]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp
MFV r313071:
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / InstCombine / InstCombineLoadStoreAlloca.cpp
1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for load, store and alloca.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/SmallString.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/Loads.h"
18 #include "llvm/IR/DataLayout.h"
19 #include "llvm/IR/LLVMContext.h"
20 #include "llvm/IR/IntrinsicInst.h"
21 #include "llvm/IR/MDBuilder.h"
22 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
23 #include "llvm/Transforms/Utils/Local.h"
24 using namespace llvm;
25
26 #define DEBUG_TYPE "instcombine"
27
28 STATISTIC(NumDeadStore,    "Number of dead stores eliminated");
29 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global");
30
31 /// pointsToConstantGlobal - Return true if V (possibly indirectly) points to
32 /// some part of a constant global variable.  This intentionally only accepts
33 /// constant expressions because we can't rewrite arbitrary instructions.
34 static bool pointsToConstantGlobal(Value *V) {
35   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
36     return GV->isConstant();
37
38   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
39     if (CE->getOpcode() == Instruction::BitCast ||
40         CE->getOpcode() == Instruction::AddrSpaceCast ||
41         CE->getOpcode() == Instruction::GetElementPtr)
42       return pointsToConstantGlobal(CE->getOperand(0));
43   }
44   return false;
45 }
46
47 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
48 /// pointer to an alloca.  Ignore any reads of the pointer, return false if we
49 /// see any stores or other unknown uses.  If we see pointer arithmetic, keep
50 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse
51 /// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
52 /// the alloca, and if the source pointer is a pointer to a constant global, we
53 /// can optimize this.
54 static bool
55 isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
56                                SmallVectorImpl<Instruction *> &ToDelete) {
57   // We track lifetime intrinsics as we encounter them.  If we decide to go
58   // ahead and replace the value with the global, this lets the caller quickly
59   // eliminate the markers.
60
61   SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect;
62   ValuesToInspect.push_back(std::make_pair(V, false));
63   while (!ValuesToInspect.empty()) {
64     auto ValuePair = ValuesToInspect.pop_back_val();
65     const bool IsOffset = ValuePair.second;
66     for (auto &U : ValuePair.first->uses()) {
67       Instruction *I = cast<Instruction>(U.getUser());
68
69       if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
70         // Ignore non-volatile loads, they are always ok.
71         if (!LI->isSimple()) return false;
72         continue;
73       }
74
75       if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) {
76         // If uses of the bitcast are ok, we are ok.
77         ValuesToInspect.push_back(std::make_pair(I, IsOffset));
78         continue;
79       }
80       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
81         // If the GEP has all zero indices, it doesn't offset the pointer. If it
82         // doesn't, it does.
83         ValuesToInspect.push_back(
84             std::make_pair(I, IsOffset || !GEP->hasAllZeroIndices()));
85         continue;
86       }
87
88       if (auto CS = CallSite(I)) {
89         // If this is the function being called then we treat it like a load and
90         // ignore it.
91         if (CS.isCallee(&U))
92           continue;
93
94         unsigned DataOpNo = CS.getDataOperandNo(&U);
95         bool IsArgOperand = CS.isArgOperand(&U);
96
97         // Inalloca arguments are clobbered by the call.
98         if (IsArgOperand && CS.isInAllocaArgument(DataOpNo))
99           return false;
100
101         // If this is a readonly/readnone call site, then we know it is just a
102         // load (but one that potentially returns the value itself), so we can
103         // ignore it if we know that the value isn't captured.
104         if (CS.onlyReadsMemory() &&
105             (CS.getInstruction()->use_empty() || CS.doesNotCapture(DataOpNo)))
106           continue;
107
108         // If this is being passed as a byval argument, the caller is making a
109         // copy, so it is only a read of the alloca.
110         if (IsArgOperand && CS.isByValArgument(DataOpNo))
111           continue;
112       }
113
114       // Lifetime intrinsics can be handled by the caller.
115       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
116         if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
117             II->getIntrinsicID() == Intrinsic::lifetime_end) {
118           assert(II->use_empty() && "Lifetime markers have no result to use!");
119           ToDelete.push_back(II);
120           continue;
121         }
122       }
123
124       // If this is isn't our memcpy/memmove, reject it as something we can't
125       // handle.
126       MemTransferInst *MI = dyn_cast<MemTransferInst>(I);
127       if (!MI)
128         return false;
129
130       // If the transfer is using the alloca as a source of the transfer, then
131       // ignore it since it is a load (unless the transfer is volatile).
132       if (U.getOperandNo() == 1) {
133         if (MI->isVolatile()) return false;
134         continue;
135       }
136
137       // If we already have seen a copy, reject the second one.
138       if (TheCopy) return false;
139
140       // If the pointer has been offset from the start of the alloca, we can't
141       // safely handle this.
142       if (IsOffset) return false;
143
144       // If the memintrinsic isn't using the alloca as the dest, reject it.
145       if (U.getOperandNo() != 0) return false;
146
147       // If the source of the memcpy/move is not a constant global, reject it.
148       if (!pointsToConstantGlobal(MI->getSource()))
149         return false;
150
151       // Otherwise, the transform is safe.  Remember the copy instruction.
152       TheCopy = MI;
153     }
154   }
155   return true;
156 }
157
158 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
159 /// modified by a copy from a constant global.  If we can prove this, we can
160 /// replace any uses of the alloca with uses of the global directly.
161 static MemTransferInst *
162 isOnlyCopiedFromConstantGlobal(AllocaInst *AI,
163                                SmallVectorImpl<Instruction *> &ToDelete) {
164   MemTransferInst *TheCopy = nullptr;
165   if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete))
166     return TheCopy;
167   return nullptr;
168 }
169
170 static Instruction *simplifyAllocaArraySize(InstCombiner &IC, AllocaInst &AI) {
171   // Check for array size of 1 (scalar allocation).
172   if (!AI.isArrayAllocation()) {
173     // i32 1 is the canonical array size for scalar allocations.
174     if (AI.getArraySize()->getType()->isIntegerTy(32))
175       return nullptr;
176
177     // Canonicalize it.
178     Value *V = IC.Builder->getInt32(1);
179     AI.setOperand(0, V);
180     return &AI;
181   }
182
183   // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
184   if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
185     Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
186     AllocaInst *New = IC.Builder->CreateAlloca(NewTy, nullptr, AI.getName());
187     New->setAlignment(AI.getAlignment());
188
189     // Scan to the end of the allocation instructions, to skip over a block of
190     // allocas if possible...also skip interleaved debug info
191     //
192     BasicBlock::iterator It(New);
193     while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It))
194       ++It;
195
196     // Now that I is pointing to the first non-allocation-inst in the block,
197     // insert our getelementptr instruction...
