]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp
Merge ^/head r313301 through r313643.
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / InstCombine / InstCombineSelect.cpp
1 //===- InstCombineSelect.cpp ----------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visitSelect function.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombineInternal.h"
15 #include "llvm/Analysis/ConstantFolding.h"
16 #include "llvm/Analysis/InstructionSimplify.h"
17 #include "llvm/Analysis/ValueTracking.h"
18 #include "llvm/IR/MDBuilder.h"
19 #include "llvm/IR/PatternMatch.h"
20 using namespace llvm;
21 using namespace PatternMatch;
22
23 #define DEBUG_TYPE "instcombine"
24
25 static SelectPatternFlavor
26 getInverseMinMaxSelectPattern(SelectPatternFlavor SPF) {
27   switch (SPF) {
28   default:
29     llvm_unreachable("unhandled!");
30
31   case SPF_SMIN:
32     return SPF_SMAX;
33   case SPF_UMIN:
34     return SPF_UMAX;
35   case SPF_SMAX:
36     return SPF_SMIN;
37   case SPF_UMAX:
38     return SPF_UMIN;
39   }
40 }
41
42 static CmpInst::Predicate getCmpPredicateForMinMax(SelectPatternFlavor SPF,
43                                                    bool Ordered=false) {
44   switch (SPF) {
45   default:
46     llvm_unreachable("unhandled!");
47
48   case SPF_SMIN:
49     return ICmpInst::ICMP_SLT;
50   case SPF_UMIN:
51     return ICmpInst::ICMP_ULT;
52   case SPF_SMAX:
53     return ICmpInst::ICMP_SGT;
54   case SPF_UMAX:
55     return ICmpInst::ICMP_UGT;
56   case SPF_FMINNUM:
57     return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
58   case SPF_FMAXNUM:
59     return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
60   }
61 }
62
63 static Value *generateMinMaxSelectPattern(InstCombiner::BuilderTy *Builder,
64                                           SelectPatternFlavor SPF, Value *A,
65                                           Value *B) {
66   CmpInst::Predicate Pred = getCmpPredicateForMinMax(SPF);
67   assert(CmpInst::isIntPredicate(Pred));
68   return Builder->CreateSelect(Builder->CreateICmp(Pred, A, B), A, B);
69 }
70
71 /// We want to turn code that looks like this:
72 ///   %C = or %A, %B
73 ///   %D = select %cond, %C, %A
74 /// into:
75 ///   %C = select %cond, %B, 0
76 ///   %D = or %A, %C
77 ///
78 /// Assuming that the specified instruction is an operand to the select, return
79 /// a bitmask indicating which operands of this instruction are foldable if they
80 /// equal the other incoming value of the select.
81 ///
82 static unsigned getSelectFoldableOperands(Instruction *I) {
83   switch (I->getOpcode()) {
84   case Instruction::Add:
85   case Instruction::Mul:
86   case Instruction::And:
87   case Instruction::Or:
88   case Instruction::Xor:
89     return 3;              // Can fold through either operand.
90   case Instruction::Sub:   // Can only fold on the amount subtracted.
91   case Instruction::Shl:   // Can only fold on the shift amount.
92   case Instruction::LShr:
93   case Instruction::AShr:
94     return 1;
95   default:
96     return 0;              // Cannot fold
97   }
98 }
99
100 /// For the same transformation as the previous function, return the identity
101 /// constant that goes into the select.
102 static Constant *getSelectFoldableConstant(Instruction *I) {
103   switch (I->getOpcode()) {
104   default: llvm_unreachable("This cannot happen!");
105   case Instruction::Add:
106   case Instruction::Sub:
107   case Instruction::Or:
108   case Instruction::Xor:
109   case Instruction::Shl:
110   case Instruction::LShr:
111   case Instruction::AShr:
112     return Constant::getNullValue(I->getType());
113   case Instruction::And:
114     return Constant::getAllOnesValue(I->getType());
115   case Instruction::Mul:
116     return ConstantInt::get(I->getType(), 1);
117   }
118 }
119
120 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode.
121 Instruction *InstCombiner::foldSelectOpOp(SelectInst &SI, Instruction *TI,
122                                           Instruction *FI) {
123   // If this is a cast from the same type, merge.
124   if (TI->getNumOperands() == 1 && TI->isCast()) {
125     Type *FIOpndTy = FI->getOperand(0)->getType();
126     if (TI->getOperand(0)->getType() != FIOpndTy)
127       return nullptr;
128
129     // The select condition may be a vector. We may only change the operand
130     // type if the vector width remains the same (and matches the condition).
131     Type *CondTy = SI.getCondition()->getType();
132     if (CondTy->isVectorTy()) {
133       if (!FIOpndTy->isVectorTy())
134         return nullptr;
135       if (CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements())
136         return nullptr;
137
138       // TODO: If the backend knew how to deal with casts better, we could
139       // remove this limitation. For now, there's too much potential to create
140       // worse codegen by promoting the select ahead of size-altering casts
141       // (PR28160).
142       //
143       // Note that ValueTracking's matchSelectPattern() looks through casts
144       // without checking 'hasOneUse' when it matches min/max patterns, so this
145       // transform may end up happening anyway.
146       if (TI->getOpcode() != Instruction::BitCast &&
147           (!TI->hasOneUse() || !FI->hasOneUse()))
148         return nullptr;
149
150     } else if (!TI->hasOneUse() || !FI->hasOneUse()) {
151       // TODO: The one-use restrictions for a scalar select could be eased if
152       // the fold of a select in visitLoadInst() was enhanced to match a pattern
153       // that includes a cast.
154       return nullptr;
155     }
156
157     // Fold this by inserting a select from the input values.
158     Value *NewSI =
159         Builder->CreateSelect(SI.getCondition(), TI->getOperand(0),
160                               FI->getOperand(0), SI.getName() + ".v", &SI);
161     return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
162                             TI->getType());
163   }
164
165   // Only handle binary operators with one-use here. As with the cast case
166   // above, it may be possible to relax the one-use constraint, but that needs
167   // be examined carefully since it may not reduce the total number of
168   // instructions.
169   BinaryOperator *BO = dyn_cast<BinaryOperator>(TI);
170   if (!BO || !TI->hasOneUse() || !FI->hasOneUse())
171     return nullptr;
172
173   // Figure out if the operations have any operands in common.
174   Value *MatchOp, *OtherOpT, *OtherOpF;
175   bool MatchIsOpZero;
176   if (TI->getOperand(0) == FI->getOperand(0)) {
177     MatchOp  = TI->getOperand(0);
178     OtherOpT = TI->getOperand(1);
179     OtherOpF = FI->getOperand(1);
180     MatchIsOpZero = true;
181   } else if (TI->getOperand(1) == FI->getOperand(1)) {
182     MatchOp  = TI->getOperand(1);
183     OtherOpT = TI->getOperand(0);
184     OtherOpF = FI->getOperand(0);
185     MatchIsOpZero = false;
186   } else if (!TI->isCommutative()) {
187     return nullptr;
188   } else if (TI->getOperand(0) == FI->getOperand(1)) {
189     MatchOp  = TI->getOperand(0);
190     OtherOpT = TI->getOperand(1);
191     OtherOpF = FI->getOperand(0);
192     MatchIsOpZero = true;
193   } else if (TI->getOperand(1) == FI->getOperand(0)) {
194     MatchOp  = TI->getOperand(1);
195     OtherOpT = TI->getOperand(0);
196     OtherOpF = FI->getOperand(1);
197     MatchIsOpZero = true;
198   } else {
199     return nullptr;
200   }
201
202   // If we reach here, they do have operations in common.
