]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
Merge clang 7.0.1 and several follow-up changes
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / InstCombine / InstCombineMulDivRem.cpp
1 //===- InstCombineMulDivRem.cpp -------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
11 // srem, urem, frem.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "InstCombineInternal.h"
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/Constant.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/InstrTypes.h"
24 #include "llvm/IR/Instruction.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/Intrinsics.h"
28 #include "llvm/IR/Operator.h"
29 #include "llvm/IR/PatternMatch.h"
30 #include "llvm/IR/Type.h"
31 #include "llvm/IR/Value.h"
32 #include "llvm/Support/Casting.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/KnownBits.h"
35 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
36 #include "llvm/Transforms/Utils/BuildLibCalls.h"
37 #include <cassert>
38 #include <cstddef>
39 #include <cstdint>
40 #include <utility>
41
42 using namespace llvm;
43 using namespace PatternMatch;
44
45 #define DEBUG_TYPE "instcombine"
46
47 /// The specific integer value is used in a context where it is known to be
48 /// non-zero.  If this allows us to simplify the computation, do so and return
49 /// the new operand, otherwise return null.
50 static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC,
51                                         Instruction &CxtI) {
52   // If V has multiple uses, then we would have to do more analysis to determine
53   // if this is safe.  For example, the use could be in dynamically unreached
54   // code.
55   if (!V->hasOneUse()) return nullptr;
56
57   bool MadeChange = false;
58
59   // ((1 << A) >>u B) --> (1 << (A-B))
60   // Because V cannot be zero, we know that B is less than A.
61   Value *A = nullptr, *B = nullptr, *One = nullptr;
62   if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(One), m_Value(A))), m_Value(B))) &&
63       match(One, m_One())) {
64     A = IC.Builder.CreateSub(A, B);
65     return IC.Builder.CreateShl(One, A);
66   }
67
68   // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
69   // inexact.  Similarly for <<.
70   BinaryOperator *I = dyn_cast<BinaryOperator>(V);
71   if (I && I->isLogicalShift() &&
72       IC.isKnownToBeAPowerOfTwo(I->getOperand(0), false, 0, &CxtI)) {
73     // We know that this is an exact/nuw shift and that the input is a
74     // non-zero context as well.
75     if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC, CxtI)) {
76       I->setOperand(0, V2);
77       MadeChange = true;
78     }
79
80     if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
81       I->setIsExact();
82       MadeChange = true;
83     }
84
85     if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
86       I->setHasNoUnsignedWrap();
87       MadeChange = true;
88     }
89   }
90
91   // TODO: Lots more we could do here:
92   //    If V is a phi node, we can call this on each of its operands.
93   //    "select cond, X, 0" can simplify to "X".
94
95   return MadeChange ? V : nullptr;
96 }
97
98 /// A helper routine of InstCombiner::visitMul().
99 ///
100 /// If C is a scalar/vector of known powers of 2, then this function returns
101 /// a new scalar/vector obtained from logBase2 of C.
102 /// Return a null pointer otherwise.
103 static Constant *getLogBase2(Type *Ty, Constant *C) {
104   const APInt *IVal;
105   if (match(C, m_APInt(IVal)) && IVal->isPowerOf2())
106     return ConstantInt::get(Ty, IVal->logBase2());
107
108   if (!Ty->isVectorTy())
109     return nullptr;
110
111   SmallVector<Constant *, 4> Elts;
112   for (unsigned I = 0, E = Ty->getVectorNumElements(); I != E; ++I) {
113     Constant *Elt = C->getAggregateElement(I);
114     if (!Elt)
115       return nullptr;
116     if (isa<UndefValue>(Elt)) {
117       Elts.push_back(UndefValue::get(Ty->getScalarType()));
118       continue;
119     }
120     if (!match(Elt, m_APInt(IVal)) || !IVal->isPowerOf2())
121       return nullptr;
122     Elts.push_back(ConstantInt::get(Ty->getScalarType(), IVal->logBase2()));
123   }
124
125   return ConstantVector::get(Elts);
126 }
127
128 Instruction *InstCombiner::visitMul(BinaryOperator &I) {
129   if (Value *V = SimplifyMulInst(I.getOperand(0), I.getOperand(1),
130                                  SQ.getWithInstruction(&I)))
131     return replaceInstUsesWith(I, V);
132
133   if (SimplifyAssociativeOrCommutative(I))
134     return &I;
135
136   if (Instruction *X = foldShuffledBinop(I))
137     return X;
138
139   if (Value *V = SimplifyUsingDistributiveLaws(I))
140     return replaceInstUsesWith(I, V);
141
142   // X * -1 == 0 - X
143   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
144   if (match(Op1, m_AllOnes())) {
145     BinaryOperator *BO = BinaryOperator::CreateNeg(Op0, I.getName());
146     if (I.hasNoSignedWrap())
147       BO->setHasNoSignedWrap();
148     return BO;
149   }
150
151   // Also allow combining multiply instructions on vectors.
152   {
153     Value *NewOp;
154     Constant *C1, *C2;
155     const APInt *IVal;
156     if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)),
157                         m_Constant(C1))) &&
158         match(C1, m_APInt(IVal))) {
159       // ((X << C2)*C1) == (X * (C1 << C2))
160       Constant *Shl = ConstantExpr::getShl(C1, C2);
161       BinaryOperator *Mul = cast<BinaryOperator>(I.getOperand(0));
162       BinaryOperator *BO = BinaryOperator::CreateMul(NewOp, Shl);
163       if (I.hasNoUnsignedWrap() && Mul->hasNoUnsignedWrap())
164         BO->setHasNoUnsignedWrap();
165       if (I.hasNoSignedWrap() && Mul->hasNoSignedWrap() &&
166           Shl->isNotMinSignedValue())
167         BO->setHasNoSignedWrap();
168       return BO;
169     }
170
171     if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) {
172       // Replace X*(2^C) with X << C, where C is either a scalar or a vector.
173       if (Constant *NewCst = getLogBase2(NewOp->getType(), C1)) {
174         unsigned Width = NewCst->getType()->getPrimitiveSizeInBits();
175         BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst);
176
177         if (I.hasNoUnsignedWrap())
178           Shl->setHasNoUnsignedWrap();
179         if (I.hasNoSignedWrap()) {
180           const APInt *V;
181           if (match(NewCst, m_APInt(V)) && *V != Width - 1)
182             Shl->setHasNoSignedWrap();
183         }
184
185         return Shl;
186       }
187     }
188   }
189
190   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
191     // (Y - X) * (-(2**n)) -> (X - Y) * (2**n), for positive nonzero n
192     // (Y + const) * (-(2**n)) -> (-constY) * (2**n), for positive nonzero n
193     // The "* (2**n)" thus becomes a potential shifting opportunity.
194     {
195       const APInt &   Val = CI->getValue();
196       const APInt &PosVal = Val.abs();
197       if (Val.isNegative() && PosVal.isPowerOf2()) {
198         Value *X = nullptr, *Y = nullptr;
199         if (Op0->hasOneUse()) {
200           ConstantInt *C1;
201           Value *Sub = nullptr;
202           if (match(Op0, m_Sub(m_Value(Y), m_Value(X))))
203             Sub = Builder.CreateSub(X, Y, "suba");
204           else if (match(Op0, m_Add(m_Value(Y), m_ConstantInt(C1))))
205             Sub = Builder.CreateSub(Builder.CreateNeg(C1), Y, "subc");
206           if (Sub)
207             return
208               BinaryOperator::CreateMul(Sub,
209                                         ConstantInt::get(Y->getType(), PosVal));
210         }
211       }
212     }
213   }
214
215   if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
216     return FoldedMul;
217
218   // Simplify mul instructions with a constant RHS.