198     //
199     Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType());
200     Value *NullIdx = Constant::getNullValue(IdxTy);
201     Value *Idx[2] = {NullIdx, NullIdx};
202     Instruction *GEP =
203         GetElementPtrInst::CreateInBounds(New, Idx, New->getName() + ".sub");
204     IC.InsertNewInstBefore(GEP, *It);
205
206     // Now make everything use the getelementptr instead of the original
207     // allocation.
208     return IC.replaceInstUsesWith(AI, GEP);
209   }
210
211   if (isa<UndefValue>(AI.getArraySize()))
212     return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
213
214   // Ensure that the alloca array size argument has type intptr_t, so that
215   // any casting is exposed early.
216   Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType());
217   if (AI.getArraySize()->getType() != IntPtrTy) {
218     Value *V = IC.Builder->CreateIntCast(AI.getArraySize(), IntPtrTy, false);
219     AI.setOperand(0, V);
220     return &AI;
221   }
222
223   return nullptr;
224 }
225
226 Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
227   if (auto *I = simplifyAllocaArraySize(*this, AI))
228     return I;
229
230   if (AI.getAllocatedType()->isSized()) {
231     // If the alignment is 0 (unspecified), assign it the preferred alignment.
232     if (AI.getAlignment() == 0)
233       AI.setAlignment(DL.getPrefTypeAlignment(AI.getAllocatedType()));
234
235     // Move all alloca's of zero byte objects to the entry block and merge them
236     // together.  Note that we only do this for alloca's, because malloc should
237     // allocate and return a unique pointer, even for a zero byte allocation.
238     if (DL.getTypeAllocSize(AI.getAllocatedType()) == 0) {
239       // For a zero sized alloca there is no point in doing an array allocation.
240       // This is helpful if the array size is a complicated expression not used
241       // elsewhere.
242       if (AI.isArrayAllocation()) {
243         AI.setOperand(0, ConstantInt::get(AI.getArraySize()->getType(), 1));
244         return &AI;
245       }
246
247       // Get the first instruction in the entry block.
248       BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock();
249       Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg();
250       if (FirstInst != &AI) {
251         // If the entry block doesn't start with a zero-size alloca then move
252         // this one to the start of the entry block.  There is no problem with
253         // dominance as the array size was forced to a constant earlier already.
254         AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst);
255         if (!EntryAI || !EntryAI->getAllocatedType()->isSized() ||
256             DL.getTypeAllocSize(EntryAI->getAllocatedType()) != 0) {
257           AI.moveBefore(FirstInst);
258           return &AI;
259         }
260
261         // If the alignment of the entry block alloca is 0 (unspecified),
262         // assign it the preferred alignment.
263         if (EntryAI->getAlignment() == 0)
264           EntryAI->setAlignment(
265               DL.getPrefTypeAlignment(EntryAI->getAllocatedType()));
266         // Replace this zero-sized alloca with the one at the start of the entry
267         // block after ensuring that the address will be aligned enough for both
268         // types.
269         unsigned MaxAlign = std::max(EntryAI->getAlignment(),
270                                      AI.getAlignment());
271         EntryAI->setAlignment(MaxAlign);
272         if (AI.getType() != EntryAI->getType())
273           return new BitCastInst(EntryAI, AI.getType());
274         return replaceInstUsesWith(AI, EntryAI);
275       }
276     }
277   }
278
279   if (AI.getAlignment()) {
280     // Check to see if this allocation is only modified by a memcpy/memmove from
281     // a constant global whose alignment is equal to or exceeds that of the
282     // allocation.  If this is the case, we can change all users to use
283     // the constant global instead.  This is commonly produced by the CFE by
284     // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
285     // is only subsequently read.
286     SmallVector<Instruction *, 4> ToDelete;
287     if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) {
288       unsigned SourceAlign = getOrEnforceKnownAlignment(
289           Copy->getSource(), AI.getAlignment(), DL, &AI, AC, DT);
290       if (AI.getAlignment() <= SourceAlign) {
291         DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
292         DEBUG(dbgs() << "  memcpy = " << *Copy << '\n');
293         for (unsigned i = 0, e = ToDelete.size(); i != e; ++i)
294           eraseInstFromFunction(*ToDelete[i]);
295         Constant *TheSrc = cast<Constant>(Copy->getSource());
296         Constant *Cast
297           = ConstantExpr::getPointerBitCastOrAddrSpaceCast(TheSrc, AI.getType());
298         Instruction *NewI = replaceInstUsesWith(AI, Cast);
299         eraseInstFromFunction(*Copy);
300         ++NumGlobalCopies;
301         return NewI;
302       }
303     }
304   }
305
306   // At last, use the generic allocation site handler to aggressively remove
307   // unused allocas.
308   return visitAllocSite(AI);
309 }
310
311 /// \brief Helper to combine a load to a new type.
312 ///
313 /// This just does the work of combining a load to a new type. It handles
314 /// metadata, etc., and returns the new instruction. The \c NewTy should be the
315 /// loaded *value* type. This will convert it to a pointer, cast the operand to
316 /// that pointer type, load it, etc.
317 ///
318 /// Note that this will create all of the instructions with whatever insert
319 /// point the \c InstCombiner currently is using.
320 static LoadInst *combineLoadToNewType(InstCombiner &IC, LoadInst &LI, Type *NewTy,
321                                       const Twine &Suffix = "") {
322   Value *Ptr = LI.getPointerOperand();
323   unsigned AS = LI.getPointerAddressSpace();
324   SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
325   LI.getAllMetadata(MD);
326
327   LoadInst *NewLoad = IC.Builder->CreateAlignedLoad(
328       IC.Builder->CreateBitCast(Ptr, NewTy->getPointerTo(AS)),
329       LI.getAlignment(), LI.isVolatile(), LI.getName() + Suffix);
330   NewLoad->setAtomic(LI.getOrdering(), LI.getSynchScope());
331   MDBuilder MDB(NewLoad->getContext());
332   for (const auto &MDPair : MD) {
333     unsigned ID = MDPair.first;
334     MDNode *N = MDPair.second;
335     // Note, essentially every kind of metadata should be preserved here! This
336     // routine is supposed to clone a load instruction changing *only its type*.
337     // The only metadata it makes sense to drop is metadata which is invalidated
338     // when the pointer type changes. This should essentially never be the case
339     // in LLVM, but we explicitly switch over only known metadata to be
340     // conservatively correct. If you are adding metadata to LLVM which pertains
341     // to loads, you almost certainly want to add it here.
342     switch (ID) {
343     case LLVMContext::MD_dbg:
344     case LLVMContext::MD_tbaa:
345     case LLVMContext::MD_prof:
346     case LLVMContext::MD_fpmath:
347     case LLVMContext::MD_tbaa_struct:
348     case LLVMContext::MD_invariant_load:
349     case LLVMContext::MD_alias_scope:
350     case LLVMContext::MD_noalias:
351     case LLVMContext::MD_nontemporal:
352     case LLVMContext::MD_mem_parallel_loop_access:
353       // All of these directly apply.
354       NewLoad->setMetadata(ID, N);
355       break;
356
357     case LLVMContext::MD_nonnull:
358       // This only directly applies if the new type is also a pointer.