203   Value *NewSI = Builder->CreateSelect(SI.getCondition(), OtherOpT, OtherOpF,
204                                        SI.getName() + ".v", &SI);
205   Value *Op0 = MatchIsOpZero ? MatchOp : NewSI;
206   Value *Op1 = MatchIsOpZero ? NewSI : MatchOp;
207   return BinaryOperator::Create(BO->getOpcode(), Op0, Op1);
208 }
209
210 static bool isSelect01(Constant *C1, Constant *C2) {
211   ConstantInt *C1I = dyn_cast<ConstantInt>(C1);
212   if (!C1I)
213     return false;
214   ConstantInt *C2I = dyn_cast<ConstantInt>(C2);
215   if (!C2I)
216     return false;
217   if (!C1I->isZero() && !C2I->isZero()) // One side must be zero.
218     return false;
219   return C1I->isOne() || C1I->isAllOnesValue() ||
220          C2I->isOne() || C2I->isAllOnesValue();
221 }
222
223 /// Try to fold the select into one of the operands to allow further
224 /// optimization.
225 Instruction *InstCombiner::foldSelectIntoOp(SelectInst &SI, Value *TrueVal,
226                                             Value *FalseVal) {
227   // See the comment above GetSelectFoldableOperands for a description of the
228   // transformation we are doing here.
229   if (Instruction *TVI = dyn_cast<Instruction>(TrueVal)) {
230     if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
231         !isa<Constant>(FalseVal)) {
232       if (unsigned SFO = getSelectFoldableOperands(TVI)) {
233         unsigned OpToFold = 0;
234         if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
235           OpToFold = 1;
236         } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
237           OpToFold = 2;
238         }
239
240         if (OpToFold) {
241           Constant *C = getSelectFoldableConstant(TVI);
242           Value *OOp = TVI->getOperand(2-OpToFold);
243           // Avoid creating select between 2 constants unless it's selecting
244           // between 0, 1 and -1.
245           if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
246             Value *NewSel = Builder->CreateSelect(SI.getCondition(), OOp, C);
247             NewSel->takeName(TVI);
248             BinaryOperator *TVI_BO = cast<BinaryOperator>(TVI);
249             BinaryOperator *BO = BinaryOperator::Create(TVI_BO->getOpcode(),
250                                                         FalseVal, NewSel);
251             BO->copyIRFlags(TVI_BO);
252             return BO;
253           }
254         }
255       }
256     }
257   }
258
259   if (Instruction *FVI = dyn_cast<Instruction>(FalseVal)) {
260     if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
261         !isa<Constant>(TrueVal)) {
262       if (unsigned SFO = getSelectFoldableOperands(FVI)) {
263         unsigned OpToFold = 0;
264         if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
265           OpToFold = 1;
266         } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
267           OpToFold = 2;
268         }
269
270         if (OpToFold) {
271           Constant *C = getSelectFoldableConstant(FVI);
272           Value *OOp = FVI->getOperand(2-OpToFold);
273           // Avoid creating select between 2 constants unless it's selecting
274           // between 0, 1 and -1.
275           if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
276             Value *NewSel = Builder->CreateSelect(SI.getCondition(), C, OOp);
277             NewSel->takeName(FVI);
278             BinaryOperator *FVI_BO = cast<BinaryOperator>(FVI);
279             BinaryOperator *BO = BinaryOperator::Create(FVI_BO->getOpcode(),
280                                                         TrueVal, NewSel);
281             BO->copyIRFlags(FVI_BO);
282             return BO;
283           }
284         }
285       }
286     }
287   }
288
289   return nullptr;
290 }
291
292 /// We want to turn:
293 ///   (select (icmp eq (and X, C1), 0), Y, (or Y, C2))
294 /// into:
295 ///   (or (shl (and X, C1), C3), y)
296 /// iff:
297 ///   C1 and C2 are both powers of 2
298 /// where:
299 ///   C3 = Log(C2) - Log(C1)
300 ///
301 /// This transform handles cases where:
302 /// 1. The icmp predicate is inverted
303 /// 2. The select operands are reversed
304 /// 3. The magnitude of C2 and C1 are flipped
305 static Value *foldSelectICmpAndOr(const SelectInst &SI, Value *TrueVal,
306                                   Value *FalseVal,
307                                   InstCombiner::BuilderTy *Builder) {
308   const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition());
309   if (!IC || !IC->isEquality() || !SI.getType()->isIntegerTy())
310     return nullptr;
311
312   Value *CmpLHS = IC->getOperand(0);
313   Value *CmpRHS = IC->getOperand(1);
314
315   if (!match(CmpRHS, m_Zero()))
316     return nullptr;
317
318   Value *X;
319   const APInt *C1;
320   if (!match(CmpLHS, m_And(m_Value(X), m_Power2(C1))))
321     return nullptr;
322
323   const APInt *C2;
324   bool OrOnTrueVal = false;
325   bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2)));
326   if (!OrOnFalseVal)
327     OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2)));
328
329   if (!OrOnFalseVal && !OrOnTrueVal)
330     return nullptr;
331
332   Value *V = CmpLHS;
333   Value *Y = OrOnFalseVal ? TrueVal : FalseVal;
334
335   unsigned C1Log = C1->logBase2();
336   unsigned C2Log = C2->logBase2();
337   if (C2Log > C1Log) {
338     V = Builder->CreateZExtOrTrunc(V, Y->getType());
339     V = Builder->CreateShl(V, C2Log - C1Log);
340   } else if (C1Log > C2Log) {
341     V = Builder->CreateLShr(V, C1Log - C2Log);
342     V = Builder->CreateZExtOrTrunc(V, Y->getType());
343   } else
344     V = Builder->CreateZExtOrTrunc(V, Y->getType());
345
346   ICmpInst::Predicate Pred = IC->getPredicate();
347   if ((Pred == ICmpInst::ICMP_NE && OrOnFalseVal) ||
348       (Pred == ICmpInst::ICMP_EQ && OrOnTrueVal))
349     V = Builder->CreateXor(V, *C2);
350
351   return Builder->CreateOr(V, Y);
352 }
353
354 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
355 /// call to cttz/ctlz with flag 'is_zero_undef' cleared.
356 ///
357 /// For example, we can fold the following code sequence:
358 /// \code
359 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
360 ///   %1 = icmp ne i32 %x, 0
361 ///   %2 = select i1 %1, i32 %0, i32 32
362 /// \code
363 ///
364 /// into:
365 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
366 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal,
367                                   InstCombiner::BuilderTy *Builder) {
368   ICmpInst::Predicate Pred = ICI->getPredicate();
369   Value *CmpLHS = ICI->getOperand(0);
370   Value *CmpRHS = ICI->getOperand(1);
371
372   // Check if the condition value compares a value for equality against zero.
373   if (!ICI->isEquality() || !match(CmpRHS, m_Zero()))
374     return nullptr;
375
376   Value *Count = FalseVal;
377   Value *ValueOnZero = TrueVal;
378   if (Pred == ICmpInst::ICMP_NE)
379     std::swap(Count, ValueOnZero);
380
381   // Skip zero extend/truncate.
