]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp
Import mandoc cvs snapshot 20170121 (pre 1.14)
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / InstCombine / InstCombineSelect.cpp
1 //===- InstCombineSelect.cpp ----------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visitSelect function.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombineInternal.h"
15 #include "llvm/Analysis/ConstantFolding.h"
16 #include "llvm/Analysis/InstructionSimplify.h"
17 #include "llvm/Analysis/ValueTracking.h"
18 #include "llvm/IR/PatternMatch.h"
19 using namespace llvm;
20 using namespace PatternMatch;
21
22 #define DEBUG_TYPE "instcombine"
23
24 static SelectPatternFlavor
25 getInverseMinMaxSelectPattern(SelectPatternFlavor SPF) {
26   switch (SPF) {
27   default:
28     llvm_unreachable("unhandled!");
29
30   case SPF_SMIN:
31     return SPF_SMAX;
32   case SPF_UMIN:
33     return SPF_UMAX;
34   case SPF_SMAX:
35     return SPF_SMIN;
36   case SPF_UMAX:
37     return SPF_UMIN;
38   }
39 }
40
41 static CmpInst::Predicate getCmpPredicateForMinMax(SelectPatternFlavor SPF,
42                                                    bool Ordered=false) {
43   switch (SPF) {
44   default:
45     llvm_unreachable("unhandled!");
46
47   case SPF_SMIN:
48     return ICmpInst::ICMP_SLT;
49   case SPF_UMIN:
50     return ICmpInst::ICMP_ULT;
51   case SPF_SMAX:
52     return ICmpInst::ICMP_SGT;
53   case SPF_UMAX:
54     return ICmpInst::ICMP_UGT;
55   case SPF_FMINNUM:
56     return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
57   case SPF_FMAXNUM:
58     return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
59   }
60 }
61
62 static Value *generateMinMaxSelectPattern(InstCombiner::BuilderTy *Builder,
63                                           SelectPatternFlavor SPF, Value *A,
64                                           Value *B) {
65   CmpInst::Predicate Pred = getCmpPredicateForMinMax(SPF);
66   assert(CmpInst::isIntPredicate(Pred));
67   return Builder->CreateSelect(Builder->CreateICmp(Pred, A, B), A, B);
68 }
69
70 /// We want to turn code that looks like this:
71 ///   %C = or %A, %B
72 ///   %D = select %cond, %C, %A
73 /// into:
74 ///   %C = select %cond, %B, 0
75 ///   %D = or %A, %C
76 ///
77 /// Assuming that the specified instruction is an operand to the select, return
78 /// a bitmask indicating which operands of this instruction are foldable if they
79 /// equal the other incoming value of the select.
80 ///
81 static unsigned GetSelectFoldableOperands(Instruction *I) {
82   switch (I->getOpcode()) {
83   case Instruction::Add:
84   case Instruction::Mul:
85   case Instruction::And:
86   case Instruction::Or:
87   case Instruction::Xor:
88     return 3;              // Can fold through either operand.
89   case Instruction::Sub:   // Can only fold on the amount subtracted.
90   case Instruction::Shl:   // Can only fold on the shift amount.
91   case Instruction::LShr:
92   case Instruction::AShr:
93     return 1;
94   default:
95     return 0;              // Cannot fold
96   }
97 }
98
99 /// For the same transformation as the previous function, return the identity
100 /// constant that goes into the select.
101 static Constant *GetSelectFoldableConstant(Instruction *I) {
102   switch (I->getOpcode()) {
103   default: llvm_unreachable("This cannot happen!");
104   case Instruction::Add:
105   case Instruction::Sub:
106   case Instruction::Or:
107   case Instruction::Xor:
108   case Instruction::Shl:
109   case Instruction::LShr:
110   case Instruction::AShr:
111     return Constant::getNullValue(I->getType());
112   case Instruction::And:
113     return Constant::getAllOnesValue(I->getType());
114   case Instruction::Mul:
115     return ConstantInt::get(I->getType(), 1);
116   }
117 }
118
119 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode.
120 Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
121                                           Instruction *FI) {
122   // If this is a cast from the same type, merge.
123   if (TI->getNumOperands() == 1 && TI->isCast()) {
124     Type *FIOpndTy = FI->getOperand(0)->getType();
125     if (TI->getOperand(0)->getType() != FIOpndTy)
126       return nullptr;
127
128     // The select condition may be a vector. We may only change the operand
129     // type if the vector width remains the same (and matches the condition).
130     Type *CondTy = SI.getCondition()->getType();
131     if (CondTy->isVectorTy()) {
132       if (!FIOpndTy->isVectorTy())
133         return nullptr;
134       if (CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements())
135         return nullptr;
136
137       // TODO: If the backend knew how to deal with casts better, we could
138       // remove this limitation. For now, there's too much potential to create
139       // worse codegen by promoting the select ahead of size-altering casts
140       // (PR28160).
141       //
142       // Note that ValueTracking's matchSelectPattern() looks through casts
143       // without checking 'hasOneUse' when it matches min/max patterns, so this
144       // transform may end up happening anyway.
145       if (TI->getOpcode() != Instruction::BitCast &&
146           (!TI->hasOneUse() || !FI->hasOneUse()))
147         return nullptr;
148
149     } else if (!TI->hasOneUse() || !FI->hasOneUse()) {
150       // TODO: The one-use restrictions for a scalar select could be eased if
151       // the fold of a select in visitLoadInst() was enhanced to match a pattern
152       // that includes a cast.
153       return nullptr;
154     }
155
156     // Fold this by inserting a select from the input values.
157     Value *NewSI = Builder->CreateSelect(SI.getCondition(), TI->getOperand(0),
158                                          FI->getOperand(0), SI.getName()+".v");
159     return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
160                             TI->getType());
161   }
162
163   // TODO: This function ends awkwardly in unreachable - fix to be more normal.
164
165   // Only handle binary operators with one-use here. As with the cast case
166   // above, it may be possible to relax the one-use constraint, but that needs
167   // be examined carefully since it may not reduce the total number of
168   // instructions.
169   if (!isa<BinaryOperator>(TI) || !TI->hasOneUse() || !FI->hasOneUse())
170     return nullptr;
171
172   // Figure out if the operations have any operands in common.