359       if (NewTy->isPointerTy()) {
360         NewLoad->setMetadata(ID, N);
361         break;
362       }
363       // If it's integral now, translate it to !range metadata.
364       if (NewTy->isIntegerTy()) {
365         auto *ITy = cast<IntegerType>(NewTy);
366         auto *NullInt = ConstantExpr::getPtrToInt(
367             ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
368         auto *NonNullInt =
369             ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
370         NewLoad->setMetadata(LLVMContext::MD_range,
371                              MDB.createRange(NonNullInt, NullInt));
372       }
373       break;
374     case LLVMContext::MD_align:
375     case LLVMContext::MD_dereferenceable:
376     case LLVMContext::MD_dereferenceable_or_null:
377       // These only directly apply if the new type is also a pointer.
378       if (NewTy->isPointerTy())
379         NewLoad->setMetadata(ID, N);
380       break;
381     case LLVMContext::MD_range:
382       // FIXME: It would be nice to propagate this in some way, but the type
383       // conversions make it hard. If the new type is a pointer, we could
384       // translate it to !nonnull metadata.
385       break;
386     }
387   }
388   return NewLoad;
389 }
390
391 /// \brief Combine a store to a new type.
392 ///
393 /// Returns the newly created store instruction.
394 static StoreInst *combineStoreToNewValue(InstCombiner &IC, StoreInst &SI, Value *V) {
395   Value *Ptr = SI.getPointerOperand();
396   unsigned AS = SI.getPointerAddressSpace();
397   SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
398   SI.getAllMetadata(MD);
399
400   StoreInst *NewStore = IC.Builder->CreateAlignedStore(
401       V, IC.Builder->CreateBitCast(Ptr, V->getType()->getPointerTo(AS)),
402       SI.getAlignment(), SI.isVolatile());
403   NewStore->setAtomic(SI.getOrdering(), SI.getSynchScope());
404   for (const auto &MDPair : MD) {
405     unsigned ID = MDPair.first;
406     MDNode *N = MDPair.second;
407     // Note, essentially every kind of metadata should be preserved here! This
408     // routine is supposed to clone a store instruction changing *only its
409     // type*. The only metadata it makes sense to drop is metadata which is
410     // invalidated when the pointer type changes. This should essentially
411     // never be the case in LLVM, but we explicitly switch over only known
412     // metadata to be conservatively correct. If you are adding metadata to
413     // LLVM which pertains to stores, you almost certainly want to add it
414     // here.
415     switch (ID) {
416     case LLVMContext::MD_dbg:
417     case LLVMContext::MD_tbaa:
418     case LLVMContext::MD_prof:
419     case LLVMContext::MD_fpmath:
420     case LLVMContext::MD_tbaa_struct:
421     case LLVMContext::MD_alias_scope:
422     case LLVMContext::MD_noalias:
423     case LLVMContext::MD_nontemporal:
424     case LLVMContext::MD_mem_parallel_loop_access:
425       // All of these directly apply.
426       NewStore->setMetadata(ID, N);
427       break;
428
429     case LLVMContext::MD_invariant_load:
430     case LLVMContext::MD_nonnull:
431     case LLVMContext::MD_range:
432     case LLVMContext::MD_align:
433     case LLVMContext::MD_dereferenceable:
434     case LLVMContext::MD_dereferenceable_or_null:
435       // These don't apply for stores.
436       break;
437     }
438   }
439
440   return NewStore;
441 }
442
443 /// \brief Combine loads to match the type of their uses' value after looking
444 /// through intervening bitcasts.
445 ///
446 /// The core idea here is that if the result of a load is used in an operation,
447 /// we should load the type most conducive to that operation. For example, when
448 /// loading an integer and converting that immediately to a pointer, we should
449 /// instead directly load a pointer.
450 ///
451 /// However, this routine must never change the width of a load or the number of
452 /// loads as that would introduce a semantic change. This combine is expected to
453 /// be a semantic no-op which just allows loads to more closely model the types
454 /// of their consuming operations.
455 ///
456 /// Currently, we also refuse to change the precise type used for an atomic load
457 /// or a volatile load. This is debatable, and might be reasonable to change
458 /// later. However, it is risky in case some backend or other part of LLVM is
459 /// relying on the exact type loaded to select appropriate atomic operations.
460 static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) {
461   // FIXME: We could probably with some care handle both volatile and ordered
462   // atomic loads here but it isn't clear that this is important.
463   if (!LI.isUnordered())
464     return nullptr;
465
466   if (LI.use_empty())
467     return nullptr;
468
469   Type *Ty = LI.getType();
470   const DataLayout &DL = IC.getDataLayout();
471
472   // Try to canonicalize loads which are only ever stored to operate over
473   // integers instead of any other type. We only do this when the loaded type
474   // is sized and has a size exactly the same as its store size and the store
475   // size is a legal integer type.
476   if (!Ty->isIntegerTy() && Ty->isSized() &&
477       DL.isLegalInteger(DL.getTypeStoreSizeInBits(Ty)) &&
478       DL.getTypeStoreSizeInBits(Ty) == DL.getTypeSizeInBits(Ty)) {
479     if (std::all_of(LI.user_begin(), LI.user_end(), [&LI](User *U) {
480           auto *SI = dyn_cast<StoreInst>(U);
481           return SI && SI->getPointerOperand() != &LI;
482         })) {
483       LoadInst *NewLoad = combineLoadToNewType(
484           IC, LI,
485           Type::getIntNTy(LI.getContext(), DL.getTypeStoreSizeInBits(Ty)));
486       // Replace all the stores with stores of the newly loaded value.
487       for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) {
488         auto *SI = cast<StoreInst>(*UI++);
489         IC.Builder->SetInsertPoint(SI);
490         combineStoreToNewValue(IC, *SI, NewLoad);
491         IC.eraseInstFromFunction(*SI);
492       }
493       assert(LI.use_empty() && "Failed to remove all users of the load!");
494       // Return the old load so the combiner can delete it safely.
495       return &LI;
496     }
497   }
498
499   // Fold away bit casts of the loaded value by loading the desired type.
500   // We can do this for BitCastInsts as well as casts from and to pointer types,
501   // as long as those are noops (i.e., the source or dest type have the same
502   // bitwidth as the target's pointers).
503   if (LI.hasOneUse())
504     if (auto* CI = dyn_cast<CastInst>(LI.user_back())) {
505       if (CI->isNoopCast(DL)) {
506         LoadInst *NewLoad = combineLoadToNewType(IC, LI, CI->getDestTy());
507         CI->replaceAllUsesWith(NewLoad);
508         IC.eraseInstFromFunction(*CI);
509         return &LI;
510       }
511     }
512
513   // FIXME: We should also canonicalize loads of vectors when their elements are
514   // cast to other types.