219   if (isa<Constant>(Op1)) {
220     // Canonicalize (X+C1)*CI -> X*CI+C1*CI.
221     Value *X;
222     Constant *C1;
223     if (match(Op0, m_OneUse(m_Add(m_Value(X), m_Constant(C1))))) {
224       Value *Mul = Builder.CreateMul(C1, Op1);
225       // Only go forward with the transform if C1*CI simplifies to a tidier
226       // constant.
227       if (!match(Mul, m_Mul(m_Value(), m_Value())))
228         return BinaryOperator::CreateAdd(Builder.CreateMul(X, Op1), Mul);
229     }
230   }
231
232   // -X * C --> X * -C
233   Value *X, *Y;
234   Constant *Op1C;
235   if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Constant(Op1C)))
236     return BinaryOperator::CreateMul(X, ConstantExpr::getNeg(Op1C));
237
238   // -X * -Y --> X * Y
239   if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Neg(m_Value(Y)))) {
240     auto *NewMul = BinaryOperator::CreateMul(X, Y);
241     if (I.hasNoSignedWrap() &&
242         cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap() &&
243         cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap())
244       NewMul->setHasNoSignedWrap();
245     return NewMul;
246   }
247
248   // (X / Y) *  Y = X - (X % Y)
249   // (X / Y) * -Y = (X % Y) - X
250   {
251     Value *Y = Op1;
252     BinaryOperator *Div = dyn_cast<BinaryOperator>(Op0);
253     if (!Div || (Div->getOpcode() != Instruction::UDiv &&
254                  Div->getOpcode() != Instruction::SDiv)) {
255       Y = Op0;
256       Div = dyn_cast<BinaryOperator>(Op1);
257     }
258     Value *Neg = dyn_castNegVal(Y);
259     if (Div && Div->hasOneUse() &&
260         (Div->getOperand(1) == Y || Div->getOperand(1) == Neg) &&
261         (Div->getOpcode() == Instruction::UDiv ||
262          Div->getOpcode() == Instruction::SDiv)) {
263       Value *X = Div->getOperand(0), *DivOp1 = Div->getOperand(1);
264
265       // If the division is exact, X % Y is zero, so we end up with X or -X.
266       if (Div->isExact()) {
267         if (DivOp1 == Y)
268           return replaceInstUsesWith(I, X);
269         return BinaryOperator::CreateNeg(X);
270       }
271
272       auto RemOpc = Div->getOpcode() == Instruction::UDiv ? Instruction::URem
273                                                           : Instruction::SRem;
274       Value *Rem = Builder.CreateBinOp(RemOpc, X, DivOp1);
275       if (DivOp1 == Y)
276         return BinaryOperator::CreateSub(X, Rem);
277       return BinaryOperator::CreateSub(Rem, X);
278     }
279   }
280
281   /// i1 mul -> i1 and.
282   if (I.getType()->isIntOrIntVectorTy(1))
283     return BinaryOperator::CreateAnd(Op0, Op1);
284
285   // X*(1 << Y) --> X << Y
286   // (1 << Y)*X --> X << Y
287   {
288     Value *Y;
289     BinaryOperator *BO = nullptr;
290     bool ShlNSW = false;
291     if (match(Op0, m_Shl(m_One(), m_Value(Y)))) {
292       BO = BinaryOperator::CreateShl(Op1, Y);
293       ShlNSW = cast<ShlOperator>(Op0)->hasNoSignedWrap();
294     } else if (match(Op1, m_Shl(m_One(), m_Value(Y)))) {
295       BO = BinaryOperator::CreateShl(Op0, Y);
296       ShlNSW = cast<ShlOperator>(Op1)->hasNoSignedWrap();
297     }
298     if (BO) {
299       if (I.hasNoUnsignedWrap())
300         BO->setHasNoUnsignedWrap();
301       if (I.hasNoSignedWrap() && ShlNSW)
302         BO->setHasNoSignedWrap();
303       return BO;
304     }
305   }
306
307   // (bool X) * Y --> X ? Y : 0
308   // Y * (bool X) --> X ? Y : 0
309   if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
310     return SelectInst::Create(X, Op1, ConstantInt::get(I.getType(), 0));
311   if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
312     return SelectInst::Create(X, Op0, ConstantInt::get(I.getType(), 0));
313
314   // (lshr X, 31) * Y --> (ashr X, 31) & Y
315   // Y * (lshr X, 31) --> (ashr X, 31) & Y
316   // TODO: We are not checking one-use because the elimination of the multiply
317   //       is better for analysis?
318   // TODO: Should we canonicalize to '(X < 0) ? Y : 0' instead? That would be
319   //       more similar to what we're doing above.
320   const APInt *C;
321   if (match(Op0, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1)
322     return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op1);
323   if (match(Op1, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1)
324     return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op0);
325
326   // Check for (mul (sext x), y), see if we can merge this into an
327   // integer mul followed by a sext.
328   if (SExtInst *Op0Conv = dyn_cast<SExtInst>(Op0)) {
329     // (mul (sext x), cst) --> (sext (mul x, cst'))
330     if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
331       if (Op0Conv->hasOneUse()) {
332         Constant *CI =
333             ConstantExpr::getTrunc(Op1C, Op0Conv->getOperand(0)->getType());
334         if (ConstantExpr::getSExt(CI, I.getType()) == Op1C &&
335             willNotOverflowSignedMul(Op0Conv->getOperand(0), CI, I)) {
336           // Insert the new, smaller mul.
337           Value *NewMul =
338               Builder.CreateNSWMul(Op0Conv->getOperand(0), CI, "mulconv");
339           return new SExtInst(NewMul, I.getType());
340         }
341       }
342     }
343
344     // (mul (sext x), (sext y)) --> (sext (mul int x, y))
345     if (SExtInst *Op1Conv = dyn_cast<SExtInst>(Op1)) {
346       // Only do this if x/y have the same type, if at last one of them has a
347       // single use (so we don't increase the number of sexts), and if the
348       // integer mul will not overflow.
349       if (Op0Conv->getOperand(0)->getType() ==
350               Op1Conv->getOperand(0)->getType() &&
351           (Op0Conv->hasOneUse() || Op1Conv->hasOneUse()) &&
352           willNotOverflowSignedMul(Op0Conv->getOperand(0),
353                                    Op1Conv->getOperand(0), I)) {
354         // Insert the new integer mul.
355         Value *NewMul = Builder.CreateNSWMul(
356             Op0Conv->getOperand(0), Op1Conv->getOperand(0), "mulconv");
357         return new SExtInst(NewMul, I.getType());
358       }
359     }
360   }
361
362   // Check for (mul (zext x), y), see if we can merge this into an
363   // integer mul followed by a zext.
364   if (auto *Op0Conv = dyn_cast<ZExtInst>(Op0)) {
365     // (mul (zext x), cst) --> (zext (mul x, cst'))
366     if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
367       if (Op0Conv->hasOneUse()) {
368         Constant *CI =
369             ConstantExpr::getTrunc(Op1C, Op0Conv->getOperand(0)->getType());
370         if (ConstantExpr::getZExt(CI, I.getType()) == Op1C &&
371             willNotOverflowUnsignedMul(Op0Conv->getOperand(0), CI, I)) {
372           // Insert the new, smaller mul.