173   Value *MatchOp, *OtherOpT, *OtherOpF;
174   bool MatchIsOpZero;
175   if (TI->getOperand(0) == FI->getOperand(0)) {
176     MatchOp  = TI->getOperand(0);
177     OtherOpT = TI->getOperand(1);
178     OtherOpF = FI->getOperand(1);
179     MatchIsOpZero = true;
180   } else if (TI->getOperand(1) == FI->getOperand(1)) {
181     MatchOp  = TI->getOperand(1);
182     OtherOpT = TI->getOperand(0);
183     OtherOpF = FI->getOperand(0);
184     MatchIsOpZero = false;
185   } else if (!TI->isCommutative()) {
186     return nullptr;
187   } else if (TI->getOperand(0) == FI->getOperand(1)) {
188     MatchOp  = TI->getOperand(0);
189     OtherOpT = TI->getOperand(1);
190     OtherOpF = FI->getOperand(0);
191     MatchIsOpZero = true;
192   } else if (TI->getOperand(1) == FI->getOperand(0)) {
193     MatchOp  = TI->getOperand(1);
194     OtherOpT = TI->getOperand(0);
195     OtherOpF = FI->getOperand(1);
196     MatchIsOpZero = true;
197   } else {
198     return nullptr;
199   }
200
201   // If we reach here, they do have operations in common.
202   Value *NewSI = Builder->CreateSelect(SI.getCondition(), OtherOpT,
203                                        OtherOpF, SI.getName()+".v");
204
205   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
206     if (MatchIsOpZero)
207       return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI);
208     else
209       return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp);
210   }
211   llvm_unreachable("Shouldn't get here");
212 }
213
214 static bool isSelect01(Constant *C1, Constant *C2) {
215   ConstantInt *C1I = dyn_cast<ConstantInt>(C1);
216   if (!C1I)
217     return false;
218   ConstantInt *C2I = dyn_cast<ConstantInt>(C2);
219   if (!C2I)
220     return false;
221   if (!C1I->isZero() && !C2I->isZero()) // One side must be zero.
222     return false;
223   return C1I->isOne() || C1I->isAllOnesValue() ||
224          C2I->isOne() || C2I->isAllOnesValue();
225 }
226
227 /// Try to fold the select into one of the operands to allow further
228 /// optimization.
229 Instruction *InstCombiner::FoldSelectIntoOp(SelectInst &SI, Value *TrueVal,
230                                             Value *FalseVal) {
231   // See the comment above GetSelectFoldableOperands for a description of the
232   // transformation we are doing here.
233   if (Instruction *TVI = dyn_cast<Instruction>(TrueVal)) {
234     if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
235         !isa<Constant>(FalseVal)) {
236       if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
237         unsigned OpToFold = 0;
238         if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
239           OpToFold = 1;
240         } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
241           OpToFold = 2;
242         }
243
244         if (OpToFold) {
245           Constant *C = GetSelectFoldableConstant(TVI);
246           Value *OOp = TVI->getOperand(2-OpToFold);
247           // Avoid creating select between 2 constants unless it's selecting
248           // between 0, 1 and -1.
249           if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
250             Value *NewSel = Builder->CreateSelect(SI.getCondition(), OOp, C);
251             NewSel->takeName(TVI);
252             BinaryOperator *TVI_BO = cast<BinaryOperator>(TVI);
253             BinaryOperator *BO = BinaryOperator::Create(TVI_BO->getOpcode(),
254                                                         FalseVal, NewSel);
255             BO->copyIRFlags(TVI_BO);
256             return BO;
257           }
258         }
259       }
260     }
261   }
262
263   if (Instruction *FVI = dyn_cast<Instruction>(FalseVal)) {
264     if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
265         !isa<Constant>(TrueVal)) {
266       if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
267         unsigned OpToFold = 0;
268         if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
269           OpToFold = 1;
270         } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
271           OpToFold = 2;
272         }
273
274         if (OpToFold) {
275           Constant *C = GetSelectFoldableConstant(FVI);
276           Value *OOp = FVI->getOperand(2-OpToFold);
277           // Avoid creating select between 2 constants unless it's selecting
278           // between 0, 1 and -1.
279           if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
280             Value *NewSel = Builder->CreateSelect(SI.getCondition(), C, OOp);
281             NewSel->takeName(FVI);
282             BinaryOperator *FVI_BO = cast<BinaryOperator>(FVI);
283             BinaryOperator *BO = BinaryOperator::Create(FVI_BO->getOpcode(),
284                                                         TrueVal, NewSel);
285             BO->copyIRFlags(FVI_BO);
286             return BO;
287           }
288         }
289       }
290     }
291   }
292
293   return nullptr;
294 }
295
296 /// We want to turn:
297 ///   (select (icmp eq (and X, C1), 0), Y, (or Y, C2))
298 /// into:
299 ///   (or (shl (and X, C1), C3), y)
300 /// iff:
301 ///   C1 and C2 are both powers of 2
302 /// where:
303 ///   C3 = Log(C2) - Log(C1)
304 ///
305 /// This transform handles cases where:
306 /// 1. The icmp predicate is inverted
307 /// 2. The select operands are reversed
308 /// 3. The magnitude of C2 and C1 are flipped
309 static Value *foldSelectICmpAndOr(const SelectInst &SI, Value *TrueVal,
310                                   Value *FalseVal,
311                                   InstCombiner::BuilderTy *Builder) {
312   const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition());
313   if (!IC || !IC->isEquality() || !SI.getType()->isIntegerTy())
314     return nullptr;
315
316   Value *CmpLHS = IC->getOperand(0);
317   Value *CmpRHS = IC->getOperand(1);
318
319   if (!match(CmpRHS, m_Zero()))
320     return nullptr;
321
322   Value *X;
323   const APInt *C1;
324   if (!match(CmpLHS, m_And(m_Value(X), m_Power2(C1))))
325     return nullptr;
326
327   const APInt *C2;
328   bool OrOnTrueVal = false;
329   bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2)));
330   if (!OrOnFalseVal)
331     OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2)));
332
333   if (!OrOnFalseVal && !OrOnTrueVal)
334     return nullptr;
335
336   Value *V = CmpLHS;
337   Value *Y = OrOnFalseVal ? TrueVal : FalseVal;
338
339   unsigned C1Log = C1->logBase2();
340   unsigned C2Log = C2->logBase2();
341   if (C2Log > C1Log) {
342     V = Builder->CreateZExtOrTrunc(V, Y->getType());
343     V = Builder->CreateShl(V, C2Log - C1Log);
344   } else if (C1Log > C2Log) {
345     V = Builder->CreateLShr(V, C1Log - C2Log);
346     V = Builder->CreateZExtOrTrunc(V, Y->getType());
347   } else
348     V = Builder->CreateZExtOrTrunc(V, Y->getType());
349
350   ICmpInst::Predicate Pred = IC->getPredicate();
351   if ((Pred == ICmpInst::ICMP_NE && OrOnFalseVal) ||
352       (Pred == ICmpInst::ICMP_EQ && OrOnTrueVal))
353     V = Builder->CreateXor(V, *C2);
354
355   return Builder->CreateOr(V, Y);
356 }
357
358 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
359 /// call to cttz/ctlz with flag 'is_zero_undef' cleared.