515   return nullptr;
516 }
517
518 static Instruction *unpackLoadToAggregate(InstCombiner &IC, LoadInst &LI) {
519   // FIXME: We could probably with some care handle both volatile and atomic
520   // stores here but it isn't clear that this is important.
521   if (!LI.isSimple())
522     return nullptr;
523
524   Type *T = LI.getType();
525   if (!T->isAggregateType())
526     return nullptr;
527
528   StringRef Name = LI.getName();
529   assert(LI.getAlignment() && "Alignment must be set at this point");
530
531   if (auto *ST = dyn_cast<StructType>(T)) {
532     // If the struct only have one element, we unpack.
533     auto NumElements = ST->getNumElements();
534     if (NumElements == 1) {
535       LoadInst *NewLoad = combineLoadToNewType(IC, LI, ST->getTypeAtIndex(0U),
536                                                ".unpack");
537       return IC.replaceInstUsesWith(LI, IC.Builder->CreateInsertValue(
538         UndefValue::get(T), NewLoad, 0, Name));
539     }
540
541     // We don't want to break loads with padding here as we'd loose
542     // the knowledge that padding exists for the rest of the pipeline.
543     const DataLayout &DL = IC.getDataLayout();
544     auto *SL = DL.getStructLayout(ST);
545     if (SL->hasPadding())
546       return nullptr;
547
548     auto Align = LI.getAlignment();
549     if (!Align)
550       Align = DL.getABITypeAlignment(ST);
551
552     auto *Addr = LI.getPointerOperand();
553     auto *IdxType = Type::getInt32Ty(T->getContext());
554     auto *Zero = ConstantInt::get(IdxType, 0);
555
556     Value *V = UndefValue::get(T);
557     for (unsigned i = 0; i < NumElements; i++) {
558       Value *Indices[2] = {
559         Zero,
560         ConstantInt::get(IdxType, i),
561       };
562       auto *Ptr = IC.Builder->CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
563                                                 Name + ".elt");
564       auto EltAlign = MinAlign(Align, SL->getElementOffset(i));
565       auto *L = IC.Builder->CreateAlignedLoad(Ptr, EltAlign, Name + ".unpack");
566       V = IC.Builder->CreateInsertValue(V, L, i);
567     }
568
569     V->setName(Name);
570     return IC.replaceInstUsesWith(LI, V);
571   }
572
573   if (auto *AT = dyn_cast<ArrayType>(T)) {
574     auto *ET = AT->getElementType();
575     auto NumElements = AT->getNumElements();
576     if (NumElements == 1) {
577       LoadInst *NewLoad = combineLoadToNewType(IC, LI, ET, ".unpack");
578       return IC.replaceInstUsesWith(LI, IC.Builder->CreateInsertValue(
579         UndefValue::get(T), NewLoad, 0, Name));
580     }
581
582     // Bail out if the array is too large. Ideally we would like to optimize
583     // arrays of arbitrary size but this has a terrible impact on compile time.
584     // The threshold here is chosen arbitrarily, maybe needs a little bit of
585     // tuning.
586     if (NumElements > 1024)
587       return nullptr;
588
589     const DataLayout &DL = IC.getDataLayout();
590     auto EltSize = DL.getTypeAllocSize(ET);
591     auto Align = LI.getAlignment();
592     if (!Align)
593       Align = DL.getABITypeAlignment(T);
594
595     auto *Addr = LI.getPointerOperand();
596     auto *IdxType = Type::getInt64Ty(T->getContext());
597     auto *Zero = ConstantInt::get(IdxType, 0);
598
599     Value *V = UndefValue::get(T);
600     uint64_t Offset = 0;
601     for (uint64_t i = 0; i < NumElements; i++) {
602       Value *Indices[2] = {
603         Zero,
604         ConstantInt::get(IdxType, i),
605       };
606       auto *Ptr = IC.Builder->CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
607                                                 Name + ".elt");
608       auto *L = IC.Builder->CreateAlignedLoad(Ptr, MinAlign(Align, Offset),
609                                               Name + ".unpack");
610       V = IC.Builder->CreateInsertValue(V, L, i);
611       Offset += EltSize;
612     }
613
614     V->setName(Name);
615     return IC.replaceInstUsesWith(LI, V);
616   }
617
618   return nullptr;
619 }
620
621 // If we can determine that all possible objects pointed to by the provided
622 // pointer value are, not only dereferenceable, but also definitively less than
623 // or equal to the provided maximum size, then return true. Otherwise, return
624 // false (constant global values and allocas fall into this category).
625 //
626 // FIXME: This should probably live in ValueTracking (or similar).
627 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize,
628                                      const DataLayout &DL) {
629   SmallPtrSet<Value *, 4> Visited;
630   SmallVector<Value *, 4> Worklist(1, V);
631
632   do {
633     Value *P = Worklist.pop_back_val();
634     P = P->stripPointerCasts();
635
636     if (!Visited.insert(P).second)
637       continue;
638
639     if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
640       Worklist.push_back(SI->getTrueValue());
641       Worklist.push_back(SI->getFalseValue());
642       continue;
643     }
644
645     if (PHINode *PN = dyn_cast<PHINode>(P)) {
646       for (Value *IncValue : PN->incoming_values())
647         Worklist.push_back(IncValue);
648       continue;
649     }
650
651     if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) {
652       if (GA->isInterposable())
653         return false;
654       Worklist.push_back(GA->getAliasee());
655       continue;
656     }
657
658     // If we know how big this object is, and it is less than MaxSize, continue
659     // searching. Otherwise, return false.
660     if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) {
661       if (!AI->getAllocatedType()->isSized())
662         return false;
663
664       ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize());
665       if (!CS)
666         return false;
667
668       uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType());
669       // Make sure that, even if the multiplication below would wrap as an
670       // uint64_t, we still do the right thing.
671       if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize))
672         return false;
673       continue;
674     }
675
676     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
677       if (!GV->hasDefinitiveInitializer() || !GV->isConstant())
678         return false;
679
680       uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType());
681       if (InitSize > MaxSize)
682         return false;
683       continue;
684     }
685
686     return false;
687   } while (!Worklist.empty());
688
689   return true;
690 }
691
692 // If we're indexing into an object of a known size, and the outer index is
693 // not a constant, but having any value but zero would lead to undefined
694 // behavior, replace it with zero.
695 //
696 // For example, if we have:
697 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4
698 // ...
699 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x
700 // ... = load i32* %arrayidx, align 4
701 // Then we know that we can replace %x in the GEP with i64 0.
702 //
703 // FIXME: We could fold any GEP index to zero that would cause UB if it were
704 // not zero. Currently, we only handle the first such index. Also, we could
705 // also search through non-zero constant indices if we kept track of the
706 // offsets those indices implied.
707 static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI,
708                                      Instruction *MemI, unsigned &Idx) {
709   if (GEPI->getNumOperands() < 2)
710     return false;
711
712   // Find the first non-zero index of a GEP. If all indices are zero, return
713   // one past the last index.