382   Value *V = nullptr;
383   if (match(Count, m_ZExt(m_Value(V))) ||
384       match(Count, m_Trunc(m_Value(V))))
385     Count = V;
386
387   // Check if the value propagated on zero is a constant number equal to the
388   // sizeof in bits of 'Count'.
389   unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits();
390   if (!match(ValueOnZero, m_SpecificInt(SizeOfInBits)))
391     return nullptr;
392
393   // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
394   // input to the cttz/ctlz is used as LHS for the compare instruction.
395   if (match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) ||
396       match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS)))) {
397     IntrinsicInst *II = cast<IntrinsicInst>(Count);
398     IRBuilder<> Builder(II);
399     // Explicitly clear the 'undef_on_zero' flag.
400     IntrinsicInst *NewI = cast<IntrinsicInst>(II->clone());
401     Type *Ty = NewI->getArgOperand(1)->getType();
402     NewI->setArgOperand(1, Constant::getNullValue(Ty));
403     Builder.Insert(NewI);
404     return Builder.CreateZExtOrTrunc(NewI, ValueOnZero->getType());
405   }
406
407   return nullptr;
408 }
409
410 /// Return true if we find and adjust an icmp+select pattern where the compare
411 /// is with a constant that can be incremented or decremented to match the
412 /// minimum or maximum idiom.
413 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) {
414   ICmpInst::Predicate Pred = Cmp.getPredicate();
415   Value *CmpLHS = Cmp.getOperand(0);
416   Value *CmpRHS = Cmp.getOperand(1);
417   Value *TrueVal = Sel.getTrueValue();
418   Value *FalseVal = Sel.getFalseValue();
419
420   // We may move or edit the compare, so make sure the select is the only user.
421   const APInt *CmpC;
422   if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC)))
423     return false;
424
425   // These transforms only work for selects of integers or vector selects of
426   // integer vectors.
427   Type *SelTy = Sel.getType();
428   auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType());
429   if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy())
430     return false;
431
432   Constant *AdjustedRHS;
433   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
434     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1);
435   else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
436     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1);
437   else
438     return false;
439
440   // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
441   // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
442   if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
443       (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
444     ; // Nothing to do here. Values match without any sign/zero extension.
445   }
446   // Types do not match. Instead of calculating this with mixed types, promote
447   // all to the larger type. This enables scalar evolution to analyze this
448   // expression.
449   else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) {
450     Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy);
451
452     // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
453     // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
454     // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
455     // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
456     if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) {
457       CmpLHS = TrueVal;
458       AdjustedRHS = SextRHS;
459     } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
460                SextRHS == TrueVal) {
461       CmpLHS = FalseVal;
462       AdjustedRHS = SextRHS;
463     } else if (Cmp.isUnsigned()) {
464       Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy);
465       // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
466       // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
467       // zext + signed compare cannot be changed:
468       //    0xff <s 0x00, but 0x00ff >s 0x0000
469       if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) {
470         CmpLHS = TrueVal;
471         AdjustedRHS = ZextRHS;
472       } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
473                  ZextRHS == TrueVal) {
474         CmpLHS = FalseVal;
475         AdjustedRHS = ZextRHS;
476       } else {
477         return false;
478       }
479     } else {
480       return false;
481     }
482   } else {
483     return false;
484   }
485
486   Pred = ICmpInst::getSwappedPredicate(Pred);
487   CmpRHS = AdjustedRHS;
488   std::swap(FalseVal, TrueVal);
489   Cmp.setPredicate(Pred);
490   Cmp.setOperand(0, CmpLHS);
491   Cmp.setOperand(1, CmpRHS);
492   Sel.setOperand(1, TrueVal);
493   Sel.setOperand(2, FalseVal);
494   Sel.swapProfMetadata();
495
496   // Move the compare instruction right before the select instruction. Otherwise
497   // the sext/zext value may be defined after the compare instruction uses it.
498   Cmp.moveBefore(&Sel);
499
500   return true;
501 }
502
503 /// If this is an integer min/max where the select's 'true' operand is a
504 /// constant, canonicalize that constant to the 'false' operand:
505 /// select (icmp Pred X, C), C, X --> select (icmp Pred' X, C), X, C
506 static Instruction *
507 canonicalizeMinMaxWithConstant(SelectInst &Sel, ICmpInst &Cmp,
508                                InstCombiner::BuilderTy &Builder) {
509   // TODO: We should also canonicalize min/max when the select has a different
510   // constant value than the cmp constant, but we need to fix the backend first.
511   if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)) ||
512       !isa<Constant>(Sel.getTrueValue()) ||
513       isa<Constant>(Sel.getFalseValue()) ||
514       Cmp.getOperand(1) != Sel.getTrueValue())
515     return nullptr;
516
517   // Canonicalize the compare predicate based on whether we have min or max.
518   Value *LHS, *RHS;
519   ICmpInst::Predicate NewPred;
520   SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS);
521   switch (SPR.Flavor) {
522   case SPF_SMIN: NewPred = ICmpInst::ICMP_SLT; break;
523   case SPF_UMIN: NewPred = ICmpInst::ICMP_ULT; break;
524   case SPF_SMAX: NewPred = ICmpInst::ICMP_SGT; break;
525   case SPF_UMAX: NewPred = ICmpInst::ICMP_UGT; break;
526   default: return nullptr;
527   }
528
529   // Canonicalize the constant to the right side.
530   if (isa<Constant>(LHS))
531     std::swap(LHS, RHS);
532
533   Value *NewCmp = Builder.CreateICmp(NewPred, LHS, RHS);
534   SelectInst *NewSel = SelectInst::Create(NewCmp, LHS, RHS, "", nullptr, &Sel);
535
536   // We swapped the select operands, so swap the metadata too.
537   NewSel->swapProfMetadata();
538   return NewSel;
539 }
540
541 /// Visit a SelectInst that has an ICmpInst as its first operand.
542 Instruction *InstCombiner::foldSelectInstWithICmp(SelectInst &SI,
543                                                   ICmpInst *ICI) {
544   if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, *Builder))
545     return NewSel;
546
547   bool Changed = adjustMinMax(SI, *ICI);
548
549   ICmpInst::Predicate Pred = ICI->getPredicate();
550   Value *CmpLHS = ICI->getOperand(0);
551   Value *CmpRHS = ICI->getOperand(1);
552   Value *TrueVal = SI.getTrueValue();
553   Value *FalseVal = SI.getFalseValue();
554
555   // Transform (X >s -1) ? C1 : C2 --> ((X >>s 31) & (C2 - C1)) + C1
556   // and       (X <s  0) ? C2 : C1 --> ((X >>s 31) & (C2 - C1)) + C1
557   // FIXME: Type and constness constraints could be lifted, but we have to
558   //        watch code size carefully. We should consider xor instead of
559   //        sub/add when we decide to do that.
