]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/InstCombine/InstCombineVectorOps.cpp
Update tcpdump to 4.9.2
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / InstCombine / InstCombineVectorOps.cpp
1 //===- InstCombineVectorOps.cpp -------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements instcombine for ExtractElement, InsertElement and
11 // ShuffleVector.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "InstCombineInternal.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/Analysis/InstructionSimplify.h"
18 #include "llvm/Analysis/VectorUtils.h"
19 #include "llvm/IR/PatternMatch.h"
20 using namespace llvm;
21 using namespace PatternMatch;
22
23 #define DEBUG_TYPE "instcombine"
24
25 /// Return true if the value is cheaper to scalarize than it is to leave as a
26 /// vector operation. isConstant indicates whether we're extracting one known
27 /// element. If false we're extracting a variable index.
28 static bool cheapToScalarize(Value *V, bool isConstant) {
29   if (Constant *C = dyn_cast<Constant>(V)) {
30     if (isConstant) return true;
31
32     // If all elts are the same, we can extract it and use any of the values.
33     if (Constant *Op0 = C->getAggregateElement(0U)) {
34       for (unsigned i = 1, e = V->getType()->getVectorNumElements(); i != e;
35            ++i)
36         if (C->getAggregateElement(i) != Op0)
37           return false;
38       return true;
39     }
40   }
41   Instruction *I = dyn_cast<Instruction>(V);
42   if (!I) return false;
43
44   // Insert element gets simplified to the inserted element or is deleted if
45   // this is constant idx extract element and its a constant idx insertelt.
46   if (I->getOpcode() == Instruction::InsertElement && isConstant &&
47       isa<ConstantInt>(I->getOperand(2)))
48     return true;
49   if (I->getOpcode() == Instruction::Load && I->hasOneUse())
50     return true;
51   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
52     if (BO->hasOneUse() &&
53         (cheapToScalarize(BO->getOperand(0), isConstant) ||
54          cheapToScalarize(BO->getOperand(1), isConstant)))
55       return true;
56   if (CmpInst *CI = dyn_cast<CmpInst>(I))
57     if (CI->hasOneUse() &&
58         (cheapToScalarize(CI->getOperand(0), isConstant) ||
59          cheapToScalarize(CI->getOperand(1), isConstant)))
60       return true;
61
62   return false;
63 }
64
65 // If we have a PHI node with a vector type that is only used to feed
66 // itself and be an operand of extractelement at a constant location,
67 // try to replace the PHI of the vector type with a PHI of a scalar type.
68 Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) {
69   SmallVector<Instruction *, 2> Extracts;
70   // The users we want the PHI to have are:
71   // 1) The EI ExtractElement (we already know this)
72   // 2) Possibly more ExtractElements with the same index.
73   // 3) Another operand, which will feed back into the PHI.
74   Instruction *PHIUser = nullptr;
75   for (auto U : PN->users()) {
76     if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) {
77       if (EI.getIndexOperand() == EU->getIndexOperand())
78         Extracts.push_back(EU);
79       else
80         return nullptr;
81     } else if (!PHIUser) {
82       PHIUser = cast<Instruction>(U);
83     } else {
84       return nullptr;
85     }
86   }
87
88   if (!PHIUser)
89     return nullptr;
90
91   // Verify that this PHI user has one use, which is the PHI itself,
92   // and that it is a binary operation which is cheap to scalarize.
93   // otherwise return NULL.
94   if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) ||
95       !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true))
96     return nullptr;
97
98   // Create a scalar PHI node that will replace the vector PHI node
99   // just before the current PHI node.
100   PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
101       PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN));
102   // Scalarize each PHI operand.
103   for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
104     Value *PHIInVal = PN->getIncomingValue(i);
105     BasicBlock *inBB = PN->getIncomingBlock(i);
106     Value *Elt = EI.getIndexOperand();
107     // If the operand is the PHI induction variable:
108     if (PHIInVal == PHIUser) {
109       // Scalarize the binary operation. Its first operand is the
110       // scalar PHI, and the second operand is extracted from the other
111       // vector operand.
112       BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
113       unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
114       Value *Op = InsertNewInstWith(
115           ExtractElementInst::Create(B0->getOperand(opId), Elt,
116                                      B0->getOperand(opId)->getName() + ".Elt"),
117           *B0);
118       Value *newPHIUser = InsertNewInstWith(
119           BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(),
120                                                 scalarPHI, Op, B0), *B0);
121       scalarPHI->addIncoming(newPHIUser, inBB);
122     } else {
123       // Scalarize PHI input:
124       Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
125       // Insert the new instruction into the predecessor basic block.
126       Instruction *pos = dyn_cast<Instruction>(PHIInVal);
127       BasicBlock::iterator InsertPos;
128       if (pos && !isa<PHINode>(pos)) {
129         InsertPos = ++pos->getIterator();
130       } else {
131         InsertPos = inBB->getFirstInsertionPt();
132       }
133
134       InsertNewInstWith(newEI, *InsertPos);
135
136       scalarPHI->addIncoming(newEI, inBB);
137     }
138   }
139
140   for (auto E : Extracts)
141     replaceInstUsesWith(*E, scalarPHI);
142
143   return &EI;
144 }
145
146 Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
147   if (Value *V = SimplifyExtractElementInst(EI.getVectorOperand(),
148                                             EI.getIndexOperand(),
149                                             SQ.getWithInstruction(&EI)))
150     return replaceInstUsesWith(EI, V);
151
152   // If vector val is constant with all elements the same, replace EI with
153   // that element.  We handle a known element # below.
154   if (Constant *C = dyn_cast<Constant>(EI.getOperand(0)))
155     if (cheapToScalarize(C, false))
156       return replaceInstUsesWith(EI, C->getAggregateElement(0U));
157
158   // If extracting a specified index from the vector, see if we can recursively
159   // find a previously computed scalar that was inserted into the vector.
160   if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
161     unsigned IndexVal = IdxC->getZExtValue();
162     unsigned VectorWidth = EI.getVectorOperandType()->getNumElements();
163
164     // InstSimplify handles cases where the index is invalid.
165     assert(IndexVal < VectorWidth);
166
167     // This instruction only demands the single element from the input vector.
168     // If the input vector has a single use, simplify it based on this use
169     // property.
170     if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) {
171       APInt UndefElts(VectorWidth, 0);
172       APInt DemandedMask(VectorWidth, 0);
173       DemandedMask.setBit(IndexVal);
174       if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0), DemandedMask,
175                                                 UndefElts)) {
176         EI.setOperand(0, V);
177         return &EI;
178       }
179     }
180
181     // If this extractelement is directly using a bitcast from a vector of
182     // the same number of elements, see if we can find the source element from
183     // it.  In this case, we will end up needing to bitcast the scalars.
