]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp
Merge llvm, clang, lld, lldb, compiler-rt and libc++ r308421, and update
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / InstCombine / InstCombineSimplifyDemanded.cpp
1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains logic for simplifying instructions based on information
11 // about how they are used.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "InstCombineInternal.h"
16 #include "llvm/Analysis/ValueTracking.h"
17 #include "llvm/IR/IntrinsicInst.h"
18 #include "llvm/IR/PatternMatch.h"
19 #include "llvm/Support/KnownBits.h"
20
21 using namespace llvm;
22 using namespace llvm::PatternMatch;
23
24 #define DEBUG_TYPE "instcombine"
25
26 /// Check to see if the specified operand of the specified instruction is a
27 /// constant integer. If so, check to see if there are any bits set in the
28 /// constant that are not demanded. If so, shrink the constant and return true.
29 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
30                                    const APInt &Demanded) {
31   assert(I && "No instruction?");
32   assert(OpNo < I->getNumOperands() && "Operand index too large");
33
34   // The operand must be a constant integer or splat integer.
35   Value *Op = I->getOperand(OpNo);
36   const APInt *C;
37   if (!match(Op, m_APInt(C)))
38     return false;
39
40   // If there are no bits set that aren't demanded, nothing to do.
41   if (C->isSubsetOf(Demanded))
42     return false;
43
44   // This instruction is producing bits that are not demanded. Shrink the RHS.
45   I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded));
46
47   return true;
48 }
49
50
51
52 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if
53 /// the instruction has any properties that allow us to simplify its operands.
54 bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
55   unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
56   KnownBits Known(BitWidth);
57   APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
58
59   Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known,
60                                      0, &Inst);
61   if (!V) return false;
62   if (V == &Inst) return true;
63   replaceInstUsesWith(Inst, V);
64   return true;
65 }
66
67 /// This form of SimplifyDemandedBits simplifies the specified instruction
68 /// operand if possible, updating it in place. It returns true if it made any
69 /// change and false otherwise.
70 bool InstCombiner::SimplifyDemandedBits(Instruction *I, unsigned OpNo,
71                                         const APInt &DemandedMask,
72                                         KnownBits &Known,
73                                         unsigned Depth) {
74   Use &U = I->getOperandUse(OpNo);
75   Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known,
76                                           Depth, I);
77   if (!NewVal) return false;
78   U = NewVal;
79   return true;
80 }
81
82
83 /// This function attempts to replace V with a simpler value based on the
84 /// demanded bits. When this function is called, it is known that only the bits
85 /// set in DemandedMask of the result of V are ever used downstream.
86 /// Consequently, depending on the mask and V, it may be possible to replace V
87 /// with a constant or one of its operands. In such cases, this function does
88 /// the replacement and returns true. In all other cases, it returns false after
89 /// analyzing the expression and setting KnownOne and known to be one in the
90 /// expression. Known.Zero contains all the bits that are known to be zero in
91 /// the expression. These are provided to potentially allow the caller (which
92 /// might recursively be SimplifyDemandedBits itself) to simplify the
93 /// expression.
94 /// Known.One and Known.Zero always follow the invariant that:
95 ///   Known.One & Known.Zero == 0.
96 /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and
97 /// Known.Zero may only be accurate for those bits set in DemandedMask. Note
98 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all
99 /// be the same.
100 ///
101 /// This returns null if it did not change anything and it permits no
102 /// simplification.  This returns V itself if it did some simplification of V's
103 /// operands based on the information about what bits are demanded. This returns
104 /// some other non-null value if it found out that V is equal to another value
105 /// in the context where the specified bits are demanded, but not for all users.
106 Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
107                                              KnownBits &Known, unsigned Depth,
108                                              Instruction *CxtI) {
109   assert(V != nullptr && "Null pointer of Value???");
110   assert(Depth <= 6 && "Limit Search Depth");
111   uint32_t BitWidth = DemandedMask.getBitWidth();
112   Type *VTy = V->getType();
113   assert(
114       (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) &&
115       Known.getBitWidth() == BitWidth &&
116       "Value *V, DemandedMask and Known must have same BitWidth");
117
118   if (isa<Constant>(V)) {
119     computeKnownBits(V, Known, Depth, CxtI);
120     return nullptr;
121   }
122
123   Known.resetAll();
124   if (DemandedMask.isNullValue())     // Not demanding any bits from V.
125     return UndefValue::get(VTy);
126
127   if (Depth == 6)        // Limit search depth.
128     return nullptr;
129
130   Instruction *I = dyn_cast<Instruction>(V);
131   if (!I) {
132     computeKnownBits(V, Known, Depth, CxtI);
133     return nullptr;        // Only analyze instructions.
134   }
135
136   // If there are multiple uses of this value and we aren't at the root, then
137   // we can't do any simplifications of the operands, because DemandedMask
138   // only reflects the bits demanded by *one* of the users.
139   if (Depth != 0 && !I->hasOneUse())
140     return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI);
141
142   KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth);
143
144   // If this is the root being simplified, allow it to have multiple uses,
145   // just set the DemandedMask to all bits so that we can try to simplify the
146   // operands.  This allows visitTruncInst (for example) to simplify the
147   // operand of a trunc without duplicating all the logic below.
148   if (Depth == 0 && !V->hasOneUse())
149     DemandedMask.setAllBits();
150
151   switch (I->getOpcode()) {
152   default:
153     computeKnownBits(I, Known, Depth, CxtI);
154     break;
155   case Instruction::And: {
156     // If either the LHS or the RHS are Zero, the result is zero.
157     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
158         SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown,
159                              Depth + 1))
160       return I;
161     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
162     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
163
164     // Output known-0 are known to be clear if zero in either the LHS | RHS.
165     APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero;
166     // Output known-1 bits are only known if set in both the LHS & RHS.
167     APInt IKnownOne = RHSKnown.One & LHSKnown.One;
168
169     // If the client is only demanding bits that we know, return the known
170     // constant.
171     if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
172       return Constant::getIntegerValue(VTy, IKnownOne);
173
174     // If all of the demanded bits are known 1 on one side, return the other.
175     // These bits cannot contribute to the result of the 'and'.
176     if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
177       return I->getOperand(0);
178     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
179       return I->getOperand(1);
180
181     // If the RHS is a constant, see if we can simplify it.
182     if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero))
183       return I;
184
185     Known.Zero = std::move(IKnownZero);
186     Known.One  = std::move(IKnownOne);
187     break;
188   }
189   case Instruction::Or: {
190     // If either the LHS or the RHS are One, the result is One.
191     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
192         SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown,
193                              Depth + 1))
194       return I;
195     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
196     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
197
198     // Output known-0 bits are only known if clear in both the LHS & RHS.
199     APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero;
200     // Output known-1 are known. to be set if s.et in either the LHS | RHS.
201     APInt IKnownOne = RHSKnown.One | LHSKnown.One;
202
203     // If the client is only demanding bits that we know, return the known
204     // constant.
205     if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
206       return Constant::getIntegerValue(VTy, IKnownOne);
207
208     // If all of the demanded bits are known zero on one side, return the other.
209     // These bits cannot contribute to the result of the 'or'.
210     if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
211       return I->getOperand(0);
212     if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
213       return I->getOperand(1);
214
215     // If the RHS is a constant, see if we can simplify it.
216     if (ShrinkDemandedConstant(I, 1, DemandedMask))
217       return I;
218
219     Known.Zero = std::move(IKnownZero);
220     Known.One  = std::move(IKnownOne);
221     break;
222   }
223   case Instruction::Xor: {
224     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
225         SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1))
226       return I;
227     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
228     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
229
230     // Output known-0 bits are known if clear or set in both the LHS & RHS.
231     APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) |
232                        (RHSKnown.One & LHSKnown.One);
233     // Output known-1 are known to be set if set in only one of the LHS, RHS.
234     APInt IKnownOne =  (RHSKnown.Zero & LHSKnown.One) |
235                        (RHSKnown.One & LHSKnown.Zero);
236
237     // If the client is only demanding bits that we know, return the known
238     // constant.