560   if (IntegerType *Ty = dyn_cast<IntegerType>(CmpLHS->getType())) {
561     if (TrueVal->getType() == Ty) {
562       if (ConstantInt *Cmp = dyn_cast<ConstantInt>(CmpRHS)) {
563         ConstantInt *C1 = nullptr, *C2 = nullptr;
564         if (Pred == ICmpInst::ICMP_SGT && Cmp->isAllOnesValue()) {
565           C1 = dyn_cast<ConstantInt>(TrueVal);
566           C2 = dyn_cast<ConstantInt>(FalseVal);
567         } else if (Pred == ICmpInst::ICMP_SLT && Cmp->isNullValue()) {
568           C1 = dyn_cast<ConstantInt>(FalseVal);
569           C2 = dyn_cast<ConstantInt>(TrueVal);
570         }
571         if (C1 && C2) {
572           // This shift results in either -1 or 0.
573           Value *AShr = Builder->CreateAShr(CmpLHS, Ty->getBitWidth()-1);
574
575           // Check if we can express the operation with a single or.
576           if (C2->isAllOnesValue())
577             return replaceInstUsesWith(SI, Builder->CreateOr(AShr, C1));
578
579           Value *And = Builder->CreateAnd(AShr, C2->getValue()-C1->getValue());
580           return replaceInstUsesWith(SI, Builder->CreateAdd(And, C1));
581         }
582       }
583     }
584   }
585
586   // NOTE: if we wanted to, this is where to detect integer MIN/MAX
587
588   if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
589     if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
590       // Transform (X == C) ? X : Y -> (X == C) ? C : Y
591       SI.setOperand(1, CmpRHS);
592       Changed = true;
593     } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
594       // Transform (X != C) ? Y : X -> (X != C) ? Y : C
595       SI.setOperand(2, CmpRHS);
596       Changed = true;
597     }
598   }
599
600   // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring
601   // decomposeBitTestICmp() might help.
602   {
603     unsigned BitWidth =
604         DL.getTypeSizeInBits(TrueVal->getType()->getScalarType());
605     APInt MinSignedValue = APInt::getSignBit(BitWidth);
606     Value *X;
607     const APInt *Y, *C;
608     bool TrueWhenUnset;
609     bool IsBitTest = false;
610     if (ICmpInst::isEquality(Pred) &&
611         match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) &&
612         match(CmpRHS, m_Zero())) {
613       IsBitTest = true;
614       TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
615     } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
616       X = CmpLHS;
617       Y = &MinSignedValue;
618       IsBitTest = true;
619       TrueWhenUnset = false;
620     } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
621       X = CmpLHS;
622       Y = &MinSignedValue;
623       IsBitTest = true;
624       TrueWhenUnset = true;
625     }
626     if (IsBitTest) {
627       Value *V = nullptr;
628       // (X & Y) == 0 ? X : X ^ Y  --> X & ~Y
629       if (TrueWhenUnset && TrueVal == X &&
630           match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
631         V = Builder->CreateAnd(X, ~(*Y));
632       // (X & Y) != 0 ? X ^ Y : X  --> X & ~Y
633       else if (!TrueWhenUnset && FalseVal == X &&
634                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
635         V = Builder->CreateAnd(X, ~(*Y));
636       // (X & Y) == 0 ? X ^ Y : X  --> X | Y
637       else if (TrueWhenUnset && FalseVal == X &&
638                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
639         V = Builder->CreateOr(X, *Y);
640       // (X & Y) != 0 ? X : X ^ Y  --> X | Y
641       else if (!TrueWhenUnset && TrueVal == X &&
642                match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
643         V = Builder->CreateOr(X, *Y);
644
645       if (V)
646         return replaceInstUsesWith(SI, V);
647     }
648   }
649
650   if (Value *V = foldSelectICmpAndOr(SI, TrueVal, FalseVal, Builder))
651     return replaceInstUsesWith(SI, V);
652
653   if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder))
654     return replaceInstUsesWith(SI, V);
655
656   return Changed ? &SI : nullptr;
657 }
658
659
660 /// SI is a select whose condition is a PHI node (but the two may be in
661 /// different blocks). See if the true/false values (V) are live in all of the
662 /// predecessor blocks of the PHI. For example, cases like this can't be mapped:
663 ///
664 ///   X = phi [ C1, BB1], [C2, BB2]
665 ///   Y = add
666 ///   Z = select X, Y, 0
667 ///
668 /// because Y is not live in BB1/BB2.
669 ///
670 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V,
671                                                    const SelectInst &SI) {
672   // If the value is a non-instruction value like a constant or argument, it
673   // can always be mapped.
674   const Instruction *I = dyn_cast<Instruction>(V);
675   if (!I) return true;
676
677   // If V is a PHI node defined in the same block as the condition PHI, we can
678   // map the arguments.
679   const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
680
681   if (const PHINode *VP = dyn_cast<PHINode>(I))
682     if (VP->getParent() == CondPHI->getParent())
683       return true;
684
685   // Otherwise, if the PHI and select are defined in the same block and if V is
686   // defined in a different block, then we can transform it.
687   if (SI.getParent() == CondPHI->getParent() &&
688       I->getParent() != CondPHI->getParent())
689     return true;
690
691   // Otherwise we have a 'hard' case and we can't tell without doing more
692   // detailed dominator based analysis, punt.
693   return false;
694 }
695
696 /// We have an SPF (e.g. a min or max) of an SPF of the form:
697 ///   SPF2(SPF1(A, B), C)
698 Instruction *InstCombiner::foldSPFofSPF(Instruction *Inner,
699                                         SelectPatternFlavor SPF1,
700                                         Value *A, Value *B,
701                                         Instruction &Outer,
702                                         SelectPatternFlavor SPF2, Value *C) {
703   if (Outer.getType() != Inner->getType())
704     return nullptr;
705
706   if (C == A || C == B) {
707     // MAX(MAX(A, B), B) -> MAX(A, B)
708     // MIN(MIN(a, b), a) -> MIN(a, b)
709     if (SPF1 == SPF2)
710       return replaceInstUsesWith(Outer, Inner);
711
712     // MAX(MIN(a, b), a) -> a
713     // MIN(MAX(a, b), a) -> a
714     if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
715         (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
716         (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
717         (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
718       return replaceInstUsesWith(Outer, C);
719   }
720
721   if (SPF1 == SPF2) {
722     const APInt *CB, *CC;
723     if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) {
724       // MIN(MIN(A, 23), 97) -> MIN(A, 23)
725       // MAX(MAX(A, 97), 23) -> MAX(A, 97)
726       if ((SPF1 == SPF_UMIN && CB->ule(*CC)) ||
727           (SPF1 == SPF_SMIN && CB->sle(*CC)) ||
728           (SPF1 == SPF_UMAX && CB->uge(*CC)) ||
729           (SPF1 == SPF_SMAX && CB->sge(*CC)))
730         return replaceInstUsesWith(Outer, Inner);
731
732       // MIN(MIN(A, 97), 23) -> MIN(A, 23)
733       // MAX(MAX(A, 23), 97) -> MAX(A, 97)
734       if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) ||
735           (SPF1 == SPF_SMIN && CB->sgt(*CC)) ||
736           (SPF1 == SPF_UMAX && CB->ult(*CC)) ||
737           (SPF1 == SPF_SMAX && CB->slt(*CC))) {
738         Outer.replaceUsesOfWith(Inner, A);
739         return &Outer;
740       }
741     }
742   }
743
744   // ABS(ABS(X)) -> ABS(X)
745   // NABS(NABS(X)) -> NABS(X)
746   if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) {
747     return replaceInstUsesWith(Outer, Inner);
748   }
749
750   // ABS(NABS(X)) -> ABS(X)
751   // NABS(ABS(X)) -> NABS(X)
752   if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) ||
753       (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) {
754     SelectInst *SI = cast<SelectInst>(Inner);
755     Value *NewSI =
756         Builder->CreateSelect(SI->getCondition(), SI->getFalseValue(),
757                               SI->getTrueValue(), SI->getName(), SI);
758     return replaceInstUsesWith(Outer, NewSI);
759   }
760
761   auto IsFreeOrProfitableToInvert =
762       [&](Value *V, Value *&NotV, bool &ElidesXor) {
763     if (match(V, m_Not(m_Value(NotV)))) {
764       // If V has at most 2 uses then we can get rid of the xor operation
765       // entirely.