184     if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) {
185       if (VectorType *VT = dyn_cast<VectorType>(BCI->getOperand(0)->getType()))
186         if (VT->getNumElements() == VectorWidth)
187           if (Value *Elt = findScalarElement(BCI->getOperand(0), IndexVal))
188             return new BitCastInst(Elt, EI.getType());
189     }
190
191     // If there's a vector PHI feeding a scalar use through this extractelement
192     // instruction, try to scalarize the PHI.
193     if (PHINode *PN = dyn_cast<PHINode>(EI.getOperand(0))) {
194       Instruction *scalarPHI = scalarizePHI(EI, PN);
195       if (scalarPHI)
196         return scalarPHI;
197     }
198   }
199
200   if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
201     // Push extractelement into predecessor operation if legal and
202     // profitable to do so.
203     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
204       if (I->hasOneUse() &&
205           cheapToScalarize(BO, isa<ConstantInt>(EI.getOperand(1)))) {
206         Value *newEI0 =
207           Builder.CreateExtractElement(BO->getOperand(0), EI.getOperand(1),
208                                        EI.getName()+".lhs");
209         Value *newEI1 =
210           Builder.CreateExtractElement(BO->getOperand(1), EI.getOperand(1),
211                                        EI.getName()+".rhs");
212         return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(),
213                                                      newEI0, newEI1, BO);
214       }
215     } else if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
216       // Extracting the inserted element?
217       if (IE->getOperand(2) == EI.getOperand(1))
218         return replaceInstUsesWith(EI, IE->getOperand(1));
219       // If the inserted and extracted elements are constants, they must not
220       // be the same value, extract from the pre-inserted value instead.
221       if (isa<Constant>(IE->getOperand(2)) && isa<Constant>(EI.getOperand(1))) {
222         Worklist.AddValue(EI.getOperand(0));
223         EI.setOperand(0, IE->getOperand(0));
224         return &EI;
225       }
226     } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) {
227       // If this is extracting an element from a shufflevector, figure out where
228       // it came from and extract from the appropriate input element instead.
229       if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) {
230         int SrcIdx = SVI->getMaskValue(Elt->getZExtValue());
231         Value *Src;
232         unsigned LHSWidth =
233           SVI->getOperand(0)->getType()->getVectorNumElements();
234
235         if (SrcIdx < 0)
236           return replaceInstUsesWith(EI, UndefValue::get(EI.getType()));
237         if (SrcIdx < (int)LHSWidth)
238           Src = SVI->getOperand(0);
239         else {
240           SrcIdx -= LHSWidth;
241           Src = SVI->getOperand(1);
242         }
243         Type *Int32Ty = Type::getInt32Ty(EI.getContext());
244         return ExtractElementInst::Create(Src,
245                                           ConstantInt::get(Int32Ty,
246                                                            SrcIdx, false));
247       }
248     } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
249       // Canonicalize extractelement(cast) -> cast(extractelement).
250       // Bitcasts can change the number of vector elements, and they cost
251       // nothing.
252       if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
253         Value *EE = Builder.CreateExtractElement(CI->getOperand(0),
254                                                  EI.getIndexOperand());
255         Worklist.AddValue(EE);
256         return CastInst::Create(CI->getOpcode(), EE, EI.getType());
257       }
258     } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
259       if (SI->hasOneUse()) {
260         // TODO: For a select on vectors, it might be useful to do this if it
261         // has multiple extractelement uses. For vector select, that seems to
262         // fight the vectorizer.
263
264         // If we are extracting an element from a vector select or a select on
265         // vectors, create a select on the scalars extracted from the vector
266         // arguments.
267         Value *TrueVal = SI->getTrueValue();
268         Value *FalseVal = SI->getFalseValue();
269
270         Value *Cond = SI->getCondition();
271         if (Cond->getType()->isVectorTy()) {
272           Cond = Builder.CreateExtractElement(Cond,
273                                               EI.getIndexOperand(),
274                                               Cond->getName() + ".elt");
275         }
276
277         Value *V1Elem
278           = Builder.CreateExtractElement(TrueVal,
279                                          EI.getIndexOperand(),
280                                          TrueVal->getName() + ".elt");
281
282         Value *V2Elem
283           = Builder.CreateExtractElement(FalseVal,
284                                          EI.getIndexOperand(),
285                                          FalseVal->getName() + ".elt");
286         return SelectInst::Create(Cond,
287                                   V1Elem,
288                                   V2Elem,
289                                   SI->getName() + ".elt");
290       }
291     }
292   }
293   return nullptr;
294 }
295
296 /// If V is a shuffle of values that ONLY returns elements from either LHS or
297 /// RHS, return the shuffle mask and true. Otherwise, return false.
298 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
299                                          SmallVectorImpl<Constant*> &Mask) {
300   assert(LHS->getType() == RHS->getType() &&
301          "Invalid CollectSingleShuffleElements");
302   unsigned NumElts = V->getType()->getVectorNumElements();
303
304   if (isa<UndefValue>(V)) {
305     Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
306     return true;
307   }
308
309   if (V == LHS) {
310     for (unsigned i = 0; i != NumElts; ++i)
311       Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
312     return true;
313   }
314
315   if (V == RHS) {
316     for (unsigned i = 0; i != NumElts; ++i)
317       Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()),
318                                       i+NumElts));
319     return true;
320   }
321
322   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
323     // If this is an insert of an extract from some other vector, include it.
324     Value *VecOp    = IEI->getOperand(0);
325     Value *ScalarOp = IEI->getOperand(1);
326     Value *IdxOp    = IEI->getOperand(2);
327
328     if (!isa<ConstantInt>(IdxOp))
329       return false;
330     unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
331
332     if (isa<UndefValue>(ScalarOp)) {  // inserting undef into vector.
333       // We can handle this if the vector we are inserting into is
334       // transitively ok.
335       if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
336         // If so, update the mask to reflect the inserted undef.
337         Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext()));
338         return true;
339       }
340     } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
341       if (isa<ConstantInt>(EI->getOperand(1))) {
342         unsigned ExtractedIdx =
343         cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
344         unsigned NumLHSElts = LHS->getType()->getVectorNumElements();
345
346         // This must be extracting from either LHS or RHS.
347         if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
348           // We can handle this if the vector we are inserting into is
349           // transitively ok.
350           if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
351             // If so, update the mask to reflect the inserted value.
352             if (EI->getOperand(0) == LHS) {
353               Mask[InsertedIdx % NumElts] =
354               ConstantInt::get(Type::getInt32Ty(V->getContext()),
355                                ExtractedIdx);
356             } else {
357               assert(EI->getOperand(0) == RHS);
358               Mask[InsertedIdx % NumElts] =
359               ConstantInt::get(Type::getInt32Ty(V->getContext()),
360                                ExtractedIdx + NumLHSElts);
361             }
362             return true;
363           }
364         }
365       }
366     }
367   }
368
369   return false;
370 }
371
372 /// If we have insertion into a vector that is wider than the vector that we
373 /// are extracting from, try to widen the source vector to allow a single
374 /// shufflevector to replace one or more insert/extract pairs.