714   auto FirstNZIdx = [](const GetElementPtrInst *GEPI) {
715     unsigned I = 1;
716     for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) {
717       Value *V = GEPI->getOperand(I);
718       if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
719         if (CI->isZero())
720           continue;
721
722       break;
723     }
724
725     return I;
726   };
727
728   // Skip through initial 'zero' indices, and find the corresponding pointer
729   // type. See if the next index is not a constant.
730   Idx = FirstNZIdx(GEPI);
731   if (Idx == GEPI->getNumOperands())
732     return false;
733   if (isa<Constant>(GEPI->getOperand(Idx)))
734     return false;
735
736   SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx);
737   Type *AllocTy =
738     GetElementPtrInst::getIndexedType(GEPI->getSourceElementType(), Ops);
739   if (!AllocTy || !AllocTy->isSized())
740     return false;
741   const DataLayout &DL = IC.getDataLayout();
742   uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy);
743
744   // If there are more indices after the one we might replace with a zero, make
745   // sure they're all non-negative. If any of them are negative, the overall
746   // address being computed might be before the base address determined by the
747   // first non-zero index.
748   auto IsAllNonNegative = [&]() {
749     for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) {
750       bool KnownNonNegative, KnownNegative;
751       IC.ComputeSignBit(GEPI->getOperand(i), KnownNonNegative,
752                         KnownNegative, 0, MemI);
753       if (KnownNonNegative)
754         continue;
755       return false;
756     }
757
758     return true;
759   };
760
761   // FIXME: If the GEP is not inbounds, and there are extra indices after the
762   // one we'll replace, those could cause the address computation to wrap
763   // (rendering the IsAllNonNegative() check below insufficient). We can do
764   // better, ignoring zero indices (and other indices we can prove small
765   // enough not to wrap).
766   if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds())
767     return false;
768
769   // Note that isObjectSizeLessThanOrEq will return true only if the pointer is
770   // also known to be dereferenceable.
771   return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) &&
772          IsAllNonNegative();
773 }
774
775 // If we're indexing into an object with a variable index for the memory
776 // access, but the object has only one element, we can assume that the index
777 // will always be zero. If we replace the GEP, return it.
778 template <typename T>
779 static Instruction *replaceGEPIdxWithZero(InstCombiner &IC, Value *Ptr,
780                                           T &MemI) {
781   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) {
782     unsigned Idx;
783     if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) {
784       Instruction *NewGEPI = GEPI->clone();
785       NewGEPI->setOperand(Idx,
786         ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0));
787       NewGEPI->insertBefore(GEPI);
788       MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI);
789       return NewGEPI;
790     }
791   }
792
793   return nullptr;
794 }
795
796 Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
797   Value *Op = LI.getOperand(0);
798
799   // Try to canonicalize the loaded type.
800   if (Instruction *Res = combineLoadToOperationType(*this, LI))
801     return Res;
802
803   // Attempt to improve the alignment.
804   unsigned KnownAlign = getOrEnforceKnownAlignment(
805       Op, DL.getPrefTypeAlignment(LI.getType()), DL, &LI, AC, DT);
806   unsigned LoadAlign = LI.getAlignment();
807   unsigned EffectiveLoadAlign =
808       LoadAlign != 0 ? LoadAlign : DL.getABITypeAlignment(LI.getType());
809
810   if (KnownAlign > EffectiveLoadAlign)
811     LI.setAlignment(KnownAlign);
812   else if (LoadAlign == 0)
813     LI.setAlignment(EffectiveLoadAlign);
814
815   // Replace GEP indices if possible.
816   if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) {
817       Worklist.Add(NewGEPI);
818       return &LI;
819   }
820
821   if (Instruction *Res = unpackLoadToAggregate(*this, LI))
822     return Res;
823
824   // Do really simple store-to-load forwarding and load CSE, to catch cases
825   // where there are several consecutive memory accesses to the same location,
826   // separated by a few arithmetic operations.
827   BasicBlock::iterator BBI(LI);
828   AAMDNodes AATags;
829   bool IsLoadCSE = false;
830   if (Value *AvailableVal =
831       FindAvailableLoadedValue(&LI, LI.getParent(), BBI,
832                                DefMaxInstsToScan, AA, &AATags, &IsLoadCSE)) {
833     if (IsLoadCSE) {
834       LoadInst *NLI = cast<LoadInst>(AvailableVal);
835       unsigned KnownIDs[] = {
836           LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
837           LLVMContext::MD_noalias,         LLVMContext::MD_range,
838           LLVMContext::MD_invariant_load,  LLVMContext::MD_nonnull,
839           LLVMContext::MD_invariant_group, LLVMContext::MD_align,
840           LLVMContext::MD_dereferenceable,
841           LLVMContext::MD_dereferenceable_or_null};
842       combineMetadata(NLI, &LI, KnownIDs);
843     };
844
845     return replaceInstUsesWith(
846         LI, Builder->CreateBitOrPointerCast(AvailableVal, LI.getType(),
847                                             LI.getName() + ".cast"));
848   }
849
850   // None of the following transforms are legal for volatile/ordered atomic
851   // loads.  Most of them do apply for unordered atomics.
852   if (!LI.isUnordered()) return nullptr;
853
854   // load(gep null, ...) -> unreachable
855   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
856     const Value *GEPI0 = GEPI->getOperand(0);
857     // TODO: Consider a target hook for valid address spaces for this xform.
858     if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0){
859       // Insert a new store to null instruction before the load to indicate
860       // that this code is not reachable.  We do this instead of inserting
861       // an unreachable instruction directly because we cannot modify the
862       // CFG.
863       new StoreInst(UndefValue::get(LI.getType()),
864                     Constant::getNullValue(Op->getType()), &LI);
865       return replaceInstUsesWith(LI, UndefValue::get(LI.getType()));
866     }
867   }
868
869   // load null/undef -> unreachable
870   // TODO: Consider a target hook for valid address spaces for this xform.
871   if (isa<UndefValue>(Op) ||
872       (isa<ConstantPointerNull>(Op) && LI.getPointerAddressSpace() == 0)) {
873     // Insert a new store to null instruction before the load to indicate that
874     // this code is not reachable.  We do this instead of inserting an
875     // unreachable instruction directly because we cannot modify the CFG.
876     new StoreInst(UndefValue::get(LI.getType()),
877                   Constant::getNullValue(Op->getType()), &LI);
878     return replaceInstUsesWith(LI, UndefValue::get(LI.getType()));
879   }
880
881   if (Op->hasOneUse()) {
882     // Change select and PHI nodes to select values instead of addresses: this
883     // helps alias analysis out a lot, allows many others simplifications, and
884     // exposes redundancy in the code.
885     //
886     // Note that we cannot do the transformation unless we know that the
887     // introduced loads cannot trap!  Something like this is valid as long as
888     // the condition is always false: load (select bool %C, int* null, int* %G),
889     // but it would not be valid if we transformed it to load from null
890     // unconditionally.
