]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp
Merge llvm, clang, lld, lldb, compiler-rt and libc++ r306325, and update
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / InstCombine / InstCombineSelect.cpp
1 //===- InstCombineSelect.cpp ----------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visitSelect function.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombineInternal.h"
15 #include "llvm/Analysis/ConstantFolding.h"
16 #include "llvm/Analysis/InstructionSimplify.h"
17 #include "llvm/Analysis/ValueTracking.h"
18 #include "llvm/IR/MDBuilder.h"
19 #include "llvm/IR/PatternMatch.h"
20 #include "llvm/Support/KnownBits.h"
21 using namespace llvm;
22 using namespace PatternMatch;
23
24 #define DEBUG_TYPE "instcombine"
25
26 static SelectPatternFlavor
27 getInverseMinMaxSelectPattern(SelectPatternFlavor SPF) {
28   switch (SPF) {
29   default:
30     llvm_unreachable("unhandled!");
31
32   case SPF_SMIN:
33     return SPF_SMAX;
34   case SPF_UMIN:
35     return SPF_UMAX;
36   case SPF_SMAX:
37     return SPF_SMIN;
38   case SPF_UMAX:
39     return SPF_UMIN;
40   }
41 }
42
43 static CmpInst::Predicate getCmpPredicateForMinMax(SelectPatternFlavor SPF,
44                                                    bool Ordered=false) {
45   switch (SPF) {
46   default:
47     llvm_unreachable("unhandled!");
48
49   case SPF_SMIN:
50     return ICmpInst::ICMP_SLT;
51   case SPF_UMIN:
52     return ICmpInst::ICMP_ULT;
53   case SPF_SMAX:
54     return ICmpInst::ICMP_SGT;
55   case SPF_UMAX:
56     return ICmpInst::ICMP_UGT;
57   case SPF_FMINNUM:
58     return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
59   case SPF_FMAXNUM:
60     return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
61   }
62 }
63
64 static Value *generateMinMaxSelectPattern(InstCombiner::BuilderTy *Builder,
65                                           SelectPatternFlavor SPF, Value *A,
66                                           Value *B) {
67   CmpInst::Predicate Pred = getCmpPredicateForMinMax(SPF);
68   assert(CmpInst::isIntPredicate(Pred));
69   return Builder->CreateSelect(Builder->CreateICmp(Pred, A, B), A, B);
70 }
71
72 /// We want to turn code that looks like this:
73 ///   %C = or %A, %B
74 ///   %D = select %cond, %C, %A
75 /// into:
76 ///   %C = select %cond, %B, 0
77 ///   %D = or %A, %C
78 ///
79 /// Assuming that the specified instruction is an operand to the select, return
80 /// a bitmask indicating which operands of this instruction are foldable if they
81 /// equal the other incoming value of the select.
82 ///
83 static unsigned getSelectFoldableOperands(Instruction *I) {
84   switch (I->getOpcode()) {
85   case Instruction::Add:
86   case Instruction::Mul:
87   case Instruction::And:
88   case Instruction::Or:
89   case Instruction::Xor:
90     return 3;              // Can fold through either operand.
91   case Instruction::Sub:   // Can only fold on the amount subtracted.
92   case Instruction::Shl:   // Can only fold on the shift amount.
93   case Instruction::LShr:
94   case Instruction::AShr:
95     return 1;
96   default:
97     return 0;              // Cannot fold
98   }
99 }
100
101 /// For the same transformation as the previous function, return the identity
102 /// constant that goes into the select.
103 static Constant *getSelectFoldableConstant(Instruction *I) {
104   switch (I->getOpcode()) {
105   default: llvm_unreachable("This cannot happen!");
106   case Instruction::Add:
107   case Instruction::Sub:
108   case Instruction::Or:
109   case Instruction::Xor:
110   case Instruction::Shl:
111   case Instruction::LShr:
112   case Instruction::AShr:
113     return Constant::getNullValue(I->getType());
114   case Instruction::And:
115     return Constant::getAllOnesValue(I->getType());
116   case Instruction::Mul:
117     return ConstantInt::get(I->getType(), 1);
118   }
119 }
120
121 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode.
122 Instruction *InstCombiner::foldSelectOpOp(SelectInst &SI, Instruction *TI,
123                                           Instruction *FI) {
124   // Don't break up min/max patterns. The hasOneUse checks below prevent that
125   // for most cases, but vector min/max with bitcasts can be transformed. If the
126   // one-use restrictions are eased for other patterns, we still don't want to
127   // obfuscate min/max.
128   if ((match(&SI, m_SMin(m_Value(), m_Value())) ||
129        match(&SI, m_SMax(m_Value(), m_Value())) ||
130        match(&SI, m_UMin(m_Value(), m_Value())) ||
131        match(&SI, m_UMax(m_Value(), m_Value()))))
132     return nullptr;
133
134   // If this is a cast from the same type, merge.
135   if (TI->getNumOperands() == 1 && TI->isCast()) {
136     Type *FIOpndTy = FI->getOperand(0)->getType();
137     if (TI->getOperand(0)->getType() != FIOpndTy)
138       return nullptr;
139
140     // The select condition may be a vector. We may only change the operand
141     // type if the vector width remains the same (and matches the condition).
142     Type *CondTy = SI.getCondition()->getType();
143     if (CondTy->isVectorTy()) {
144       if (!FIOpndTy->isVectorTy())
145         return nullptr;
146       if (CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements())
147         return nullptr;
148
149       // TODO: If the backend knew how to deal with casts better, we could
150       // remove this limitation. For now, there's too much potential to create
151       // worse codegen by promoting the select ahead of size-altering casts
152       // (PR28160).
153       //
154       // Note that ValueTracking's matchSelectPattern() looks through casts
155       // without checking 'hasOneUse' when it matches min/max patterns, so this
156       // transform may end up happening anyway.
157       if (TI->getOpcode() != Instruction::BitCast &&
158           (!TI->hasOneUse() || !FI->hasOneUse()))
159         return nullptr;
160
161     } else if (!TI->hasOneUse() || !FI->hasOneUse()) {
162       // TODO: The one-use restrictions for a scalar select could be eased if
163       // the fold of a select in visitLoadInst() was enhanced to match a pattern
164       // that includes a cast.
165       return nullptr;
166     }
167
168     // Fold this by inserting a select from the input values.
169     Value *NewSI =
170         Builder->CreateSelect(SI.getCondition(), TI->getOperand(0),
171                               FI->getOperand(0), SI.getName() + ".v", &SI);
172     return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
173                             TI->getType());
174   }
175
176   // Only handle binary operators with one-use here. As with the cast case
177   // above, it may be possible to relax the one-use constraint, but that needs
178   // be examined carefully since it may not reduce the total number of
179   // instructions.
180   BinaryOperator *BO = dyn_cast<BinaryOperator>(TI);
181   if (!BO || !TI->hasOneUse() || !FI->hasOneUse())
182     return nullptr;
183
184   // Figure out if the operations have any operands in common.
185   Value *MatchOp, *OtherOpT, *OtherOpF;
186   bool MatchIsOpZero;
187   if (TI->getOperand(0) == FI->getOperand(0)) {
188     MatchOp  = TI->getOperand(0);
189     OtherOpT = TI->getOperand(1);
190     OtherOpF = FI->getOperand(1);
191     MatchIsOpZero = true;
192   } else if (TI->getOperand(1) == FI->getOperand(1)) {
193     MatchOp  = TI->getOperand(1);
194     OtherOpT = TI->getOperand(0);
195     OtherOpF = FI->getOperand(0);
196     MatchIsOpZero = false;
197   } else if (!TI->isCommutative()) {
198     return nullptr;
199   } else if (TI->getOperand(0) == FI->getOperand(1)) {
200     MatchOp  = TI->getOperand(0);
201     OtherOpT = TI->getOperand(1);
202     OtherOpF = FI->getOperand(0);
203     MatchIsOpZero = true;
204   } else if (TI->getOperand(1) == FI->getOperand(0)) {
205     MatchOp  = TI->getOperand(1);
206     OtherOpT = TI->getOperand(0);
207     OtherOpF = FI->getOperand(1);
208     MatchIsOpZero = true;
209   } else {
210     return nullptr;
211   }
212
213   // If we reach here, they do have operations in common.