375 static void replaceExtractElements(InsertElementInst *InsElt,
376                                    ExtractElementInst *ExtElt,
377                                    InstCombiner &IC) {
378   VectorType *InsVecType = InsElt->getType();
379   VectorType *ExtVecType = ExtElt->getVectorOperandType();
380   unsigned NumInsElts = InsVecType->getVectorNumElements();
381   unsigned NumExtElts = ExtVecType->getVectorNumElements();
382
383   // The inserted-to vector must be wider than the extracted-from vector.
384   if (InsVecType->getElementType() != ExtVecType->getElementType() ||
385       NumExtElts >= NumInsElts)
386     return;
387
388   // Create a shuffle mask to widen the extended-from vector using undefined
389   // values. The mask selects all of the values of the original vector followed
390   // by as many undefined values as needed to create a vector of the same length
391   // as the inserted-to vector.
392   SmallVector<Constant *, 16> ExtendMask;
393   IntegerType *IntType = Type::getInt32Ty(InsElt->getContext());
394   for (unsigned i = 0; i < NumExtElts; ++i)
395     ExtendMask.push_back(ConstantInt::get(IntType, i));
396   for (unsigned i = NumExtElts; i < NumInsElts; ++i)
397     ExtendMask.push_back(UndefValue::get(IntType));
398
399   Value *ExtVecOp = ExtElt->getVectorOperand();
400   auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp);
401   BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
402                                    ? ExtVecOpInst->getParent()
403                                    : ExtElt->getParent();
404
405   // TODO: This restriction matches the basic block check below when creating
406   // new extractelement instructions. If that limitation is removed, this one
407   // could also be removed. But for now, we just bail out to ensure that we
408   // will replace the extractelement instruction that is feeding our
409   // insertelement instruction. This allows the insertelement to then be
410   // replaced by a shufflevector. If the insertelement is not replaced, we can
411   // induce infinite looping because there's an optimization for extractelement
412   // that will delete our widening shuffle. This would trigger another attempt
413   // here to create that shuffle, and we spin forever.
414   if (InsertionBlock != InsElt->getParent())
415     return;
416
417   // TODO: This restriction matches the check in visitInsertElementInst() and
418   // prevents an infinite loop caused by not turning the extract/insert pair
419   // into a shuffle. We really should not need either check, but we're lacking
420   // folds for shufflevectors because we're afraid to generate shuffle masks
421   // that the backend can't handle.
422   if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back()))
423     return;
424
425   auto *WideVec = new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType),
426                                         ConstantVector::get(ExtendMask));
427
428   // Insert the new shuffle after the vector operand of the extract is defined
429   // (as long as it's not a PHI) or at the start of the basic block of the
430   // extract, so any subsequent extracts in the same basic block can use it.
431   // TODO: Insert before the earliest ExtractElementInst that is replaced.
432   if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
433     WideVec->insertAfter(ExtVecOpInst);
434   else
435     IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt());
436
437   // Replace extracts from the original narrow vector with extracts from the new
438   // wide vector.
439   for (User *U : ExtVecOp->users()) {
440     ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U);
441     if (!OldExt || OldExt->getParent() != WideVec->getParent())
442       continue;
443     auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1));
444     NewExt->insertAfter(OldExt);
445     IC.replaceInstUsesWith(*OldExt, NewExt);
446   }
447 }
448
449 /// We are building a shuffle to create V, which is a sequence of insertelement,
450 /// extractelement pairs. If PermittedRHS is set, then we must either use it or
451 /// not rely on the second vector source. Return a std::pair containing the
452 /// left and right vectors of the proposed shuffle (or 0), and set the Mask
453 /// parameter as required.
454 ///
455 /// Note: we intentionally don't try to fold earlier shuffles since they have
456 /// often been chosen carefully to be efficiently implementable on the target.
457 typedef std::pair<Value *, Value *> ShuffleOps;
458
459 static ShuffleOps collectShuffleElements(Value *V,
460                                          SmallVectorImpl<Constant *> &Mask,
461                                          Value *PermittedRHS,
462                                          InstCombiner &IC) {
463   assert(V->getType()->isVectorTy() && "Invalid shuffle!");
464   unsigned NumElts = V->getType()->getVectorNumElements();
465
466   if (isa<UndefValue>(V)) {
467     Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
468     return std::make_pair(
469         PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr);
470   }
471
472   if (isa<ConstantAggregateZero>(V)) {
473     Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0));
474     return std::make_pair(V, nullptr);
475   }
476
477   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
478     // If this is an insert of an extract from some other vector, include it.
479     Value *VecOp    = IEI->getOperand(0);
480     Value *ScalarOp = IEI->getOperand(1);
481     Value *IdxOp    = IEI->getOperand(2);
482
483     if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
484       if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
485         unsigned ExtractedIdx =
486           cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
487         unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
488
489         // Either the extracted from or inserted into vector must be RHSVec,
490         // otherwise we'd end up with a shuffle of three inputs.
491         if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) {
492           Value *RHS = EI->getOperand(0);
493           ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC);
494           assert(LR.second == nullptr || LR.second == RHS);
495
496           if (LR.first->getType() != RHS->getType()) {
497             // Although we are giving up for now, see if we can create extracts
498             // that match the inserts for another round of combining.
499             replaceExtractElements(IEI, EI, IC);
500
501             // We tried our best, but we can't find anything compatible with RHS
502             // further up the chain. Return a trivial shuffle.
503             for (unsigned i = 0; i < NumElts; ++i)
504               Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()), i);
505             return std::make_pair(V, nullptr);
506           }
507
508           unsigned NumLHSElts = RHS->getType()->getVectorNumElements();
509           Mask[InsertedIdx % NumElts] =
510             ConstantInt::get(Type::getInt32Ty(V->getContext()),
511                              NumLHSElts+ExtractedIdx);
512           return std::make_pair(LR.first, RHS);
513         }
514
515         if (VecOp == PermittedRHS) {
516           // We've gone as far as we can: anything on the other side of the
517           // extractelement will already have been converted into a shuffle.
518           unsigned NumLHSElts =
519               EI->getOperand(0)->getType()->getVectorNumElements();
520           for (unsigned i = 0; i != NumElts; ++i)
521             Mask.push_back(ConstantInt::get(
522                 Type::getInt32Ty(V->getContext()),
523                 i == InsertedIdx ? ExtractedIdx : NumLHSElts + i));
524           return std::make_pair(EI->getOperand(0), PermittedRHS);
525         }
526
527         // If this insertelement is a chain that comes from exactly these two
528         // vectors, return the vector and the effective shuffle.