766       ElidesXor |= !V->hasNUsesOrMore(3);
767       return true;
768     }
769
770     if (IsFreeToInvert(V, !V->hasNUsesOrMore(3))) {
771       NotV = nullptr;
772       return true;
773     }
774
775     return false;
776   };
777
778   Value *NotA, *NotB, *NotC;
779   bool ElidesXor = false;
780
781   // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C)
782   // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C)
783   // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C)
784   // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C)
785   //
786   // This transform is performance neutral if we can elide at least one xor from
787   // the set of three operands, since we'll be tacking on an xor at the very
788   // end.
789   if (IsFreeOrProfitableToInvert(A, NotA, ElidesXor) &&
790       IsFreeOrProfitableToInvert(B, NotB, ElidesXor) &&
791       IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) {
792     if (!NotA)
793       NotA = Builder->CreateNot(A);
794     if (!NotB)
795       NotB = Builder->CreateNot(B);
796     if (!NotC)
797       NotC = Builder->CreateNot(C);
798
799     Value *NewInner = generateMinMaxSelectPattern(
800         Builder, getInverseMinMaxSelectPattern(SPF1), NotA, NotB);
801     Value *NewOuter = Builder->CreateNot(generateMinMaxSelectPattern(
802         Builder, getInverseMinMaxSelectPattern(SPF2), NewInner, NotC));
803     return replaceInstUsesWith(Outer, NewOuter);
804   }
805
806   return nullptr;
807 }
808
809 /// If one of the constants is zero (we know they can't both be) and we have an
810 /// icmp instruction with zero, and we have an 'and' with the non-constant value
811 /// and a power of two we can turn the select into a shift on the result of the
812 /// 'and'.
813 static Value *foldSelectICmpAnd(const SelectInst &SI, ConstantInt *TrueVal,
814                                 ConstantInt *FalseVal,
815                                 InstCombiner::BuilderTy *Builder) {
816   const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition());
817   if (!IC || !IC->isEquality() || !SI.getType()->isIntegerTy())
818     return nullptr;
819
820   if (!match(IC->getOperand(1), m_Zero()))
821     return nullptr;
822
823   ConstantInt *AndRHS;
824   Value *LHS = IC->getOperand(0);
825   if (!match(LHS, m_And(m_Value(), m_ConstantInt(AndRHS))))
826     return nullptr;
827
828   // If both select arms are non-zero see if we have a select of the form
829   // 'x ? 2^n + C : C'. Then we can offset both arms by C, use the logic
830   // for 'x ? 2^n : 0' and fix the thing up at the end.
831   ConstantInt *Offset = nullptr;
832   if (!TrueVal->isZero() && !FalseVal->isZero()) {
833     if ((TrueVal->getValue() - FalseVal->getValue()).isPowerOf2())
834       Offset = FalseVal;
835     else if ((FalseVal->getValue() - TrueVal->getValue()).isPowerOf2())
836       Offset = TrueVal;
837     else
838       return nullptr;
839
840     // Adjust TrueVal and FalseVal to the offset.
841     TrueVal = ConstantInt::get(Builder->getContext(),
842                                TrueVal->getValue() - Offset->getValue());
843     FalseVal = ConstantInt::get(Builder->getContext(),
844                                 FalseVal->getValue() - Offset->getValue());
845   }
846
847   // Make sure the mask in the 'and' and one of the select arms is a power of 2.
848   if (!AndRHS->getValue().isPowerOf2() ||
849       (!TrueVal->getValue().isPowerOf2() &&
850        !FalseVal->getValue().isPowerOf2()))
851     return nullptr;
852
853   // Determine which shift is needed to transform result of the 'and' into the
854   // desired result.
855   ConstantInt *ValC = !TrueVal->isZero() ? TrueVal : FalseVal;
856   unsigned ValZeros = ValC->getValue().logBase2();
857   unsigned AndZeros = AndRHS->getValue().logBase2();
858
859   // If types don't match we can still convert the select by introducing a zext
860   // or a trunc of the 'and'. The trunc case requires that all of the truncated
861   // bits are zero, we can figure that out by looking at the 'and' mask.
862   if (AndZeros >= ValC->getBitWidth())
863     return nullptr;
864
865   Value *V = Builder->CreateZExtOrTrunc(LHS, SI.getType());
866   if (ValZeros > AndZeros)
867     V = Builder->CreateShl(V, ValZeros - AndZeros);
868   else if (ValZeros < AndZeros)
869     V = Builder->CreateLShr(V, AndZeros - ValZeros);
870
871   // Okay, now we know that everything is set up, we just don't know whether we
872   // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
873   bool ShouldNotVal = !TrueVal->isZero();
874   ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
875   if (ShouldNotVal)
876     V = Builder->CreateXor(V, ValC);
877
878   // Apply an offset if needed.
879   if (Offset)
880     V = Builder->CreateAdd(V, Offset);
881   return V;
882 }
883
884 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))).
885 /// This is even legal for FP.
886 static Instruction *foldAddSubSelect(SelectInst &SI,
887                                      InstCombiner::BuilderTy &Builder) {
888   Value *CondVal = SI.getCondition();
889   Value *TrueVal = SI.getTrueValue();
890   Value *FalseVal = SI.getFalseValue();
891   auto *TI = dyn_cast<Instruction>(TrueVal);
892   auto *FI = dyn_cast<Instruction>(FalseVal);
893   if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
894     return nullptr;
895
896   Instruction *AddOp = nullptr, *SubOp = nullptr;
897   if ((TI->getOpcode() == Instruction::Sub &&
898        FI->getOpcode() == Instruction::Add) ||
899       (TI->getOpcode() == Instruction::FSub &&
900        FI->getOpcode() == Instruction::FAdd)) {
901     AddOp = FI;
902     SubOp = TI;
903   } else if ((FI->getOpcode() == Instruction::Sub &&
904               TI->getOpcode() == Instruction::Add) ||
905              (FI->getOpcode() == Instruction::FSub &&
906               TI->getOpcode() == Instruction::FAdd)) {
907     AddOp = TI;
908     SubOp = FI;
909   }
910
911   if (AddOp) {
912     Value *OtherAddOp = nullptr;
913     if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
914       OtherAddOp = AddOp->getOperand(1);
915     } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
916       OtherAddOp = AddOp->getOperand(0);
917     }
918
919     if (OtherAddOp) {
920       // So at this point we know we have (Y -> OtherAddOp):
921       //        select C, (add X, Y), (sub X, Z)
922       Value *NegVal; // Compute -Z
923       if (SI.getType()->isFPOrFPVectorTy()) {
924         NegVal = Builder.CreateFNeg(SubOp->getOperand(1));
925         if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
926           FastMathFlags Flags = AddOp->getFastMathFlags();
927           Flags &= SubOp->getFastMathFlags();
928           NegInst->setFastMathFlags(Flags);
929         }
930       } else {
931         NegVal = Builder.CreateNeg(SubOp->getOperand(1));
932       }
933
934       Value *NewTrueOp = OtherAddOp;
935       Value *NewFalseOp = NegVal;
936       if (AddOp != TI)
937         std::swap(NewTrueOp, NewFalseOp);
938       Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp,
939                                            SI.getName() + ".p", &SI);
940
941       if (SI.getType()->isFPOrFPVectorTy()) {
942         Instruction *RI =
943             BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
944
945         FastMathFlags Flags = AddOp->getFastMathFlags();
946         Flags &= SubOp->getFastMathFlags();
947         RI->setFastMathFlags(Flags);
948         return RI;
949       } else
950         return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
951     }
952   }
953   return nullptr;
954 }
955
956 Instruction *InstCombiner::foldSelectExtConst(SelectInst &Sel) {
957   Instruction *ExtInst;
958   if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) &&
959       !match(Sel.getFalseValue(), m_Instruction(ExtInst)))
960     return nullptr;
961
962   auto ExtOpcode = ExtInst->getOpcode();
963   if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt)
964     return nullptr;
965
966   // TODO: Handle larger types? That requires adjusting FoldOpIntoSelect too.