239     if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
240       return Constant::getIntegerValue(VTy, IKnownOne);
241
242     // If all of the demanded bits are known zero on one side, return the other.
243     // These bits cannot contribute to the result of the 'xor'.
244     if (DemandedMask.isSubsetOf(RHSKnown.Zero))
245       return I->getOperand(0);
246     if (DemandedMask.isSubsetOf(LHSKnown.Zero))
247       return I->getOperand(1);
248
249     // If all of the demanded bits are known to be zero on one side or the
250     // other, turn this into an *inclusive* or.
251     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
252     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) {
253       Instruction *Or =
254         BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
255                                  I->getName());
256       return InsertNewInstWith(Or, *I);
257     }
258
259     // If all of the demanded bits on one side are known, and all of the set
260     // bits on that side are also known to be set on the other side, turn this
261     // into an AND, as we know the bits will be cleared.
262     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
263     if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) &&
264         RHSKnown.One.isSubsetOf(LHSKnown.One)) {
265       Constant *AndC = Constant::getIntegerValue(VTy,
266                                                  ~RHSKnown.One & DemandedMask);
267       Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
268       return InsertNewInstWith(And, *I);
269     }
270
271     // If the RHS is a constant, see if we can simplify it.
272     // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
273     if (ShrinkDemandedConstant(I, 1, DemandedMask))
274       return I;
275
276     // If our LHS is an 'and' and if it has one use, and if any of the bits we
277     // are flipping are known to be set, then the xor is just resetting those
278     // bits to zero.  We can just knock out bits from the 'and' and the 'xor',
279     // simplifying both of them.
280     if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
281       if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
282           isa<ConstantInt>(I->getOperand(1)) &&
283           isa<ConstantInt>(LHSInst->getOperand(1)) &&
284           (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) {
285         ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
286         ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
287         APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask);
288
289         Constant *AndC =
290           ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
291         Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
292         InsertNewInstWith(NewAnd, *I);
293
294         Constant *XorC =
295           ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
296         Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
297         return InsertNewInstWith(NewXor, *I);
298       }
299
300     // Output known-0 bits are known if clear or set in both the LHS & RHS.
301     Known.Zero = std::move(IKnownZero);
302     // Output known-1 are known to be set if set in only one of the LHS, RHS.
303     Known.One  = std::move(IKnownOne);
304     break;
305   }
306   case Instruction::Select:
307     // If this is a select as part of a min/max pattern, don't simplify any
308     // further in case we break the structure.
309     Value *LHS, *RHS;
310     if (matchSelectPattern(I, LHS, RHS).Flavor != SPF_UNKNOWN)
311       return nullptr;
312
313     if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) ||
314         SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1))
315       return I;
316     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
317     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
318
319     // If the operands are constants, see if we can simplify them.
320     if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
321         ShrinkDemandedConstant(I, 2, DemandedMask))
322       return I;
323
324     // Only known if known in both the LHS and RHS.
325     Known.One = RHSKnown.One & LHSKnown.One;
326     Known.Zero = RHSKnown.Zero & LHSKnown.Zero;
327     break;
328   case Instruction::ZExt:
329   case Instruction::Trunc: {
330     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
331
332     APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth);
333     KnownBits InputKnown(SrcBitWidth);
334     if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1))
335       return I;
336     Known = Known.zextOrTrunc(BitWidth);
337     // Any top bits are known to be zero.
338     if (BitWidth > SrcBitWidth)
339       Known.Zero.setBitsFrom(SrcBitWidth);
340     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
341     break;
342   }
343   case Instruction::BitCast:
344     if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
345       return nullptr;  // vector->int or fp->int?
346
347     if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
348       if (VectorType *SrcVTy =
349             dyn_cast<VectorType>(I->getOperand(0)->getType())) {
350         if (DstVTy->getNumElements() != SrcVTy->getNumElements())
351           // Don't touch a bitcast between vectors of different element counts.
352           return nullptr;
353       } else
354         // Don't touch a scalar-to-vector bitcast.
355         return nullptr;
356     } else if (I->getOperand(0)->getType()->isVectorTy())
357       // Don't touch a vector-to-scalar bitcast.
358       return nullptr;
359
360     if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1))
361       return I;
362     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
363     break;
364   case Instruction::SExt: {
365     // Compute the bits in the result that are not present in the input.
366     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
367
368     APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth);
369
370     // If any of the sign extended bits are demanded, we know that the sign
371     // bit is demanded.
372     if (DemandedMask.getActiveBits() > SrcBitWidth)
373       InputDemandedBits.setBit(SrcBitWidth-1);
374
375     KnownBits InputKnown(SrcBitWidth);
376     if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1))
377       return I;
378
379     // If the input sign bit is known zero, or if the NewBits are not demanded
380     // convert this into a zero extension.
381     if (InputKnown.isNonNegative() ||
382         DemandedMask.getActiveBits() <= SrcBitWidth) {
383       // Convert to ZExt cast.
384       CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
385       return InsertNewInstWith(NewCast, *I);
386      }
387
388     // If the sign bit of the input is known set or clear, then we know the
389     // top bits of the result.
390     Known = InputKnown.sext(BitWidth);
391     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
392     break;
393   }
394   case Instruction::Add:
395   case Instruction::Sub: {
396     /// If the high-bits of an ADD/SUB are not demanded, then we do not care
397     /// about the high bits of the operands.
398     unsigned NLZ = DemandedMask.countLeadingZeros();
399     if (NLZ > 0) {
400       // Right fill the mask of bits for this ADD/SUB to demand the most
401       // significant bit and all those below it.
402       APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
403       if (ShrinkDemandedConstant(I, 0, DemandedFromOps) ||
404           SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) ||
405           ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
406           SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) {
407         // Disable the nsw and nuw flags here: We can no longer guarantee that
408         // we won't wrap after simplification. Removing the nsw/nuw flags is
409         // legal here because the top bit is not demanded.
410         BinaryOperator &BinOP = *cast<BinaryOperator>(I);
411         BinOP.setHasNoSignedWrap(false);
412         BinOP.setHasNoUnsignedWrap(false);
413         return I;
414       }
415
416       // If we are known to be adding/subtracting zeros to every bit below
417       // the highest demanded bit, we just return the other side.
418       if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
419         return I->getOperand(0);
420       // We can't do this with the LHS for subtraction, unless we are only
421       // demanding the LSB.
422       if ((I->getOpcode() == Instruction::Add ||
423            DemandedFromOps.isOneValue()) &&
424           DemandedFromOps.isSubsetOf(LHSKnown.Zero))
425         return I->getOperand(1);
426     }
427
428     // Otherwise just hand the add/sub off to computeKnownBits to fill in
429     // the known zeros and ones.
430     computeKnownBits(V, Known, Depth, CxtI);
431     break;
432   }
433   case Instruction::Shl: {
434     const APInt *SA;
435     if (match(I->getOperand(1), m_APInt(SA))) {
436       const APInt *ShrAmt;
437       if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt)))) {
438         Instruction *Shr = cast<Instruction>(I->getOperand(0));
439         if (Value *R = simplifyShrShlDemandedBits(
440                 Shr, *ShrAmt, I, *SA, DemandedMask, Known))
441           return R;
442       }
443
444       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
445       APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
446
447       // If the shift is NUW/NSW, then it does demand the high bits.
448       ShlOperator *IOp = cast<ShlOperator>(I);
449       if (IOp->hasNoSignedWrap())
450         DemandedMaskIn.setHighBits(ShiftAmt+1);
451       else if (IOp->hasNoUnsignedWrap())
452         DemandedMaskIn.setHighBits(ShiftAmt);
453
454       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
455         return I;
456       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
457       Known.Zero <<= ShiftAmt;
458       Known.One  <<= ShiftAmt;
459       // low bits known zero.
460       if (ShiftAmt)
461         Known.Zero.setLowBits(ShiftAmt);
462     }
463     break;
464   }
465   case Instruction::LShr: {
466     const APInt *SA;
467     if (match(I->getOperand(1), m_APInt(SA))) {
468       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
469
470       // Unsigned shift right.