373           Value *NewMul =
374               Builder.CreateNUWMul(Op0Conv->getOperand(0), CI, "mulconv");
375           return new ZExtInst(NewMul, I.getType());
376         }
377       }
378     }
379
380     // (mul (zext x), (zext y)) --> (zext (mul int x, y))
381     if (auto *Op1Conv = dyn_cast<ZExtInst>(Op1)) {
382       // Only do this if x/y have the same type, if at last one of them has a
383       // single use (so we don't increase the number of zexts), and if the
384       // integer mul will not overflow.
385       if (Op0Conv->getOperand(0)->getType() ==
386               Op1Conv->getOperand(0)->getType() &&
387           (Op0Conv->hasOneUse() || Op1Conv->hasOneUse()) &&
388           willNotOverflowUnsignedMul(Op0Conv->getOperand(0),
389                                      Op1Conv->getOperand(0), I)) {
390         // Insert the new integer mul.
391         Value *NewMul = Builder.CreateNUWMul(
392             Op0Conv->getOperand(0), Op1Conv->getOperand(0), "mulconv");
393         return new ZExtInst(NewMul, I.getType());
394       }
395     }
396   }
397
398   bool Changed = false;
399   if (!I.hasNoSignedWrap() && willNotOverflowSignedMul(Op0, Op1, I)) {
400     Changed = true;
401     I.setHasNoSignedWrap(true);
402   }
403
404   if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedMul(Op0, Op1, I)) {
405     Changed = true;
406     I.setHasNoUnsignedWrap(true);
407   }
408
409   return Changed ? &I : nullptr;
410 }
411
412 Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
413   if (Value *V = SimplifyFMulInst(I.getOperand(0), I.getOperand(1),
414                                   I.getFastMathFlags(),
415                                   SQ.getWithInstruction(&I)))
416     return replaceInstUsesWith(I, V);
417
418   if (SimplifyAssociativeOrCommutative(I))
419     return &I;
420
421   if (Instruction *X = foldShuffledBinop(I))
422     return X;
423
424   if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
425     return FoldedMul;
426
427   // X * -1.0 --> -X
428   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
429   if (match(Op1, m_SpecificFP(-1.0)))
430     return BinaryOperator::CreateFNegFMF(Op0, &I);
431
432   // -X * -Y --> X * Y
433   Value *X, *Y;
434   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
435     return BinaryOperator::CreateFMulFMF(X, Y, &I);
436
437   // -X * C --> X * -C
438   Constant *C;
439   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_Constant(C)))
440     return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I);
441
442   // Sink negation: -X * Y --> -(X * Y)
443   if (match(Op0, m_OneUse(m_FNeg(m_Value(X)))))
444     return BinaryOperator::CreateFNegFMF(Builder.CreateFMulFMF(X, Op1, &I), &I);
445
446   // Sink negation: Y * -X --> -(X * Y)
447   if (match(Op1, m_OneUse(m_FNeg(m_Value(X)))))
448     return BinaryOperator::CreateFNegFMF(Builder.CreateFMulFMF(X, Op0, &I), &I);
449
450   // fabs(X) * fabs(X) -> X * X
451   if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::fabs>(m_Value(X))))
452     return BinaryOperator::CreateFMulFMF(X, X, &I);
453
454   // (select A, B, C) * (select A, D, E) --> select A, (B*D), (C*E)
455   if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
456     return replaceInstUsesWith(I, V);
457
458   if (I.hasAllowReassoc()) {
459     // Reassociate constant RHS with another constant to form constant
460     // expression.
461     if (match(Op1, m_Constant(C)) && C->isFiniteNonZeroFP()) {
462       Constant *C1;
463       if (match(Op0, m_OneUse(m_FDiv(m_Constant(C1), m_Value(X))))) {
464         // (C1 / X) * C --> (C * C1) / X
465         Constant *CC1 = ConstantExpr::getFMul(C, C1);
466         if (CC1->isNormalFP())
467           return BinaryOperator::CreateFDivFMF(CC1, X, &I);
468       }
469       if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) {
470         // (X / C1) * C --> X * (C / C1)
471         Constant *CDivC1 = ConstantExpr::getFDiv(C, C1);
472         if (CDivC1->isNormalFP())
473           return BinaryOperator::CreateFMulFMF(X, CDivC1, &I);
474
475         // If the constant was a denormal, try reassociating differently.
476         // (X / C1) * C --> X / (C1 / C)
477         Constant *C1DivC = ConstantExpr::getFDiv(C1, C);
478         if (Op0->hasOneUse() && C1DivC->isNormalFP())
479           return BinaryOperator::CreateFDivFMF(X, C1DivC, &I);
480       }
481
482       // We do not need to match 'fadd C, X' and 'fsub X, C' because they are
483       // canonicalized to 'fadd X, C'. Distributing the multiply may allow
484       // further folds and (X * C) + C2 is 'fma'.
485       if (match(Op0, m_OneUse(m_FAdd(m_Value(X), m_Constant(C1))))) {
486         // (X + C1) * C --> (X * C) + (C * C1)
487         Constant *CC1 = ConstantExpr::getFMul(C, C1);
488         Value *XC = Builder.CreateFMulFMF(X, C, &I);
489         return BinaryOperator::CreateFAddFMF(XC, CC1, &I);
490       }
491       if (match(Op0, m_OneUse(m_FSub(m_Constant(C1), m_Value(X))))) {
492         // (C1 - X) * C --> (C * C1) - (X * C)
493         Constant *CC1 = ConstantExpr::getFMul(C, C1);
494         Value *XC = Builder.CreateFMulFMF(X, C, &I);
495         return BinaryOperator::CreateFSubFMF(CC1, XC, &I);
496       }
497     }
498
499     // sqrt(X) * sqrt(Y) -> sqrt(X * Y)
500     // nnan disallows the possibility of returning a number if both operands are
501     // negative (in that case, we should return NaN).
502     if (I.hasNoNaNs() &&
503         match(Op0, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(X)))) &&
504         match(Op1, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(Y))))) {
505       Value *XY = Builder.CreateFMulFMF(X, Y, &I);
506       Value *Sqrt = Builder.CreateIntrinsic(Intrinsic::sqrt, { XY }, &I);
507       return replaceInstUsesWith(I, Sqrt);
508     }
509
510     // (X*Y) * X => (X*X) * Y where Y != X
511     //  The purpose is two-fold:
512     //   1) to form a power expression (of X).
513     //   2) potentially shorten the critical path: After transformation, the
514     //  latency of the instruction Y is amortized by the expression of X*X,
515     //  and therefore Y is in a "less critical" position compared to what it
516     //  was before the transformation.
517     if (match(Op0, m_OneUse(m_c_FMul(m_Specific(Op1), m_Value(Y)))) &&
518         Op1 != Y) {
519       Value *XX = Builder.CreateFMulFMF(Op1, Op1, &I);
520       return BinaryOperator::CreateFMulFMF(XX, Y, &I);
521     }
522     if (match(Op1, m_OneUse(m_c_FMul(m_Specific(Op0), m_Value(Y)))) &&
523         Op0 != Y) {
524       Value *XX = Builder.CreateFMulFMF(Op0, Op0, &I);
525       return BinaryOperator::CreateFMulFMF(XX, Y, &I);
526     }
527   }
528
529   // log2(X * 0.5) * Y = log2(X) * Y - Y
530   if (I.isFast()) {
531     IntrinsicInst *Log2 = nullptr;
532     if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::log2>(
533             m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
534       Log2 = cast<IntrinsicInst>(Op0);
535       Y = Op1;
536     }
537     if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::log2>(
538             m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
539       Log2 = cast<IntrinsicInst>(Op1);
540       Y = Op0;
541     }
542     if (Log2) {
543       Log2->setArgOperand(0, X);
544       Log2->copyFastMathFlags(&I);
545       Value *LogXTimesY = Builder.CreateFMulFMF(Log2, Y, &I);
546       return BinaryOperator::CreateFSubFMF(LogXTimesY, Y, &I);
547     }
548   }
549
550   return nullptr;
551 }
552
553 /// Fold a divide or remainder with a select instruction divisor when one of the
554 /// select operands is zero. In that case, we can use the other select operand
555 /// because div/rem by zero is undefined.