214   Value *NewSI = Builder->CreateSelect(SI.getCondition(), OtherOpT, OtherOpF,
215                                        SI.getName() + ".v", &SI);
216   Value *Op0 = MatchIsOpZero ? MatchOp : NewSI;
217   Value *Op1 = MatchIsOpZero ? NewSI : MatchOp;
218   return BinaryOperator::Create(BO->getOpcode(), Op0, Op1);
219 }
220
221 static bool isSelect01(Constant *C1, Constant *C2) {
222   ConstantInt *C1I = dyn_cast<ConstantInt>(C1);
223   if (!C1I)
224     return false;
225   ConstantInt *C2I = dyn_cast<ConstantInt>(C2);
226   if (!C2I)
227     return false;
228   if (!C1I->isZero() && !C2I->isZero()) // One side must be zero.
229     return false;
230   return C1I->isOne() || C1I->isAllOnesValue() ||
231          C2I->isOne() || C2I->isAllOnesValue();
232 }
233
234 /// Try to fold the select into one of the operands to allow further
235 /// optimization.
236 Instruction *InstCombiner::foldSelectIntoOp(SelectInst &SI, Value *TrueVal,
237                                             Value *FalseVal) {
238   // See the comment above GetSelectFoldableOperands for a description of the
239   // transformation we are doing here.
240   if (Instruction *TVI = dyn_cast<Instruction>(TrueVal)) {
241     if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
242         !isa<Constant>(FalseVal)) {
243       if (unsigned SFO = getSelectFoldableOperands(TVI)) {
244         unsigned OpToFold = 0;
245         if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
246           OpToFold = 1;
247         } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
248           OpToFold = 2;
249         }
250
251         if (OpToFold) {
252           Constant *C = getSelectFoldableConstant(TVI);
253           Value *OOp = TVI->getOperand(2-OpToFold);
254           // Avoid creating select between 2 constants unless it's selecting
255           // between 0, 1 and -1.
256           if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
257             Value *NewSel = Builder->CreateSelect(SI.getCondition(), OOp, C);
258             NewSel->takeName(TVI);
259             BinaryOperator *TVI_BO = cast<BinaryOperator>(TVI);
260             BinaryOperator *BO = BinaryOperator::Create(TVI_BO->getOpcode(),
261                                                         FalseVal, NewSel);
262             BO->copyIRFlags(TVI_BO);
263             return BO;
264           }
265         }
266       }
267     }
268   }
269
270   if (Instruction *FVI = dyn_cast<Instruction>(FalseVal)) {
271     if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
272         !isa<Constant>(TrueVal)) {
273       if (unsigned SFO = getSelectFoldableOperands(FVI)) {
274         unsigned OpToFold = 0;
275         if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
276           OpToFold = 1;
277         } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
278           OpToFold = 2;
279         }
280
281         if (OpToFold) {
282           Constant *C = getSelectFoldableConstant(FVI);
283           Value *OOp = FVI->getOperand(2-OpToFold);
284           // Avoid creating select between 2 constants unless it's selecting
285           // between 0, 1 and -1.
286           if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
287             Value *NewSel = Builder->CreateSelect(SI.getCondition(), C, OOp);
288             NewSel->takeName(FVI);
289             BinaryOperator *FVI_BO = cast<BinaryOperator>(FVI);
290             BinaryOperator *BO = BinaryOperator::Create(FVI_BO->getOpcode(),
291                                                         TrueVal, NewSel);
292             BO->copyIRFlags(FVI_BO);
293             return BO;
294           }
295         }
296       }
297     }
298   }
299
300   return nullptr;
301 }
302
303 /// We want to turn:
304 ///   (select (icmp eq (and X, C1), 0), Y, (or Y, C2))
305 /// into:
306 ///   (or (shl (and X, C1), C3), Y)
307 /// iff:
308 ///   C1 and C2 are both powers of 2
309 /// where:
310 ///   C3 = Log(C2) - Log(C1)
311 ///
312 /// This transform handles cases where:
313 /// 1. The icmp predicate is inverted
314 /// 2. The select operands are reversed
315 /// 3. The magnitude of C2 and C1 are flipped
316 static Value *foldSelectICmpAndOr(const SelectInst &SI, Value *TrueVal,
317                                   Value *FalseVal,
318                                   InstCombiner::BuilderTy *Builder) {
319   const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition());
320   if (!IC || !SI.getType()->isIntegerTy())
321     return nullptr;
322
323   Value *CmpLHS = IC->getOperand(0);
324   Value *CmpRHS = IC->getOperand(1);
325
326   Value *V;
327   unsigned C1Log;
328   bool IsEqualZero;
329   bool NeedAnd = false;
330   if (IC->isEquality()) {
331     if (!match(CmpRHS, m_Zero()))
332       return nullptr;
333
334     const APInt *C1;
335     if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1))))
336       return nullptr;
337
338     V = CmpLHS;
339     C1Log = C1->logBase2();
340     IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ;
341   } else if (IC->getPredicate() == ICmpInst::ICMP_SLT ||
342              IC->getPredicate() == ICmpInst::ICMP_SGT) {
343     // We also need to recognize (icmp slt (trunc (X)), 0) and
344     // (icmp sgt (trunc (X)), -1).
345     IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT;
346     if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) ||
347         (!IsEqualZero && !match(CmpRHS, m_Zero())))
348       return nullptr;
349
350     if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V)))))
351       return nullptr;
352
353     C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1;
354     NeedAnd = true;
355   } else {
356     return nullptr;
357   }
358
359   const APInt *C2;
360   bool OrOnTrueVal = false;
361   bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2)));
362   if (!OrOnFalseVal)
363     OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2)));
364
365   if (!OrOnFalseVal && !OrOnTrueVal)
366     return nullptr;
367
368   Value *Y = OrOnFalseVal ? TrueVal : FalseVal;
369
370   unsigned C2Log = C2->logBase2();
371
372   bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal);
373   bool NeedShift = C1Log != C2Log;
374   bool NeedZExtTrunc = Y->getType()->getIntegerBitWidth() !=
375                        V->getType()->getIntegerBitWidth();
376
377   // Make sure we don't create more instructions than we save.
378   Value *Or = OrOnFalseVal ? FalseVal : TrueVal;
379   if ((NeedShift + NeedXor + NeedZExtTrunc) >
380       (IC->hasOneUse() + Or->hasOneUse()))
381     return nullptr;
382
383   if (NeedAnd) {
384     // Insert the AND instruction on the input to the truncate.
385     APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log);
386     V = Builder->CreateAnd(V, ConstantInt::get(V->getType(), C1));
387   }
388
389   if (C2Log > C1Log) {
390     V = Builder->CreateZExtOrTrunc(V, Y->getType());
391     V = Builder->CreateShl(V, C2Log - C1Log);
392   } else if (C1Log > C2Log) {
393     V = Builder->CreateLShr(V, C1Log - C2Log);
394     V = Builder->CreateZExtOrTrunc(V, Y->getType());
395   } else
396     V = Builder->CreateZExtOrTrunc(V, Y->getType());
397
398   if (NeedXor)
399     V = Builder->CreateXor(V, *C2);
400
401   return Builder->CreateOr(V, Y);
402 }
403
404 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
405 /// call to cttz/ctlz with flag 'is_zero_undef' cleared.