471       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
472
473       // If the shift is exact, then it does demand the low bits (and knows that
474       // they are zero).
475       if (cast<LShrOperator>(I)->isExact())
476         DemandedMaskIn.setLowBits(ShiftAmt);
477
478       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
479         return I;
480       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
481       Known.Zero.lshrInPlace(ShiftAmt);
482       Known.One.lshrInPlace(ShiftAmt);
483       if (ShiftAmt)
484         Known.Zero.setHighBits(ShiftAmt);  // high bits known zero.
485     }
486     break;
487   }
488   case Instruction::AShr: {
489     // If this is an arithmetic shift right and only the low-bit is set, we can
490     // always convert this into a logical shr, even if the shift amount is
491     // variable.  The low bit of the shift cannot be an input sign bit unless
492     // the shift amount is >= the size of the datatype, which is undefined.
493     if (DemandedMask.isOneValue()) {
494       // Perform the logical shift right.
495       Instruction *NewVal = BinaryOperator::CreateLShr(
496                         I->getOperand(0), I->getOperand(1), I->getName());
497       return InsertNewInstWith(NewVal, *I);
498     }
499
500     // If the sign bit is the only bit demanded by this ashr, then there is no
501     // need to do it, the shift doesn't change the high bit.
502     if (DemandedMask.isSignMask())
503       return I->getOperand(0);
504
505     const APInt *SA;
506     if (match(I->getOperand(1), m_APInt(SA))) {
507       uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
508
509       // Signed shift right.
510       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
511       // If any of the high bits are demanded, we should set the sign bit as
512       // demanded.
513       if (DemandedMask.countLeadingZeros() <= ShiftAmt)
514         DemandedMaskIn.setSignBit();
515
516       // If the shift is exact, then it does demand the low bits (and knows that
517       // they are zero).
518       if (cast<AShrOperator>(I)->isExact())
519         DemandedMaskIn.setLowBits(ShiftAmt);
520
521       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
522         return I;
523
524       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
525       // Compute the new bits that are at the top now.
526       APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
527       Known.Zero.lshrInPlace(ShiftAmt);
528       Known.One.lshrInPlace(ShiftAmt);
529
530       // Handle the sign bits.
531       APInt SignMask(APInt::getSignMask(BitWidth));
532       // Adjust to where it is now in the mask.
533       SignMask.lshrInPlace(ShiftAmt);
534
535       // If the input sign bit is known to be zero, or if none of the top bits
536       // are demanded, turn this into an unsigned shift right.
537       if (BitWidth <= ShiftAmt || Known.Zero[BitWidth-ShiftAmt-1] ||
538           !DemandedMask.intersects(HighBits)) {
539         BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0),
540                                                           I->getOperand(1));
541         LShr->setIsExact(cast<BinaryOperator>(I)->isExact());
542         return InsertNewInstWith(LShr, *I);
543       } else if (Known.One.intersects(SignMask)) { // New bits are known one.
544         Known.One |= HighBits;
545       }
546     }
547     break;
548   }
549   case Instruction::SRem:
550     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
551       // X % -1 demands all the bits because we don't want to introduce
552       // INT_MIN % -1 (== undef) by accident.
553       if (Rem->isMinusOne())
554         break;
555       APInt RA = Rem->getValue().abs();
556       if (RA.isPowerOf2()) {
557         if (DemandedMask.ult(RA))    // srem won't affect demanded bits
558           return I->getOperand(0);
559
560         APInt LowBits = RA - 1;
561         APInt Mask2 = LowBits | APInt::getSignMask(BitWidth);
562         if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1))
563           return I;
564
565         // The low bits of LHS are unchanged by the srem.
566         Known.Zero = LHSKnown.Zero & LowBits;
567         Known.One = LHSKnown.One & LowBits;
568
569         // If LHS is non-negative or has all low bits zero, then the upper bits
570         // are all zero.
571         if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero))
572           Known.Zero |= ~LowBits;
573
574         // If LHS is negative and not all low bits are zero, then the upper bits
575         // are all one.
576         if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One))
577           Known.One |= ~LowBits;
578
579         assert(!Known.hasConflict() && "Bits known to be one AND zero?");
580         break;
581       }
582     }
583
584     // The sign bit is the LHS's sign bit, except when the result of the
585     // remainder is zero.
586     if (DemandedMask.isSignBitSet()) {
587       computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI);
588       // If it's known zero, our sign bit is also zero.
589       if (LHSKnown.isNonNegative())
590         Known.makeNonNegative();
591     }
592     break;
593   case Instruction::URem: {
594     KnownBits Known2(BitWidth);
595     APInt AllOnes = APInt::getAllOnesValue(BitWidth);
596     if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) ||
597         SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1))
598       return I;
599
600     unsigned Leaders = Known2.countMinLeadingZeros();
601     Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
602     break;
603   }
604   case Instruction::Call:
605     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
606       switch (II->getIntrinsicID()) {
607       default: break;
608       case Intrinsic::bswap: {
609         // If the only bits demanded come from one byte of the bswap result,
610         // just shift the input byte into position to eliminate the bswap.
611         unsigned NLZ = DemandedMask.countLeadingZeros();
612         unsigned NTZ = DemandedMask.countTrailingZeros();
613
614         // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
615         // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
616         // have 14 leading zeros, round to 8.
617         NLZ &= ~7;
618         NTZ &= ~7;
619         // If we need exactly one byte, we can do this transformation.
620         if (BitWidth-NLZ-NTZ == 8) {
621           unsigned ResultBit = NTZ;
622           unsigned InputBit = BitWidth-NTZ-8;
623
624           // Replace this with either a left or right shift to get the byte into
625           // the right place.
626           Instruction *NewVal;
627           if (InputBit > ResultBit)
628             NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
629                     ConstantInt::get(I->getType(), InputBit-ResultBit));
630           else
631             NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
632                     ConstantInt::get(I->getType(), ResultBit-InputBit));
633           NewVal->takeName(I);
634           return InsertNewInstWith(NewVal, *I);
635         }
636
637         // TODO: Could compute known zero/one bits based on the input.
638         break;
639       }
640       case Intrinsic::x86_mmx_pmovmskb:
641       case Intrinsic::x86_sse_movmsk_ps:
642       case Intrinsic::x86_sse2_movmsk_pd:
643       case Intrinsic::x86_sse2_pmovmskb_128:
644       case Intrinsic::x86_avx_movmsk_ps_256:
645       case Intrinsic::x86_avx_movmsk_pd_256:
646       case Intrinsic::x86_avx2_pmovmskb: {
647         // MOVMSK copies the vector elements' sign bits to the low bits
648         // and zeros the high bits.
649         unsigned ArgWidth;
650         if (II->getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) {
651           ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>.
652         } else {
653           auto Arg = II->getArgOperand(0);
654           auto ArgType = cast<VectorType>(Arg->getType());
655           ArgWidth = ArgType->getNumElements();
656         }
657
658         // If we don't need any of low bits then return zero,
659         // we know that DemandedMask is non-zero already.
660         APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth);
661         if (DemandedElts.isNullValue())
662           return ConstantInt::getNullValue(VTy);
663
664         // We know that the upper bits are set to zero.
665         Known.Zero.setBitsFrom(ArgWidth);
666         return nullptr;
667       }
668       case Intrinsic::x86_sse42_crc32_64_64:
669         Known.Zero.setBitsFrom(32);
670         return nullptr;
671       }
672     }
673     computeKnownBits(V, Known, Depth, CxtI);
674     break;
675   }
676
677   // If the client is only demanding bits that we know, return the known
678   // constant.
679   if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
680     return Constant::getIntegerValue(VTy, Known.One);
681   return nullptr;
682 }
683
684 /// Helper routine of SimplifyDemandedUseBits. It computes Known
685 /// bits. It also tries to handle simplifications that can be done based on
686 /// DemandedMask, but without modifying the Instruction.