967   Value *X = ExtInst->getOperand(0);
968   Type *SmallType = X->getType();
969   if (!SmallType->getScalarType()->isIntegerTy(1))
970     return nullptr;
971
972   Constant *C;
973   if (!match(Sel.getTrueValue(), m_Constant(C)) &&
974       !match(Sel.getFalseValue(), m_Constant(C)))
975     return nullptr;
976
977   // If the constant is the same after truncation to the smaller type and
978   // extension to the original type, we can narrow the select.
979   Value *Cond = Sel.getCondition();
980   Type *SelType = Sel.getType();
981   Constant *TruncC = ConstantExpr::getTrunc(C, SmallType);
982   Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType);
983   if (ExtC == C) {
984     Value *TruncCVal = cast<Value>(TruncC);
985     if (ExtInst == Sel.getFalseValue())
986       std::swap(X, TruncCVal);
987
988     // select Cond, (ext X), C --> ext(select Cond, X, C')
989     // select Cond, C, (ext X) --> ext(select Cond, C', X)
990     Value *NewSel = Builder->CreateSelect(Cond, X, TruncCVal, "narrow", &Sel);
991     return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType);
992   }
993
994   // If one arm of the select is the extend of the condition, replace that arm
995   // with the extension of the appropriate known bool value.
996   if (Cond == X) {
997     if (ExtInst == Sel.getTrueValue()) {
998       // select X, (sext X), C --> select X, -1, C
999       // select X, (zext X), C --> select X,  1, C
1000       Constant *One = ConstantInt::getTrue(SmallType);
1001       Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType);
1002       return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel);
1003     } else {
1004       // select X, C, (sext X) --> select X, C, 0
1005       // select X, C, (zext X) --> select X, C, 0
1006       Constant *Zero = ConstantInt::getNullValue(SelType);
1007       return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel);
1008     }
1009   }
1010
1011   return nullptr;
1012 }
1013
1014 /// Try to transform a vector select with a constant condition vector into a
1015 /// shuffle for easier combining with other shuffles and insert/extract.
1016 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) {
1017   Value *CondVal = SI.getCondition();
1018   Constant *CondC;
1019   if (!CondVal->getType()->isVectorTy() || !match(CondVal, m_Constant(CondC)))
1020     return nullptr;
1021
1022   unsigned NumElts = CondVal->getType()->getVectorNumElements();
1023   SmallVector<Constant *, 16> Mask;
1024   Mask.reserve(NumElts);
1025   Type *Int32Ty = Type::getInt32Ty(CondVal->getContext());
1026   for (unsigned i = 0; i != NumElts; ++i) {
1027     Constant *Elt = CondC->getAggregateElement(i);
1028     if (!Elt)
1029       return nullptr;
1030
1031     if (Elt->isOneValue()) {
1032       // If the select condition element is true, choose from the 1st vector.
1033       Mask.push_back(ConstantInt::get(Int32Ty, i));
1034     } else if (Elt->isNullValue()) {
1035       // If the select condition element is false, choose from the 2nd vector.
1036       Mask.push_back(ConstantInt::get(Int32Ty, i + NumElts));
1037     } else if (isa<UndefValue>(Elt)) {
1038       // If the select condition element is undef, the shuffle mask is undef.
1039       Mask.push_back(UndefValue::get(Int32Ty));
1040     } else {
1041       // Bail out on a constant expression.
1042       return nullptr;
1043     }
1044   }
1045
1046   return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(),
1047                                ConstantVector::get(Mask));
1048 }
1049
1050 /// Reuse bitcasted operands between a compare and select:
1051 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
1052 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D))
1053 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel,
1054                                           InstCombiner::BuilderTy &Builder) {
1055   Value *Cond = Sel.getCondition();
1056   Value *TVal = Sel.getTrueValue();
1057   Value *FVal = Sel.getFalseValue();
1058
1059   CmpInst::Predicate Pred;
1060   Value *A, *B;
1061   if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B))))
1062     return nullptr;
1063
1064   // The select condition is a compare instruction. If the select's true/false
1065   // values are already the same as the compare operands, there's nothing to do.
1066   if (TVal == A || TVal == B || FVal == A || FVal == B)
1067     return nullptr;
1068
1069   Value *C, *D;
1070   if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D))))
1071     return nullptr;
1072
1073   // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc)
1074   Value *TSrc, *FSrc;
1075   if (!match(TVal, m_BitCast(m_Value(TSrc))) ||
1076       !match(FVal, m_BitCast(m_Value(FSrc))))
1077     return nullptr;
1078
1079   // If the select true/false values are *different bitcasts* of the same source
1080   // operands, make the select operands the same as the compare operands and
1081   // cast the result. This is the canonical select form for min/max.