556 bool InstCombiner::simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I) {
557   SelectInst *SI = dyn_cast<SelectInst>(I.getOperand(1));
558   if (!SI)
559     return false;
560
561   int NonNullOperand;
562   if (match(SI->getTrueValue(), m_Zero()))
563     // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
564     NonNullOperand = 2;
565   else if (match(SI->getFalseValue(), m_Zero()))
566     // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
567     NonNullOperand = 1;
568   else
569     return false;
570
571   // Change the div/rem to use 'Y' instead of the select.
572   I.setOperand(1, SI->getOperand(NonNullOperand));
573
574   // Okay, we know we replace the operand of the div/rem with 'Y' with no
575   // problem.  However, the select, or the condition of the select may have
576   // multiple uses.  Based on our knowledge that the operand must be non-zero,
577   // propagate the known value for the select into other uses of it, and
578   // propagate a known value of the condition into its other users.
579
580   // If the select and condition only have a single use, don't bother with this,
581   // early exit.
582   Value *SelectCond = SI->getCondition();
583   if (SI->use_empty() && SelectCond->hasOneUse())
584     return true;
585
586   // Scan the current block backward, looking for other uses of SI.
587   BasicBlock::iterator BBI = I.getIterator(), BBFront = I.getParent()->begin();
588   Type *CondTy = SelectCond->getType();
589   while (BBI != BBFront) {
590     --BBI;
591     // If we found an instruction that we can't assume will return, so
592     // information from below it cannot be propagated above it.
593     if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
594       break;
595
596     // Replace uses of the select or its condition with the known values.
597     for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
598          I != E; ++I) {
599       if (*I == SI) {
600         *I = SI->getOperand(NonNullOperand);
601         Worklist.Add(&*BBI);
602       } else if (*I == SelectCond) {
603         *I = NonNullOperand == 1 ? ConstantInt::getTrue(CondTy)
604                                  : ConstantInt::getFalse(CondTy);
605         Worklist.Add(&*BBI);
606       }
607     }
608
609     // If we past the instruction, quit looking for it.
610     if (&*BBI == SI)
611       SI = nullptr;
612     if (&*BBI == SelectCond)
613       SelectCond = nullptr;
614
615     // If we ran out of things to eliminate, break out of the loop.
616     if (!SelectCond && !SI)
617       break;
618
619   }
620   return true;
621 }
622
623 /// True if the multiply can not be expressed in an int this size.
624 static bool multiplyOverflows(const APInt &C1, const APInt &C2, APInt &Product,
625                               bool IsSigned) {
626   bool Overflow;
627   Product = IsSigned ? C1.smul_ov(C2, Overflow) : C1.umul_ov(C2, Overflow);
628   return Overflow;
629 }
630
631 /// True if C1 is a multiple of C2. Quotient contains C1/C2.
632 static bool isMultiple(const APInt &C1, const APInt &C2, APInt &Quotient,
633                        bool IsSigned) {
634   assert(C1.getBitWidth() == C2.getBitWidth() && "Constant widths not equal");
635
636   // Bail if we will divide by zero.
637   if (C2.isNullValue())
638     return false;
639
640   // Bail if we would divide INT_MIN by -1.
641   if (IsSigned && C1.isMinSignedValue() && C2.isAllOnesValue())
642     return false;
643
644   APInt Remainder(C1.getBitWidth(), /*Val=*/0ULL, IsSigned);
645   if (IsSigned)
646     APInt::sdivrem(C1, C2, Quotient, Remainder);
647   else
648     APInt::udivrem(C1, C2, Quotient, Remainder);
649
650   return Remainder.isMinValue();
651 }
652
653 /// This function implements the transforms common to both integer division
654 /// instructions (udiv and sdiv). It is called by the visitors to those integer
655 /// division instructions.
656 /// Common integer divide transforms
657 Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
658   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
659   bool IsSigned = I.getOpcode() == Instruction::SDiv;
660   Type *Ty = I.getType();
661
662   // The RHS is known non-zero.
663   if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I)) {
664     I.setOperand(1, V);
665     return &I;
666   }
667
668   // Handle cases involving: [su]div X, (select Cond, Y, Z)
669   // This does not apply for fdiv.
670   if (simplifyDivRemOfSelectWithZeroOp(I))
671     return &I;
672
673   const APInt *C2;
674   if (match(Op1, m_APInt(C2))) {
675     Value *X;
676     const APInt *C1;
677
678     // (X / C1) / C2  -> X / (C1*C2)
679     if ((IsSigned && match(Op0, m_SDiv(m_Value(X), m_APInt(C1)))) ||
680         (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_APInt(C1))))) {
681       APInt Product(C1->getBitWidth(), /*Val=*/0ULL, IsSigned);
682       if (!multiplyOverflows(*C1, *C2, Product, IsSigned))
683         return BinaryOperator::Create(I.getOpcode(), X,
684                                       ConstantInt::get(Ty, Product));
685     }
686
687     if ((IsSigned && match(Op0, m_NSWMul(m_Value(X), m_APInt(C1)))) ||
688         (!IsSigned && match(Op0, m_NUWMul(m_Value(X), m_APInt(C1))))) {
689       APInt Quotient(C1->getBitWidth(), /*Val=*/0ULL, IsSigned);
690
691       // (X * C1) / C2 -> X / (C2 / C1) if C2 is a multiple of C1.
692       if (isMultiple(*C2, *C1, Quotient, IsSigned)) {
693         auto *NewDiv = BinaryOperator::Create(I.getOpcode(), X,
694                                               ConstantInt::get(Ty, Quotient));
695         NewDiv->setIsExact(I.isExact());
696         return NewDiv;
697       }
698
699       // (X * C1) / C2 -> X * (C1 / C2) if C1 is a multiple of C2.
700       if (isMultiple(*C1, *C2, Quotient, IsSigned)) {
701         auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
702                                            ConstantInt::get(Ty, Quotient));
703         auto *OBO = cast<OverflowingBinaryOperator>(Op0);
704         Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
705         Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
706         return Mul;
707       }
708     }
709
710     if ((IsSigned && match(Op0, m_NSWShl(m_Value(X), m_APInt(C1))) &&
711          *C1 != C1->getBitWidth() - 1) ||
712         (!IsSigned && match(Op0, m_NUWShl(m_Value(X), m_APInt(C1))))) {
713       APInt Quotient(C1->getBitWidth(), /*Val=*/0ULL, IsSigned);
714       APInt C1Shifted = APInt::getOneBitSet(
715           C1->getBitWidth(), static_cast<unsigned>(C1->getLimitedValue()));
716
717       // (X << C1) / C2 -> X / (C2 >> C1) if C2 is a multiple of 1 << C1.
718       if (isMultiple(*C2, C1Shifted, Quotient, IsSigned)) {
719         auto *BO = BinaryOperator::Create(I.getOpcode(), X,
720                                           ConstantInt::get(Ty, Quotient));
721         BO->setIsExact(I.isExact());
722         return BO;
723       }
724
725       // (X << C1) / C2 -> X * ((1 << C1) / C2) if 1 << C1 is a multiple of C2.