529         if (EI->getOperand(0)->getType() == PermittedRHS->getType() &&
530             collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS,
531                                          Mask))
532           return std::make_pair(EI->getOperand(0), PermittedRHS);
533       }
534     }
535   }
536
537   // Otherwise, we can't do anything fancy. Return an identity vector.
538   for (unsigned i = 0; i != NumElts; ++i)
539     Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
540   return std::make_pair(V, nullptr);
541 }
542
543 /// Try to find redundant insertvalue instructions, like the following ones:
544 ///  %0 = insertvalue { i8, i32 } undef, i8 %x, 0
545 ///  %1 = insertvalue { i8, i32 } %0,    i8 %y, 0
546 /// Here the second instruction inserts values at the same indices, as the
547 /// first one, making the first one redundant.
548 /// It should be transformed to:
549 ///  %0 = insertvalue { i8, i32 } undef, i8 %y, 0
550 Instruction *InstCombiner::visitInsertValueInst(InsertValueInst &I) {
551   bool IsRedundant = false;
552   ArrayRef<unsigned int> FirstIndices = I.getIndices();
553
554   // If there is a chain of insertvalue instructions (each of them except the
555   // last one has only one use and it's another insertvalue insn from this
556   // chain), check if any of the 'children' uses the same indices as the first
557   // instruction. In this case, the first one is redundant.
558   Value *V = &I;
559   unsigned Depth = 0;
560   while (V->hasOneUse() && Depth < 10) {
561     User *U = V->user_back();
562     auto UserInsInst = dyn_cast<InsertValueInst>(U);
563     if (!UserInsInst || U->getOperand(0) != V)
564       break;
565     if (UserInsInst->getIndices() == FirstIndices) {
566       IsRedundant = true;
567       break;
568     }
569     V = UserInsInst;
570     Depth++;
571   }
572
573   if (IsRedundant)
574     return replaceInstUsesWith(I, I.getOperand(0));
575   return nullptr;
576 }
577
578 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) {
579   int MaskSize = Shuf.getMask()->getType()->getVectorNumElements();
580   int VecSize = Shuf.getOperand(0)->getType()->getVectorNumElements();
581
582   // A vector select does not change the size of the operands.
583   if (MaskSize != VecSize)
584     return false;
585
586   // Each mask element must be undefined or choose a vector element from one of
587   // the source operands without crossing vector lanes.
588   for (int i = 0; i != MaskSize; ++i) {
589     int Elt = Shuf.getMaskValue(i);
590     if (Elt != -1 && Elt != i && Elt != i + VecSize)
591       return false;
592   }
593
594   return true;
595 }
596
597 // Turn a chain of inserts that splats a value into a canonical insert + shuffle
598 // splat. That is:
599 // insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... ->
600 // shufflevector(insertelt(X, %k, 0), undef, zero)
601 static Instruction *foldInsSequenceIntoBroadcast(InsertElementInst &InsElt) {
602   // We are interested in the last insert in a chain. So, if this insert
603   // has a single user, and that user is an insert, bail.
604   if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back()))
605     return nullptr;
606
607   VectorType *VT = cast<VectorType>(InsElt.getType());
608   int NumElements = VT->getNumElements();
609
610   // Do not try to do this for a one-element vector, since that's a nop,
611   // and will cause an inf-loop.
612   if (NumElements == 1)
613     return nullptr;
614
615   Value *SplatVal = InsElt.getOperand(1);
616   InsertElementInst *CurrIE = &InsElt;  
617   SmallVector<bool, 16> ElementPresent(NumElements, false);
618
619   // Walk the chain backwards, keeping track of which indices we inserted into,
620   // until we hit something that isn't an insert of the splatted value.
621   while (CurrIE) {
622     ConstantInt *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2));
623     if (!Idx || CurrIE->getOperand(1) != SplatVal)
624       return nullptr;
625
626     // Check none of the intermediate steps have any additional uses.
627     if ((CurrIE != &InsElt) && !CurrIE->hasOneUse())
628       return nullptr;
629
630     ElementPresent[Idx->getZExtValue()] = true;
631     CurrIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0));
632   }
633
634   // Make sure we've seen an insert into every element.
635   if (llvm::any_of(ElementPresent, [](bool Present) { return !Present; }))
636     return nullptr;
637
638   // All right, create the insert + shuffle.
639   Instruction *InsertFirst = InsertElementInst::Create(
640       UndefValue::get(VT), SplatVal,
641       ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), 0), "", &InsElt);
642
643   Constant *ZeroMask = ConstantAggregateZero::get(
644       VectorType::get(Type::getInt32Ty(InsElt.getContext()), NumElements));
645
646   return new ShuffleVectorInst(InsertFirst, UndefValue::get(VT), ZeroMask);
647 }
648
649 /// If we have an insertelement instruction feeding into another insertelement
650 /// and the 2nd is inserting a constant into the vector, canonicalize that
651 /// constant insertion before the insertion of a variable:
652 ///
653 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 -->
654 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1
655 ///
656 /// This has the potential of eliminating the 2nd insertelement instruction
657 /// via constant folding of the scalar constant into a vector constant.
658 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2,
659                                      InstCombiner::BuilderTy &Builder) {
660   auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0));
661   if (!InsElt1 || !InsElt1->hasOneUse())
662     return nullptr;
663
664   Value *X, *Y;
665   Constant *ScalarC;
666   ConstantInt *IdxC1, *IdxC2;
667   if (match(InsElt1->getOperand(0), m_Value(X)) &&
668       match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) &&
669       match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) &&
670       match(InsElt2.getOperand(1), m_Constant(ScalarC)) &&
671       match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) {
672     Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2);
673     return InsertElementInst::Create(NewInsElt1, Y, IdxC1);
674   }
675
676   return nullptr;
677 }
678
679 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex
680 /// --> shufflevector X, CVec', Mask'
681 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) {
682   auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0));
683   // Bail out if the parent has more than one use. In that case, we'd be
684   // replacing the insertelt with a shuffle, and that's not a clear win.
685   if (!Inst || !Inst->hasOneUse())
686     return nullptr;
687   if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) {
688     // The shuffle must have a constant vector operand. The insertelt must have
689     // a constant scalar being inserted at a constant position in the vector.
690     Constant *ShufConstVec, *InsEltScalar;
691     uint64_t InsEltIndex;
692     if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) ||
693         !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) ||
694         !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex)))
695       return nullptr;
696
697     // Adding an element to an arbitrary shuffle could be expensive, but a
698     // shuffle that selects elements from vectors without crossing lanes is
699     // assumed cheap.
700     // If we're just adding a constant into that shuffle, it will still be
701     // cheap.