360 ///
361 /// For example, we can fold the following code sequence:
362 /// \code
363 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
364 ///   %1 = icmp ne i32 %x, 0
365 ///   %2 = select i1 %1, i32 %0, i32 32
366 /// \code
367 ///
368 /// into:
369 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
370 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal,
371                                   InstCombiner::BuilderTy *Builder) {
372   ICmpInst::Predicate Pred = ICI->getPredicate();
373   Value *CmpLHS = ICI->getOperand(0);
374   Value *CmpRHS = ICI->getOperand(1);
375
376   // Check if the condition value compares a value for equality against zero.
377   if (!ICI->isEquality() || !match(CmpRHS, m_Zero()))
378     return nullptr;
379
380   Value *Count = FalseVal;
381   Value *ValueOnZero = TrueVal;
382   if (Pred == ICmpInst::ICMP_NE)
383     std::swap(Count, ValueOnZero);
384
385   // Skip zero extend/truncate.
386   Value *V = nullptr;
387   if (match(Count, m_ZExt(m_Value(V))) ||
388       match(Count, m_Trunc(m_Value(V))))
389     Count = V;
390
391   // Check if the value propagated on zero is a constant number equal to the
392   // sizeof in bits of 'Count'.
393   unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits();
394   if (!match(ValueOnZero, m_SpecificInt(SizeOfInBits)))
395     return nullptr;
396
397   // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
398   // input to the cttz/ctlz is used as LHS for the compare instruction.
399   if (match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) ||
400       match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS)))) {
401     IntrinsicInst *II = cast<IntrinsicInst>(Count);
402     IRBuilder<> Builder(II);
403     // Explicitly clear the 'undef_on_zero' flag.
404     IntrinsicInst *NewI = cast<IntrinsicInst>(II->clone());
405     Type *Ty = NewI->getArgOperand(1)->getType();
406     NewI->setArgOperand(1, Constant::getNullValue(Ty));
407     Builder.Insert(NewI);
408     return Builder.CreateZExtOrTrunc(NewI, ValueOnZero->getType());
409   }
410
411   return nullptr;
412 }
413
414 /// Visit a SelectInst that has an ICmpInst as its first operand.
415 Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
416                                                    ICmpInst *ICI) {
417   bool Changed = false;
418   ICmpInst::Predicate Pred = ICI->getPredicate();
419   Value *CmpLHS = ICI->getOperand(0);
420   Value *CmpRHS = ICI->getOperand(1);
421   Value *TrueVal = SI.getTrueValue();
422   Value *FalseVal = SI.getFalseValue();
423
424   // Check cases where the comparison is with a constant that
425   // can be adjusted to fit the min/max idiom. We may move or edit ICI
426   // here, so make sure the select is the only user.
427   if (ICI->hasOneUse())
428     if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) {
429       switch (Pred) {
430       default: break;
431       case ICmpInst::ICMP_ULT:
432       case ICmpInst::ICMP_SLT:
433       case ICmpInst::ICMP_UGT:
434       case ICmpInst::ICMP_SGT: {
435         // These transformations only work for selects over integers.
436         IntegerType *SelectTy = dyn_cast<IntegerType>(SI.getType());
437         if (!SelectTy)
438           break;
439
440         Constant *AdjustedRHS;
441         if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
442           AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() + 1);
443         else // (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
444           AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() - 1);
445
446         // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
447         // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
448         if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
449             (CmpLHS == FalseVal && AdjustedRHS == TrueVal))
450           ; // Nothing to do here. Values match without any sign/zero extension.
451
452         // Types do not match. Instead of calculating this with mixed types
453         // promote all to the larger type. This enables scalar evolution to
454         // analyze this expression.
455         else if (CmpRHS->getType()->getScalarSizeInBits()
456                  < SelectTy->getBitWidth()) {
457           Constant *sextRHS = ConstantExpr::getSExt(AdjustedRHS, SelectTy);
458
459           // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
460           // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
461           // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
462           // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
463           if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) &&
464                 sextRHS == FalseVal) {
465             CmpLHS = TrueVal;
466             AdjustedRHS = sextRHS;
467           } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
468                      sextRHS == TrueVal) {
469             CmpLHS = FalseVal;
470             AdjustedRHS = sextRHS;
471           } else if (ICI->isUnsigned()) {
472             Constant *zextRHS = ConstantExpr::getZExt(AdjustedRHS, SelectTy);
473             // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
474             // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
475             // zext + signed compare cannot be changed:
476             //    0xff <s 0x00, but 0x00ff >s 0x0000
477             if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) &&
478                 zextRHS == FalseVal) {
479               CmpLHS = TrueVal;
480               AdjustedRHS = zextRHS;
481             } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
482                        zextRHS == TrueVal) {
483               CmpLHS = FalseVal;
484               AdjustedRHS = zextRHS;
485             } else
486               break;
487           } else
488             break;
489         } else
490           break;
491
492         Pred = ICmpInst::getSwappedPredicate(Pred);
493         CmpRHS = AdjustedRHS;
494         std::swap(FalseVal, TrueVal);
495         ICI->setPredicate(Pred);
496         ICI->setOperand(0, CmpLHS);
497         ICI->setOperand(1, CmpRHS);
498         SI.setOperand(1, TrueVal);
499         SI.setOperand(2, FalseVal);
500
501         // Move ICI instruction right before the select instruction. Otherwise
502         // the sext/zext value may be defined after the ICI instruction uses it.