406 ///
407 /// For example, we can fold the following code sequence:
408 /// \code
409 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
410 ///   %1 = icmp ne i32 %x, 0
411 ///   %2 = select i1 %1, i32 %0, i32 32
412 /// \code
413 ///
414 /// into:
415 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
416 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal,
417                                  InstCombiner::BuilderTy *Builder) {
418   ICmpInst::Predicate Pred = ICI->getPredicate();
419   Value *CmpLHS = ICI->getOperand(0);
420   Value *CmpRHS = ICI->getOperand(1);
421
422   // Check if the condition value compares a value for equality against zero.
423   if (!ICI->isEquality() || !match(CmpRHS, m_Zero()))
424     return nullptr;
425
426   Value *Count = FalseVal;
427   Value *ValueOnZero = TrueVal;
428   if (Pred == ICmpInst::ICMP_NE)
429     std::swap(Count, ValueOnZero);
430
431   // Skip zero extend/truncate.
432   Value *V = nullptr;
433   if (match(Count, m_ZExt(m_Value(V))) ||
434       match(Count, m_Trunc(m_Value(V))))
435     Count = V;
436
437   // Check if the value propagated on zero is a constant number equal to the
438   // sizeof in bits of 'Count'.
439   unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits();
440   if (!match(ValueOnZero, m_SpecificInt(SizeOfInBits)))
441     return nullptr;
442
443   // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
444   // input to the cttz/ctlz is used as LHS for the compare instruction.
445   if (match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) ||
446       match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS)))) {
447     IntrinsicInst *II = cast<IntrinsicInst>(Count);
448     // Explicitly clear the 'undef_on_zero' flag.
449     IntrinsicInst *NewI = cast<IntrinsicInst>(II->clone());
450     Type *Ty = NewI->getArgOperand(1)->getType();
451     NewI->setArgOperand(1, Constant::getNullValue(Ty));
452     Builder->Insert(NewI);
453     return Builder->CreateZExtOrTrunc(NewI, ValueOnZero->getType());
454   }
455
456   return nullptr;
457 }
458
459 /// Return true if we find and adjust an icmp+select pattern where the compare
460 /// is with a constant that can be incremented or decremented to match the
461 /// minimum or maximum idiom.
462 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) {
463   ICmpInst::Predicate Pred = Cmp.getPredicate();
464   Value *CmpLHS = Cmp.getOperand(0);
465   Value *CmpRHS = Cmp.getOperand(1);
466   Value *TrueVal = Sel.getTrueValue();
467   Value *FalseVal = Sel.getFalseValue();
468
469   // We may move or edit the compare, so make sure the select is the only user.
470   const APInt *CmpC;
471   if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC)))
472     return false;
473
474   // These transforms only work for selects of integers or vector selects of
475   // integer vectors.
476   Type *SelTy = Sel.getType();
477   auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType());
478   if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy())
479     return false;
480
481   Constant *AdjustedRHS;
482   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
483     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1);
484   else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
485     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1);
486   else
487     return false;
488
489   // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
490   // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
491   if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
492       (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
493     ; // Nothing to do here. Values match without any sign/zero extension.
494   }
495   // Types do not match. Instead of calculating this with mixed types, promote
496   // all to the larger type. This enables scalar evolution to analyze this
497   // expression.
498   else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) {
499     Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy);
500
501     // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
502     // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
503     // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
504     // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
505     if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) {
506       CmpLHS = TrueVal;
507       AdjustedRHS = SextRHS;
508     } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
509                SextRHS == TrueVal) {
510       CmpLHS = FalseVal;
511       AdjustedRHS = SextRHS;
512     } else if (Cmp.isUnsigned()) {
513       Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy);
514       // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
515       // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
516       // zext + signed compare cannot be changed:
517       //    0xff <s 0x00, but 0x00ff >s 0x0000
518       if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) {
519         CmpLHS = TrueVal;
520         AdjustedRHS = ZextRHS;
521       } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
522                  ZextRHS == TrueVal) {
523         CmpLHS = FalseVal;
524         AdjustedRHS = ZextRHS;
525       } else {
526         return false;
527       }
528     } else {
529       return false;
530     }
531   } else {
532     return false;
533   }
534
535   Pred = ICmpInst::getSwappedPredicate(Pred);
536   CmpRHS = AdjustedRHS;
537   std::swap(FalseVal, TrueVal);
538   Cmp.setPredicate(Pred);
539   Cmp.setOperand(0, CmpLHS);
540   Cmp.setOperand(1, CmpRHS);
541   Sel.setOperand(1, TrueVal);
542   Sel.setOperand(2, FalseVal);
543   Sel.swapProfMetadata();
544
545   // Move the compare instruction right before the select instruction. Otherwise
546   // the sext/zext value may be defined after the compare instruction uses it.
547   Cmp.moveBefore(&Sel);
548
549   return true;
550 }
551
552 /// If this is an integer min/max (icmp + select) with a constant operand,
553 /// create the canonical icmp for the min/max operation and canonicalize the
554 /// constant to the 'false' operand of the select:
555 /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2
556 /// Note: if C1 != C2, this will change the icmp constant to the existing
557 /// constant operand of the select.
558 static Instruction *
559 canonicalizeMinMaxWithConstant(SelectInst &Sel, ICmpInst &Cmp,
560                                InstCombiner::BuilderTy &Builder) {
561   if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
562     return nullptr;
563
564   // Canonicalize the compare predicate based on whether we have min or max.
565   Value *LHS, *RHS;
566   ICmpInst::Predicate NewPred;
567   SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS);
568   switch (SPR.Flavor) {
569   case SPF_SMIN: NewPred = ICmpInst::ICMP_SLT; break;
570   case SPF_UMIN: NewPred = ICmpInst::ICMP_ULT; break;
571   case SPF_SMAX: NewPred = ICmpInst::ICMP_SGT; break;
572   case SPF_UMAX: NewPred = ICmpInst::ICMP_UGT; break;
573   default: return nullptr;
574   }
575
576   // Is this already canonical?
577   if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS &&
578       Cmp.getPredicate() == NewPred)
579     return nullptr;
580
581   // Create the canonical compare and plug it into the select.
582   Sel.setCondition(Builder.CreateICmp(NewPred, LHS, RHS));
583
584   // If the select operands did not change, we're done.
585   if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS)
586     return &Sel;
587
588   // If we are swapping the select operands, swap the metadata too.
589   assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS &&
590          "Unexpected results from matchSelectPattern");
591   Sel.setTrueValue(LHS);
592   Sel.setFalseValue(RHS);
593   Sel.swapProfMetadata();
594   return &Sel;
595 }
596
597 /// Visit a SelectInst that has an ICmpInst as its first operand.
598 Instruction *InstCombiner::foldSelectInstWithICmp(SelectInst &SI,
599                                                   ICmpInst *ICI) {
600   if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, *Builder))
601     return NewSel;
602
603   bool Changed = adjustMinMax(SI, *ICI);
604
605   ICmpInst::Predicate Pred = ICI->getPredicate();
606   Value *CmpLHS = ICI->getOperand(0);
607   Value *CmpRHS = ICI->getOperand(1);
608   Value *TrueVal = SI.getTrueValue();
609   Value *FalseVal = SI.getFalseValue();
610
611   // Transform (X >s -1) ? C1 : C2 --> ((X >>s 31) & (C2 - C1)) + C1
612   // and       (X <s  0) ? C2 : C1 --> ((X >>s 31) & (C2 - C1)) + C1
613   // FIXME: Type and constness constraints could be lifted, but we have to
614   //        watch code size carefully. We should consider xor instead of
615   //        sub/add when we decide to do that.
