign != 0 ? StoreAlign : DL.getABITypeAlignment(Val->getType());
1402
1403   if (KnownAlign > EffectiveStoreAlign)
1404     SI.setAlignment(KnownAlign);
1405   else if (StoreAlign == 0)
1406     SI.setAlignment(EffectiveStoreAlign);
1407
1408   // Try to canonicalize the stored type.
1409   if (unpackStoreToAggregate(*this, SI))
1410     return eraseInstFromFunction(SI);
1411
1412   if (removeBitcastsFromLoadStoreOnMinMax(*this, SI))
1413     return eraseInstFromFunction(SI);
1414
1415   // Replace GEP indices if possible.
1416   if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) {
1417       Worklist.Add(NewGEPI);
1418       return &SI;
1419   }
1420
1421   // Don't hack volatile/ordered stores.
1422   // FIXME: Some bits are legal for ordered atomic stores; needs refactoring.
1423   if (!SI.isUnordered()) return nullptr;
1424
1425   // If the RHS is an alloca with a single use, zapify the store, making the
1426   // alloca dead.
1427   if (Ptr->hasOneUse()) {
1428     if (isa<AllocaInst>(Ptr))
1429       return eraseInstFromFunction(SI);
1430     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
1431       if (isa<AllocaInst>(GEP->getOperand(0))) {
1432         if (GEP->getOperand(0)->hasOneUse())
1433           return eraseInstFromFunction(SI);
1434       }
1435     }
1436   }
1437
1438   // Do really simple DSE, to catch cases where there are several consecutive
1439   // stores to the same location, separated by a few arithmetic operations. This
1440   // situation often occurs with bitfield accesses.
1441   BasicBlock::iterator BBI(SI);
1442   for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
1443        --ScanInsts) {
1444     --BBI;
1445     // Don't count debug info directives, lest they affect codegen,
1446     // and we skip pointer-to-pointer bitcasts, which are NOPs.
1447     if (isa<DbgInfoIntrinsic>(BBI) ||
1448         (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
1449       ScanInsts++;
1450       continue;
1451     }
1452
1453     if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
1454       // Prev store isn't volatile, and stores to the same location?
1455       if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1),
1456                                                         SI.getOperand(1))) {
1457         ++NumDeadStore;
1458         ++BBI;
1459         eraseInstFromFunction(*PrevSI);
1460         continue;
1461       }
1462       break;
1463     }
1464
1465     // If this is a load, we have to stop.  However, if the loaded value is from
1466     // the pointer we're loading and is producing the pointer we're storing,
1467     // then *this* store is dead (X = load P; store X -> P).
1468     if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
1469       if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) {
1470         assert(SI.isUnordered() && "can't eliminate ordering operation");
1471         return eraseInstFromFunction(SI);
1472       }
1473
1474       // Otherwise, this is a load from some other location.  Stores before it
1475       // may not be dead.
1476       break;
1477     }
1478
1479     // Don't skip over loads, throws or things that can modify memory.
1480     if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow())
1481       break;
1482   }
1483
1484   // store X, null    -> turns into 'unreachable' in SimplifyCFG
1485   // store X, GEP(null, Y) -> turns into 'unreachable' in SimplifyCFG
1486   if (canSimplifyNullStoreOrGEP(SI)) {
1487     if (!isa<UndefValue>(Val)) {
1488       SI.setOperand(0, UndefValue::get(Val->getType()));
1489       if (Instruction *U = dyn_cast<Instruction>(Val))
1490         Worklist.Add(U);  // Dropped a use.
1491     }
1492     return nullptr;  // Do not modify these!
1493   }
1494
1495   // store undef, Ptr -> noop
1496   if (isa<UndefValue>(Val))
1497     return eraseInstFromFunction(SI);
1498
1499   // If this store is the last instruction in the basic block (possibly
1500   // excepting debug info instructions), and if the block ends with an
1501   // unconditional branch, try to move it to the successor block.
1502   BBI = SI.getIterator();
1503   do {
1504     ++BBI;
1505   } while (isa<DbgInfoIntrinsic>(BBI) ||
1506            (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()));
1507   if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
1508     if (BI->isUnconditional())
1509       if (SimplifyStoreAtEndOfBlock(SI))
1510         return nullptr;  // xform done!
1511
1512   return nullptr;
1513 }
1514
1515 /// SimplifyStoreAtEndOfBlock - Turn things like:
1516 ///   if () { *P = v1; } else { *P = v2 }
1517 /// into a phi node with a store in the successor.
1518 ///
1519 /// Simplify things like:
1520 ///   *P = v1; if () { *P = v2; }
1521 /// into a phi node with a store in the successor.
1522 ///
1523 bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
1524   assert(SI.isUnordered() &&
1525          "this code has not been auditted for volatile or ordered store case");
1526
1527   BasicBlock *StoreBB = SI.getParent();
1528
1529   // Check to see if the successor block has exactly two incoming edges.  If
1530   // so, see if the other predecessor contains a store to the same location.