702     if (!isShuffleEquivalentToSelect(*Shuf))
703       return nullptr;
704
705     // From the above 'select' check, we know that the mask has the same number
706     // of elements as the vector input operands. We also know that each constant
707     // input element is used in its lane and can not be used more than once by
708     // the shuffle. Therefore, replace the constant in the shuffle's constant
709     // vector with the insertelt constant. Replace the constant in the shuffle's
710     // mask vector with the insertelt index plus the length of the vector
711     // (because the constant vector operand of a shuffle is always the 2nd
712     // operand).
713     Constant *Mask = Shuf->getMask();
714     unsigned NumElts = Mask->getType()->getVectorNumElements();
715     SmallVector<Constant *, 16> NewShufElts(NumElts);
716     SmallVector<Constant *, 16> NewMaskElts(NumElts);
717     for (unsigned I = 0; I != NumElts; ++I) {
718       if (I == InsEltIndex) {
719         NewShufElts[I] = InsEltScalar;
720         Type *Int32Ty = Type::getInt32Ty(Shuf->getContext());
721         NewMaskElts[I] = ConstantInt::get(Int32Ty, InsEltIndex + NumElts);
722       } else {
723         // Copy over the existing values.
724         NewShufElts[I] = ShufConstVec->getAggregateElement(I);
725         NewMaskElts[I] = Mask->getAggregateElement(I);
726       }
727     }
728
729     // Create new operands for a shuffle that includes the constant of the
730     // original insertelt. The old shuffle will be dead now.
731     return new ShuffleVectorInst(Shuf->getOperand(0),
732                                  ConstantVector::get(NewShufElts),
733                                  ConstantVector::get(NewMaskElts));
734   } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) {
735     // Transform sequences of insertelements ops with constant data/indexes into
736     // a single shuffle op.
737     unsigned NumElts = InsElt.getType()->getNumElements();
738
739     uint64_t InsertIdx[2];
740     Constant *Val[2];
741     if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) ||
742         !match(InsElt.getOperand(1), m_Constant(Val[0])) ||
743         !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) ||
744         !match(IEI->getOperand(1), m_Constant(Val[1])))
745       return nullptr;
746     SmallVector<Constant *, 16> Values(NumElts);
747     SmallVector<Constant *, 16> Mask(NumElts);
748     auto ValI = std::begin(Val);
749     // Generate new constant vector and mask.
750     // We have 2 values/masks from the insertelements instructions. Insert them
751     // into new value/mask vectors.
752     for (uint64_t I : InsertIdx) {
753       if (!Values[I]) {
754         assert(!Mask[I]);
755         Values[I] = *ValI;
756         Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()),
757                                    NumElts + I);
758       }
759       ++ValI;
760     }
761     // Remaining values are filled with 'undef' values.
762     for (unsigned I = 0; I < NumElts; ++I) {
763       if (!Values[I]) {
764         assert(!Mask[I]);
765         Values[I] = UndefValue::get(InsElt.getType()->getElementType());
766         Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), I);
767       }
768     }
769     // Create new operands for a shuffle that includes the constant of the
770     // original insertelt.
771     return new ShuffleVectorInst(IEI->getOperand(0),
772                                  ConstantVector::get(Values),
773                                  ConstantVector::get(Mask));
774   }
775   return nullptr;
776 }
777
778 Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
779   Value *VecOp    = IE.getOperand(0);
780   Value *ScalarOp = IE.getOperand(1);
781   Value *IdxOp    = IE.getOperand(2);
782
783   // Inserting an undef or into an undefined place, remove this.
784   if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
785     replaceInstUsesWith(IE, VecOp);
786
787   // If the inserted element was extracted from some other vector, and if the
788   // indexes are constant, try to turn this into a shufflevector operation.
789   if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
790     if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
791       unsigned NumInsertVectorElts = IE.getType()->getNumElements();
792       unsigned NumExtractVectorElts =
793           EI->getOperand(0)->getType()->getVectorNumElements();
794       unsigned ExtractedIdx =
795         cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
796       unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
797
798       if (ExtractedIdx >= NumExtractVectorElts) // Out of range extract.
799         return replaceInstUsesWith(IE, VecOp);
800
801       if (InsertedIdx >= NumInsertVectorElts)  // Out of range insert.
802         return replaceInstUsesWith(IE, UndefValue::get(IE.getType()));
803
804       // If we are extracting a value from a vector, then inserting it right
805       // back into the same place, just use the input vector.
806       if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
807         return replaceInstUsesWith(IE, VecOp);
808
809       // If this insertelement isn't used by some other insertelement, turn it
810       // (and any insertelements it points to), into one big shuffle.
811       if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.user_back())) {
812         SmallVector<Constant*, 16> Mask;
813         ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this);
814
815         // The proposed shuffle may be trivial, in which case we shouldn't
816         // perform the combine.
817         if (LR.first != &IE && LR.second != &IE) {
818           // We now have a shuffle of LHS, RHS, Mask.
819           if (LR.second == nullptr)
820             LR.second = UndefValue::get(LR.first->getType());
821           return new ShuffleVectorInst(LR.first, LR.second,
822                                        ConstantVector::get(Mask));
823         }
824       }
825     }
826   }
827
828   unsigned VWidth = VecOp->getType()->getVectorNumElements();
829   APInt UndefElts(VWidth, 0);
830   APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
831   if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
832     if (V != &IE)
833       return replaceInstUsesWith(IE, V);
834     return &IE;
835   }
836
837   if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE))
838     return Shuf;
839
840   if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder))
841     return NewInsElt;
842
843   // Turn a sequence of inserts that broadcasts a scalar into a single
844   // insert + shufflevector.
845   if (Instruction *Broadcast = foldInsSequenceIntoBroadcast(IE))
846     return Broadcast;
847
848   return nullptr;
849 }
850
851 /// Return true if we can evaluate the specified expression tree if the vector
852 /// elements were shuffled in a different order.
853 static bool CanEvaluateShuffled(Value *V, ArrayRef<int> Mask,
854                                 unsigned Depth = 5) {
855   // We can always reorder the elements of a constant.
856   if (isa<Constant>(V))
857     return true;
858
859   // We won't reorder vector arguments. No IPO here.
860   Instruction *I = dyn_cast<Instruction>(V);
861   if (!I) return false;
862
863   // Two users may expect different orders of the elements. Don't try it.