503         ICI->moveBefore(&SI);
504
505         Changed = true;
506         break;
507       }
508       }
509     }
510
511   // Transform (X >s -1) ? C1 : C2 --> ((X >>s 31) & (C2 - C1)) + C1
512   // and       (X <s  0) ? C2 : C1 --> ((X >>s 31) & (C2 - C1)) + C1
513   // FIXME: Type and constness constraints could be lifted, but we have to
514   //        watch code size carefully. We should consider xor instead of
515   //        sub/add when we decide to do that.
516   if (IntegerType *Ty = dyn_cast<IntegerType>(CmpLHS->getType())) {
517     if (TrueVal->getType() == Ty) {
518       if (ConstantInt *Cmp = dyn_cast<ConstantInt>(CmpRHS)) {
519         ConstantInt *C1 = nullptr, *C2 = nullptr;
520         if (Pred == ICmpInst::ICMP_SGT && Cmp->isAllOnesValue()) {
521           C1 = dyn_cast<ConstantInt>(TrueVal);
522           C2 = dyn_cast<ConstantInt>(FalseVal);
523         } else if (Pred == ICmpInst::ICMP_SLT && Cmp->isNullValue()) {
524           C1 = dyn_cast<ConstantInt>(FalseVal);
525           C2 = dyn_cast<ConstantInt>(TrueVal);
526         }
527         if (C1 && C2) {
528           // This shift results in either -1 or 0.
529           Value *AShr = Builder->CreateAShr(CmpLHS, Ty->getBitWidth()-1);
530
531           // Check if we can express the operation with a single or.
532           if (C2->isAllOnesValue())
533             return replaceInstUsesWith(SI, Builder->CreateOr(AShr, C1));
534
535           Value *And = Builder->CreateAnd(AShr, C2->getValue()-C1->getValue());
536           return replaceInstUsesWith(SI, Builder->CreateAdd(And, C1));
537         }
538       }
539     }
540   }
541
542   // NOTE: if we wanted to, this is where to detect integer MIN/MAX
543
544   if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
545     if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
546       // Transform (X == C) ? X : Y -> (X == C) ? C : Y
547       SI.setOperand(1, CmpRHS);
548       Changed = true;
549     } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
550       // Transform (X != C) ? Y : X -> (X != C) ? Y : C
551       SI.setOperand(2, CmpRHS);
552       Changed = true;
553     }
554   }
555
556   // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring
557   // decomposeBitTestICmp() might help.
558   {
559     unsigned BitWidth =
560         DL.getTypeSizeInBits(TrueVal->getType()->getScalarType());
561     APInt MinSignedValue = APInt::getSignBit(BitWidth);
562     Value *X;
563     const APInt *Y, *C;
564     bool TrueWhenUnset;
565     bool IsBitTest = false;
566     if (ICmpInst::isEquality(Pred) &&
567         match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) &&
568         match(CmpRHS, m_Zero())) {
569       IsBitTest = true;
570       TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
571     } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
572       X = CmpLHS;
573       Y = &MinSignedValue;
574       IsBitTest = true;
575       TrueWhenUnset = false;
576     } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
577       X = CmpLHS;
578       Y = &MinSignedValue;
579       IsBitTest = true;
580       TrueWhenUnset = true;
581     }
582     if (IsBitTest) {
583       Value *V = nullptr;
584       // (X & Y) == 0 ? X : X ^ Y  --> X & ~Y
585       if (TrueWhenUnset && TrueVal == X &&
586           match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
587         V = Builder->CreateAnd(X, ~(*Y));
588       // (X & Y) != 0 ? X ^ Y : X  --> X & ~Y
589       else if (!TrueWhenUnset && FalseVal == X &&
590                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
591         V = Builder->CreateAnd(X, ~(*Y));
592       // (X & Y) == 0 ? X ^ Y : X  --> X | Y
593       else if (TrueWhenUnset && FalseVal == X &&
594                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
595         V = Builder->CreateOr(X, *Y);
596       // (X & Y) != 0 ? X : X ^ Y  --> X | Y
597       else if (!TrueWhenUnset && TrueVal == X &&
598                match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
599         V = Builder->CreateOr(X, *Y);
600
601       if (V)
602         return replaceInstUsesWith(SI, V);
603     }
604   }
605
606   if (Value *V = foldSelectICmpAndOr(SI, TrueVal, FalseVal, Builder))
607     return replaceInstUsesWith(SI, V);
608
609   if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder))
610     return replaceInstUsesWith(SI, V);
611
612   return Changed ? &SI : nullptr;
613 }
614
615
616 /// SI is a select whose condition is a PHI node (but the two may be in
617 /// different blocks). See if the true/false values (V) are live in all of the
618 /// predecessor blocks of the PHI. For example, cases like this can't be mapped:
619 ///
620 ///   X = phi [ C1, BB1], [C2, BB2]
621 ///   Y = add
622 ///   Z = select X, Y, 0
623 ///
624 /// because Y is not live in BB1/BB2.
625 ///
626 static bool CanSelectOperandBeMappingIntoPredBlock(const Value *V,
627                                                    const SelectInst &SI) {
628   // If the value is a non-instruction value like a constant or argument, it
629   // can always be mapped.
630   const Instruction *I = dyn_cast<Instruction>(V);
631   if (!I) return true;
632
633   // If V is a PHI node defined in the same block as the condition PHI, we can
634   // map the arguments.
635   const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
636
637   if (const PHINode *VP = dyn_cast<PHINode>(I))
638     if (VP->getParent() == CondPHI->getParent())
639       return true;
640
641   // Otherwise, if the PHI and select are defined in the same block and if V is
642   // defined in a different block, then we can transform it.
643   if (SI.getParent() == CondPHI->getParent() &&
644       I->getParent() != CondPHI->getParent())
645     return true;
646
647   // Otherwise we have a 'hard' case and we can't tell without doing more
648   // detailed dominator based analysis, punt.