616   if (IntegerType *Ty = dyn_cast<IntegerType>(CmpLHS->getType())) {
617     if (TrueVal->getType() == Ty) {
618       if (ConstantInt *Cmp = dyn_cast<ConstantInt>(CmpRHS)) {
619         ConstantInt *C1 = nullptr, *C2 = nullptr;
620         if (Pred == ICmpInst::ICMP_SGT && Cmp->isAllOnesValue()) {
621           C1 = dyn_cast<ConstantInt>(TrueVal);
622           C2 = dyn_cast<ConstantInt>(FalseVal);
623         } else if (Pred == ICmpInst::ICMP_SLT && Cmp->isNullValue()) {
624           C1 = dyn_cast<ConstantInt>(FalseVal);
625           C2 = dyn_cast<ConstantInt>(TrueVal);
626         }
627         if (C1 && C2) {
628           // This shift results in either -1 or 0.
629           Value *AShr = Builder->CreateAShr(CmpLHS, Ty->getBitWidth()-1);
630
631           // Check if we can express the operation with a single or.
632           if (C2->isAllOnesValue())
633             return replaceInstUsesWith(SI, Builder->CreateOr(AShr, C1));
634
635           Value *And = Builder->CreateAnd(AShr, C2->getValue()-C1->getValue());
636           return replaceInstUsesWith(SI, Builder->CreateAdd(And, C1));
637         }
638       }
639     }
640   }
641
642   // NOTE: if we wanted to, this is where to detect integer MIN/MAX
643
644   if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
645     if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
646       // Transform (X == C) ? X : Y -> (X == C) ? C : Y
647       SI.setOperand(1, CmpRHS);
648       Changed = true;
649     } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
650       // Transform (X != C) ? Y : X -> (X != C) ? Y : C
651       SI.setOperand(2, CmpRHS);
652       Changed = true;
653     }
654   }
655
656   // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring
657   // decomposeBitTestICmp() might help.
658   {
659     unsigned BitWidth =
660         DL.getTypeSizeInBits(TrueVal->getType()->getScalarType());
661     APInt MinSignedValue = APInt::getSignedMinValue(BitWidth);
662     Value *X;
663     const APInt *Y, *C;
664     bool TrueWhenUnset;
665     bool IsBitTest = false;
666     if (ICmpInst::isEquality(Pred) &&
667         match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) &&
668         match(CmpRHS, m_Zero())) {
669       IsBitTest = true;
670       TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
671     } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
672       X = CmpLHS;
673       Y = &MinSignedValue;
674       IsBitTest = true;
675       TrueWhenUnset = false;
676     } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
677       X = CmpLHS;
678       Y = &MinSignedValue;
679       IsBitTest = true;
680       TrueWhenUnset = true;
681     }
682     if (IsBitTest) {
683       Value *V = nullptr;
684       // (X & Y) == 0 ? X : X ^ Y  --> X & ~Y
685       if (TrueWhenUnset && TrueVal == X &&
686           match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
687         V = Builder->CreateAnd(X, ~(*Y));
688       // (X & Y) != 0 ? X ^ Y : X  --> X & ~Y
689       else if (!TrueWhenUnset && FalseVal == X &&
690                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
691         V = Builder->CreateAnd(X, ~(*Y));
692       // (X & Y) == 0 ? X ^ Y : X  --> X | Y
693       else if (TrueWhenUnset && FalseVal == X &&
694                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
695         V = Builder->CreateOr(X, *Y);
696       // (X & Y) != 0 ? X : X ^ Y  --> X | Y
697       else if (!TrueWhenUnset && TrueVal == X &&
698                match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
699         V = Builder->CreateOr(X, *Y);
700
701       if (V)
702         return replaceInstUsesWith(SI, V);
703     }
704   }
705
706   if (Value *V = foldSelectICmpAndOr(SI, TrueVal, FalseVal, Builder))
707     return replaceInstUsesWith(SI, V);
708
709   if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder))
710     return replaceInstUsesWith(SI, V);
711
712   return Changed ? &SI : nullptr;
713 }
714
715
716 /// SI is a select whose condition is a PHI node (but the two may be in
717 /// different blocks). See if the true/false values (V) are live in all of the
718 /// predecessor blocks of the PHI. For example, cases like this can't be mapped:
719 ///
720 ///   X = phi [ C1, BB1], [C2, BB2]
721 ///   Y = add
722 ///   Z = select X, Y, 0
723 ///
724 /// because Y is not live in BB1/BB2.
725 ///
726 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V,
727                                                    const SelectInst &SI) {
728   // If the value is a non-instruction value like a constant or argument, it
729   // can always be mapped.
730   const Instruction *I = dyn_cast<Instruction>(V);
731   if (!I) return true;
732
733   // If V is a PHI node defined in the same block as the condition PHI, we can
734   // map the arguments.
735   const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
736
737   if (const PHINode *VP = dyn_cast<PHINode>(I))
738     if (VP->getParent() == CondPHI->getParent())
739       return true;
740
741   // Otherwise, if the PHI and select are defined in the same block and if V is
742   // defined in a different block, then we can transform it.
743   if (SI.getParent() == CondPHI->getParent() &&
744       I->getParent() != CondPHI->getParent())
745     return true;
746
747   // Otherwise we have a 'hard' case and we can't tell without doing more
748   // detailed dominator based analysis, punt.
749   return false;
750 }
751
752 /// We have an SPF (e.g. a min or max) of an SPF of the form:
753 ///   SPF2(SPF1(A, B), C)
754 Instruction *InstCombiner::foldSPFofSPF(Instruction *Inner,
755                                         SelectPatternFlavor SPF1,
756                                         Value *A, Value *B,
757                                         Instruction &Outer,
758                                         SelectPatternFlavor SPF2, Value *C) {
759   if (Outer.getType() != Inner->getType())
760     return nullptr;
761
762   if (C == A || C == B) {
763     // MAX(MAX(A, B), B) -> MAX(A, B)
764     // MIN(MIN(a, b), a) -> MIN(a, b)
765     if (SPF1 == SPF2)
766       return replaceInstUsesWith(Outer, Inner);
767
768     // MAX(MIN(a, b), a) -> a
769     // MIN(MAX(a, b), a) -> a
770     if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
771         (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
772         (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
773         (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
774       return replaceInstUsesWith(Outer, C);
775   }
776
777   if (SPF1 == SPF2) {
778     const APInt *CB, *CC;
779     if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) {
780       // MIN(MIN(A, 23), 97) -> MIN(A, 23)
781       // MAX(MAX(A, 97), 23) -> MAX(A, 97)
782       if ((SPF1 == SPF_UMIN && CB->ule(*CC)) ||
783           (SPF1 == SPF_SMIN && CB->sle(*CC)) ||
784           (SPF1 == SPF_UMAX && CB->uge(*CC)) ||
785           (SPF1 == SPF_SMAX && CB->sge(*CC)))
786         return replaceInstUsesWith(Outer, Inner);
787
788       // MIN(MIN(A, 97), 23) -> MIN(A, 23)
789       // MAX(MAX(A, 23), 97) -> MAX(A, 97)
790       if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) ||
791           (SPF1 == SPF_SMIN && CB->sgt(*CC)) ||
792           (SPF1 == SPF_UMAX && CB->ult(*CC)) ||
793           (SPF1 == SPF_SMAX && CB->slt(*CC))) {
794         Outer.replaceUsesOfWith(Inner, A);
795         return &Outer;
796       }
797     }
798   }
799
800   // ABS(ABS(X)) -> ABS(X)
801   // NABS(NABS(X)) -> NABS(X)
802   if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) {
803     return replaceInstUsesWith(Outer, Inner);
804   }
805
806   // ABS(NABS(X)) -> ABS(X)
807   // NABS(ABS(X)) -> NABS(X)
808   if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) ||
809       (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) {
810     SelectInst *SI = cast<SelectInst>(Inner);
811     Value *NewSI =
812         Builder->CreateSelect(SI->getCondition(), SI->getFalseValue(),
813                               SI->getTrueValue(), SI->getName(), SI);
814     return replaceInstUsesWith(Outer, NewSI);
815   }
816
817   auto IsFreeOrProfitableToInvert =
818       [&](Value *V, Value *&NotV, bool &ElidesXor) {
819     if (match(V, m_Not(m_Value(NotV)))) {
820       // If V has at most 2 uses then we can get rid of the xor operation
821       // entirely.