687 Value *InstCombiner::SimplifyMultipleUseDemandedBits(Instruction *I,
688                                                      const APInt &DemandedMask,
689                                                      KnownBits &Known,
690                                                      unsigned Depth,
691                                                      Instruction *CxtI) {
692   unsigned BitWidth = DemandedMask.getBitWidth();
693   Type *ITy = I->getType();
694
695   KnownBits LHSKnown(BitWidth);
696   KnownBits RHSKnown(BitWidth);
697
698   // Despite the fact that we can't simplify this instruction in all User's
699   // context, we can at least compute the known bits, and we can
700   // do simplifications that apply to *just* the one user if we know that
701   // this instruction has a simpler value in that context.
702   switch (I->getOpcode()) {
703   case Instruction::And: {
704     // If either the LHS or the RHS are Zero, the result is zero.
705     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
706     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
707                      CxtI);
708
709     // Output known-0 are known to be clear if zero in either the LHS | RHS.
710     APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero;
711     // Output known-1 bits are only known if set in both the LHS & RHS.
712     APInt IKnownOne = RHSKnown.One & LHSKnown.One;
713
714     // If the client is only demanding bits that we know, return the known
715     // constant.
716     if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
717       return Constant::getIntegerValue(ITy, IKnownOne);
718
719     // If all of the demanded bits are known 1 on one side, return the other.
720     // These bits cannot contribute to the result of the 'and' in this
721     // context.
722     if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
723       return I->getOperand(0);
724     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
725       return I->getOperand(1);
726
727     Known.Zero = std::move(IKnownZero);
728     Known.One  = std::move(IKnownOne);
729     break;
730   }
731   case Instruction::Or: {
732     // We can simplify (X|Y) -> X or Y in the user's context if we know that
733     // only bits from X or Y are demanded.
734
735     // If either the LHS or the RHS are One, the result is One.
736     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
737     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
738                      CxtI);
739
740     // Output known-0 bits are only known if clear in both the LHS & RHS.
741     APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero;
742     // Output known-1 are known to be set if set in either the LHS | RHS.
743     APInt IKnownOne = RHSKnown.One | LHSKnown.One;
744
745     // If the client is only demanding bits that we know, return the known
746     // constant.
747     if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
748       return Constant::getIntegerValue(ITy, IKnownOne);
749
750     // If all of the demanded bits are known zero on one side, return the
751     // other.  These bits cannot contribute to the result of the 'or' in this
752     // context.
753     if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
754       return I->getOperand(0);
755     if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
756       return I->getOperand(1);
757
758     Known.Zero = std::move(IKnownZero);
759     Known.One  = std::move(IKnownOne);
760     break;
761   }
762   case Instruction::Xor: {
763     // We can simplify (X^Y) -> X or Y in the user's context if we know that
764     // only bits from X or Y are demanded.
765
766     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
767     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
768                      CxtI);
769
770     // Output known-0 bits are known if clear or set in both the LHS & RHS.
771     APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) |
772                        (RHSKnown.One & LHSKnown.One);
773     // Output known-1 are known to be set if set in only one of the LHS, RHS.
774     APInt IKnownOne =  (RHSKnown.Zero & LHSKnown.One) |
775                        (RHSKnown.One & LHSKnown.Zero);
776
777     // If the client is only demanding bits that we know, return the known
778     // constant.
779     if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
780       return Constant::getIntegerValue(ITy, IKnownOne);
781
782     // If all of the demanded bits are known zero on one side, return the
783     // other.
784     if (DemandedMask.isSubsetOf(RHSKnown.Zero))
785       return I->getOperand(0);
786     if (DemandedMask.isSubsetOf(LHSKnown.Zero))
787       return I->getOperand(1);
788
789     // Output known-0 bits are known if clear or set in both the LHS & RHS.
790     Known.Zero = std::move(IKnownZero);
791     // Output known-1 are known to be set if set in only one of the LHS, RHS.
792     Known.One  = std::move(IKnownOne);
793     break;
794   }
795   default:
796     // Compute the Known bits to simplify things downstream.
797     computeKnownBits(I, Known, Depth, CxtI);
798
799     // If this user is only demanding bits that we know, return the known
800     // constant.
801     if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
802       return Constant::getIntegerValue(ITy, Known.One);
803
804     break;
805   }
806
807   return nullptr;
808 }
809
810
811 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify
812 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
813 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
814 /// of "C2-C1".
815 ///
816 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
817 /// ..., bn}, without considering the specific value X is holding.
818 /// This transformation is legal iff one of following conditions is hold:
819 ///  1) All the bit in S are 0, in this case E1 == E2.
820 ///  2) We don't care those bits in S, per the input DemandedMask.
821 ///  3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
822 ///     rest bits.
823 ///
824 /// Currently we only test condition 2).
825 ///
826 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
827 /// not successful.
828 Value *
829 InstCombiner::simplifyShrShlDemandedBits(Instruction *Shr, const APInt &ShrOp1,
830                                          Instruction *Shl, const APInt &ShlOp1,
831                                          const APInt &DemandedMask,
832                                          KnownBits &Known) {
833   if (!ShlOp1 || !ShrOp1)
834     return nullptr; // No-op.
835
836   Value *VarX = Shr->getOperand(0);
837   Type *Ty = VarX->getType();
838   unsigned BitWidth = Ty->getScalarSizeInBits();
839   if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth))
840     return nullptr; // Undef.
841
842   unsigned ShlAmt = ShlOp1.getZExtValue();
843   unsigned ShrAmt = ShrOp1.getZExtValue();
844
845   Known.One.clearAllBits();
846   Known.Zero.setLowBits(ShlAmt - 1);
847   Known.Zero &= DemandedMask;
848
849   APInt BitMask1(APInt::getAllOnesValue(BitWidth));
850   APInt BitMask2(APInt::getAllOnesValue(BitWidth));
851
852   bool isLshr = (Shr->getOpcode() == Instruction::LShr);
853   BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
854                       (BitMask1.ashr(ShrAmt) << ShlAmt);
855
856   if (ShrAmt <= ShlAmt) {
857     BitMask2 <<= (ShlAmt - ShrAmt);
858   } else {
859     BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
860                         BitMask2.ashr(ShrAmt - ShlAmt);
861   }
862
863   // Check if condition-2 (see the comment to this function) is satified.
864   if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
865     if (ShrAmt == ShlAmt)
866       return VarX;
867
868     if (!Shr->hasOneUse())
869       return nullptr;
870
871     BinaryOperator *New;
872     if (ShrAmt < ShlAmt) {
873       Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
874       New = BinaryOperator::CreateShl(VarX, Amt);
875       BinaryOperator *Orig = cast<BinaryOperator>(Shl);
876       New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
877       New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
878     } else {
879       Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
880       New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
881                      BinaryOperator::CreateAShr(VarX, Amt);
882       if (cast<BinaryOperator>(Shr)->isExact())
883         New->setIsExact(true);
884     }
885
886     return InsertNewInstWith(New, *Shl);
887   }
888
889   return nullptr;
890 }
891
892 /// The specified value produces a vector with any number of elements.
893 /// DemandedElts contains the set of elements that are actually used by the
894 /// caller. This method analyzes which elements of the operand are undef and
895 /// returns that information in UndefElts.
896 ///
897 /// If the information about demanded elements can be used to simplify the
898 /// operation, the operation is simplified, then the resultant value is
899 /// returned.  This returns null if no change was made.
900 Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
901                                                 APInt &UndefElts,
902                                                 unsigned Depth) {
903   unsigned VWidth = V->getType()->getVectorNumElements();
904   APInt EltMask(APInt::getAllOnesValue(VWidth));
905   assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
906
907   if (isa<UndefValue>(V)) {
908     // If the entire vector is undefined, just return this info.
909     UndefElts = EltMask;
910     return nullptr;
911   }
912
913   if (DemandedElts.isNullValue()) { // If nothing is demanded, provide undef.
914     UndefElts = EltMask;
915     return UndefValue::get(V->getType());
916   }
917
918   UndefElts = 0;
919
920   // Handle ConstantAggregateZero, ConstantVector, ConstantDataSequential.
921   if (Constant *C = dyn_cast<Constant>(V)) {
922     // Check if this is identity. If so, return 0 since we are not simplifying
923     // anything.