726       if (isMultiple(C1Shifted, *C2, Quotient, IsSigned)) {
727         auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
728                                            ConstantInt::get(Ty, Quotient));
729         auto *OBO = cast<OverflowingBinaryOperator>(Op0);
730         Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
731         Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
732         return Mul;
733       }
734     }
735
736     if (!C2->isNullValue()) // avoid X udiv 0
737       if (Instruction *FoldedDiv = foldBinOpIntoSelectOrPhi(I))
738         return FoldedDiv;
739   }
740
741   if (match(Op0, m_One())) {
742     assert(!Ty->isIntOrIntVectorTy(1) && "i1 divide not removed?");
743     if (IsSigned) {
744       // If Op1 is 0 then it's undefined behaviour, if Op1 is 1 then the
745       // result is one, if Op1 is -1 then the result is minus one, otherwise
746       // it's zero.
747       Value *Inc = Builder.CreateAdd(Op1, Op0);
748       Value *Cmp = Builder.CreateICmpULT(Inc, ConstantInt::get(Ty, 3));
749       return SelectInst::Create(Cmp, Op1, ConstantInt::get(Ty, 0));
750     } else {
751       // If Op1 is 0 then it's undefined behaviour. If Op1 is 1 then the
752       // result is one, otherwise it's zero.
753       return new ZExtInst(Builder.CreateICmpEQ(Op1, Op0), Ty);
754     }
755   }
756
757   // See if we can fold away this div instruction.
758   if (SimplifyDemandedInstructionBits(I))
759     return &I;
760
761   // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
762   Value *X, *Z;
763   if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) // (X - Z) / Y; Y = Op1
764     if ((IsSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
765         (!IsSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
766       return BinaryOperator::Create(I.getOpcode(), X, Op1);
767
768   // (X << Y) / X -> 1 << Y
769   Value *Y;
770   if (IsSigned && match(Op0, m_NSWShl(m_Specific(Op1), m_Value(Y))))
771     return BinaryOperator::CreateNSWShl(ConstantInt::get(Ty, 1), Y);
772   if (!IsSigned && match(Op0, m_NUWShl(m_Specific(Op1), m_Value(Y))))
773     return BinaryOperator::CreateNUWShl(ConstantInt::get(Ty, 1), Y);
774
775   // X / (X * Y) -> 1 / Y if the multiplication does not overflow.
776   if (match(Op1, m_c_Mul(m_Specific(Op0), m_Value(Y)))) {
777     bool HasNSW = cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap();
778     bool HasNUW = cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap();
779     if ((IsSigned && HasNSW) || (!IsSigned && HasNUW)) {
780       I.setOperand(0, ConstantInt::get(Ty, 1));
781       I.setOperand(1, Y);
782       return &I;
783     }
784   }
785
786   return nullptr;
787 }
788
789 static const unsigned MaxDepth = 6;
790
791 namespace {
792
793 using FoldUDivOperandCb = Instruction *(*)(Value *Op0, Value *Op1,
794                                            const BinaryOperator &I,
795                                            InstCombiner &IC);
796
797 /// Used to maintain state for visitUDivOperand().
798 struct UDivFoldAction {
799   /// Informs visitUDiv() how to fold this operand.  This can be zero if this
800   /// action joins two actions together.
801   FoldUDivOperandCb FoldAction;
802
803   /// Which operand to fold.
804   Value *OperandToFold;
805
806   union {
807     /// The instruction returned when FoldAction is invoked.
808     Instruction *FoldResult;
809
810     /// Stores the LHS action index if this action joins two actions together.
811     size_t SelectLHSIdx;
812   };
813
814   UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand)
815       : FoldAction(FA), OperandToFold(InputOperand), FoldResult(nullptr) {}
816   UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand, size_t SLHS)
817       : FoldAction(FA), OperandToFold(InputOperand), SelectLHSIdx(SLHS) {}
818 };
819
820 } // end anonymous namespace
821
822 // X udiv 2^C -> X >> C
823 static Instruction *foldUDivPow2Cst(Value *Op0, Value *Op1,
824                                     const BinaryOperator &I, InstCombiner &IC) {
825   Constant *C1 = getLogBase2(Op0->getType(), cast<Constant>(Op1));
826   if (!C1)
827     llvm_unreachable("Failed to constant fold udiv -> logbase2");
828   BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, C1);
829   if (I.isExact())
830     LShr->setIsExact();
831   return LShr;
832 }
833
834 // X udiv (C1 << N), where C1 is "1<<C2"  -->  X >> (N+C2)
835 // X udiv (zext (C1 << N)), where C1 is "1<<C2"  -->  X >> (N+C2)
836 static Instruction *foldUDivShl(Value *Op0, Value *Op1, const BinaryOperator &I,
837                                 InstCombiner &IC) {
838   Value *ShiftLeft;
839   if (!match(Op1, m_ZExt(m_Value(ShiftLeft))))
840     ShiftLeft = Op1;
841
842   Constant *CI;
843   Value *N;
844   if (!match(ShiftLeft, m_Shl(m_Constant(CI), m_Value(N))))
845     llvm_unreachable("match should never fail here!");
846   Constant *Log2Base = getLogBase2(N->getType(), CI);
847   if (!Log2Base)
848     llvm_unreachable("getLogBase2 should never fail here!");
849   N = IC.Builder.CreateAdd(N, Log2Base);
850   if (Op1 != ShiftLeft)
851     N = IC.Builder.CreateZExt(N, Op1->getType());
852   BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, N);
853   if (I.isExact())
854     LShr->setIsExact();
855   return LShr;
856 }
857
858 // Recursively visits the possible right hand operands of a udiv
859 // instruction, seeing through select instructions, to determine if we can
860 // replace the udiv with something simpler.  If we find that an operand is not
861 // able to simplify the udiv, we abort the entire transformation.
862 static size_t visitUDivOperand(Value *Op0, Value *Op1, const BinaryOperator &I,
863                                SmallVectorImpl<UDivFoldAction> &Actions,
864                                unsigned Depth = 0) {
865   // Check to see if this is an unsigned division with an exact power of 2,
866   // if so, convert to a right shift.
867   if (match(Op1, m_Power2())) {
868     Actions.push_back(UDivFoldAction(foldUDivPow2Cst, Op1));
869     return Actions.size();
870   }
871
872   // X udiv (C1 << N), where C1 is "1<<C2"  -->  X >> (N+C2)
873   if (match(Op1, m_Shl(m_Power2(), m_Value())) ||
874       match(Op1, m_ZExt(m_Shl(m_Power2(), m_Value())))) {
875     Actions.push_back(UDivFoldAction(foldUDivShl, Op1));
876     return Actions.size();
877   }
878
879   // The remaining tests are all recursive, so bail out if we hit the limit.
880   if (Depth++ == MaxDepth)
881     return 0;
882
883   if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
884     if (size_t LHSIdx =
885             visitUDivOperand(Op0, SI->getOperand(1), I, Actions, Depth))
886       if (visitUDivOperand(Op0, SI->getOperand(2), I, Actions, Depth)) {
887         Actions.push_back(UDivFoldAction(nullptr, Op1, LHSIdx - 1));
888         return Actions.size();
889       }
890
891   return 0;
892 }
893
894 /// If we have zero-extended operands of an unsigned div or rem, we may be able
895 /// to narrow the operation (sink the zext below the math).