1082   Value *NewSel;
1083   if (TSrc == C && FSrc == D) {
1084     // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
1085     // bitcast (select (cmp A, B), A, B)
1086     NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel);
1087   } else if (TSrc == D && FSrc == C) {
1088     // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) -->
1089     // bitcast (select (cmp A, B), B, A)
1090     NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel);
1091   } else {
1092     return nullptr;
1093   }
1094   return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType());
1095 }
1096
1097 Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
1098   Value *CondVal = SI.getCondition();
1099   Value *TrueVal = SI.getTrueValue();
1100   Value *FalseVal = SI.getFalseValue();
1101   Type *SelType = SI.getType();
1102
1103   if (Value *V =
1104           SimplifySelectInst(CondVal, TrueVal, FalseVal, DL, &TLI, &DT, &AC))
1105     return replaceInstUsesWith(SI, V);
1106
1107   if (Instruction *I = canonicalizeSelectToShuffle(SI))
1108     return I;
1109
1110   if (SelType->getScalarType()->isIntegerTy(1) &&
1111       TrueVal->getType() == CondVal->getType()) {
1112     if (match(TrueVal, m_One())) {
1113       // Change: A = select B, true, C --> A = or B, C
1114       return BinaryOperator::CreateOr(CondVal, FalseVal);
1115     }
1116     if (match(TrueVal, m_Zero())) {
1117       // Change: A = select B, false, C --> A = and !B, C
1118       Value *NotCond = Builder->CreateNot(CondVal, "not." + CondVal->getName());
1119       return BinaryOperator::CreateAnd(NotCond, FalseVal);
1120     }
1121     if (match(FalseVal, m_Zero())) {
1122       // Change: A = select B, C, false --> A = and B, C
1123       return BinaryOperator::CreateAnd(CondVal, TrueVal);
1124     }
1125     if (match(FalseVal, m_One())) {
1126       // Change: A = select B, C, true --> A = or !B, C
1127       Value *NotCond = Builder->CreateNot(CondVal, "not." + CondVal->getName());
1128       return BinaryOperator::CreateOr(NotCond, TrueVal);
1129     }
1130
1131     // select a, a, b  -> a | b
1132     // select a, b, a  -> a & b
1133     if (CondVal == TrueVal)
1134       return BinaryOperator::CreateOr(CondVal, FalseVal);
1135     if (CondVal == FalseVal)
1136       return BinaryOperator::CreateAnd(CondVal, TrueVal);
1137
1138     // select a, ~a, b -> (~a) & b
1139     // select a, b, ~a -> (~a) | b
1140     if (match(TrueVal, m_Not(m_Specific(CondVal))))
1141       return BinaryOperator::CreateAnd(TrueVal, FalseVal);
1142     if (match(FalseVal, m_Not(m_Specific(CondVal))))
1143       return BinaryOperator::CreateOr(TrueVal, FalseVal);
1144   }
1145
1146   // Selecting between two integer or vector splat integer constants?
1147   //
1148   // Note that we don't handle a scalar select of vectors:
1149   // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0>
1150   // because that may need 3 instructions to splat the condition value:
1151   // extend, insertelement, shufflevector.
1152   if (CondVal->getType()->isVectorTy() == SelType->isVectorTy()) {
1153     // select C, 1, 0 -> zext C to int
1154     if (match(TrueVal, m_One()) && match(FalseVal, m_Zero()))
1155       return new ZExtInst(CondVal, SelType);
1156
1157     // select C, -1, 0 -> sext C to int
1158     if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero()))
1159       return new SExtInst(CondVal, SelType);
1160
1161     // select C, 0, 1 -> zext !C to int
1162     if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) {
1163       Value *NotCond = Builder->CreateNot(CondVal, "not." + CondVal->getName());
1164       return new ZExtInst(NotCond, SelType);
1165     }
1166
1167     // select C, 0, -1 -> sext !C to int
1168     if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) {
1169       Value *NotCond = Builder->CreateNot(CondVal, "not." + CondVal->getName());
1170       return new SExtInst(NotCond, SelType);
1171     }
1172   }
1173
1174   if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
1175     if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal))
1176       if (Value *V = foldSelectICmpAnd(SI, TrueValC, FalseValC, Builder))
1177         return replaceInstUsesWith(SI, V);
1178
1179   // See if we are selecting two values based on a comparison of the two values.
1180   if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
1181     if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
1182       // Transform (X == Y) ? X : Y  -> Y
1183       if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
1184         // This is not safe in general for floating point:
1185         // consider X== -0, Y== +0.
1186         // It becomes safe if either operand is a nonzero constant.
1187         ConstantFP *CFPt, *CFPf;
1188         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
1189               !CFPt->getValueAPF().isZero()) ||
1190             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
1191              !CFPf->getValueAPF().isZero()))
1192         return replaceInstUsesWith(SI, FalseVal);
1193       }
1194       // Transform (X une Y) ? X : Y  -> X
1195       if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
1196         // This is not safe in general for floating point:
1197         // consider X== -0, Y== +0.
1198         // It becomes safe if either operand is a nonzero constant.
1199         ConstantFP *CFPt, *CFPf;
1200         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
1201               !CFPt->getValueAPF().isZero()) ||
1202             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
1203              !CFPf->getValueAPF().isZero()))
1204         return replaceInstUsesWith(SI, TrueVal);
1205       }
1206
1207       // Canonicalize to use ordered comparisons by swapping the select
1208       // operands.
1209       //
1210       // e.g.
1211       // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
1212       if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
1213         FCmpInst::Predicate InvPred = FCI->getInversePredicate();
1214         IRBuilder<>::FastMathFlagGuard FMFG(*Builder);
1215         Builder->setFastMathFlags(FCI->getFastMathFlags());
1216         Value *NewCond = Builder->CreateFCmp(InvPred, TrueVal, FalseVal,
1217                                              FCI->getName() + ".inv");
1218
1219         return SelectInst::Create(NewCond, FalseVal, TrueVal,
1220                                   SI.getName() + ".p");
1221       }
1222
1223       // NOTE: if we wanted to, this is where to detect MIN/MAX
1224     } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
1225       // Transform (X == Y) ? Y : X  -> X
1226       if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
1227         // This is not safe in general for floating point:
1228         // consider X== -0, Y== +0.
1229         // It becomes safe if either operand is a nonzero constant.
1230         ConstantFP *CFPt, *CFPf;
1231         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
1232               !CFPt->getValueAPF().isZero()) ||
1233             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
1234              !CFPf->getValueAPF().isZero()))
1235           return replaceInstUsesWith(SI, FalseVal);
1236       }
1237       // Transform (X une Y) ? Y : X  -> Y
1238       if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
1239         // This is not safe in general for floating point:
1240         // consider X== -0, Y== +0.
1241         // It becomes safe if either operand is a nonzero constant.
1242         ConstantFP *CFPt, *CFPf;
1243         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
1244               !CFPt->getValueAPF().isZero()) ||
1245             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
1246              !CFPf->getValueAPF().isZero()))
1247           return replaceInstUsesWith(SI, TrueVal);
1248       }
1249
1250       // Canonicalize to use ordered comparisons by swapping the select
1251       // operands.
1252       //
1253       // e.g.
1254       // (X ugt Y) ? X : Y -> (X ole Y) ? X : Y
1255       if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
1256         FCmpInst::Predicate InvPred = FCI->getInversePredicate();
1257         IRBuilder<>::FastMathFlagGuard FMFG(*Builder);
1258         Builder->setFastMathFlags(FCI->getFastMathFlags());
1259         Value *NewCond = Builder->CreateFCmp(InvPred, FalseVal, TrueVal,
1260                                              FCI->getName() + ".inv");
1261
1262         return SelectInst::Create(NewCond, FalseVal, TrueVal,
1263                                   SI.getName() + ".p");
1264       }
1265
1266       // NOTE: if we wanted to, this is where to detect MIN/MAX
1267     }
1268     // NOTE: if we wanted to, this is where to detect ABS
1269   }
1270
1271   // See if we are selecting two values based on a comparison of the two values.
1272   if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
1273     if (Instruction *Result = foldSelectInstWithICmp(SI, ICI))
1274       return Result;
1275
1276   if (Instruction *Add = foldAddSubSelect(SI, *Builder))
1277     return Add;
1278
1279   // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
1280   auto *TI = dyn_cast<Instruction>(TrueVal);
1281   auto *FI = dyn_cast<Instruction>(FalseVal);
1282   if (TI && FI && TI->getOpcode() == FI->getOpcode())
1283     if (Instruction *IV = foldSelectOpOp(SI, TI, FI))
1284       return IV;
1285
1286   if (Instruction *I = foldSelectExtConst(SI))
1287     return I;
1288
1289   // See if we can fold the select into one of our operands.