924     if (DemandedElts.isAllOnesValue())
925       return nullptr;
926
927     Type *EltTy = cast<VectorType>(V->getType())->getElementType();
928     Constant *Undef = UndefValue::get(EltTy);
929
930     SmallVector<Constant*, 16> Elts;
931     for (unsigned i = 0; i != VWidth; ++i) {
932       if (!DemandedElts[i]) {   // If not demanded, set to undef.
933         Elts.push_back(Undef);
934         UndefElts.setBit(i);
935         continue;
936       }
937
938       Constant *Elt = C->getAggregateElement(i);
939       if (!Elt) return nullptr;
940
941       if (isa<UndefValue>(Elt)) {   // Already undef.
942         Elts.push_back(Undef);
943         UndefElts.setBit(i);
944       } else {                               // Otherwise, defined.
945         Elts.push_back(Elt);
946       }
947     }
948
949     // If we changed the constant, return it.
950     Constant *NewCV = ConstantVector::get(Elts);
951     return NewCV != C ? NewCV : nullptr;
952   }
953
954   // Limit search depth.
955   if (Depth == 10)
956     return nullptr;
957
958   // If multiple users are using the root value, proceed with
959   // simplification conservatively assuming that all elements
960   // are needed.
961   if (!V->hasOneUse()) {
962     // Quit if we find multiple users of a non-root value though.
963     // They'll be handled when it's their turn to be visited by
964     // the main instcombine process.
965     if (Depth != 0)
966       // TODO: Just compute the UndefElts information recursively.
967       return nullptr;
968
969     // Conservatively assume that all elements are needed.
970     DemandedElts = EltMask;
971   }
972
973   Instruction *I = dyn_cast<Instruction>(V);
974   if (!I) return nullptr;        // Only analyze instructions.
975
976   bool MadeChange = false;
977   APInt UndefElts2(VWidth, 0);
978   APInt UndefElts3(VWidth, 0);
979   Value *TmpV;
980   switch (I->getOpcode()) {
981   default: break;
982
983   case Instruction::InsertElement: {
984     // If this is a variable index, we don't know which element it overwrites.
985     // demand exactly the same input as we produce.
986     ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
987     if (!Idx) {
988       // Note that we can't propagate undef elt info, because we don't know
989       // which elt is getting updated.
990       TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
991                                         UndefElts2, Depth + 1);
992       if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
993       break;
994     }
995
996     // If this is inserting an element that isn't demanded, remove this
997     // insertelement.
998     unsigned IdxNo = Idx->getZExtValue();
999     if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
1000       Worklist.Add(I);
1001       return I->getOperand(0);
1002     }
1003
1004     // Otherwise, the element inserted overwrites whatever was there, so the
1005     // input demanded set is simpler than the output set.
1006     APInt DemandedElts2 = DemandedElts;
1007     DemandedElts2.clearBit(IdxNo);
1008     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2,
1009                                       UndefElts, Depth + 1);
1010     if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1011
1012     // The inserted element is defined.
1013     UndefElts.clearBit(IdxNo);
1014     break;
1015   }
1016   case Instruction::ShuffleVector: {
1017     ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
1018     unsigned LHSVWidth =
1019       Shuffle->getOperand(0)->getType()->getVectorNumElements();
1020     APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0);
1021     for (unsigned i = 0; i < VWidth; i++) {
1022       if (DemandedElts[i]) {
1023         unsigned MaskVal = Shuffle->getMaskValue(i);
1024         if (MaskVal != -1u) {
1025           assert(MaskVal < LHSVWidth * 2 &&
1026                  "shufflevector mask index out of range!");
1027           if (MaskVal < LHSVWidth)
1028             LeftDemanded.setBit(MaskVal);
1029           else
1030             RightDemanded.setBit(MaskVal - LHSVWidth);
1031         }
1032       }
1033     }
1034
1035     APInt LHSUndefElts(LHSVWidth, 0);
1036     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
1037                                       LHSUndefElts, Depth + 1);
1038     if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1039
1040     APInt RHSUndefElts(LHSVWidth, 0);
1041     TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
1042                                       RHSUndefElts, Depth + 1);
1043     if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1044
1045     bool NewUndefElts = false;
1046     unsigned LHSIdx = -1u, LHSValIdx = -1u;
1047     unsigned RHSIdx = -1u, RHSValIdx = -1u;
1048     bool LHSUniform = true;
1049     bool RHSUniform = true;
1050     for (unsigned i = 0; i < VWidth; i++) {
1051       unsigned MaskVal = Shuffle->getMaskValue(i);
1052       if (MaskVal == -1u) {
1053         UndefElts.setBit(i);
1054       } else if (!DemandedElts[i]) {
1055         NewUndefElts = true;
1056         UndefElts.setBit(i);
1057       } else if (MaskVal < LHSVWidth) {
1058         if (LHSUndefElts[MaskVal]) {
1059           NewUndefElts = true;
1060           UndefElts.setBit(i);
1061         } else {
1062           LHSIdx = LHSIdx == -1u ? i : LHSVWidth;
1063           LHSValIdx = LHSValIdx == -1u ? MaskVal : LHSVWidth;
1064           LHSUniform = LHSUniform && (MaskVal == i);
1065         }
1066       } else {
1067         if (RHSUndefElts[MaskVal - LHSVWidth]) {
1068           NewUndefElts = true;
1069           UndefElts.setBit(i);
1070         } else {
1071           RHSIdx = RHSIdx == -1u ? i : LHSVWidth;
1072           RHSValIdx = RHSValIdx == -1u ? MaskVal - LHSVWidth : LHSVWidth;
1073           RHSUniform = RHSUniform && (MaskVal - LHSVWidth == i);
1074         }
1075       }
1076     }
1077
1078     // Try to transform shuffle with constant vector and single element from
1079     // this constant vector to single insertelement instruction.
1080     // shufflevector V, C, <v1, v2, .., ci, .., vm> ->
1081     // insertelement V, C[ci], ci-n
1082     if (LHSVWidth == Shuffle->getType()->getNumElements()) {
1083       Value *Op = nullptr;
1084       Constant *Value = nullptr;
1085       unsigned Idx = -1u;
1086
1087       // Find constant vector with the single element in shuffle (LHS or RHS).
1088       if (LHSIdx < LHSVWidth && RHSUniform) {
1089         if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) {
1090           Op = Shuffle->getOperand(1);
1091           Value = CV->getOperand(LHSValIdx);
1092           Idx = LHSIdx;
1093         }
1094       }
1095       if (RHSIdx < LHSVWidth && LHSUniform) {
1096         if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) {
1097           Op = Shuffle->getOperand(0);
1098           Value = CV->getOperand(RHSValIdx);
1099           Idx = RHSIdx;
1100         }
1101       }
1102       // Found constant vector with single element - convert to insertelement.
1103       if (Op && Value) {
1104         Instruction *New = InsertElementInst::Create(
1105             Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx),
1106             Shuffle->getName());
1107         InsertNewInstWith(New, *Shuffle);
1108         return New;
1109       }
1110     }
1111     if (NewUndefElts) {
1112       // Add additional discovered undefs.
1113       SmallVector<Constant*, 16> Elts;
1114       for (unsigned i = 0; i < VWidth; ++i) {
1115         if (UndefElts[i])
1116           Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext())));
1117         else
1118           Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()),
1119                                           Shuffle->getMaskValue(i)));
1120       }
1121       I->setOperand(2, ConstantVector::get(Elts));
1122       MadeChange = true;
1123     }
1124     break;
1125   }
1126   case Instruction::Select: {
1127     APInt LeftDemanded(DemandedElts), RightDemanded(DemandedElts);
1128     if (ConstantVector* CV = dyn_cast<ConstantVector>(I->getOperand(0))) {
1129       for (unsigned i = 0; i < VWidth; i++) {
1130         Constant *CElt = CV->getAggregateElement(i);
1131         // Method isNullValue always returns false when called on a
1132         // ConstantExpr. If CElt is a ConstantExpr then skip it in order to
1133         // to avoid propagating incorrect information.