864   if (!I->hasOneUse())
865     return false;
866
867   if (Depth == 0) return false;
868
869   switch (I->getOpcode()) {
870     case Instruction::Add:
871     case Instruction::FAdd:
872     case Instruction::Sub:
873     case Instruction::FSub:
874     case Instruction::Mul:
875     case Instruction::FMul:
876     case Instruction::UDiv:
877     case Instruction::SDiv:
878     case Instruction::FDiv:
879     case Instruction::URem:
880     case Instruction::SRem:
881     case Instruction::FRem:
882     case Instruction::Shl:
883     case Instruction::LShr:
884     case Instruction::AShr:
885     case Instruction::And:
886     case Instruction::Or:
887     case Instruction::Xor:
888     case Instruction::ICmp:
889     case Instruction::FCmp:
890     case Instruction::Trunc:
891     case Instruction::ZExt:
892     case Instruction::SExt:
893     case Instruction::FPToUI:
894     case Instruction::FPToSI:
895     case Instruction::UIToFP:
896     case Instruction::SIToFP:
897     case Instruction::FPTrunc:
898     case Instruction::FPExt:
899     case Instruction::GetElementPtr: {
900       for (Value *Operand : I->operands()) {
901         if (!CanEvaluateShuffled(Operand, Mask, Depth-1))
902           return false;
903       }
904       return true;
905     }
906     case Instruction::InsertElement: {
907       ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
908       if (!CI) return false;
909       int ElementNumber = CI->getLimitedValue();
910
911       // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
912       // can't put an element into multiple indices.
913       bool SeenOnce = false;
914       for (int i = 0, e = Mask.size(); i != e; ++i) {
915         if (Mask[i] == ElementNumber) {
916           if (SeenOnce)
917             return false;
918           SeenOnce = true;
919         }
920       }
921       return CanEvaluateShuffled(I->getOperand(0), Mask, Depth-1);
922     }
923   }
924   return false;
925 }
926
927 /// Rebuild a new instruction just like 'I' but with the new operands given.
928 /// In the event of type mismatch, the type of the operands is correct.
929 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) {
930   // We don't want to use the IRBuilder here because we want the replacement
931   // instructions to appear next to 'I', not the builder's insertion point.
932   switch (I->getOpcode()) {
933     case Instruction::Add:
934     case Instruction::FAdd:
935     case Instruction::Sub:
936     case Instruction::FSub:
937     case Instruction::Mul:
938     case Instruction::FMul:
939     case Instruction::UDiv:
940     case Instruction::SDiv:
941     case Instruction::FDiv:
942     case Instruction::URem:
943     case Instruction::SRem:
944     case Instruction::FRem:
945     case Instruction::Shl:
946     case Instruction::LShr:
947     case Instruction::AShr:
948     case Instruction::And:
949     case Instruction::Or:
950     case Instruction::Xor: {
951       BinaryOperator *BO = cast<BinaryOperator>(I);
952       assert(NewOps.size() == 2 && "binary operator with #ops != 2");
953       BinaryOperator *New =
954           BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(),
955                                  NewOps[0], NewOps[1], "", BO);
956       if (isa<OverflowingBinaryOperator>(BO)) {
957         New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
958         New->setHasNoSignedWrap(BO->hasNoSignedWrap());
959       }
960       if (isa<PossiblyExactOperator>(BO)) {
961         New->setIsExact(BO->isExact());
962       }
963       if (isa<FPMathOperator>(BO))
964         New->copyFastMathFlags(I);
965       return New;
966     }
967     case Instruction::ICmp:
968       assert(NewOps.size() == 2 && "icmp with #ops != 2");
969       return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(),
970                           NewOps[0], NewOps[1]);
971     case Instruction::FCmp:
972       assert(NewOps.size() == 2 && "fcmp with #ops != 2");
973       return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(),
974                           NewOps[0], NewOps[1]);
975     case Instruction::Trunc:
976     case Instruction::ZExt:
977     case Instruction::SExt:
978     case Instruction::FPToUI:
979     case Instruction::FPToSI:
980     case Instruction::UIToFP:
981     case Instruction::SIToFP:
982     case Instruction::FPTrunc:
983     case Instruction::FPExt: {
984       // It's possible that the mask has a different number of elements from
985       // the original cast. We recompute the destination type to match the mask.
986       Type *DestTy =
987           VectorType::get(I->getType()->getScalarType(),
988                           NewOps[0]->getType()->getVectorNumElements());
989       assert(NewOps.size() == 1 && "cast with #ops != 1");
990       return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy,
991                               "", I);
992     }
993     case Instruction::GetElementPtr: {
994       Value *Ptr = NewOps[0];
995       ArrayRef<Value*> Idx = NewOps.slice(1);
996       GetElementPtrInst *GEP = GetElementPtrInst::Create(
997           cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I);
998       GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds());
999       return GEP;
1000     }
1001   }
1002   llvm_unreachable("failed to rebuild vector instructions");
1003 }
1004
1005 Value *
1006 InstCombiner::EvaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) {
1007   // Mask.size() does not need to be equal to the number of vector elements.
1008
1009   assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
1010   if (isa<UndefValue>(V)) {
1011     return UndefValue::get(VectorType::get(V->getType()->getScalarType(),
1012                                            Mask.size()));
1013   }
1014   if (isa<ConstantAggregateZero>(V)) {
1015     return ConstantAggregateZero::get(
1016                VectorType::get(V->getType()->getScalarType(),
1017                                Mask.size()));
1018   }
1019   if (Constant *C = dyn_cast<Constant>(V)) {
1020     SmallVector<Constant *, 16> MaskValues;
1021     for (int i = 0, e = Mask.size(); i != e; ++i) {
1022       if (Mask[i] == -1)
1023         MaskValues.push_back(UndefValue::get(Builder.getInt32Ty()));
1024       else
1025         MaskValues.push_back(Builder.getInt32(Mask[i]));
1026     }
1027     return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()),
1028                                           ConstantVector::get(MaskValues));
1029   }
1030
1031   Instruction *I = cast<Instruction>(V);
1032   switch (I->getOpcode()) {
1033     case Instruction::Add:
1034     case Instruction::FAdd:
1035     case Instruction::Sub:
1036     case Instruction::FSub:
1037     case Instruction::Mul:
1038     case Instruction::FMul:
1039     case Instruction::UDiv:
1040     case Instruction::SDiv:
1041     case Instruction::FDiv:
1042     case Instruction::URem:
1043     case Instruction::SRem:
1044     case Instruction::FRem:
1045     case Instruction::Shl:
1046     case Instruction::LShr:
1047     case Instruction::AShr:
1048     case Instruction::And:
1049     case Instruction::Or:
1050     case Instruction::Xor:
1051     case Instruction::ICmp:
1052     case Instruction::FCmp:
1053     case Instruction::Trunc:
1054     case Instruction::ZExt:
1055     case Instruction::SExt:
1056     case Instruction::FPToUI:
1057     case Instruction::FPToSI:
1058     case Instruction::UIToFP:
1059     case Instruction::SIToFP:
1060     case Instruction::FPTrunc:
1061     case Instruction::FPExt:
1062     case Instruction::Select:
1063     case Instruction::GetElementPtr: {
1064       SmallVector<Value*, 8> NewOps;
1065       bool NeedsRebuild = (Mask.size() != I->getType()->getVectorNumElements());
1066       for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
1067         Value *V = EvaluateInDifferentElementOrder(I->getOperand(i), Mask);
1068         NewOps.push_back(V);
1069         NeedsRebuild |= (V != I->getOperand(i));
1070       }
1071       if (NeedsRebuild) {
1072         return buildNew(I, NewOps);
1073       }
1074       return I;
1075     }
1076     case Instruction::InsertElement: {
1077       int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();
1078
1079       // The insertelement was inserting at Element. Figure out which element
1080       // that becomes after shuffling. The answer is guaranteed to be unique
1081       // by CanEvaluateShuffled.