1290   if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) {
1291     if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal))
1292       return FoldI;
1293
1294     Value *LHS, *RHS, *LHS2, *RHS2;
1295     Instruction::CastOps CastOp;
1296     SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp);
1297     auto SPF = SPR.Flavor;
1298
1299     if (SelectPatternResult::isMinOrMax(SPF)) {
1300       // Canonicalize so that type casts are outside select patterns.
1301       if (LHS->getType()->getPrimitiveSizeInBits() !=
1302           SelType->getPrimitiveSizeInBits()) {
1303         CmpInst::Predicate Pred = getCmpPredicateForMinMax(SPF, SPR.Ordered);
1304
1305         Value *Cmp;
1306         if (CmpInst::isIntPredicate(Pred)) {
1307           Cmp = Builder->CreateICmp(Pred, LHS, RHS);
1308         } else {
1309           IRBuilder<>::FastMathFlagGuard FMFG(*Builder);
1310           auto FMF = cast<FPMathOperator>(SI.getCondition())->getFastMathFlags();
1311           Builder->setFastMathFlags(FMF);
1312           Cmp = Builder->CreateFCmp(Pred, LHS, RHS);
1313         }
1314
1315         Value *NewSI = Builder->CreateCast(
1316             CastOp, Builder->CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI),
1317             SelType);
1318         return replaceInstUsesWith(SI, NewSI);
1319       }
1320     }
1321
1322     if (SPF) {
1323       // MAX(MAX(a, b), a) -> MAX(a, b)
1324       // MIN(MIN(a, b), a) -> MIN(a, b)
1325       // MAX(MIN(a, b), a) -> a
1326       // MIN(MAX(a, b), a) -> a
1327       // ABS(ABS(a)) -> ABS(a)
1328       // NABS(NABS(a)) -> NABS(a)
1329       if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor)
1330         if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2,
1331                                           SI, SPF, RHS))
1332           return R;
1333       if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor)
1334         if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2,
1335                                           SI, SPF, LHS))
1336           return R;
1337     }
1338
1339     // MAX(~a, ~b) -> ~MIN(a, b)
1340     if ((SPF == SPF_SMAX || SPF == SPF_UMAX) &&
1341         IsFreeToInvert(LHS, LHS->hasNUses(2)) &&
1342         IsFreeToInvert(RHS, RHS->hasNUses(2))) {
1343       // For this transform to be profitable, we need to eliminate at least two
1344       // 'not' instructions if we're going to add one 'not' instruction.
1345       int NumberOfNots =
1346           (LHS->hasNUses(2) && match(LHS, m_Not(m_Value()))) +
1347           (RHS->hasNUses(2) && match(RHS, m_Not(m_Value()))) +
1348           (SI.hasOneUse() && match(*SI.user_begin(), m_Not(m_Value())));
1349
1350       if (NumberOfNots >= 2) {
1351         Value *NewLHS = Builder->CreateNot(LHS);
1352         Value *NewRHS = Builder->CreateNot(RHS);
1353         Value *NewCmp = SPF == SPF_SMAX
1354                             ? Builder->CreateICmpSLT(NewLHS, NewRHS)
1355                             : Builder->CreateICmpULT(NewLHS, NewRHS);
1356         Value *NewSI =
1357             Builder->CreateNot(Builder->CreateSelect(NewCmp, NewLHS, NewRHS));
1358         return replaceInstUsesWith(SI, NewSI);
1359       }
1360     }
1361
1362     // TODO.
1363     // ABS(-X) -> ABS(X)
1364   }
1365
1366   // See if we can fold the select into a phi node if the condition is a select.
1367   if (isa<PHINode>(SI.getCondition()))
1368     // The true/false values have to be live in the PHI predecessor's blocks.
1369     if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
1370         canSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
1371       if (Instruction *NV = FoldOpIntoPhi(SI))
1372         return NV;
1373
1374   if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
1375     if (TrueSI->getCondition()->getType() == CondVal->getType()) {
1376       // select(C, select(C, a, b), c) -> select(C, a, c)
1377       if (TrueSI->getCondition() == CondVal) {
1378         if (SI.getTrueValue() == TrueSI->getTrueValue())
1379           return nullptr;
1380         SI.setOperand(1, TrueSI->getTrueValue());
1381         return &SI;
1382       }
1383       // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
1384       // We choose this as normal form to enable folding on the And and shortening
1385       // paths for the values (this helps GetUnderlyingObjects() for example).
1386       if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
1387         Value *And = Builder->CreateAnd(CondVal, TrueSI->getCondition());
1388         SI.setOperand(0, And);
1389         SI.setOperand(1, TrueSI->getTrueValue());
1390         return &SI;
1391       }
1392     }
1393   }
1394   if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
1395     if (FalseSI->getCondition()->getType() == CondVal->getType()) {
1396       // select(C, a, select(C, b, c)) -> select(C, a, c)
1397       if (FalseSI->getCondition() == CondVal) {
1398         if (SI.getFalseValue() == FalseSI->getFalseValue())
1399           return nullptr;
1400         SI.setOperand(2, FalseSI->getFalseValue());
1401         return &SI;
1402       }
1403       // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
1404       if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
1405         Value *Or = Builder->CreateOr(CondVal, FalseSI->getCondition());
1406         SI.setOperand(0, Or);
1407         SI.setOperand(2, FalseSI->getFalseValue());
1408         return &SI;
1409       }
1410     }
1411   }
1412
1413   if (BinaryOperator::isNot(CondVal)) {
1414     SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
1415     SI.setOperand(1, FalseVal);
1416     SI.setOperand(2, TrueVal);
1417     return &SI;
1418   }
1419
1420   if (VectorType *VecTy = dyn_cast<VectorType>(SelType)) {
1421     unsigned VWidth = VecTy->getNumElements();
1422     APInt UndefElts(VWidth, 0);
1423     APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1424     if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) {
1425       if (V != &SI)
1426         return replaceInstUsesWith(SI, V);
1427       return &SI;
1428     }
1429
1430     if (isa<ConstantAggregateZero>(CondVal)) {
1431       return replaceInstUsesWith(SI, FalseVal);
1432     }
1433   }
1434
1435   // See if we can determine the result of this select based on a dominating
1436   // condition.
1437   BasicBlock *Parent = SI.getParent();
1438   if (BasicBlock *Dom = Parent->getSinglePredecessor()) {
1439     auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator());
1440     if (PBI && PBI->isConditional() &&
1441         PBI->getSuccessor(0) != PBI->getSuccessor(1) &&
1442         (PBI->getSuccessor(0) == Parent || PBI->getSuccessor(1) == Parent)) {
1443       bool CondIsFalse = PBI->getSuccessor(1) == Parent;
1444       Optional<bool> Implication = isImpliedCondition(
1445         PBI->getCondition(), SI.getCondition(), DL, CondIsFalse);
1446       if (Implication) {
1447         Value *V = *Implication ? TrueVal : FalseVal;
1448         return replaceInstUsesWith(SI, V);
1449       }
1450     }
1451   }
1452
1453   if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, *Builder))
1454     return BitCastSel;
1455
1456   return nullptr;
1457 }