649   return false;
650 }
651
652 /// We have an SPF (e.g. a min or max) of an SPF of the form:
653 ///   SPF2(SPF1(A, B), C)
654 Instruction *InstCombiner::FoldSPFofSPF(Instruction *Inner,
655                                         SelectPatternFlavor SPF1,
656                                         Value *A, Value *B,
657                                         Instruction &Outer,
658                                         SelectPatternFlavor SPF2, Value *C) {
659   if (Outer.getType() != Inner->getType())
660     return nullptr;
661
662   if (C == A || C == B) {
663     // MAX(MAX(A, B), B) -> MAX(A, B)
664     // MIN(MIN(a, b), a) -> MIN(a, b)
665     if (SPF1 == SPF2)
666       return replaceInstUsesWith(Outer, Inner);
667
668     // MAX(MIN(a, b), a) -> a
669     // MIN(MAX(a, b), a) -> a
670     if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
671         (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
672         (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
673         (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
674       return replaceInstUsesWith(Outer, C);
675   }
676
677   if (SPF1 == SPF2) {
678     if (ConstantInt *CB = dyn_cast<ConstantInt>(B)) {
679       if (ConstantInt *CC = dyn_cast<ConstantInt>(C)) {
680         const APInt &ACB = CB->getValue();
681         const APInt &ACC = CC->getValue();
682
683         // MIN(MIN(A, 23), 97) -> MIN(A, 23)
684         // MAX(MAX(A, 97), 23) -> MAX(A, 97)
685         if ((SPF1 == SPF_UMIN && ACB.ule(ACC)) ||
686             (SPF1 == SPF_SMIN && ACB.sle(ACC)) ||
687             (SPF1 == SPF_UMAX && ACB.uge(ACC)) ||
688             (SPF1 == SPF_SMAX && ACB.sge(ACC)))
689           return replaceInstUsesWith(Outer, Inner);
690
691         // MIN(MIN(A, 97), 23) -> MIN(A, 23)
692         // MAX(MAX(A, 23), 97) -> MAX(A, 97)
693         if ((SPF1 == SPF_UMIN && ACB.ugt(ACC)) ||
694             (SPF1 == SPF_SMIN && ACB.sgt(ACC)) ||
695             (SPF1 == SPF_UMAX && ACB.ult(ACC)) ||
696             (SPF1 == SPF_SMAX && ACB.slt(ACC))) {
697           Outer.replaceUsesOfWith(Inner, A);
698           return &Outer;
699         }
700       }
701     }
702   }
703
704   // ABS(ABS(X)) -> ABS(X)
705   // NABS(NABS(X)) -> NABS(X)
706   if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) {
707     return replaceInstUsesWith(Outer, Inner);
708   }
709
710   // ABS(NABS(X)) -> ABS(X)
711   // NABS(ABS(X)) -> NABS(X)
712   if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) ||
713       (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) {
714     SelectInst *SI = cast<SelectInst>(Inner);
715     Value *NewSI = Builder->CreateSelect(
716         SI->getCondition(), SI->getFalseValue(), SI->getTrueValue());
717     return replaceInstUsesWith(Outer, NewSI);
718   }
719
720   auto IsFreeOrProfitableToInvert =
721       [&](Value *V, Value *&NotV, bool &ElidesXor) {
722     if (match(V, m_Not(m_Value(NotV)))) {
723       // If V has at most 2 uses then we can get rid of the xor operation
724       // entirely.
725       ElidesXor |= !V->hasNUsesOrMore(3);
726       return true;
727     }
728
729     if (IsFreeToInvert(V, !V->hasNUsesOrMore(3))) {
730       NotV = nullptr;
731       return true;
732     }
733
734     return false;
735   };
736
737   Value *NotA, *NotB, *NotC;
738   bool ElidesXor = false;
739
740   // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C)
741   // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C)
742   // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C)
743   // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C)
744   //
745   // This transform is performance neutral if we can elide at least one xor from
746   // the set of three operands, since we'll be tacking on an xor at the very
747   // end.
748   if (IsFreeOrProfitableToInvert(A, NotA, ElidesXor) &&
749       IsFreeOrProfitableToInvert(B, NotB, ElidesXor) &&
750       IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) {
751     if (!NotA)
752       NotA = Builder->CreateNot(A);
753     if (!NotB)
754       NotB = Builder->CreateNot(B);
755     if (!NotC)
756       NotC = Builder->CreateNot(C);
757
758     Value *NewInner = generateMinMaxSelectPattern(
759         Builder, getInverseMinMaxSelectPattern(SPF1), NotA, NotB);
760     Value *NewOuter = Builder->CreateNot(generateMinMaxSelectPattern(
761         Builder, getInverseMinMaxSelectPattern(SPF2), NewInner, NotC));
762     return replaceInstUsesWith(Outer, NewOuter);
763   }
764
765   return nullptr;
766 }
767
768 /// If one of the constants is zero (we know they can't both be) and we have an
769 /// icmp instruction with zero, and we have an 'and' with the non-constant value
770 /// and a power of two we can turn the select into a shift on the result of the
771 /// 'and'.
772 static Value *foldSelectICmpAnd(const SelectInst &SI, ConstantInt *TrueVal,
773                                 ConstantInt *FalseVal,
774                                 InstCombiner::BuilderTy *Builder) {
775   const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition());
776   if (!IC || !IC->isEquality() || !SI.getType()->isIntegerTy())
777     return nullptr;
778
779   if (!match(IC->getOperand(1), m_Zero()))
780     return nullptr;
781
782   ConstantInt *AndRHS;
783   Value *LHS = IC->getOperand(0);
784   if (!match(LHS, m_And(m_Value(), m_ConstantInt(AndRHS))))
785     return nullptr;
786
787   // If both select arms are non-zero see if we have a select of the form
788   // 'x ? 2^n + C : C'. Then we can offset both arms by C, use the logic
789   // for 'x ? 2^n : 0' and fix the thing up at the end.
790   ConstantInt *Offset = nullptr;
791   if (!TrueVal->isZero() && !FalseVal->isZero()) {
792     if ((TrueVal->getValue() - FalseVal->getValue()).isPowerOf2())
793       Offset = FalseVal;
794     else if ((FalseVal->getValue() - TrueVal->getValue()).isPowerOf2())
795       Offset = TrueVal;
796     else
797       return nullptr;
798
799     // Adjust TrueVal and FalseVal to the offset.
800     TrueVal = ConstantInt::get(Builder->getContext(),
801                                TrueVal->getValue() - Offset->getValue());
802     FalseVal = ConstantInt::get(Builder->getContext(),
803                                 FalseVal->getValue() - Offset->getValue());
804   }
805
806   // Make sure the mask in the 'and' and one of the select arms is a power of 2.
807   if (!AndRHS->getValue().isPowerOf2() ||
808       (!TrueVal->getValue().isPowerOf2() &&
809        !FalseVal->getValue().isPowerOf2()))
810     return nullptr;
811
812   // Determine which shift is needed to transform result of the 'and' into the
813   // desired result.