1134         if (isa<ConstantExpr>(CElt))
1135           continue;
1136         if (CElt->isNullValue())
1137           LeftDemanded.clearBit(i);
1138         else
1139           RightDemanded.clearBit(i);
1140       }
1141     }
1142
1143     TmpV = SimplifyDemandedVectorElts(I->getOperand(1), LeftDemanded, UndefElts,
1144                                       Depth + 1);
1145     if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1146
1147     TmpV = SimplifyDemandedVectorElts(I->getOperand(2), RightDemanded,
1148                                       UndefElts2, Depth + 1);
1149     if (TmpV) { I->setOperand(2, TmpV); MadeChange = true; }
1150
1151     // Output elements are undefined if both are undefined.
1152     UndefElts &= UndefElts2;
1153     break;
1154   }
1155   case Instruction::BitCast: {
1156     // Vector->vector casts only.
1157     VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1158     if (!VTy) break;
1159     unsigned InVWidth = VTy->getNumElements();
1160     APInt InputDemandedElts(InVWidth, 0);
1161     UndefElts2 = APInt(InVWidth, 0);
1162     unsigned Ratio;
1163
1164     if (VWidth == InVWidth) {
1165       // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1166       // elements as are demanded of us.
1167       Ratio = 1;
1168       InputDemandedElts = DemandedElts;
1169     } else if ((VWidth % InVWidth) == 0) {
1170       // If the number of elements in the output is a multiple of the number of
1171       // elements in the input then an input element is live if any of the
1172       // corresponding output elements are live.
1173       Ratio = VWidth / InVWidth;
1174       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1175         if (DemandedElts[OutIdx])
1176           InputDemandedElts.setBit(OutIdx / Ratio);
1177     } else if ((InVWidth % VWidth) == 0) {
1178       // If the number of elements in the input is a multiple of the number of
1179       // elements in the output then an input element is live if the
1180       // corresponding output element is live.
1181       Ratio = InVWidth / VWidth;
1182       for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1183         if (DemandedElts[InIdx / Ratio])
1184           InputDemandedElts.setBit(InIdx);
1185     } else {
1186       // Unsupported so far.
1187       break;
1188     }
1189
1190     // div/rem demand all inputs, because they don't want divide by zero.
1191     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
1192                                       UndefElts2, Depth + 1);
1193     if (TmpV) {
1194       I->setOperand(0, TmpV);
1195       MadeChange = true;
1196     }
1197
1198     if (VWidth == InVWidth) {
1199       UndefElts = UndefElts2;
1200     } else if ((VWidth % InVWidth) == 0) {
1201       // If the number of elements in the output is a multiple of the number of
1202       // elements in the input then an output element is undef if the
1203       // corresponding input element is undef.
1204       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1205         if (UndefElts2[OutIdx / Ratio])
1206           UndefElts.setBit(OutIdx);
1207     } else if ((InVWidth % VWidth) == 0) {
1208       // If the number of elements in the input is a multiple of the number of
1209       // elements in the output then an output element is undef if all of the
1210       // corresponding input elements are undef.
1211       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1212         APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio);
1213         if (SubUndef.countPopulation() == Ratio)
1214           UndefElts.setBit(OutIdx);
1215       }
1216     } else {
1217       llvm_unreachable("Unimp");
1218     }
1219     break;
1220   }
1221   case Instruction::And:
1222   case Instruction::Or:
1223   case Instruction::Xor:
1224   case Instruction::Add:
1225   case Instruction::Sub:
1226   case Instruction::Mul:
1227     // div/rem demand all inputs, because they don't want divide by zero.
1228     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts,
1229                                       Depth + 1);
1230     if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1231     TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
1232                                       UndefElts2, Depth + 1);
1233     if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1234
1235     // Output elements are undefined if both are undefined.  Consider things
1236     // like undef&0.  The result is known zero, not undef.
1237     UndefElts &= UndefElts2;
1238     break;
1239   case Instruction::FPTrunc:
1240   case Instruction::FPExt:
1241     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts,
1242                                       Depth + 1);
1243     if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1244     break;
1245
1246   case Instruction::Call: {
1247     IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1248     if (!II) break;
1249     switch (II->getIntrinsicID()) {
1250     default: break;
1251
1252     case Intrinsic::x86_xop_vfrcz_ss:
1253     case Intrinsic::x86_xop_vfrcz_sd:
1254       // The instructions for these intrinsics are speced to zero upper bits not
1255       // pass them through like other scalar intrinsics. So we shouldn't just
1256       // use Arg0 if DemandedElts[0] is clear like we do for other intrinsics.
1257       // Instead we should return a zero vector.
1258       if (!DemandedElts[0]) {
1259         Worklist.Add(II);
1260         return ConstantAggregateZero::get(II->getType());
1261       }
1262
1263       // Only the lower element is used.
1264       DemandedElts = 1;
1265       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1266                                         UndefElts, Depth + 1);
1267       if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1268
1269       // Only the lower element is undefined. The high elements are zero.
1270       UndefElts = UndefElts[0];
1271       break;
1272
1273     // Unary scalar-as-vector operations that work column-wise.
1274     case Intrinsic::x86_sse_rcp_ss:
1275     case Intrinsic::x86_sse_rsqrt_ss:
1276     case Intrinsic::x86_sse_sqrt_ss:
1277     case Intrinsic::x86_sse2_sqrt_sd:
1278       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1279                                         UndefElts, Depth + 1);
1280       if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1281
1282       // If lowest element of a scalar op isn't used then use Arg0.
1283       if (!DemandedElts[0]) {
1284         Worklist.Add(II);
1285         return II->getArgOperand(0);
1286       }
1287       // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions
1288       // checks).
1289       break;
1290
1291     // Binary scalar-as-vector operations that work column-wise. The high
1292     // elements come from operand 0. The low element is a function of both
1293     // operands.
1294     case Intrinsic::x86_sse_min_ss:
1295     case Intrinsic::x86_sse_max_ss:
1296     case Intrinsic::x86_sse_cmp_ss:
1297     case Intrinsic::x86_sse2_min_sd:
1298     case Intrinsic::x86_sse2_max_sd:
1299     case Intrinsic::x86_sse2_cmp_sd: {
1300       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1301                                         UndefElts, Depth + 1);
1302       if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1303
1304       // If lowest element of a scalar op isn't used then use Arg0.
1305       if (!DemandedElts[0]) {
1306         Worklist.Add(II);
1307         return II->getArgOperand(0);
1308       }
1309
1310       // Only lower element is used for operand 1.
1311       DemandedElts = 1;
1312       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1313                                         UndefElts2, Depth + 1);
1314       if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1315
1316       // Lower element is undefined if both lower elements are undefined.
1317       // Consider things like undef&0.  The result is known zero, not undef.
1318       if (!UndefElts2[0])
1319         UndefElts.clearBit(0);
1320
1321       break;
1322     }
1323
1324     // Binary scalar-as-vector operations that work column-wise. The high
1325     // elements come from operand 0 and the low element comes from operand 1.
1326     case Intrinsic::x86_sse41_round_ss:
1327     case Intrinsic::x86_sse41_round_sd: {
1328       // Don't use the low element of operand 0.
1329       APInt DemandedElts2 = DemandedElts;
1330       DemandedElts2.clearBit(0);
1331       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts2,
1332                                         UndefElts, Depth + 1);
1333       if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1334
1335       // If lowest element of a scalar op isn't used then use Arg0.
1336       if (!DemandedElts[0]) {
1337         Worklist.Add(II);
1338         return II->getArgOperand(0);
1339       }
1340
1341       // Only lower element is used for operand 1.
1342       DemandedElts = 1;
1343       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1344                                         UndefElts2, Depth + 1);
1345       if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1346
1347       // Take the high undef elements from operand 0 and take the lower element
1348       // from operand 1.
1349       UndefElts.clearBit(0);
1350       UndefElts |= UndefElts2[0];
1351       break;
1352     }
1353
1354     // Three input scalar-as-vector operations that work column-wise. The high
1355     // elements come from operand 0 and the low element is a function of all
1356     // three inputs.