1082       bool Found = false;
1083       int Index = 0;
1084       for (int e = Mask.size(); Index != e; ++Index) {
1085         if (Mask[Index] == Element) {
1086           Found = true;
1087           break;
1088         }
1089       }
1090
1091       // If element is not in Mask, no need to handle the operand 1 (element to
1092       // be inserted). Just evaluate values in operand 0 according to Mask.
1093       if (!Found)
1094         return EvaluateInDifferentElementOrder(I->getOperand(0), Mask);
1095
1096       Value *V = EvaluateInDifferentElementOrder(I->getOperand(0), Mask);
1097       return InsertElementInst::Create(V, I->getOperand(1),
1098                                        Builder.getInt32(Index), "", I);
1099     }
1100   }
1101   llvm_unreachable("failed to reorder elements of vector instruction!");
1102 }
1103
1104 static void recognizeIdentityMask(const SmallVectorImpl<int> &Mask,
1105                                   bool &isLHSID, bool &isRHSID) {
1106   isLHSID = isRHSID = true;
1107
1108   for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
1109     if (Mask[i] < 0) continue;  // Ignore undef values.
1110     // Is this an identity shuffle of the LHS value?
1111     isLHSID &= (Mask[i] == (int)i);
1112
1113     // Is this an identity shuffle of the RHS value?
1114     isRHSID &= (Mask[i]-e == i);
1115   }
1116 }
1117
1118 // Returns true if the shuffle is extracting a contiguous range of values from
1119 // LHS, for example:
1120 //                 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1121 //   Input:        |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP|
1122 //   Shuffles to:  |EE|FF|GG|HH|
1123 //                 +--+--+--+--+
1124 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI,
1125                                        SmallVector<int, 16> &Mask) {
1126   unsigned LHSElems = SVI.getOperand(0)->getType()->getVectorNumElements();
1127   unsigned MaskElems = Mask.size();
1128   unsigned BegIdx = Mask.front();
1129   unsigned EndIdx = Mask.back();
1130   if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1)
1131     return false;
1132   for (unsigned I = 0; I != MaskElems; ++I)
1133     if (static_cast<unsigned>(Mask[I]) != BegIdx + I)
1134       return false;
1135   return true;
1136 }
1137
1138 Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
1139   Value *LHS = SVI.getOperand(0);
1140   Value *RHS = SVI.getOperand(1);
1141   SmallVector<int, 16> Mask = SVI.getShuffleMask();
1142   Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
1143
1144   if (auto *V = SimplifyShuffleVectorInst(
1145           LHS, RHS, SVI.getMask(), SVI.getType(), SQ.getWithInstruction(&SVI)))
1146     return replaceInstUsesWith(SVI, V);
1147
1148   bool MadeChange = false;
1149   unsigned VWidth = SVI.getType()->getVectorNumElements();
1150
1151   APInt UndefElts(VWidth, 0);
1152   APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1153   if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
1154     if (V != &SVI)
1155       return replaceInstUsesWith(SVI, V);
1156     LHS = SVI.getOperand(0);
1157     RHS = SVI.getOperand(1);
1158     MadeChange = true;
1159   }
1160
1161   unsigned LHSWidth = LHS->getType()->getVectorNumElements();
1162
1163   // Canonicalize shuffle(x    ,x,mask) -> shuffle(x, undef,mask')
1164   // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
1165   if (LHS == RHS || isa<UndefValue>(LHS)) {
1166     if (isa<UndefValue>(LHS) && LHS == RHS) {
1167       // shuffle(undef,undef,mask) -> undef.
1168       Value *Result = (VWidth == LHSWidth)
1169                       ? LHS : UndefValue::get(SVI.getType());
1170       return replaceInstUsesWith(SVI, Result);
1171     }
1172
1173     // Remap any references to RHS to use LHS.
1174     SmallVector<Constant*, 16> Elts;
1175     for (unsigned i = 0, e = LHSWidth; i != VWidth; ++i) {
1176       if (Mask[i] < 0) {
1177         Elts.push_back(UndefValue::get(Int32Ty));
1178         continue;
1179       }
1180
1181       if ((Mask[i] >= (int)e && isa<UndefValue>(RHS)) ||
1182           (Mask[i] <  (int)e && isa<UndefValue>(LHS))) {
1183         Mask[i] = -1;     // Turn into undef.
1184         Elts.push_back(UndefValue::get(Int32Ty));
1185       } else {
1186         Mask[i] = Mask[i] % e;  // Force to LHS.
1187         Elts.push_back(ConstantInt::get(Int32Ty, Mask[i]));
1188       }
1189     }
1190     SVI.setOperand(0, SVI.getOperand(1));
1191     SVI.setOperand(1, UndefValue::get(RHS->getType()));
1192     SVI.setOperand(2, ConstantVector::get(Elts));
1193     LHS = SVI.getOperand(0);
1194     RHS = SVI.getOperand(1);
1195     MadeChange = true;
1196   }
1197
1198   if (VWidth == LHSWidth) {
1199     // Analyze the shuffle, are the LHS or RHS and identity shuffles?
1200     bool isLHSID, isRHSID;
1201     recognizeIdentityMask(Mask, isLHSID, isRHSID);
1202
1203     // Eliminate identity shuffles.
1204     if (isLHSID) return replaceInstUsesWith(SVI, LHS);
1205     if (isRHSID) return replaceInstUsesWith(SVI, RHS);
1206   }
1207
1208   if (isa<UndefValue>(RHS) && CanEvaluateShuffled(LHS, Mask)) {
1209     Value *V = EvaluateInDifferentElementOrder(LHS, Mask);
1210     return replaceInstUsesWith(SVI, V);
1211   }
1212
1213   // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to
1214   // a non-vector type. We can instead bitcast the original vector followed by
1215   // an extract of the desired element:
1216   //
1217   //   %sroa = shufflevector <16 x i8> %in, <16 x i8> undef,
1218   //                         <4 x i32> <i32 0, i32 1, i32 2, i32 3>
1219   //   %1 = bitcast <4 x i8> %sroa to i32
1220   // Becomes:
1221   //   %bc = bitcast <16 x i8> %in to <4 x i32>
1222   //   %ext = extractelement <4 x i32> %bc, i32 0
1223   //
1224   // If the shuffle is extracting a contiguous range of values from the input
1225   // vector then each use which is a bitcast of the extracted size can be
1226   // replaced. This will work if the vector types are compatible, and the begin
1227   // index is aligned to a value in the casted vector type. If the begin index
1228   // isn't aligned then we can shuffle the original vector (keeping the same
1229   // vector type) before extracting.