814   ConstantInt *ValC = !TrueVal->isZero() ? TrueVal : FalseVal;
815   unsigned ValZeros = ValC->getValue().logBase2();
816   unsigned AndZeros = AndRHS->getValue().logBase2();
817
818   // If types don't match we can still convert the select by introducing a zext
819   // or a trunc of the 'and'. The trunc case requires that all of the truncated
820   // bits are zero, we can figure that out by looking at the 'and' mask.
821   if (AndZeros >= ValC->getBitWidth())
822     return nullptr;
823
824   Value *V = Builder->CreateZExtOrTrunc(LHS, SI.getType());
825   if (ValZeros > AndZeros)
826     V = Builder->CreateShl(V, ValZeros - AndZeros);
827   else if (ValZeros < AndZeros)
828     V = Builder->CreateLShr(V, AndZeros - ValZeros);
829
830   // Okay, now we know that everything is set up, we just don't know whether we
831   // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
832   bool ShouldNotVal = !TrueVal->isZero();
833   ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
834   if (ShouldNotVal)
835     V = Builder->CreateXor(V, ValC);
836
837   // Apply an offset if needed.
838   if (Offset)
839     V = Builder->CreateAdd(V, Offset);
840   return V;
841 }
842
843 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))).
844 /// This is even legal for FP.
845 static Instruction *foldAddSubSelect(SelectInst &SI,
846                                      InstCombiner::BuilderTy &Builder) {
847   Value *CondVal = SI.getCondition();
848   Value *TrueVal = SI.getTrueValue();
849   Value *FalseVal = SI.getFalseValue();
850   auto *TI = dyn_cast<Instruction>(TrueVal);
851   auto *FI = dyn_cast<Instruction>(FalseVal);
852   if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
853     return nullptr;
854
855   Instruction *AddOp = nullptr, *SubOp = nullptr;
856   if ((TI->getOpcode() == Instruction::Sub &&
857        FI->getOpcode() == Instruction::Add) ||
858       (TI->getOpcode() == Instruction::FSub &&
859        FI->getOpcode() == Instruction::FAdd)) {
860     AddOp = FI;
861     SubOp = TI;
862   } else if ((FI->getOpcode() == Instruction::Sub &&
863               TI->getOpcode() == Instruction::Add) ||
864              (FI->getOpcode() == Instruction::FSub &&
865               TI->getOpcode() == Instruction::FAdd)) {
866     AddOp = TI;
867     SubOp = FI;
868   }
869
870   if (AddOp) {
871     Value *OtherAddOp = nullptr;
872     if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
873       OtherAddOp = AddOp->getOperand(1);
874     } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
875       OtherAddOp = AddOp->getOperand(0);
876     }
877
878     if (OtherAddOp) {
879       // So at this point we know we have (Y -> OtherAddOp):
880       //        select C, (add X, Y), (sub X, Z)
881       Value *NegVal; // Compute -Z
882       if (SI.getType()->isFPOrFPVectorTy()) {
883         NegVal = Builder.CreateFNeg(SubOp->getOperand(1));
884         if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
885           FastMathFlags Flags = AddOp->getFastMathFlags();
886           Flags &= SubOp->getFastMathFlags();
887           NegInst->setFastMathFlags(Flags);
888         }
889       } else {
890         NegVal = Builder.CreateNeg(SubOp->getOperand(1));
891       }
892
893       Value *NewTrueOp = OtherAddOp;
894       Value *NewFalseOp = NegVal;
895       if (AddOp != TI)
896         std::swap(NewTrueOp, NewFalseOp);
897       Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp,
898                                            SI.getName() + ".p");
899
900       if (SI.getType()->isFPOrFPVectorTy()) {
901         Instruction *RI =
902             BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
903
904         FastMathFlags Flags = AddOp->getFastMathFlags();
905         Flags &= SubOp->getFastMathFlags();
906         RI->setFastMathFlags(Flags);
907         return RI;
908       } else
909         return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
910     }
911   }
912   return nullptr;
913 }
914
915 Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
916   Value *CondVal = SI.getCondition();
917   Value *TrueVal = SI.getTrueValue();
918   Value *FalseVal = SI.getFalseValue();
919   Type *SelType = SI.getType();
920
921   if (Value *V =
922           SimplifySelectInst(CondVal, TrueVal, FalseVal, DL, TLI, DT, AC))
923     return replaceInstUsesWith(SI, V);
924
925   if (SelType->getScalarType()->isIntegerTy(1) &&
926       TrueVal->getType() == CondVal->getType()) {
927     if (match(TrueVal, m_One())) {
928       // Change: A = select B, true, C --> A = or B, C
929       return BinaryOperator::CreateOr(CondVal, FalseVal);
930     }
931     if (match(TrueVal, m_Zero())) {
932       // Change: A = select B, false, C --> A = and !B, C
933       Value *NotCond = Builder->CreateNot(CondVal, "not." + CondVal->getName());
934       return BinaryOperator::CreateAnd(NotCond, FalseVal);
935     }
936     if (match(FalseVal, m_Zero())) {
937       // Change: A = select B, C, false --> A = and B, C
938       return BinaryOperator::CreateAnd(CondVal, TrueVal);
939     }
940     if (match(FalseVal, m_One())) {
941       // Change: A = select B, C, true --> A = or !B, C
942       Value *NotCond = Builder->CreateNot(CondVal, "not." + CondVal->getName());
943       return BinaryOperator::CreateOr(NotCond, TrueVal);
944     }
945
946     // select a, a, b  -> a | b
947     // select a, b, a  -> a & b
948     if (CondVal == TrueVal)
949       return BinaryOperator::CreateOr(CondVal, FalseVal);
950     if (CondVal == FalseVal)
951       return BinaryOperator::CreateAnd(CondVal, TrueVal);
952
953     // select a, ~a, b -> (~a) & b
954     // select a, b, ~a -> (~a) | b
955     if (match(TrueVal, m_Not(m_Specific(CondVal))))
956       return BinaryOperator::CreateAnd(TrueVal, FalseVal);
957     if (match(FalseVal, m_Not(m_Specific(CondVal))))
958       return BinaryOperator::CreateOr(TrueVal, FalseVal);
959   }
960
961   // Selecting between two integer or vector splat integer constants?
962   //
963   // Note that we don't handle a scalar select of vectors:
964   // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0>
965   // because that may need 3 instructions to splat the condition value:
966   // extend, insertelement, shufflevector.