822       ElidesXor |= !V->hasNUsesOrMore(3);
823       return true;
824     }
825
826     if (IsFreeToInvert(V, !V->hasNUsesOrMore(3))) {
827       NotV = nullptr;
828       return true;
829     }
830
831     return false;
832   };
833
834   Value *NotA, *NotB, *NotC;
835   bool ElidesXor = false;
836
837   // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C)
838   // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C)
839   // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C)
840   // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C)
841   //
842   // This transform is performance neutral if we can elide at least one xor from
843   // the set of three operands, since we'll be tacking on an xor at the very
844   // end.
845   if (SelectPatternResult::isMinOrMax(SPF1) &&
846       SelectPatternResult::isMinOrMax(SPF2) &&
847       IsFreeOrProfitableToInvert(A, NotA, ElidesXor) &&
848       IsFreeOrProfitableToInvert(B, NotB, ElidesXor) &&
849       IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) {
850     if (!NotA)
851       NotA = Builder->CreateNot(A);
852     if (!NotB)
853       NotB = Builder->CreateNot(B);
854     if (!NotC)
855       NotC = Builder->CreateNot(C);
856
857     Value *NewInner = generateMinMaxSelectPattern(
858         Builder, getInverseMinMaxSelectPattern(SPF1), NotA, NotB);
859     Value *NewOuter = Builder->CreateNot(generateMinMaxSelectPattern(
860         Builder, getInverseMinMaxSelectPattern(SPF2), NewInner, NotC));
861     return replaceInstUsesWith(Outer, NewOuter);
862   }
863
864   return nullptr;
865 }
866
867 /// If one of the constants is zero (we know they can't both be) and we have an
868 /// icmp instruction with zero, and we have an 'and' with the non-constant value
869 /// and a power of two we can turn the select into a shift on the result of the
870 /// 'and'.
871 static Value *foldSelectICmpAnd(const SelectInst &SI, ConstantInt *TrueVal,
872                                 ConstantInt *FalseVal,
873                                 InstCombiner::BuilderTy *Builder) {
874   const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition());
875   if (!IC || !IC->isEquality() || !SI.getType()->isIntegerTy())
876     return nullptr;
877
878   if (!match(IC->getOperand(1), m_Zero()))
879     return nullptr;
880
881   ConstantInt *AndRHS;
882   Value *LHS = IC->getOperand(0);
883   if (!match(LHS, m_And(m_Value(), m_ConstantInt(AndRHS))))
884     return nullptr;
885
886   // If both select arms are non-zero see if we have a select of the form
887   // 'x ? 2^n + C : C'. Then we can offset both arms by C, use the logic
888   // for 'x ? 2^n : 0' and fix the thing up at the end.
889   ConstantInt *Offset = nullptr;
890   if (!TrueVal->isZero() && !FalseVal->isZero()) {
891     if ((TrueVal->getValue() - FalseVal->getValue()).isPowerOf2())
892       Offset = FalseVal;
893     else if ((FalseVal->getValue() - TrueVal->getValue()).isPowerOf2())
894       Offset = TrueVal;
895     else
896       return nullptr;
897
898     // Adjust TrueVal and FalseVal to the offset.
899     TrueVal = ConstantInt::get(Builder->getContext(),
900                                TrueVal->getValue() - Offset->getValue());
901     FalseVal = ConstantInt::get(Builder->getContext(),
902                                 FalseVal->getValue() - Offset->getValue());
903   }
904
905   // Make sure the mask in the 'and' and one of the select arms is a power of 2.
906   if (!AndRHS->getValue().isPowerOf2() ||
907       (!TrueVal->getValue().isPowerOf2() &&
908        !FalseVal->getValue().isPowerOf2()))
909     return nullptr;
910
911   // Determine which shift is needed to transform result of the 'and' into the
912   // desired result.
913   ConstantInt *ValC = !TrueVal->isZero() ? TrueVal : FalseVal;
914   unsigned ValZeros = ValC->getValue().logBase2();
915   unsigned AndZeros = AndRHS->getValue().logBase2();
916
917   // If types don't match we can still convert the select by introducing a zext
918   // or a trunc of the 'and'. The trunc case requires that all of the truncated
919   // bits are zero, we can figure that out by looking at the 'and' mask.
920   if (AndZeros >= ValC->getBitWidth())
921     return nullptr;
922
923   Value *V = Builder->CreateZExtOrTrunc(LHS, SI.getType());
924   if (ValZeros > AndZeros)
925     V = Builder->CreateShl(V, ValZeros - AndZeros);
926   else if (ValZeros < AndZeros)
927     V = Builder->CreateLShr(V, AndZeros - ValZeros);
928
929   // Okay, now we know that everything is set up, we just don't know whether we
930   // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
931   bool ShouldNotVal = !TrueVal->isZero();
932   ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
933   if (ShouldNotVal)
934     V = Builder->CreateXor(V, ValC);
935
936   // Apply an offset if needed.
937   if (Offset)
938     V = Builder->CreateAdd(V, Offset);
939   return V;
940 }
941
942 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))).
943 /// This is even legal for FP.