1357     case Intrinsic::x86_avx512_mask_add_ss_round:
1358     case Intrinsic::x86_avx512_mask_div_ss_round:
1359     case Intrinsic::x86_avx512_mask_mul_ss_round:
1360     case Intrinsic::x86_avx512_mask_sub_ss_round:
1361     case Intrinsic::x86_avx512_mask_max_ss_round:
1362     case Intrinsic::x86_avx512_mask_min_ss_round:
1363     case Intrinsic::x86_avx512_mask_add_sd_round:
1364     case Intrinsic::x86_avx512_mask_div_sd_round:
1365     case Intrinsic::x86_avx512_mask_mul_sd_round:
1366     case Intrinsic::x86_avx512_mask_sub_sd_round:
1367     case Intrinsic::x86_avx512_mask_max_sd_round:
1368     case Intrinsic::x86_avx512_mask_min_sd_round:
1369     case Intrinsic::x86_fma_vfmadd_ss:
1370     case Intrinsic::x86_fma_vfmsub_ss:
1371     case Intrinsic::x86_fma_vfnmadd_ss:
1372     case Intrinsic::x86_fma_vfnmsub_ss:
1373     case Intrinsic::x86_fma_vfmadd_sd:
1374     case Intrinsic::x86_fma_vfmsub_sd:
1375     case Intrinsic::x86_fma_vfnmadd_sd:
1376     case Intrinsic::x86_fma_vfnmsub_sd:
1377     case Intrinsic::x86_avx512_mask_vfmadd_ss:
1378     case Intrinsic::x86_avx512_mask_vfmadd_sd:
1379     case Intrinsic::x86_avx512_maskz_vfmadd_ss:
1380     case Intrinsic::x86_avx512_maskz_vfmadd_sd:
1381       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1382                                         UndefElts, Depth + 1);
1383       if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1384
1385       // If lowest element of a scalar op isn't used then use Arg0.
1386       if (!DemandedElts[0]) {
1387         Worklist.Add(II);
1388         return II->getArgOperand(0);
1389       }
1390
1391       // Only lower element is used for operand 1 and 2.
1392       DemandedElts = 1;
1393       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1394                                         UndefElts2, Depth + 1);
1395       if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1396       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(2), DemandedElts,
1397                                         UndefElts3, Depth + 1);
1398       if (TmpV) { II->setArgOperand(2, TmpV); MadeChange = true; }
1399
1400       // Lower element is undefined if all three lower elements are undefined.
1401       // Consider things like undef&0.  The result is known zero, not undef.
1402       if (!UndefElts2[0] || !UndefElts3[0])
1403         UndefElts.clearBit(0);
1404
1405       break;
1406
1407     case Intrinsic::x86_avx512_mask3_vfmadd_ss:
1408     case Intrinsic::x86_avx512_mask3_vfmadd_sd:
1409     case Intrinsic::x86_avx512_mask3_vfmsub_ss:
1410     case Intrinsic::x86_avx512_mask3_vfmsub_sd:
1411     case Intrinsic::x86_avx512_mask3_vfnmsub_ss:
1412     case Intrinsic::x86_avx512_mask3_vfnmsub_sd:
1413       // These intrinsics get the passthru bits from operand 2.
1414       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(2), DemandedElts,
1415                                         UndefElts, Depth + 1);
1416       if (TmpV) { II->setArgOperand(2, TmpV); MadeChange = true; }
1417
1418       // If lowest element of a scalar op isn't used then use Arg2.
1419       if (!DemandedElts[0]) {
1420         Worklist.Add(II);
1421         return II->getArgOperand(2);
1422       }
1423
1424       // Only lower element is used for operand 0 and 1.
1425       DemandedElts = 1;
1426       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1427                                         UndefElts2, Depth + 1);
1428       if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1429       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1430                                         UndefElts3, Depth + 1);
1431       if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1432
1433       // Lower element is undefined if all three lower elements are undefined.
1434       // Consider things like undef&0.  The result is known zero, not undef.
1435       if (!UndefElts2[0] || !UndefElts3[0])
1436         UndefElts.clearBit(0);
1437
1438       break;
1439
1440     case Intrinsic::x86_sse2_pmulu_dq:
1441     case Intrinsic::x86_sse41_pmuldq:
1442     case Intrinsic::x86_avx2_pmul_dq:
1443     case Intrinsic::x86_avx2_pmulu_dq:
1444     case Intrinsic::x86_avx512_pmul_dq_512:
1445     case Intrinsic::x86_avx512_pmulu_dq_512: {
1446       Value *Op0 = II->getArgOperand(0);
1447       Value *Op1 = II->getArgOperand(1);
1448       unsigned InnerVWidth = Op0->getType()->getVectorNumElements();
1449       assert((VWidth * 2) == InnerVWidth && "Unexpected input size");
1450
1451       APInt InnerDemandedElts(InnerVWidth, 0);
1452       for (unsigned i = 0; i != VWidth; ++i)
1453         if (DemandedElts[i])
1454           InnerDemandedElts.setBit(i * 2);
1455
1456       UndefElts2 = APInt(InnerVWidth, 0);
1457       TmpV = SimplifyDemandedVectorElts(Op0, InnerDemandedElts, UndefElts2,
1458                                         Depth + 1);
1459       if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1460
1461       UndefElts3 = APInt(InnerVWidth, 0);
1462       TmpV = SimplifyDemandedVectorElts(Op1, InnerDemandedElts, UndefElts3,
1463                                         Depth + 1);
1464       if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1465
1466       break;
1467     }
1468
1469     case Intrinsic::x86_sse2_packssdw_128:
1470     case Intrinsic::x86_sse2_packsswb_128:
1471     case Intrinsic::x86_sse2_packuswb_128:
1472     case Intrinsic::x86_sse41_packusdw:
1473     case Intrinsic::x86_avx2_packssdw:
1474     case Intrinsic::x86_avx2_packsswb:
1475     case Intrinsic::x86_avx2_packusdw:
1476     case Intrinsic::x86_avx2_packuswb:
1477     case Intrinsic::x86_avx512_packssdw_512:
1478     case Intrinsic::x86_avx512_packsswb_512:
1479     case Intrinsic::x86_avx512_packusdw_512:
1480     case Intrinsic::x86_avx512_packuswb_512: {
1481       auto *Ty0 = II->getArgOperand(0)->getType();
1482       unsigned InnerVWidth = Ty0->getVectorNumElements();
1483       assert(VWidth == (InnerVWidth * 2) && "Unexpected input size");
1484
1485       unsigned NumLanes = Ty0->getPrimitiveSizeInBits() / 128;
1486       unsigned VWidthPerLane = VWidth / NumLanes;
1487       unsigned InnerVWidthPerLane = InnerVWidth / NumLanes;
1488
1489       // Per lane, pack the elements of the first input and then the second.
1490       // e.g.
1491       // v8i16 PACK(v4i32 X, v4i32 Y) - (X[0..3],Y[0..3])
1492       // v32i8 PACK(v16i16 X, v16i16 Y) - (X[0..7],Y[0..7]),(X[8..15],Y[8..15])
1493       for (int OpNum = 0; OpNum != 2; ++OpNum) {
1494         APInt OpDemandedElts(InnerVWidth, 0);
1495         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1496           unsigned LaneIdx = Lane * VWidthPerLane;
1497           for (unsigned Elt = 0; Elt != InnerVWidthPerLane; ++Elt) {
1498             unsigned Idx = LaneIdx + Elt + InnerVWidthPerLane * OpNum;
1499             if (DemandedElts[Idx])
1500               OpDemandedElts.setBit((Lane * InnerVWidthPerLane) + Elt);
1501           }
1502         }
1503
1504         // Demand elements from the operand.
1505         auto *Op = II->getArgOperand(OpNum);
1506         APInt OpUndefElts(InnerVWidth, 0);
1507         TmpV = SimplifyDemandedVectorElts(Op, OpDemandedElts, OpUndefElts,
1508                                           Depth + 1);
1509         if (TmpV) {
1510           II->setArgOperand(OpNum, TmpV);
1511           MadeChange = true;
1512         }
1513
1514         // Pack the operand's UNDEF elements, one lane at a time.