891     //
892     if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
893       // load (select (Cond, &V1, &V2))  --> select(Cond, load &V1, load &V2).
894       unsigned Align = LI.getAlignment();
895       if (isSafeToLoadUnconditionally(SI->getOperand(1), Align, DL, SI) &&
896           isSafeToLoadUnconditionally(SI->getOperand(2), Align, DL, SI)) {
897         LoadInst *V1 = Builder->CreateLoad(SI->getOperand(1),
898                                            SI->getOperand(1)->getName()+".val");
899         LoadInst *V2 = Builder->CreateLoad(SI->getOperand(2),
900                                            SI->getOperand(2)->getName()+".val");
901         assert(LI.isUnordered() && "implied by above");
902         V1->setAlignment(Align);
903         V1->setAtomic(LI.getOrdering(), LI.getSynchScope());
904         V2->setAlignment(Align);
905         V2->setAtomic(LI.getOrdering(), LI.getSynchScope());
906         return SelectInst::Create(SI->getCondition(), V1, V2);
907       }
908
909       // load (select (cond, null, P)) -> load P
910       if (isa<ConstantPointerNull>(SI->getOperand(1)) &&
911           LI.getPointerAddressSpace() == 0) {
912         LI.setOperand(0, SI->getOperand(2));
913         return &LI;
914       }
915
916       // load (select (cond, P, null)) -> load P
917       if (isa<ConstantPointerNull>(SI->getOperand(2)) &&
918           LI.getPointerAddressSpace() == 0) {
919         LI.setOperand(0, SI->getOperand(1));
920         return &LI;
921       }
922     }
923   }
924   return nullptr;
925 }
926
927 /// \brief Look for extractelement/insertvalue sequence that acts like a bitcast.
928 ///
929 /// \returns underlying value that was "cast", or nullptr otherwise.
930 ///
931 /// For example, if we have:
932 ///
933 ///     %E0 = extractelement <2 x double> %U, i32 0
934 ///     %V0 = insertvalue [2 x double] undef, double %E0, 0
935 ///     %E1 = extractelement <2 x double> %U, i32 1
936 ///     %V1 = insertvalue [2 x double] %V0, double %E1, 1
937 ///
938 /// and the layout of a <2 x double> is isomorphic to a [2 x double],
939 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U.
940 /// Note that %U may contain non-undef values where %V1 has undef.
941 static Value *likeBitCastFromVector(InstCombiner &IC, Value *V) {
942   Value *U = nullptr;
943   while (auto *IV = dyn_cast<InsertValueInst>(V)) {
944     auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand());
945     if (!E)
946       return nullptr;
947     auto *W = E->getVectorOperand();
948     if (!U)
949       U = W;
950     else if (U != W)
951       return nullptr;
952     auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand());
953     if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin())
954       return nullptr;
955     V = IV->getAggregateOperand();
956   }
957   if (!isa<UndefValue>(V) ||!U)
958     return nullptr;
959
960   auto *UT = cast<VectorType>(U->getType());
961   auto *VT = V->getType();
962   // Check that types UT and VT are bitwise isomorphic.
963   const auto &DL = IC.getDataLayout();
964   if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) {
965     return nullptr;
966   }
967   if (auto *AT = dyn_cast<ArrayType>(VT)) {
968     if (AT->getNumElements() != UT->getNumElements())
969       return nullptr;
970   } else {
971     auto *ST = cast<StructType>(VT);
972     if (ST->getNumElements() != UT->getNumElements())
973       return nullptr;
974     for (const auto *EltT : ST->elements()) {
975       if (EltT != UT->getElementType())
976         return nullptr;
977     }
978   }
979   return U;
980 }
981
982 /// \brief Combine stores to match the type of value being stored.
983 ///
984 /// The core idea here is that the memory does not have any intrinsic type and
985 /// where we can we should match the type of a store to the type of value being
986 /// stored.
987 ///
988 /// However, this routine must never change the width of a store or the number of
989 /// stores as that would introduce a semantic change. This combine is expected to
990 /// be a semantic no-op which just allows stores to more closely model the types
991 /// of their incoming values.
992 ///
993 /// Currently, we also refuse to change the precise type used for an atomic or
994 /// volatile store. This is debatable, and might be reasonable to change later.
995 /// However, it is risky in case some backend or other part of LLVM is relying
996 /// on the exact type stored to select appropriate atomic operations.
997 ///
998 /// \returns true if the store was successfully combined away. This indicates
999 /// the caller must erase the store instruction. We have to let the caller erase
1000 /// the store instruction as otherwise there is no way to signal whether it was
1001 /// combined or not: IC.EraseInstFromFunction returns a null pointer.
1002 static bool combineStoreToValueType(InstCombiner &IC, StoreInst &SI) {
1003   // FIXME: We could probably with some care handle both volatile and ordered
1004   // atomic stores here but it isn't clear that this is important.
1005   if (!SI.isUnordered())
1006     return false;
1007
1008   Value *V = SI.getValueOperand();
1009
1010   // Fold away bit casts of the stored value by storing the original type.
1011   if (auto *BC = dyn_cast<BitCastInst>(V)) {
1012     V = BC->getOperand(0);
1013     combineStoreToNewValue(IC, SI, V);
1014     return true;
1015   }
1016
1017   if (Value *U = likeBitCastFromVector(IC, V)) {
1018     combineStoreToNewValue(IC, SI, U);
1019     return true;
1020   }
1021
1022   // FIXME: We should also canonicalize stores of vectors when their elements
1023   // are cast to other types.
1024   return false;
1025 }
1026
1027 static bool unpackStoreToAggregate(InstCombiner &IC, StoreInst &SI) {
1028   // FIXME: We could probably with some care handle both volatile and atomic
1029   // stores here but it isn't clear that this is important.
1030   if (!SI.isSimple())
1031     return false;
1032
1033   Value *V = SI.getValueOperand();
1034   Type *T = V->getType();
1035
1036   if (!T->isAggregateType())
1037     return false;
1038
1039   if (auto *ST = dyn_cast<StructType>(T)) {
1040     // If the struct only have one element, we unpack.
1041     unsigned Count = ST->getNumElements();
1042     if (Count == 1) {
1043       V = IC.Builder->CreateExtractValue(V, 0);
1044       combineStoreToNewValue(IC, SI, V);
1045       return true;
1046     }
1047
1048     // We don't want to break loads with padding here as we'd loose
1049     // the knowledge that padding exists for the rest of the pipeline.