896 static Instruction *narrowUDivURem(BinaryOperator &I,
897                                    InstCombiner::BuilderTy &Builder) {
898   Instruction::BinaryOps Opcode = I.getOpcode();
899   Value *N = I.getOperand(0);
900   Value *D = I.getOperand(1);
901   Type *Ty = I.getType();
902   Value *X, *Y;
903   if (match(N, m_ZExt(m_Value(X))) && match(D, m_ZExt(m_Value(Y))) &&
904       X->getType() == Y->getType() && (N->hasOneUse() || D->hasOneUse())) {
905     // udiv (zext X), (zext Y) --> zext (udiv X, Y)
906     // urem (zext X), (zext Y) --> zext (urem X, Y)
907     Value *NarrowOp = Builder.CreateBinOp(Opcode, X, Y);
908     return new ZExtInst(NarrowOp, Ty);
909   }
910
911   Constant *C;
912   if ((match(N, m_OneUse(m_ZExt(m_Value(X)))) && match(D, m_Constant(C))) ||
913       (match(D, m_OneUse(m_ZExt(m_Value(X)))) && match(N, m_Constant(C)))) {
914     // If the constant is the same in the smaller type, use the narrow version.
915     Constant *TruncC = ConstantExpr::getTrunc(C, X->getType());
916     if (ConstantExpr::getZExt(TruncC, Ty) != C)
917       return nullptr;
918
919     // udiv (zext X), C --> zext (udiv X, C')
920     // urem (zext X), C --> zext (urem X, C')
921     // udiv C, (zext X) --> zext (udiv C', X)
922     // urem C, (zext X) --> zext (urem C', X)
923     Value *NarrowOp = isa<Constant>(D) ? Builder.CreateBinOp(Opcode, X, TruncC)
924                                        : Builder.CreateBinOp(Opcode, TruncC, X);
925     return new ZExtInst(NarrowOp, Ty);
926   }
927
928   return nullptr;
929 }
930
931 Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
932   if (Value *V = SimplifyUDivInst(I.getOperand(0), I.getOperand(1),
933                                   SQ.getWithInstruction(&I)))
934     return replaceInstUsesWith(I, V);
935
936   if (Instruction *X = foldShuffledBinop(I))
937     return X;
938
939   // Handle the integer div common cases
940   if (Instruction *Common = commonIDivTransforms(I))
941     return Common;
942
943   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
944   Value *X;
945   const APInt *C1, *C2;
946   if (match(Op0, m_LShr(m_Value(X), m_APInt(C1))) && match(Op1, m_APInt(C2))) {
947     // (X lshr C1) udiv C2 --> X udiv (C2 << C1)
948     bool Overflow;
949     APInt C2ShlC1 = C2->ushl_ov(*C1, Overflow);
950     if (!Overflow) {
951       bool IsExact = I.isExact() && match(Op0, m_Exact(m_Value()));
952       BinaryOperator *BO = BinaryOperator::CreateUDiv(
953           X, ConstantInt::get(X->getType(), C2ShlC1));
954       if (IsExact)
955         BO->setIsExact();
956       return BO;
957     }
958   }
959
960   // Op0 / C where C is large (negative) --> zext (Op0 >= C)
961   // TODO: Could use isKnownNegative() to handle non-constant values.
962   Type *Ty = I.getType();
963   if (match(Op1, m_Negative())) {
964     Value *Cmp = Builder.CreateICmpUGE(Op0, Op1);
965     return CastInst::CreateZExtOrBitCast(Cmp, Ty);
966   }
967   // Op0 / (sext i1 X) --> zext (Op0 == -1) (if X is 0, the div is undefined)
968   if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
969     Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
970     return CastInst::CreateZExtOrBitCast(Cmp, Ty);
971   }
972
973   if (Instruction *NarrowDiv = narrowUDivURem(I, Builder))
974     return NarrowDiv;
975
976   // If the udiv operands are non-overflowing multiplies with a common operand,
977   // then eliminate the common factor:
978   // (A * B) / (A * X) --> B / X (and commuted variants)
979   // TODO: The code would be reduced if we had m_c_NUWMul pattern matching.
980   // TODO: If -reassociation handled this generally, we could remove this.
981   Value *A, *B;
982   if (match(Op0, m_NUWMul(m_Value(A), m_Value(B)))) {
983     if (match(Op1, m_NUWMul(m_Specific(A), m_Value(X))) ||
984         match(Op1, m_NUWMul(m_Value(X), m_Specific(A))))
985       return BinaryOperator::CreateUDiv(B, X);
986     if (match(Op1, m_NUWMul(m_Specific(B), m_Value(X))) ||
987         match(Op1, m_NUWMul(m_Value(X), m_Specific(B))))
988       return BinaryOperator::CreateUDiv(A, X);
989   }
990
991   // (LHS udiv (select (select (...)))) -> (LHS >> (select (select (...))))
992   SmallVector<UDivFoldAction, 6> UDivActions;
993   if (visitUDivOperand(Op0, Op1, I, UDivActions))
994     for (unsigned i = 0, e = UDivActions.size(); i != e; ++i) {
995       FoldUDivOperandCb Action = UDivActions[i].FoldAction;
996       Value *ActionOp1 = UDivActions[i].OperandToFold;
997       Instruction *Inst;
998       if (Action)
999         Inst = Action(Op0, ActionOp1, I, *this);
1000       else {
1001         // This action joins two actions together.  The RHS of this action is
1002         // simply the last action we processed, we saved the LHS action index in
1003         // the joining action.
1004         size_t SelectRHSIdx = i - 1;
1005         Value *SelectRHS = UDivActions[SelectRHSIdx].FoldResult;
1006         size_t SelectLHSIdx = UDivActions[i].SelectLHSIdx;
1007         Value *SelectLHS = UDivActions[SelectLHSIdx].FoldResult;
1008         Inst = SelectInst::Create(cast<SelectInst>(ActionOp1)->getCondition(),
1009                                   SelectLHS, SelectRHS);
1010       }
1011
1012       // If this is the last action to process, return it to the InstCombiner.
1013       // Otherwise, we insert it before the UDiv and record it so that we may
1014       // use it as part of a joining action (i.e., a SelectInst).
1015       if (e - i != 1) {
1016         Inst->insertBefore(&I);
1017         UDivActions[i].FoldResult = Inst;
1018       } else
1019         return Inst;
1020     }
1021
1022   return nullptr;
1023 }
1024
1025 Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
1026   if (Value *V = SimplifySDivInst(I.getOperand(0), I.getOperand(1),
1027                                   SQ.getWithInstruction(&I)))
1028     return replaceInstUsesWith(I, V);
1029
1030   if (Instruction *X = foldShuffledBinop(I))
1031     return X;
1032
1033   // Handle the integer div common cases
1034   if (Instruction *Common = commonIDivTransforms(I))
1035     return Common;
1036
1037   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1038   Value *X;
1039   // sdiv Op0, -1 --> -Op0
1040   // sdiv Op0, (sext i1 X) --> -Op0 (because if X is 0, the op is undefined)
1041   if (match(Op1, m_AllOnes()) ||
1042       (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1043     return BinaryOperator::CreateNeg(Op0);
1044
1045   const APInt *Op1C;
1046   if (match(Op1, m_APInt(Op1C))) {
1047     // sdiv exact X, C  -->  ashr exact X, log2(C)
1048     if (I.isExact() && Op1C->isNonNegative() && Op1C->isPowerOf2()) {
1049       Value *ShAmt = ConstantInt::get(Op1->getType(), Op1C->exactLogBase2());
1050       return BinaryOperator::CreateExactAShr(Op0, ShAmt, I.getName());
1051     }
1052
1053     // If the dividend is sign-extended and the constant divisor is small enough
1054     // to fit in the source type, shrink the division to the narrower type:
1055     // (sext X) sdiv C --> sext (X sdiv C)
1056     Value *Op0Src;
1057     if (match(Op0, m_OneUse(m_SExt(m_Value(Op0Src)))) &&
1058         Op0Src->getType()->getScalarSizeInBits() >= Op1C->getMinSignedBits()) {
1059
1060       // In the general case, we need to make sure that the dividend is not the
1061       // minimum signed value because dividing that by -1 is UB. But here, we
1062       // know that the -1 divisor case is already handled above.