967   if (CondVal->getType()->isVectorTy() == SelType->isVectorTy()) {
968     // select C, 1, 0 -> zext C to int
969     if (match(TrueVal, m_One()) && match(FalseVal, m_Zero()))
970       return new ZExtInst(CondVal, SelType);
971
972     // select C, -1, 0 -> sext C to int
973     if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero()))
974       return new SExtInst(CondVal, SelType);
975
976     // select C, 0, 1 -> zext !C to int
977     if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) {
978       Value *NotCond = Builder->CreateNot(CondVal, "not." + CondVal->getName());
979       return new ZExtInst(NotCond, SelType);
980     }
981
982     // select C, 0, -1 -> sext !C to int
983     if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) {
984       Value *NotCond = Builder->CreateNot(CondVal, "not." + CondVal->getName());
985       return new SExtInst(NotCond, SelType);
986     }
987   }
988
989   if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
990     if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal))
991       if (Value *V = foldSelectICmpAnd(SI, TrueValC, FalseValC, Builder))
992         return replaceInstUsesWith(SI, V);
993
994   // See if we are selecting two values based on a comparison of the two values.
995   if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
996     if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
997       // Transform (X == Y) ? X : Y  -> Y
998       if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
999         // This is not safe in general for floating point:
1000         // consider X== -0, Y== +0.
1001         // It becomes safe if either operand is a nonzero constant.
1002         ConstantFP *CFPt, *CFPf;
1003         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
1004               !CFPt->getValueAPF().isZero()) ||
1005             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
1006              !CFPf->getValueAPF().isZero()))
1007         return replaceInstUsesWith(SI, FalseVal);
1008       }
1009       // Transform (X une Y) ? X : Y  -> X
1010       if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
1011         // This is not safe in general for floating point:
1012         // consider X== -0, Y== +0.
1013         // It becomes safe if either operand is a nonzero constant.
1014         ConstantFP *CFPt, *CFPf;
1015         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
1016               !CFPt->getValueAPF().isZero()) ||
1017             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
1018              !CFPf->getValueAPF().isZero()))
1019         return replaceInstUsesWith(SI, TrueVal);
1020       }
1021
1022       // Canonicalize to use ordered comparisons by swapping the select
1023       // operands.
1024       //
1025       // e.g.
1026       // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
1027       if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
1028         FCmpInst::Predicate InvPred = FCI->getInversePredicate();
1029         IRBuilder<>::FastMathFlagGuard FMFG(*Builder);
1030         Builder->setFastMathFlags(FCI->getFastMathFlags());
1031         Value *NewCond = Builder->CreateFCmp(InvPred, TrueVal, FalseVal,
1032                                              FCI->getName() + ".inv");
1033
1034         return SelectInst::Create(NewCond, FalseVal, TrueVal,
1035                                   SI.getName() + ".p");
1036       }
1037
1038       // NOTE: if we wanted to, this is where to detect MIN/MAX
1039     } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
1040       // Transform (X == Y) ? Y : X  -> X
1041       if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
1042         // This is not safe in general for floating point:
1043         // consider X== -0, Y== +0.
1044         // It becomes safe if either operand is a nonzero constant.
1045         ConstantFP *CFPt, *CFPf;
1046         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
1047               !CFPt->getValueAPF().isZero()) ||
1048             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
1049              !CFPf->getValueAPF().isZero()))
1050           return replaceInstUsesWith(SI, FalseVal);
1051       }
1052       // Transform (X une Y) ? Y : X  -> Y
1053       if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
1054         // This is not safe in general for floating point:
1055         // consider X== -0, Y== +0.
1056         // It becomes safe if either operand is a nonzero constant.
1057         ConstantFP *CFPt, *CFPf;
1058         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
1059               !CFPt->getValueAPF().isZero()) ||
1060             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
1061              !CFPf->getValueAPF().isZero()))
1062           return replaceInstUsesWith(SI, TrueVal);
1063       }
1064
1065       // Canonicalize to use ordered comparisons by swapping the select
1066       // operands.
1067       //
1068       // e.g.
1069       // (X ugt Y) ? X : Y -> (X ole Y) ? X : Y
1070       if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
1071         FCmpInst::Predicate InvPred = FCI->getInversePredicate();
1072         IRBuilder<>::FastMathFlagGuard FMFG(*Builder);
1073         Builder->setFastMathFlags(FCI->getFastMathFlags());
1074         Value *NewCond = Builder->CreateFCmp(InvPred, FalseVal, TrueVal,
1075                                              FCI->getName() + ".inv");
1076
1077         return SelectInst::Create(NewCond, FalseVal, TrueVal,
1078                                   SI.getName() + ".p");
1079       }
1080
1081       // NOTE: if we wanted to, this is where to detect MIN/MAX
1082     }
1083     // NOTE: if we wanted to, this is where to detect ABS
1084   }
1085
1086   // See if we are selecting two values based on a comparison of the two values.
1087   if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
1088     if (Instruction *Result = visitSelectInstWithICmp(SI, ICI))
1089       return Result;
1090
1091   if (Instruction *Add = foldAddSubSelect(SI, *Builder))
1092     return Add;
1093
1094   // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
1095   auto *TI = dyn_cast<Instruction>(TrueVal);
1096   auto *FI = dyn_cast<Instruction>(FalseVal);
1097   if (TI && FI && TI->getOpcode() == FI->getOpcode())
1098     if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
1099       return IV;
1100
1101   // See if we can fold the select into one of our operands.
1102   if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) {
1103     if (Instruction *FoldI = FoldSelectIntoOp(SI, TrueVal, FalseVal))
1104       return FoldI;
1105
1106     Value *LHS, *RHS, *LHS2, *RHS2;
1107     Instruction::CastOps CastOp;
1108     SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp);
1109     auto SPF = SPR.Flavor;
1110
1111     if (SelectPatternResult::isMinOrMax(SPF)) {
1112       // Canonicalize so that type casts are outside select patterns.