944 static Instruction *foldAddSubSelect(SelectInst &SI,
945                                      InstCombiner::BuilderTy &Builder) {
946   Value *CondVal = SI.getCondition();
947   Value *TrueVal = SI.getTrueValue();
948   Value *FalseVal = SI.getFalseValue();
949   auto *TI = dyn_cast<Instruction>(TrueVal);
950   auto *FI = dyn_cast<Instruction>(FalseVal);
951   if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
952     return nullptr;
953
954   Instruction *AddOp = nullptr, *SubOp = nullptr;
955   if ((TI->getOpcode() == Instruction::Sub &&
956        FI->getOpcode() == Instruction::Add) ||
957       (TI->getOpcode() == Instruction::FSub &&
958        FI->getOpcode() == Instruction::FAdd)) {
959     AddOp = FI;
960     SubOp = TI;
961   } else if ((FI->getOpcode() == Instruction::Sub &&
962               TI->getOpcode() == Instruction::Add) ||
963              (FI->getOpcode() == Instruction::FSub &&
964               TI->getOpcode() == Instruction::FAdd)) {
965     AddOp = TI;
966     SubOp = FI;
967   }
968
969   if (AddOp) {
970     Value *OtherAddOp = nullptr;
971     if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
972       OtherAddOp = AddOp->getOperand(1);
973     } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
974       OtherAddOp = AddOp->getOperand(0);
975     }
976
977     if (OtherAddOp) {
978       // So at this point we know we have (Y -> OtherAddOp):
979       //        select C, (add X, Y), (sub X, Z)
980       Value *NegVal; // Compute -Z
981       if (SI.getType()->isFPOrFPVectorTy()) {
982         NegVal = Builder.CreateFNeg(SubOp->getOperand(1));
983         if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
984           FastMathFlags Flags = AddOp->getFastMathFlags();
985           Flags &= SubOp->getFastMathFlags();
986           NegInst->setFastMathFlags(Flags);
987         }
988       } else {
989         NegVal = Builder.CreateNeg(SubOp->getOperand(1));
990       }
991
992       Value *NewTrueOp = OtherAddOp;
993       Value *NewFalseOp = NegVal;
994       if (AddOp != TI)
995         std::swap(NewTrueOp, NewFalseOp);
996       Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp,
997                                            SI.getName() + ".p", &SI);
998
999       if (SI.getType()->isFPOrFPVectorTy()) {
1000         Instruction *RI =
1001             BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
1002
1003         FastMathFlags Flags = AddOp->getFastMathFlags();
1004         Flags &= SubOp->getFastMathFlags();
1005         RI->setFastMathFlags(Flags);
1006         return RI;
1007       } else
1008         return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
1009     }
1010   }
1011   return nullptr;
1012 }
1013
1014 Instruction *InstCombiner::foldSelectExtConst(SelectInst &Sel) {
1015   Instruction *ExtInst;
1016   if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) &&
1017       !match(Sel.getFalseValue(), m_Instruction(ExtInst)))
1018     return nullptr;
1019
1020   auto ExtOpcode = ExtInst->getOpcode();
1021   if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt)
1022     return nullptr;
1023
1024   // TODO: Handle larger types? That requires adjusting FoldOpIntoSelect too.
1025   Value *X = ExtInst->getOperand(0);
1026   Type *SmallType = X->getType();
1027   if (!SmallType->getScalarType()->isIntegerTy(1))
1028     return nullptr;
1029
1030   Constant *C;
1031   if (!match(Sel.getTrueValue(), m_Constant(C)) &&
1032       !match(Sel.getFalseValue(), m_Constant(C)))
1033     return nullptr;
1034
1035   // If the constant is the same after truncation to the smaller type and
1036   // extension to the original type, we can narrow the select.
1037   Value *Cond = Sel.getCondition();
1038   Type *SelType = Sel.getType();
1039   Constant *TruncC = ConstantExpr::getTrunc(C, SmallType);
1040   Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType);
1041   if (ExtC == C) {
1042     Value *TruncCVal = cast<Value>(TruncC);
1043     if (ExtInst == Sel.getFalseValue())
1044       std::swap(X, TruncCVal);
1045
1046     // select Cond, (ext X), C --> ext(select Cond, X, C')
1047     // select Cond, C, (ext X) --> ext(select Cond, C', X)
1048     Value *NewSel = Builder->CreateSelect(Cond, X, TruncCVal, "narrow", &Sel);
1049     return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType);
1050   }
1051
1052   // If one arm of the select is the extend of the condition, replace that arm
1053   // with the extension of the appropriate known bool value.
1054   if (Cond == X) {
1055     if (ExtInst == Sel.getTrueValue()) {
1056       // select X, (sext X), C --> select X, -1, C
1057       // select X, (zext X), C --> select X,  1, C
1058       Constant *One = ConstantInt::getTrue(SmallType);
1059       Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType);
1060       return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel);
1061     } else {
1062       // select X, C, (sext X) --> select X, C, 0
1063       // select X, C, (zext X) --> select X, C, 0
1064       Constant *Zero = ConstantInt::getNullValue(SelType);
1065       return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel);
1066     }
1067   }
1068
1069   return nullptr;
1070 }
1071
1072 /// Try to transform a vector select with a constant condition vector into a
1073 /// shuffle for easier combining with other shuffles and insert/extract.
1074 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) {
1075   Value *CondVal = SI.getCondition();
1076   Constant *CondC;
1077   if (!CondVal->getType()->isVectorTy() || !match(CondVal, m_Constant(CondC)))
1078     return nullptr;
1079
1080   unsigned NumElts = CondVal->getType()->getVectorNumElements();
1081   SmallVector<Constant *, 16> Mask;
1082   Mask.reserve(NumElts);
1083   Type *Int32Ty = Type::getInt32Ty(CondVal->getContext());
1084   for (unsigned i = 0; i != NumElts; ++i) {
1085     Constant *Elt = CondC->getAggregateElement(i);
1086     if (!Elt)
1087       return nullptr;
1088
1089     if (Elt->isOneValue()) {
1090       // If the select condition element is true, choose from the 1st vector.
1091       Mask.push_back(ConstantInt::get(Int32Ty, i));
1092     } else if (Elt->isNullValue()) {
1093       // If the select condition element is false, choose from the 2nd vector.
1094       Mask.push_back(ConstantInt::get(Int32Ty, i + NumElts));
1095     } else if (isa<UndefValue>(Elt)) {
1096       // Undef in a select condition (choose one of the operands) does not mean
1097       // the same thing as undef in a shuffle mask (any value is acceptable), so
1098       // give up.
1099       return nullptr;
1100     } else {
1101       // Bail out on a constant expression.
1102       return nullptr;
1103     }
1104   }
1105
1106   return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(),
1107                                ConstantVector::get(Mask));
1108 }
1109
1110 /// Reuse bitcasted operands between a compare and select:
1111 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
1112 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D))
1113 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel,
1114                                           InstCombiner::BuilderTy &Builder) {
1115   Value *Cond = Sel.getCondition();
1116   Value *TVal = Sel.getTrueValue();
1117   Value *FVal = Sel.getFalseValue();
1118
1119   CmpInst::Predicate Pred;
1120   Value *A, *B;
1121   if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B))))
1122     return nullptr;
1123
1124   // The select condition is a compare instruction. If the select's true/false
1125   // values are already the same as the compare operands, there's nothing to do.
1126   if (TVal == A || TVal == B || FVal == A || FVal == B)
1127     return nullptr;
1128
1129   Value *C, *D;
1130   if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D))))
1131     return nullptr;
1132
1133   // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc)
1134   Value *TSrc, *FSrc;
1135   if (!match(TVal, m_BitCast(m_Value(TSrc))) ||
1136       !match(FVal, m_BitCast(m_Value(FSrc))))
1137     return nullptr;
1138
1139   // If the select true/false values are *different bitcasts* of the same source
1140   // operands, make the select operands the same as the compare operands and
1141   // cast the result. This is the canonical select form for min/max.