1063
1064       Constant *NarrowDivisor =
1065           ConstantExpr::getTrunc(cast<Constant>(Op1), Op0Src->getType());
1066       Value *NarrowOp = Builder.CreateSDiv(Op0Src, NarrowDivisor);
1067       return new SExtInst(NarrowOp, Op0->getType());
1068     }
1069   }
1070
1071   if (Constant *RHS = dyn_cast<Constant>(Op1)) {
1072     // X/INT_MIN -> X == INT_MIN
1073     if (RHS->isMinSignedValue())
1074       return new ZExtInst(Builder.CreateICmpEQ(Op0, Op1), I.getType());
1075
1076     // -X/C  -->  X/-C  provided the negation doesn't overflow.
1077     Value *X;
1078     if (match(Op0, m_NSWSub(m_Zero(), m_Value(X)))) {
1079       auto *BO = BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(RHS));
1080       BO->setIsExact(I.isExact());
1081       return BO;
1082     }
1083   }
1084
1085   // If the sign bits of both operands are zero (i.e. we can prove they are
1086   // unsigned inputs), turn this into a udiv.
1087   APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits()));
1088   if (MaskedValueIsZero(Op0, Mask, 0, &I)) {
1089     if (MaskedValueIsZero(Op1, Mask, 0, &I)) {
1090       // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
1091       auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
1092       BO->setIsExact(I.isExact());
1093       return BO;
1094     }
1095
1096     if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
1097       // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
1098       // Safe because the only negative value (1 << Y) can take on is
1099       // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
1100       // the sign bit set.
1101       auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
1102       BO->setIsExact(I.isExact());
1103       return BO;
1104     }
1105   }
1106
1107   return nullptr;
1108 }
1109
1110 /// Remove negation and try to convert division into multiplication.
1111 static Instruction *foldFDivConstantDivisor(BinaryOperator &I) {
1112   Constant *C;
1113   if (!match(I.getOperand(1), m_Constant(C)))
1114     return nullptr;
1115
1116   // -X / C --> X / -C
1117   Value *X;
1118   if (match(I.getOperand(0), m_FNeg(m_Value(X))))
1119     return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I);
1120
1121   // If the constant divisor has an exact inverse, this is always safe. If not,
1122   // then we can still create a reciprocal if fast-math-flags allow it and the
1123   // constant is a regular number (not zero, infinite, or denormal).
1124   if (!(C->hasExactInverseFP() || (I.hasAllowReciprocal() && C->isNormalFP())))
1125     return nullptr;
1126
1127   // Disallow denormal constants because we don't know what would happen
1128   // on all targets.
1129   // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
1130   // denorms are flushed?
1131   auto *RecipC = ConstantExpr::getFDiv(ConstantFP::get(I.getType(), 1.0), C);
1132   if (!RecipC->isNormalFP())
1133     return nullptr;
1134
1135   // X / C --> X * (1 / C)
1136   return BinaryOperator::CreateFMulFMF(I.getOperand(0), RecipC, &I);
1137 }
1138
1139 /// Remove negation and try to reassociate constant math.
1140 static Instruction *foldFDivConstantDividend(BinaryOperator &I) {
1141   Constant *C;
1142   if (!match(I.getOperand(0), m_Constant(C)))
1143     return nullptr;
1144
1145   // C / -X --> -C / X
1146   Value *X;
1147   if (match(I.getOperand(1), m_FNeg(m_Value(X))))
1148     return BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I);
1149
1150   if (!I.hasAllowReassoc() || !I.hasAllowReciprocal())
1151     return nullptr;
1152
1153   // Try to reassociate C / X expressions where X includes another constant.
1154   Constant *C2, *NewC = nullptr;
1155   if (match(I.getOperand(1), m_FMul(m_Value(X), m_Constant(C2)))) {
1156     // C / (X * C2) --> (C / C2) / X
1157     NewC = ConstantExpr::getFDiv(C, C2);
1158   } else if (match(I.getOperand(1), m_FDiv(m_Value(X), m_Constant(C2)))) {
1159     // C / (X / C2) --> (C * C2) / X
1160     NewC = ConstantExpr::getFMul(C, C2);
1161   }
1162   // Disallow denormal constants because we don't know what would happen
1163   // on all targets.
1164   // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
1165   // denorms are flushed?
1166   if (!NewC || !NewC->isNormalFP())
1167     return nullptr;
1168
1169   return BinaryOperator::CreateFDivFMF(NewC, X, &I);
1170 }
1171
1172 Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
1173   if (Value *V = SimplifyFDivInst(I.getOperand(0), I.getOperand(1),
1174                                   I.getFastMathFlags(),
1175                                   SQ.getWithInstruction(&I)))
1176     return replaceInstUsesWith(I, V);
1177
1178   if (Instruction *X = foldShuffledBinop(I))
1179     return X;
1180
1181   if (Instruction *R = foldFDivConstantDivisor(I))
1182     return R;
1183
1184   if (Instruction *R = foldFDivConstantDividend(I))
1185     return R;
1186
1187   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1188   if (isa<Constant>(Op0))
1189     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1190       if (Instruction *R = FoldOpIntoSelect(I, SI))
1191         return R;
1192
1193   if (isa<Constant>(Op1))
1194     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
1195       if (Instruction *R = FoldOpIntoSelect(I, SI))
1196         return R;
1197
1198   if (I.hasAllowReassoc() && I.hasAllowReciprocal()) {
1199     Value *X, *Y;
1200     if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
1201         (!isa<Constant>(Y) || !isa<Constant>(Op1))) {
1202       // (X / Y) / Z => X / (Y * Z)
1203       Value *YZ = Builder.CreateFMulFMF(Y, Op1, &I);
1204       return BinaryOperator::CreateFDivFMF(X, YZ, &I);
1205     }
1206     if (match(Op1, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
1207         (!isa<Constant>(Y) || !isa<Constant>(Op0))) {
1208       // Z / (X / Y) => (Y * Z) / X
1209       Value *YZ = Builder.CreateFMulFMF(Y, Op0, &I);
1210       return BinaryOperator::CreateFDivFMF(YZ, X, &I);
1211     }
1212   }
1213
1214   if (I.hasAllowReassoc() && Op0->hasOneUse() && Op1->hasOneUse()) {
1215     // sin(X) / cos(X) -> tan(X)
1216     // cos(X) / sin(X) -> 1/tan(X) (cotangent)
1217     Value *X;
1218     bool IsTan = match(Op0, m_Intrinsic<Intrinsic::sin>(m_Value(X))) &&
1219                  match(Op1, m_Intrinsic<Intrinsic::cos>(m_Specific(X)));
1220     bool IsCot =
1221         !IsTan && match(Op0, m_Intrinsic<Intrinsic::cos>(m_Value(X))) &&
1222                   match(Op1, m_Intrinsic<Intrinsic::sin>(m_Specific(X)));
1223
1224     if ((IsTan || IsCot) && hasUnaryFloatFn(&TLI, I.getType(), LibFunc_tan,
1225                                             LibFunc_tanf, LibFunc_tanl)) {
1226       IRBuilder<> B(&I);
1227       IRBuilder<>::FastMathFlagGuard FMFGuard(B);
1228       B.setFastMathFlags(I.getFastMathFlags());
1229       AttributeList Attrs = CallSite(Op0).getCalledFunction()->getAttributes();
1230       Value *Res = emitUnaryFloatFnCall(X, TLI.getName(LibFunc_tan), B, Attrs);
1231       if (IsCot)
1232         Res = B.CreateFDiv(ConstantFP::get(I.getType(), 1.0), Res);
1233       return replaceInstUsesWith(I, Res);
1234     }
1235   }
1236
1237   // -X / -Y -> X / Y
1238   Value *X, *Y;
1239   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) {
1240     I.setOperand(0, X);
1241     I.setOperand(1, Y);
1242     return &I;
1243   }
1244
1245   // X / (X * Y) --> 1.0 / Y
1246   // Reassociate to (X / X -> 1.0) is legal when NaNs are not allowed.