1113       if (LHS->getType()->getPrimitiveSizeInBits() !=
1114           SelType->getPrimitiveSizeInBits()) {
1115         CmpInst::Predicate Pred = getCmpPredicateForMinMax(SPF, SPR.Ordered);
1116
1117         Value *Cmp;
1118         if (CmpInst::isIntPredicate(Pred)) {
1119           Cmp = Builder->CreateICmp(Pred, LHS, RHS);
1120         } else {
1121           IRBuilder<>::FastMathFlagGuard FMFG(*Builder);
1122           auto FMF = cast<FPMathOperator>(SI.getCondition())->getFastMathFlags();
1123           Builder->setFastMathFlags(FMF);
1124           Cmp = Builder->CreateFCmp(Pred, LHS, RHS);
1125         }
1126
1127         Value *NewSI = Builder->CreateCast(CastOp,
1128                                            Builder->CreateSelect(Cmp, LHS, RHS),
1129                                            SelType);
1130         return replaceInstUsesWith(SI, NewSI);
1131       }
1132     }
1133
1134     if (SPF) {
1135       // MAX(MAX(a, b), a) -> MAX(a, b)
1136       // MIN(MIN(a, b), a) -> MIN(a, b)
1137       // MAX(MIN(a, b), a) -> a
1138       // MIN(MAX(a, b), a) -> a
1139       // ABS(ABS(a)) -> ABS(a)
1140       // NABS(NABS(a)) -> NABS(a)
1141       if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor)
1142         if (Instruction *R = FoldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2,
1143                                           SI, SPF, RHS))
1144           return R;
1145       if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor)
1146         if (Instruction *R = FoldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2,
1147                                           SI, SPF, LHS))
1148           return R;
1149     }
1150
1151     // MAX(~a, ~b) -> ~MIN(a, b)
1152     if (SPF == SPF_SMAX || SPF == SPF_UMAX) {
1153       if (IsFreeToInvert(LHS, LHS->hasNUses(2)) &&
1154           IsFreeToInvert(RHS, RHS->hasNUses(2))) {
1155
1156         // This transform adds a xor operation and that extra cost needs to be
1157         // justified.  We look for simplifications that will result from
1158         // applying this rule:
1159
1160         bool Profitable =
1161             (LHS->hasNUses(2) && match(LHS, m_Not(m_Value()))) ||
1162             (RHS->hasNUses(2) && match(RHS, m_Not(m_Value()))) ||
1163             (SI.hasOneUse() && match(*SI.user_begin(), m_Not(m_Value())));
1164
1165         if (Profitable) {
1166           Value *NewLHS = Builder->CreateNot(LHS);
1167           Value *NewRHS = Builder->CreateNot(RHS);
1168           Value *NewCmp = SPF == SPF_SMAX
1169                               ? Builder->CreateICmpSLT(NewLHS, NewRHS)
1170                               : Builder->CreateICmpULT(NewLHS, NewRHS);
1171           Value *NewSI =
1172               Builder->CreateNot(Builder->CreateSelect(NewCmp, NewLHS, NewRHS));
1173           return replaceInstUsesWith(SI, NewSI);
1174         }
1175       }
1176     }
1177
1178     // TODO.
1179     // ABS(-X) -> ABS(X)
1180   }
1181
1182   // See if we can fold the select into a phi node if the condition is a select.
1183   if (isa<PHINode>(SI.getCondition()))
1184     // The true/false values have to be live in the PHI predecessor's blocks.
1185     if (CanSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
1186         CanSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
1187       if (Instruction *NV = FoldOpIntoPhi(SI))
1188         return NV;
1189
1190   if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
1191     if (TrueSI->getCondition()->getType() == CondVal->getType()) {
1192       // select(C, select(C, a, b), c) -> select(C, a, c)
1193       if (TrueSI->getCondition() == CondVal) {
1194         if (SI.getTrueValue() == TrueSI->getTrueValue())
1195           return nullptr;
1196         SI.setOperand(1, TrueSI->getTrueValue());
1197         return &SI;
1198       }
1199       // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
1200       // We choose this as normal form to enable folding on the And and shortening
1201       // paths for the values (this helps GetUnderlyingObjects() for example).
1202       if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
1203         Value *And = Builder->CreateAnd(CondVal, TrueSI->getCondition());
1204         SI.setOperand(0, And);
1205         SI.setOperand(1, TrueSI->getTrueValue());
1206         return &SI;
1207       }
1208     }
1209   }
1210   if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
1211     if (FalseSI->getCondition()->getType() == CondVal->getType()) {
1212       // select(C, a, select(C, b, c)) -> select(C, a, c)
1213       if (FalseSI->getCondition() == CondVal) {
1214         if (SI.getFalseValue() == FalseSI->getFalseValue())
1215           return nullptr;
1216         SI.setOperand(2, FalseSI->getFalseValue());
1217         return &SI;
1218       }
1219       // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
1220       if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
1221         Value *Or = Builder->CreateOr(CondVal, FalseSI->getCondition());
1222         SI.setOperand(0, Or);
1223         SI.setOperand(2, FalseSI->getFalseValue());
1224         return &SI;
1225       }
1226     }
1227   }
1228
1229   if (BinaryOperator::isNot(CondVal)) {
1230     SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
1231     SI.setOperand(1, FalseVal);
1232     SI.setOperand(2, TrueVal);
1233     return &SI;
1234   }
1235
1236   if (VectorType* VecTy = dyn_cast<VectorType>(SelType)) {
1237     unsigned VWidth = VecTy->getNumElements();
1238     APInt UndefElts(VWidth, 0);
1239     APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1240     if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) {
1241       if (V != &SI)
1242         return replaceInstUsesWith(SI, V);
1243       return &SI;
1244     }
1245
1246     if (isa<ConstantAggregateZero>(CondVal)) {
1247       return replaceInstUsesWith(SI, FalseVal);
1248     }
1249   }
1250
1251   // See if we can determine the result of this select based on a dominating
1252   // condition.
1253   BasicBlock *Parent = SI.getParent();
1254   if (BasicBlock *Dom = Parent->getSinglePredecessor()) {
1255     auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator());
1256     if (PBI && PBI->isConditional() &&
1257         PBI->getSuccessor(0) != PBI->getSuccessor(1) &&
1258         (PBI->getSuccessor(0) == Parent || PBI->getSuccessor(1) == Parent)) {
1259       bool CondIsFalse = PBI->getSuccessor(1) == Parent;
1260       Optional<bool> Implication = isImpliedCondition(
1261         PBI->getCondition(), SI.getCondition(), DL, CondIsFalse);
1262       if (Implication) {
1263         Value *V = *Implication ? TrueVal : FalseVal;
1264         return replaceInstUsesWith(SI, V);
1265       }
1266     }
1267   }
1268
1269   return nullptr;
1270 }