1142   Value *NewSel;
1143   if (TSrc == C && FSrc == D) {
1144     // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
1145     // bitcast (select (cmp A, B), A, B)
1146     NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel);
1147   } else if (TSrc == D && FSrc == C) {
1148     // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) -->
1149     // bitcast (select (cmp A, B), B, A)
1150     NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel);
1151   } else {
1152     return nullptr;
1153   }
1154   return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType());
1155 }
1156
1157 Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
1158   Value *CondVal = SI.getCondition();
1159   Value *TrueVal = SI.getTrueValue();
1160   Value *FalseVal = SI.getFalseValue();
1161   Type *SelType = SI.getType();
1162
1163   if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal,
1164                                     SQ.getWithInstruction(&SI)))
1165     return replaceInstUsesWith(SI, V);
1166
1167   if (Instruction *I = canonicalizeSelectToShuffle(SI))
1168     return I;
1169
1170   if (SelType->getScalarType()->isIntegerTy(1) &&
1171       TrueVal->getType() == CondVal->getType()) {
1172     if (match(TrueVal, m_One())) {
1173       // Change: A = select B, true, C --> A = or B, C
1174       return BinaryOperator::CreateOr(CondVal, FalseVal);
1175     }
1176     if (match(TrueVal, m_Zero())) {
1177       // Change: A = select B, false, C --> A = and !B, C
1178       Value *NotCond = Builder->CreateNot(CondVal, "not." + CondVal->getName());
1179       return BinaryOperator::CreateAnd(NotCond, FalseVal);
1180     }
1181     if (match(FalseVal, m_Zero())) {
1182       // Change: A = select B, C, false --> A = and B, C
1183       return BinaryOperator::CreateAnd(CondVal, TrueVal);
1184     }
1185     if (match(FalseVal, m_One())) {
1186       // Change: A = select B, C, true --> A = or !B, C
1187       Value *NotCond = Builder->CreateNot(CondVal, "not." + CondVal->getName());
1188       return BinaryOperator::CreateOr(NotCond, TrueVal);
1189     }
1190
1191     // select a, a, b  -> a | b
1192     // select a, b, a  -> a & b
1193     if (CondVal == TrueVal)
1194       return BinaryOperator::CreateOr(CondVal, FalseVal);
1195     if (CondVal == FalseVal)
1196       return BinaryOperator::CreateAnd(CondVal, TrueVal);
1197
1198     // select a, ~a, b -> (~a) & b
1199     // select a, b, ~a -> (~a) | b
1200     if (match(TrueVal, m_Not(m_Specific(CondVal))))
1201       return BinaryOperator::CreateAnd(TrueVal, FalseVal);
1202     if (match(FalseVal, m_Not(m_Specific(CondVal))))
1203       return BinaryOperator::CreateOr(TrueVal, FalseVal);
1204   }
1205
1206   // Selecting between two integer or vector splat integer constants?
1207   //
1208   // Note that we don't handle a scalar select of vectors:
1209   // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0>
1210   // because that may need 3 instructions to splat the condition value:
1211   // extend, insertelement, shufflevector.
1212   if (CondVal->getType()->isVectorTy() == SelType->isVectorTy()) {
1213     // select C, 1, 0 -> zext C to int
1214     if (match(TrueVal, m_One()) && match(FalseVal, m_Zero()))
1215       return new ZExtInst(CondVal, SelType);
1216
1217     // select C, -1, 0 -> sext C to int
1218     if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero()))
1219       return new SExtInst(CondVal, SelType);
1220
1221     // select C, 0, 1 -> zext !C to int
1222     if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) {
1223       Value *NotCond = Builder->CreateNot(CondVal, "not." + CondVal->getName());
1224       return new ZExtInst(NotCond, SelType);
1225     }
1226
1227     // select C, 0, -1 -> sext !C to int
1228     if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) {
1229       Value *NotCond = Builder->CreateNot(CondVal, "not." + CondVal->getName());
1230       return new SExtInst(NotCond, SelType);
1231     }
1232   }
1233
1234   if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
1235     if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal))
1236       if (Value *V = foldSelectICmpAnd(SI, TrueValC, FalseValC, Builder))
1237         return replaceInstUsesWith(SI, V);
1238
1239   // See if we are selecting two values based on a comparison of the two values.
1240   if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
1241     if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
1242       // Transform (X == Y) ? X : Y  -> Y
1243       if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
1244         // This is not safe in general for floating point:
1245         // consider X== -0, Y== +0.
1246         // It becomes safe if either operand is a nonzero constant.
1247         ConstantFP *CFPt, *CFPf;
1248         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
1249               !CFPt->getValueAPF().isZero()) ||
1250             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
1251              !CFPf->getValueAPF().isZero()))
1252         return replaceInstUsesWith(SI, FalseVal);
1253       }
1254       // Transform (X une Y) ? X : Y  -> X
1255       if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
1256         // This is not safe in general for floating point:
1257         // consider X== -0, Y== +0.
1258         // It becomes safe if either operand is a nonzero constant.
1259         ConstantFP *CFPt, *CFPf;
1260         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
1261               !CFPt->getValueAPF().isZero()) ||
1262             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
1263              !CFPf->getValueAPF().isZero()))
1264         return replaceInstUsesWith(SI, TrueVal);
1265       }
1266
1267       // Canonicalize to use ordered comparisons by swapping the select
1268       // operands.
1269       //
1270       // e.g.
1271       // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
1272       if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
1273         FCmpInst::Predicate InvPred = FCI->getInversePredicate();
1274         IRBuilder<>::FastMathFlagGuard FMFG(*Builder);
1275         Builder->setFastMathFlags(FCI->getFastMathFlags());
1276         Value *NewCond = Builder->CreateFCmp(InvPred, TrueVal, FalseVal,
1277                                              FCI->getName() + ".inv");
1278
1279         return SelectInst::Create(NewCond, FalseVal, TrueVal,
1280                                   SI.getName() + ".p");
1281       }
1282
1283       // NOTE: if we wanted to, this is where to detect MIN/MAX
1284     } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
1285       // Transform (X == Y) ? Y : X  -> X
1286       if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
1287         // This is not safe in general for floating point:
1288         // consider X== -0, Y== +0.
1289         // It becomes safe if either operand is a nonzero constant.
1290         ConstantFP *CFPt, *CFPf;
1291         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
1292               !CFPt->getValueAPF().isZero()) ||
1293             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
1294              !CFPf->getValueAPF().isZero()))
1295           return replaceInstUsesWith(SI, FalseVal);
1296       }
1297       // Transform (X une Y) ? Y : X  -> Y
1298       if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
1299         // This is not safe in general for floating point:
1300         // consider X== -0, Y== +0.
1301         // It becomes safe if either operand is a nonzero constant.
1302         ConstantFP *CFPt, *CFPf;
1303         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
1304               !CFPt->getValueAPF().isZero()) ||
1305             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
1306              !CFPf->getValueAPF().isZero()))
1307           return replaceInstUsesWith(SI, TrueVal);
1308       }
1309
1310       // Canonicalize to use ordered comparisons by swapping the select
1311       // operands.
1312       //
1313       // e.g.
1314       // (X ugt Y) ? X : Y -> (X ole Y) ? X : Y
1315       if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
1316         FCmpInst::Predicate InvPred = FCI->getInversePredicate();
1317         IRBuilder<>::FastMathFlagGuard FMFG(*Builder);
1318         Builder->setFastMathFlags(FCI->getFastMathFlags());
1319         Value *NewCond = Builder->CreateFCmp(InvPred, FalseVal, TrueVal,
1320                                              FCI->getName() + ".inv");
1321
1322         return SelectInst::Create(NewCond, FalseVal, TrueVal,
1323                                   SI.getName() + ".p");
1324       }
1325
1326       // NOTE: if we wanted to, this is where to detect MIN/MAX
1327     }
1328     // NOTE: if we wanted to, this is where to detect ABS
1329   }
1330
1331   // See if we are selecting two values based on a comparison of the two values.
1332   if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
1333     if (Instruction *Result = foldSelectInstWithICmp(SI, ICI))
1334       return Result;
1335
1336   if (Instruction *Add = foldAddSubSelect(SI, *Builder))
1337     return Add;
1338
1339   // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
1340   auto *TI = dyn_cast<Instruction>(TrueVal);
1341   auto *FI = dyn_cast<Instruction>(FalseVal);
1342   if (TI && FI && TI->getOpcode() == FI->getOpcode())
1343     if (Instruction *IV = foldSelectOpOp(SI, TI, FI))
1344       return IV;
1345
1346   if (Instruction *I = foldSelectExtConst(SI))
1347     return I;
1348
1349   // See if we can fold the select into one of our operands.