1050     const DataLayout &DL = IC.getDataLayout();
1051     auto *SL = DL.getStructLayout(ST);
1052     if (SL->hasPadding())
1053       return false;
1054
1055     auto Align = SI.getAlignment();
1056     if (!Align)
1057       Align = DL.getABITypeAlignment(ST);
1058
1059     SmallString<16> EltName = V->getName();
1060     EltName += ".elt";
1061     auto *Addr = SI.getPointerOperand();
1062     SmallString<16> AddrName = Addr->getName();
1063     AddrName += ".repack";
1064
1065     auto *IdxType = Type::getInt32Ty(ST->getContext());
1066     auto *Zero = ConstantInt::get(IdxType, 0);
1067     for (unsigned i = 0; i < Count; i++) {
1068       Value *Indices[2] = {
1069         Zero,
1070         ConstantInt::get(IdxType, i),
1071       };
1072       auto *Ptr = IC.Builder->CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
1073                                                 AddrName);
1074       auto *Val = IC.Builder->CreateExtractValue(V, i, EltName);
1075       auto EltAlign = MinAlign(Align, SL->getElementOffset(i));
1076       IC.Builder->CreateAlignedStore(Val, Ptr, EltAlign);
1077     }
1078
1079     return true;
1080   }
1081
1082   if (auto *AT = dyn_cast<ArrayType>(T)) {
1083     // If the array only have one element, we unpack.
1084     auto NumElements = AT->getNumElements();
1085     if (NumElements == 1) {
1086       V = IC.Builder->CreateExtractValue(V, 0);
1087       combineStoreToNewValue(IC, SI, V);
1088       return true;
1089     }
1090
1091     // Bail out if the array is too large. Ideally we would like to optimize
1092     // arrays of arbitrary size but this has a terrible impact on compile time.
1093     // The threshold here is chosen arbitrarily, maybe needs a little bit of
1094     // tuning.
1095     if (NumElements > 1024)
1096       return false;
1097
1098     const DataLayout &DL = IC.getDataLayout();
1099     auto EltSize = DL.getTypeAllocSize(AT->getElementType());
1100     auto Align = SI.getAlignment();
1101     if (!Align)
1102       Align = DL.getABITypeAlignment(T);
1103
1104     SmallString<16> EltName = V->getName();
1105     EltName += ".elt";
1106     auto *Addr = SI.getPointerOperand();
1107     SmallString<16> AddrName = Addr->getName();
1108     AddrName += ".repack";
1109
1110     auto *IdxType = Type::getInt64Ty(T->getContext());
1111     auto *Zero = ConstantInt::get(IdxType, 0);
1112
1113     uint64_t Offset = 0;
1114     for (uint64_t i = 0; i < NumElements; i++) {
1115       Value *Indices[2] = {
1116         Zero,
1117         ConstantInt::get(IdxType, i),
1118       };
1119       auto *Ptr = IC.Builder->CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
1120                                                 AddrName);
1121       auto *Val = IC.Builder->CreateExtractValue(V, i, EltName);
1122       auto EltAlign = MinAlign(Align, Offset);
1123       IC.Builder->CreateAlignedStore(Val, Ptr, EltAlign);
1124       Offset += EltSize;
1125     }
1126
1127     return true;
1128   }
1129
1130   return false;
1131 }
1132
1133 /// equivalentAddressValues - Test if A and B will obviously have the same
1134 /// value. This includes recognizing that %t0 and %t1 will have the same
1135 /// value in code like this:
1136 ///   %t0 = getelementptr \@a, 0, 3
1137 ///   store i32 0, i32* %t0
1138 ///   %t1 = getelementptr \@a, 0, 3
1139 ///   %t2 = load i32* %t1
1140 ///
1141 static bool equivalentAddressValues(Value *A, Value *B) {
1142   // Test if the values are trivially equivalent.
1143   if (A == B) return true;
1144
1145   // Test if the values come form identical arithmetic instructions.
1146   // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
1147   // its only used to compare two uses within the same basic block, which
1148   // means that they'll always either have the same value or one of them
1149   // will have an undefined value.
1150   if (isa<BinaryOperator>(A) ||
1151       isa<CastInst>(A) ||
1152       isa<PHINode>(A) ||
1153       isa<GetElementPtrInst>(A))
1154     if (Instruction *BI = dyn_cast<Instruction>(B))
1155       if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
1156         return true;
1157
1158   // Otherwise they may not be equivalent.
1159   return false;
1160 }
1161
1162 Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
1163   Value *Val = SI.getOperand(0);
1164   Value *Ptr = SI.getOperand(1);
1165
1166   // Try to canonicalize the stored type.
1167   if (combineStoreToValueType(*this, SI))
1168     return eraseInstFromFunction(SI);
1169
1170   // Attempt to improve the alignment.
1171   unsigned KnownAlign = getOrEnforceKnownAlignment(
1172       Ptr, DL.getPrefTypeAlignment(Val->getType()), DL, &SI, AC, DT);
1173   unsigned StoreAlign = SI.getAlignment();
1174   unsigned EffectiveStoreAlign =
1175       StoreAlign != 0 ? StoreAlign : DL.getABITypeAlignment(Val->getType());
1176
1177   if (KnownAlign > EffectiveStoreAlign)
1178     SI.setAlignment(KnownAlign);
1179   else if (StoreAlign == 0)
1180     SI.setAlignment(EffectiveStoreAlign);
1181
1182   // Try to canonicalize the stored type.
1183   if (unpackStoreToAggregate(*this, SI))
1184     return eraseInstFromFunction(SI);
1185
1186   // Replace GEP indices if possible.
1187   if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) {
1188       Worklist.Add(NewGEPI);
1189       return &SI;
1190   }
1191
1192   // Don't hack volatile/ordered stores.
1193   // FIXME: Some bits are legal for ordered atomic stores; needs refactoring.
1194   if (!SI.isUnordered()) return nullptr;
1195
1196   // If the RHS is an alloca with a single use, zapify the store, making the
1197   // alloca dead.
1198   if (Ptr->hasOneUse()) {
1199     if (isa<AllocaInst>(Ptr))
1200       return eraseInstFromFunction(SI);
1201     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
1202       if (isa<AllocaInst>(GEP->getOperand(0))) {
1203         if (GEP->getOperand(0)->hasOneUse())
1204           return eraseInstFromFunction(SI);
1205       }
1206     }
1207   }
1208
1209   // Do really simple DSE, to catch cases where there are several consecutive
1210   // stores to the same location, separated by a few arithmetic operations. This
1211   // situation often occurs with bitfield accesses.
1212   BasicBlock::iterator BBI(SI);
1213   for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
1214        --ScanInsts) {
1215     --BBI;
1216     // Don't count debug info directives, lest they affect codegen,
1217     // and we skip pointer-to-pointer bitcasts, which are NOPs.
1218     if (isa<DbgInfoIntrinsic>(BBI) ||
1219         (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
1220       ScanInsts++;
1221       continue;
1222     }
1223
1224     if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
1225       // Prev store isn't volatile, and stores to the same location?
1226       if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1),
1227                                                         SI.getOperand(1))) {
1228         ++NumDeadStore;
1229         ++BBI;
1230         eraseInstFromFunction(*PrevSI);
1231         continue;
1232       }
1233       break;
1234     }
1235
1236     // If this is a load, we have to stop.  However, if the loaded value is from
1237     // the pointer we're loading and is producing the pointer we're storing,
1238     // then *this* store is dead (X = load P; store X -> P).