1531   // if so, insert a PHI node (if needed) and move the stores down.
1532   BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
1533
1534   // Determine whether Dest has exactly two predecessors and, if so, compute
1535   // the other predecessor.
1536   pred_iterator PI = pred_begin(DestBB);
1537   BasicBlock *P = *PI;
1538   BasicBlock *OtherBB = nullptr;
1539
1540   if (P != StoreBB)
1541     OtherBB = P;
1542
1543   if (++PI == pred_end(DestBB))
1544     return false;
1545
1546   P = *PI;
1547   if (P != StoreBB) {
1548     if (OtherBB)
1549       return false;
1550     OtherBB = P;
1551   }
1552   if (++PI != pred_end(DestBB))
1553     return false;
1554
1555   // Bail out if all the relevant blocks aren't distinct (this can happen,
1556   // for example, if SI is in an infinite loop)
1557   if (StoreBB == DestBB || OtherBB == DestBB)
1558     return false;
1559
1560   // Verify that the other block ends in a branch and is not otherwise empty.
1561   BasicBlock::iterator BBI(OtherBB->getTerminator());
1562   BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
1563   if (!OtherBr || BBI == OtherBB->begin())
1564     return false;
1565
1566   // If the other block ends in an unconditional branch, check for the 'if then
1567   // else' case.  there is an instruction before the branch.
1568   StoreInst *OtherStore = nullptr;
1569   if (OtherBr->isUnconditional()) {
1570     --BBI;
1571     // Skip over debugging info.
1572     while (isa<DbgInfoIntrinsic>(BBI) ||
1573            (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
1574       if (BBI==OtherBB->begin())
1575         return false;
1576       --BBI;
1577     }
1578     // If this isn't a store, isn't a store to the same location, or is not the
1579     // right kind of store, bail out.
1580     OtherStore = dyn_cast<StoreInst>(BBI);
1581     if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
1582         !SI.isSameOperationAs(OtherStore))
1583       return false;
1584   } else {
1585     // Otherwise, the other block ended with a conditional branch. If one of the
1586     // destinations is StoreBB, then we have the if/then case.
1587     if (OtherBr->getSuccessor(0) != StoreBB &&
1588         OtherBr->getSuccessor(1) != StoreBB)
1589       return false;
1590
1591     // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
1592     // if/then triangle.  See if there is a store to the same ptr as SI that
1593     // lives in OtherBB.
1594     for (;; --BBI) {
1595       // Check to see if we find the matching store.
1596       if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
1597         if (OtherStore->getOperand(1) != SI.getOperand(1) ||
1598             !SI.isSameOperationAs(OtherStore))
1599           return false;
1600         break;
1601       }
1602       // If we find something that may be using or overwriting the stored
1603       // value, or if we run out of instructions, we can't do the xform.
1604       if (BBI->mayReadFromMemory() || BBI->mayThrow() ||
1605           BBI->mayWriteToMemory() || BBI == OtherBB->begin())
1606         return false;
1607     }
1608
1609     // In order to eliminate the store in OtherBr, we have to
1610     // make sure nothing reads or overwrites the stored value in
1611     // StoreBB.
1612     for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
1613       // FIXME: This should really be AA driven.
1614       if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory())
1615         return false;
1616     }
1617   }
1618
1619   // Insert a PHI node now if we need it.
1620   Value *MergedVal = OtherStore->getOperand(0);
1621   if (MergedVal != SI.getOperand(0)) {
1622     PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge");
1623     PN->addIncoming(SI.getOperand(0), SI.getParent());
1624     PN->addIncoming(OtherStore->getOperand(0), OtherBB);
1625     MergedVal = InsertNewInstBefore(PN, DestBB->front());
1626   }
1627
1628   // Advance to a place where it is safe to insert the new store and
1629   // insert it.
1630   BBI = DestBB->getFirstInsertionPt();
1631   StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1),
1632                                    SI.isVolatile(),
1633                                    SI.getAlignment(),
1634                                    SI.getOrdering(),
1635                                    SI.getSyncScopeID());
1636   InsertNewInstBefore(NewSI, *BBI);
1637   // The debug locations of the original instructions might differ; merge them.
1638   NewSI->applyMergedLocation(SI.getDebugLoc(), OtherStore->getDebugLoc());
1639
1640   // If the two stores had AA tags, merge them.
1641   AAMDNodes AATags;
1642   SI.getAAMetadata(AATags);
1643   if (AATags) {
1644     OtherStore->getAAMetadata(AATags, /* Merge = */ true);
1645     NewSI->setAAMetadata(AATags);
1646   }
1647
1648   // Nuke the old stores.
1649   eraseInstFromFunction(SI);
1650   eraseInstFromFunction(*OtherStore);
1651   return true;
1652 }