1350   if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) {
1351     if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal))
1352       return FoldI;
1353
1354     Value *LHS, *RHS, *LHS2, *RHS2;
1355     Instruction::CastOps CastOp;
1356     SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp);
1357     auto SPF = SPR.Flavor;
1358
1359     if (SelectPatternResult::isMinOrMax(SPF)) {
1360       // Canonicalize so that type casts are outside select patterns.
1361       if (LHS->getType()->getPrimitiveSizeInBits() !=
1362           SelType->getPrimitiveSizeInBits()) {
1363         CmpInst::Predicate Pred = getCmpPredicateForMinMax(SPF, SPR.Ordered);
1364
1365         Value *Cmp;
1366         if (CmpInst::isIntPredicate(Pred)) {
1367           Cmp = Builder->CreateICmp(Pred, LHS, RHS);
1368         } else {
1369           IRBuilder<>::FastMathFlagGuard FMFG(*Builder);
1370           auto FMF = cast<FPMathOperator>(SI.getCondition())->getFastMathFlags();
1371           Builder->setFastMathFlags(FMF);
1372           Cmp = Builder->CreateFCmp(Pred, LHS, RHS);
1373         }
1374
1375         Value *NewSI = Builder->CreateCast(
1376             CastOp, Builder->CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI),
1377             SelType);
1378         return replaceInstUsesWith(SI, NewSI);
1379       }
1380     }
1381
1382     if (SPF) {
1383       // MAX(MAX(a, b), a) -> MAX(a, b)
1384       // MIN(MIN(a, b), a) -> MIN(a, b)
1385       // MAX(MIN(a, b), a) -> a
1386       // MIN(MAX(a, b), a) -> a
1387       // ABS(ABS(a)) -> ABS(a)
1388       // NABS(NABS(a)) -> NABS(a)
1389       if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor)
1390         if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2,
1391                                           SI, SPF, RHS))
1392           return R;
1393       if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor)
1394         if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2,
1395                                           SI, SPF, LHS))
1396           return R;
1397     }
1398
1399     // MAX(~a, ~b) -> ~MIN(a, b)
1400     if ((SPF == SPF_SMAX || SPF == SPF_UMAX) &&
1401         IsFreeToInvert(LHS, LHS->hasNUses(2)) &&
1402         IsFreeToInvert(RHS, RHS->hasNUses(2))) {
1403       // For this transform to be profitable, we need to eliminate at least two
1404       // 'not' instructions if we're going to add one 'not' instruction.
1405       int NumberOfNots =
1406           (LHS->hasNUses(2) && match(LHS, m_Not(m_Value()))) +
1407           (RHS->hasNUses(2) && match(RHS, m_Not(m_Value()))) +
1408           (SI.hasOneUse() && match(*SI.user_begin(), m_Not(m_Value())));
1409
1410       if (NumberOfNots >= 2) {
1411         Value *NewLHS = Builder->CreateNot(LHS);
1412         Value *NewRHS = Builder->CreateNot(RHS);
1413         Value *NewCmp = SPF == SPF_SMAX
1414                             ? Builder->CreateICmpSLT(NewLHS, NewRHS)
1415                             : Builder->CreateICmpULT(NewLHS, NewRHS);
1416         Value *NewSI =
1417             Builder->CreateNot(Builder->CreateSelect(NewCmp, NewLHS, NewRHS));
1418         return replaceInstUsesWith(SI, NewSI);
1419       }
1420     }
1421
1422     // TODO.
1423     // ABS(-X) -> ABS(X)
1424   }
1425
1426   // See if we can fold the select into a phi node if the condition is a select.
1427   if (auto *PN = dyn_cast<PHINode>(SI.getCondition()))
1428     // The true/false values have to be live in the PHI predecessor's blocks.
1429     if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
1430         canSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
1431       if (Instruction *NV = foldOpIntoPhi(SI, PN))
1432         return NV;
1433
1434   if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
1435     if (TrueSI->getCondition()->getType() == CondVal->getType()) {
1436       // select(C, select(C, a, b), c) -> select(C, a, c)
1437       if (TrueSI->getCondition() == CondVal) {
1438         if (SI.getTrueValue() == TrueSI->getTrueValue())
1439           return nullptr;
1440         SI.setOperand(1, TrueSI->getTrueValue());
1441         return &SI;
1442       }
1443       // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
1444       // We choose this as normal form to enable folding on the And and shortening
1445       // paths for the values (this helps GetUnderlyingObjects() for example).
1446       if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
1447         Value *And = Builder->CreateAnd(CondVal, TrueSI->getCondition());
1448         SI.setOperand(0, And);
1449         SI.setOperand(1, TrueSI->getTrueValue());
1450         return &SI;
1451       }
1452     }
1453   }
1454   if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
1455     if (FalseSI->getCondition()->getType() == CondVal->getType()) {
1456       // select(C, a, select(C, b, c)) -> select(C, a, c)
1457       if (FalseSI->getCondition() == CondVal) {
1458         if (SI.getFalseValue() == FalseSI->getFalseValue())
1459           return nullptr;
1460         SI.setOperand(2, FalseSI->getFalseValue());
1461         return &SI;
1462       }
1463       // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
1464       if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
1465         Value *Or = Builder->CreateOr(CondVal, FalseSI->getCondition());
1466         SI.setOperand(0, Or);
1467         SI.setOperand(2, FalseSI->getFalseValue());
1468         return &SI;
1469       }
1470     }
1471   }
1472
1473   if (BinaryOperator::isNot(CondVal)) {
1474     SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
1475     SI.setOperand(1, FalseVal);
1476     SI.setOperand(2, TrueVal);
1477     return &SI;
1478   }
1479
1480   if (VectorType *VecTy = dyn_cast<VectorType>(SelType)) {
1481     unsigned VWidth = VecTy->getNumElements();
1482     APInt UndefElts(VWidth, 0);
1483     APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1484     if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) {
1485       if (V != &SI)
1486         return replaceInstUsesWith(SI, V);
1487       return &SI;
1488     }
1489
1490     if (isa<ConstantAggregateZero>(CondVal)) {
1491       return replaceInstUsesWith(SI, FalseVal);
1492     }
1493   }
1494
1495   // See if we can determine the result of this select based on a dominating
1496   // condition.
1497   BasicBlock *Parent = SI.getParent();
1498   if (BasicBlock *Dom = Parent->getSinglePredecessor()) {
1499     auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator());
1500     if (PBI && PBI->isConditional() &&
1501         PBI->getSuccessor(0) != PBI->getSuccessor(1) &&
1502         (PBI->getSuccessor(0) == Parent || PBI->getSuccessor(1) == Parent)) {
1503       bool CondIsFalse = PBI->getSuccessor(1) == Parent;
1504       Optional<bool> Implication = isImpliedCondition(
1505         PBI->getCondition(), SI.getCondition(), DL, CondIsFalse);
1506       if (Implication) {
1507         Value *V = *Implication ? TrueVal : FalseVal;
1508         return replaceInstUsesWith(SI, V);
1509       }
1510     }
1511   }
1512
1513   // If we can compute the condition, there's no need for a select.
1514   // Like the above fold, we are attempting to reduce compile-time cost by
1515   // putting this fold here with limitations rather than in InstSimplify.
1516   // The motivation for this call into value tracking is to take advantage of
1517   // the assumption cache, so make sure that is populated.
1518   if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) {
1519     KnownBits Known(1);
1520     computeKnownBits(CondVal, Known, 0, &SI);
1521     if (Known.One.isOneValue())
1522       return replaceInstUsesWith(SI, TrueVal);
1523     if (Known.Zero.isOneValue())
1524       return replaceInstUsesWith(SI, FalseVal);
1525   }
1526
1527   if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, *Builder))
1528     return BitCastSel;
1529
1530   return nullptr;
1531 }