1239     if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
1240       if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) {
1241         assert(SI.isUnordered() && "can't eliminate ordering operation");
1242         return eraseInstFromFunction(SI);
1243       }
1244
1245       // Otherwise, this is a load from some other location.  Stores before it
1246       // may not be dead.
1247       break;
1248     }
1249
1250     // Don't skip over loads or things that can modify memory.
1251     if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory())
1252       break;
1253   }
1254
1255   // store X, null    -> turns into 'unreachable' in SimplifyCFG
1256   if (isa<ConstantPointerNull>(Ptr) && SI.getPointerAddressSpace() == 0) {
1257     if (!isa<UndefValue>(Val)) {
1258       SI.setOperand(0, UndefValue::get(Val->getType()));
1259       if (Instruction *U = dyn_cast<Instruction>(Val))
1260         Worklist.Add(U);  // Dropped a use.
1261     }
1262     return nullptr;  // Do not modify these!
1263   }
1264
1265   // store undef, Ptr -> noop
1266   if (isa<UndefValue>(Val))
1267     return eraseInstFromFunction(SI);
1268
1269   // If this store is the last instruction in the basic block (possibly
1270   // excepting debug info instructions), and if the block ends with an
1271   // unconditional branch, try to move it to the successor block.
1272   BBI = SI.getIterator();
1273   do {
1274     ++BBI;
1275   } while (isa<DbgInfoIntrinsic>(BBI) ||
1276            (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()));
1277   if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
1278     if (BI->isUnconditional())
1279       if (SimplifyStoreAtEndOfBlock(SI))
1280         return nullptr;  // xform done!
1281
1282   return nullptr;
1283 }
1284
1285 /// SimplifyStoreAtEndOfBlock - Turn things like:
1286 ///   if () { *P = v1; } else { *P = v2 }
1287 /// into a phi node with a store in the successor.
1288 ///
1289 /// Simplify things like:
1290 ///   *P = v1; if () { *P = v2; }
1291 /// into a phi node with a store in the successor.
1292 ///
1293 bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
1294   assert(SI.isUnordered() &&
1295          "this code has not been auditted for volatile or ordered store case");
1296   
1297   BasicBlock *StoreBB = SI.getParent();
1298
1299   // Check to see if the successor block has exactly two incoming edges.  If
1300   // so, see if the other predecessor contains a store to the same location.
1301   // if so, insert a PHI node (if needed) and move the stores down.
1302   BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
1303
1304   // Determine whether Dest has exactly two predecessors and, if so, compute
1305   // the other predecessor.
1306   pred_iterator PI = pred_begin(DestBB);
1307   BasicBlock *P = *PI;
1308   BasicBlock *OtherBB = nullptr;
1309
1310   if (P != StoreBB)
1311     OtherBB = P;
1312
1313   if (++PI == pred_end(DestBB))
1314     return false;
1315
1316   P = *PI;
1317   if (P != StoreBB) {
1318     if (OtherBB)
1319       return false;
1320     OtherBB = P;
1321   }
1322   if (++PI != pred_end(DestBB))
1323     return false;
1324
1325   // Bail out if all the relevant blocks aren't distinct (this can happen,
1326   // for example, if SI is in an infinite loop)
1327   if (StoreBB == DestBB || OtherBB == DestBB)
1328     return false;
1329
1330   // Verify that the other block ends in a branch and is not otherwise empty.
1331   BasicBlock::iterator BBI(OtherBB->getTerminator());
1332   BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
1333   if (!OtherBr || BBI == OtherBB->begin())
1334     return false;
1335
1336   // If the other block ends in an unconditional branch, check for the 'if then
1337   // else' case.  there is an instruction before the branch.
1338   StoreInst *OtherStore = nullptr;
1339   if (OtherBr->isUnconditional()) {
1340     --BBI;
1341     // Skip over debugging info.
1342     while (isa<DbgInfoIntrinsic>(BBI) ||
1343            (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
1344       if (BBI==OtherBB->begin())
1345         return false;
1346       --BBI;
1347     }
1348     // If this isn't a store, isn't a store to the same location, or is not the
1349     // right kind of store, bail out.
1350     OtherStore = dyn_cast<StoreInst>(BBI);
1351     if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
1352         !SI.isSameOperationAs(OtherStore))
1353       return false;
1354   } else {
1355     // Otherwise, the other block ended with a conditional branch. If one of the
1356     // destinations is StoreBB, then we have the if/then case.
1357     if (OtherBr->getSuccessor(0) != StoreBB &&
1358         OtherBr->getSuccessor(1) != StoreBB)
1359       return false;
1360
1361     // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
1362     // if/then triangle.  See if there is a store to the same ptr as SI that
1363     // lives in OtherBB.
1364     for (;; --BBI) {
1365       // Check to see if we find the matching store.
1366       if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
1367         if (OtherStore->getOperand(1) != SI.getOperand(1) ||
1368             !SI.isSameOperationAs(OtherStore))
1369           return false;
1370         break;
1371       }
1372       // If we find something that may be using or overwriting the stored
1373       // value, or if we run out of instructions, we can't do the xform.
1374       if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() ||
1375           BBI == OtherBB->begin())
1376         return false;
1377     }
1378
1379     // In order to eliminate the store in OtherBr, we have to
1380     // make sure nothing reads or overwrites the stored value in
1381     // StoreBB.
1382     for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
1383       // FIXME: This should really be AA driven.
1384       if (I->mayReadFromMemory() || I->mayWriteToMemory())
1385         return false;
1386     }
1387   }
1388
1389   // Insert a PHI node now if we need it.
1390   Value *MergedVal = OtherStore->getOperand(0);
1391   if (MergedVal != SI.getOperand(0)) {
1392     PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge");
1393     PN->addIncoming(SI.getOperand(0), SI.getParent());
1394     PN->addIncoming(OtherStore->getOperand(0), OtherBB);
1395     MergedVal = InsertNewInstBefore(PN, DestBB->front());
1396   }
1397
1398   // Advance to a place where it is safe to insert the new store and
1399   // insert it.
1400   BBI = DestBB->getFirstInsertionPt();
1401   StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1),
1402                                    SI.isVolatile(),
1403                                    SI.getAlignment(),
1404                                    SI.getOrdering(),
1405                                    SI.getSynchScope());
1406   InsertNewInstBefore(NewSI, *BBI);
1407   NewSI->setDebugLoc(OtherStore->getDebugLoc());
1408
1409   // If the two stores had AA tags, merge them.
1410   AAMDNodes AATags;
1411   SI.getAAMetadata(AATags);
1412   if (AATags) {
1413     OtherStore->getAAMetadata(AATags, /* Merge = */ true);
1414     NewSI->setAAMetadata(AATags);
1415   }
1416
1417   // Nuke the old stores.
1418   eraseInstFromFunction(SI);
1419   eraseInstFromFunction(*OtherStore);
1420   return true;
1421 }