1247   // We can ignore the possibility that X is infinity because INF/INF is NaN.
1248   if (I.hasNoNaNs() && I.hasAllowReassoc() &&
1249       match(Op1, m_c_FMul(m_Specific(Op0), m_Value(Y)))) {
1250     I.setOperand(0, ConstantFP::get(I.getType(), 1.0));
1251     I.setOperand(1, Y);
1252     return &I;
1253   }
1254
1255   return nullptr;
1256 }
1257
1258 /// This function implements the transforms common to both integer remainder
1259 /// instructions (urem and srem). It is called by the visitors to those integer
1260 /// remainder instructions.
1261 /// Common integer remainder transforms
1262 Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
1263   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1264
1265   // The RHS is known non-zero.
1266   if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I)) {
1267     I.setOperand(1, V);
1268     return &I;
1269   }
1270
1271   // Handle cases involving: rem X, (select Cond, Y, Z)
1272   if (simplifyDivRemOfSelectWithZeroOp(I))
1273     return &I;
1274
1275   if (isa<Constant>(Op1)) {
1276     if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
1277       if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
1278         if (Instruction *R = FoldOpIntoSelect(I, SI))
1279           return R;
1280       } else if (auto *PN = dyn_cast<PHINode>(Op0I)) {
1281         const APInt *Op1Int;
1282         if (match(Op1, m_APInt(Op1Int)) && !Op1Int->isMinValue() &&
1283             (I.getOpcode() == Instruction::URem ||
1284              !Op1Int->isMinSignedValue())) {
1285           // foldOpIntoPhi will speculate instructions to the end of the PHI's
1286           // predecessor blocks, so do this only if we know the srem or urem
1287           // will not fault.
1288           if (Instruction *NV = foldOpIntoPhi(I, PN))
1289             return NV;
1290         }
1291       }
1292
1293       // See if we can fold away this rem instruction.
1294       if (SimplifyDemandedInstructionBits(I))
1295         return &I;
1296     }
1297   }
1298
1299   return nullptr;
1300 }
1301
1302 Instruction *InstCombiner::visitURem(BinaryOperator &I) {
1303   if (Value *V = SimplifyURemInst(I.getOperand(0), I.getOperand(1),
1304                                   SQ.getWithInstruction(&I)))
1305     return replaceInstUsesWith(I, V);
1306
1307   if (Instruction *X = foldShuffledBinop(I))
1308     return X;
1309
1310   if (Instruction *common = commonIRemTransforms(I))
1311     return common;
1312
1313   if (Instruction *NarrowRem = narrowUDivURem(I, Builder))
1314     return NarrowRem;
1315
1316   // X urem Y -> X and Y-1, where Y is a power of 2,
1317   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1318   Type *Ty = I.getType();
1319   if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
1320     Constant *N1 = Constant::getAllOnesValue(Ty);
1321     Value *Add = Builder.CreateAdd(Op1, N1);
1322     return BinaryOperator::CreateAnd(Op0, Add);
1323   }
1324
1325   // 1 urem X -> zext(X != 1)
1326   if (match(Op0, m_One()))
1327     return CastInst::CreateZExtOrBitCast(Builder.CreateICmpNE(Op1, Op0), Ty);
1328
1329   // X urem C -> X < C ? X : X - C, where C >= signbit.
1330   if (match(Op1, m_Negative())) {
1331     Value *Cmp = Builder.CreateICmpULT(Op0, Op1);
1332     Value *Sub = Builder.CreateSub(Op0, Op1);
1333     return SelectInst::Create(Cmp, Op0, Sub);
1334   }
1335
1336   // If the divisor is a sext of a boolean, then the divisor must be max
1337   // unsigned value (-1). Therefore, the remainder is Op0 unless Op0 is also
1338   // max unsigned value. In that case, the remainder is 0:
1339   // urem Op0, (sext i1 X) --> (Op0 == -1) ? 0 : Op0
1340   Value *X;
1341   if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1342     Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
1343     return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), Op0);
1344   }
1345
1346   return nullptr;
1347 }
1348
1349 Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
1350   if (Value *V = SimplifySRemInst(I.getOperand(0), I.getOperand(1),
1351                                   SQ.getWithInstruction(&I)))
1352     return replaceInstUsesWith(I, V);
1353
1354   if (Instruction *X = foldShuffledBinop(I))
1355     return X;
1356
1357   // Handle the integer rem common cases
1358   if (Instruction *Common = commonIRemTransforms(I))
1359     return Common;
1360
1361   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1362   {
1363     const APInt *Y;
1364     // X % -Y -> X % Y
1365     if (match(Op1, m_Negative(Y)) && !Y->isMinSignedValue()) {
1366       Worklist.AddValue(I.getOperand(1));
1367       I.setOperand(1, ConstantInt::get(I.getType(), -*Y));
1368       return &I;
1369     }
1370   }
1371
1372   // If the sign bits of both operands are zero (i.e. we can prove they are
1373   // unsigned inputs), turn this into a urem.
1374   APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits()));
1375   if (MaskedValueIsZero(Op1, Mask, 0, &I) &&
1376       MaskedValueIsZero(Op0, Mask, 0, &I)) {
1377     // X srem Y -> X urem Y, iff X and Y don't have sign bit set
1378     return BinaryOperator::CreateURem(Op0, Op1, I.getName());
1379   }
1380
1381   // If it's a constant vector, flip any negative values positive.
1382   if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
1383     Constant *C = cast<Constant>(Op1);
1384     unsigned VWidth = C->getType()->getVectorNumElements();
1385
1386     bool hasNegative = false;
1387     bool hasMissing = false;
1388     for (unsigned i = 0; i != VWidth; ++i) {
1389       Constant *Elt = C->getAggregateElement(i);
1390       if (!Elt) {
1391         hasMissing = true;
1392         break;
1393       }
1394
1395       if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
1396         if (RHS->isNegative())
1397           hasNegative = true;
1398     }
1399
1400     if (hasNegative && !hasMissing) {
1401       SmallVector<Constant *, 16> Elts(VWidth);
1402       for (unsigned i = 0; i != VWidth; ++i) {
1403         Elts[i] = C->getAggregateElement(i);  // Handle undef, etc.
1404         if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
1405           if (RHS->isNegative())
1406             Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
1407         }
1408       }
1409
1410       Constant *NewRHSV = ConstantVector::get(Elts);
1411       if (NewRHSV != C) {  // Don't loop on -MININT
1412         Worklist.AddValue(I.getOperand(1));
1413         I.setOperand(1, NewRHSV);
1414         return &I;
1415       }
1416     }
1417   }
1418
1419   return nullptr;
1420 }
1421
1422 Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
1423   if (Value *V = SimplifyFRemInst(I.getOperand(0), I.getOperand(1),
1424                                   I.getFastMathFlags(),
1425                                   SQ.getWithInstruction(&I)))
1426     return replaceInstUsesWith(I, V);
1427
1428   if (Instruction *X = foldShuffledBinop(I))
1429     return X;
1430
1431   return nullptr;
1432 }