1515         OpUndefElts = OpUndefElts.zext(VWidth);
1516         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1517           APInt LaneElts = OpUndefElts.lshr(InnerVWidthPerLane * Lane);
1518           LaneElts = LaneElts.getLoBits(InnerVWidthPerLane);
1519           LaneElts <<= InnerVWidthPerLane * (2 * Lane + OpNum);
1520           UndefElts |= LaneElts;
1521         }
1522       }
1523       break;
1524     }
1525
1526     // PSHUFB
1527     case Intrinsic::x86_ssse3_pshuf_b_128:
1528     case Intrinsic::x86_avx2_pshuf_b:
1529     case Intrinsic::x86_avx512_pshuf_b_512:
1530     // PERMILVAR
1531     case Intrinsic::x86_avx_vpermilvar_ps:
1532     case Intrinsic::x86_avx_vpermilvar_ps_256:
1533     case Intrinsic::x86_avx512_vpermilvar_ps_512:
1534     case Intrinsic::x86_avx_vpermilvar_pd:
1535     case Intrinsic::x86_avx_vpermilvar_pd_256:
1536     case Intrinsic::x86_avx512_vpermilvar_pd_512:
1537     // PERMV
1538     case Intrinsic::x86_avx2_permd:
1539     case Intrinsic::x86_avx2_permps: {
1540       Value *Op1 = II->getArgOperand(1);
1541       TmpV = SimplifyDemandedVectorElts(Op1, DemandedElts, UndefElts,
1542                                         Depth + 1);
1543       if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1544       break;
1545     }
1546
1547     // SSE4A instructions leave the upper 64-bits of the 128-bit result
1548     // in an undefined state.
1549     case Intrinsic::x86_sse4a_extrq:
1550     case Intrinsic::x86_sse4a_extrqi:
1551     case Intrinsic::x86_sse4a_insertq:
1552     case Intrinsic::x86_sse4a_insertqi:
1553       UndefElts.setHighBits(VWidth / 2);
1554       break;
1555     case Intrinsic::amdgcn_buffer_load:
1556     case Intrinsic::amdgcn_buffer_load_format:
1557     case Intrinsic::amdgcn_image_sample:
1558     case Intrinsic::amdgcn_image_sample_cl:
1559     case Intrinsic::amdgcn_image_sample_d:
1560     case Intrinsic::amdgcn_image_sample_d_cl:
1561     case Intrinsic::amdgcn_image_sample_l:
1562     case Intrinsic::amdgcn_image_sample_b:
1563     case Intrinsic::amdgcn_image_sample_b_cl:
1564     case Intrinsic::amdgcn_image_sample_lz:
1565     case Intrinsic::amdgcn_image_sample_cd:
1566     case Intrinsic::amdgcn_image_sample_cd_cl:
1567
1568     case Intrinsic::amdgcn_image_sample_c:
1569     case Intrinsic::amdgcn_image_sample_c_cl:
1570     case Intrinsic::amdgcn_image_sample_c_d:
1571     case Intrinsic::amdgcn_image_sample_c_d_cl:
1572     case Intrinsic::amdgcn_image_sample_c_l:
1573     case Intrinsic::amdgcn_image_sample_c_b:
1574     case Intrinsic::amdgcn_image_sample_c_b_cl:
1575     case Intrinsic::amdgcn_image_sample_c_lz:
1576     case Intrinsic::amdgcn_image_sample_c_cd:
1577     case Intrinsic::amdgcn_image_sample_c_cd_cl:
1578
1579     case Intrinsic::amdgcn_image_sample_o:
1580     case Intrinsic::amdgcn_image_sample_cl_o:
1581     case Intrinsic::amdgcn_image_sample_d_o:
1582     case Intrinsic::amdgcn_image_sample_d_cl_o:
1583     case Intrinsic::amdgcn_image_sample_l_o:
1584     case Intrinsic::amdgcn_image_sample_b_o:
1585     case Intrinsic::amdgcn_image_sample_b_cl_o:
1586     case Intrinsic::amdgcn_image_sample_lz_o:
1587     case Intrinsic::amdgcn_image_sample_cd_o:
1588     case Intrinsic::amdgcn_image_sample_cd_cl_o:
1589
1590     case Intrinsic::amdgcn_image_sample_c_o:
1591     case Intrinsic::amdgcn_image_sample_c_cl_o:
1592     case Intrinsic::amdgcn_image_sample_c_d_o:
1593     case Intrinsic::amdgcn_image_sample_c_d_cl_o:
1594     case Intrinsic::amdgcn_image_sample_c_l_o:
1595     case Intrinsic::amdgcn_image_sample_c_b_o:
1596     case Intrinsic::amdgcn_image_sample_c_b_cl_o:
1597     case Intrinsic::amdgcn_image_sample_c_lz_o:
1598     case Intrinsic::amdgcn_image_sample_c_cd_o:
1599     case Intrinsic::amdgcn_image_sample_c_cd_cl_o:
1600
1601     case Intrinsic::amdgcn_image_getlod: {
1602       if (VWidth == 1 || !DemandedElts.isMask())
1603         return nullptr;
1604
1605       // TODO: Handle 3 vectors when supported in code gen.
1606       unsigned NewNumElts = PowerOf2Ceil(DemandedElts.countTrailingOnes());
1607       if (NewNumElts == VWidth)
1608         return nullptr;
1609
1610       Module *M = II->getParent()->getParent()->getParent();
1611       Type *EltTy = V->getType()->getVectorElementType();
1612
1613       Type *NewTy = (NewNumElts == 1) ? EltTy :
1614         VectorType::get(EltTy, NewNumElts);
1615
1616       auto IID = II->getIntrinsicID();
1617
1618       bool IsBuffer = IID == Intrinsic::amdgcn_buffer_load ||
1619                       IID == Intrinsic::amdgcn_buffer_load_format;
1620
1621       Function *NewIntrin = IsBuffer ?
1622         Intrinsic::getDeclaration(M, IID, NewTy) :
1623         // Samplers have 3 mangled types.
1624         Intrinsic::getDeclaration(M, IID,
1625                                   { NewTy, II->getArgOperand(0)->getType(),
1626                                       II->getArgOperand(1)->getType()});
1627
1628       SmallVector<Value *, 5> Args;
1629       for (unsigned I = 0, E = II->getNumArgOperands(); I != E; ++I)
1630         Args.push_back(II->getArgOperand(I));
1631
1632       IRBuilderBase::InsertPointGuard Guard(Builder);
1633       Builder.SetInsertPoint(II);
1634
1635       CallInst *NewCall = Builder.CreateCall(NewIntrin, Args);
1636       NewCall->takeName(II);
1637       NewCall->copyMetadata(*II);
1638
1639       if (!IsBuffer) {
1640         ConstantInt *DMask = dyn_cast<ConstantInt>(NewCall->getArgOperand(3));
1641         if (DMask) {
1642           unsigned DMaskVal = DMask->getZExtValue() & 0xf;
1643
1644           unsigned PopCnt = 0;
1645           unsigned NewDMask = 0;
1646           for (unsigned I = 0; I < 4; ++I) {
1647             const unsigned Bit = 1 << I;
1648             if (!!(DMaskVal & Bit)) {
1649               if (++PopCnt > NewNumElts)
1650                 break;
1651
1652               NewDMask |= Bit;
1653             }
1654           }
1655
1656           NewCall->setArgOperand(3, ConstantInt::get(DMask->getType(), NewDMask));
1657         }
1658       }
1659
1660
1661       if (NewNumElts == 1) {
1662         return Builder.CreateInsertElement(UndefValue::get(V->getType()),
1663                                            NewCall, static_cast<uint64_t>(0));
1664       }
1665
1666       SmallVector<uint32_t, 8> EltMask;
1667       for (unsigned I = 0; I < VWidth; ++I)
1668         EltMask.push_back(I);
1669
1670       Value *Shuffle = Builder.CreateShuffleVector(
1671         NewCall, UndefValue::get(NewTy), EltMask);
1672
1673       MadeChange = true;
1674       return Shuffle;
1675     }
1676     }
1677     break;
1678   }
1679   }
1680   return MadeChange ? I : nullptr;
1681 }