1230   //
1231   // This code will bail out if the target type is fundamentally incompatible
1232   // with vectors of the source type.
1233   //
1234   // Example of <16 x i8>, target type i32:
1235   // Index range [4,8):         v-----------v Will work.
1236   //                +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1237   //     <16 x i8>: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
1238   //     <4 x i32>: |           |           |           |           |
1239   //                +-----------+-----------+-----------+-----------+
1240   // Index range [6,10):              ^-----------^ Needs an extra shuffle.
1241   // Target type i40:           ^--------------^ Won't work, bail.
1242   if (isShuffleExtractingFromLHS(SVI, Mask)) {
1243     Value *V = LHS;
1244     unsigned MaskElems = Mask.size();
1245     VectorType *SrcTy = cast<VectorType>(V->getType());
1246     unsigned VecBitWidth = SrcTy->getBitWidth();
1247     unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType());
1248     assert(SrcElemBitWidth && "vector elements must have a bitwidth");
1249     unsigned SrcNumElems = SrcTy->getNumElements();
1250     SmallVector<BitCastInst *, 8> BCs;
1251     DenseMap<Type *, Value *> NewBCs;
1252     for (User *U : SVI.users())
1253       if (BitCastInst *BC = dyn_cast<BitCastInst>(U))
1254         if (!BC->use_empty())
1255           // Only visit bitcasts that weren't previously handled.
1256           BCs.push_back(BC);
1257     for (BitCastInst *BC : BCs) {
1258       unsigned BegIdx = Mask.front();
1259       Type *TgtTy = BC->getDestTy();
1260       unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy);
1261       if (!TgtElemBitWidth)
1262         continue;
1263       unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth;
1264       bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth;
1265       bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth);
1266       if (!VecBitWidthsEqual)
1267         continue;
1268       if (!VectorType::isValidElementType(TgtTy))
1269         continue;
1270       VectorType *CastSrcTy = VectorType::get(TgtTy, TgtNumElems);
1271       if (!BegIsAligned) {
1272         // Shuffle the input so [0,NumElements) contains the output, and
1273         // [NumElems,SrcNumElems) is undef.
1274         SmallVector<Constant *, 16> ShuffleMask(SrcNumElems,
1275                                                 UndefValue::get(Int32Ty));
1276         for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I)
1277           ShuffleMask[I] = ConstantInt::get(Int32Ty, Idx);
1278         V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
1279                                         ConstantVector::get(ShuffleMask),
1280                                         SVI.getName() + ".extract");
1281         BegIdx = 0;
1282       }
1283       unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth;
1284       assert(SrcElemsPerTgtElem);
1285       BegIdx /= SrcElemsPerTgtElem;
1286       bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end();
1287       auto *NewBC =
1288           BCAlreadyExists
1289               ? NewBCs[CastSrcTy]
1290               : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc");
1291       if (!BCAlreadyExists)
1292         NewBCs[CastSrcTy] = NewBC;
1293       auto *Ext = Builder.CreateExtractElement(
1294           NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract");
1295       // The shufflevector isn't being replaced: the bitcast that used it
1296       // is. InstCombine will visit the newly-created instructions.
1297       replaceInstUsesWith(*BC, Ext);
1298       MadeChange = true;
1299     }
1300   }
1301
1302   // If the LHS is a shufflevector itself, see if we can combine it with this
1303   // one without producing an unusual shuffle.
1304   // Cases that might be simplified:
1305   // 1.
1306   // x1=shuffle(v1,v2,mask1)
1307   //  x=shuffle(x1,undef,mask)
1308   //        ==>
1309   //  x=shuffle(v1,undef,newMask)
1310   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
1311   // 2.
1312   // x1=shuffle(v1,undef,mask1)
1313   //  x=shuffle(x1,x2,mask)
1314   // where v1.size() == mask1.size()
1315   //        ==>
1316   //  x=shuffle(v1,x2,newMask)
1317   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
1318   // 3.
1319   // x2=shuffle(v2,undef,mask2)
1320   //  x=shuffle(x1,x2,mask)
1321   // where v2.size() == mask2.size()
1322   //        ==>
1323   //  x=shuffle(x1,v2,newMask)
1324   // newMask[i] = (mask[i] < x1.size())
1325   //              ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
1326   // 4.
1327   // x1=shuffle(v1,undef,mask1)
1328   // x2=shuffle(v2,undef,mask2)
1329   //  x=shuffle(x1,x2,mask)
1330   // where v1.size() == v2.size()
1331   //        ==>
1332   //  x=shuffle(v1,v2,newMask)
1333   // newMask[i] = (mask[i] < x1.size())
1334   //              ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
1335   //
1336   // Here we are really conservative:
1337   // we are absolutely afraid of producing a shuffle mask not in the input
1338   // program, because the code gen may not be smart enough to turn a merged
1339   // shuffle into two specific shuffles: it may produce worse code.  As such,
1340   // we only merge two shuffles if the result is either a splat or one of the
1341   // input shuffle masks.  In this case, merging the shuffles just removes
1342   // one instruction, which we know is safe.  This is good for things like
1343   // turning: (splat(splat)) -> splat, or
1344   // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
1345   ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
1346   ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
1347   if (LHSShuffle)
1348     if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS))
1349       LHSShuffle = nullptr;
1350   if (RHSShuffle)
1351     if (!isa<UndefValue>(RHSShuffle->getOperand(1)))
1352       RHSShuffle = nullptr;
1353   if (!LHSShuffle && !RHSShuffle)
1354     return MadeChange ? &SVI : nullptr;
1355
1356   Value* LHSOp0 = nullptr;
1357   Value* LHSOp1 = nullptr;
1358   Value* RHSOp0 = nullptr;
1359   unsigned LHSOp0Width = 0;
1360   unsigned RHSOp0Width = 0;
1361   if (LHSShuffle) {
1362     LHSOp0 = LHSShuffle->getOperand(0);
1363     LHSOp1 = LHSShuffle->getOperand(1);
1364     LHSOp0Width = LHSOp0->getType()->getVectorNumElements();
1365   }
1366   if (RHSShuffle) {
1367     RHSOp0 = RHSShuffle->getOperand(0);
1368     RHSOp0Width = RHSOp0->getType()->getVectorNumElements();
1369   }
1370   Value* newLHS = LHS;
1371   Value* newRHS = RHS;
1372   if (LHSShuffle) {
1373     // case 1
1374     if (isa<UndefValue>(RHS)) {
1375       newLHS = LHSOp0;
1376       newRHS = LHSOp1;
1377     }
1378     // case 2 or 4
1379     else if (LHSOp0Width == LHSWidth) {
1380       newLHS = LHSOp0;
1381     }
1382   }
1383   // case 3 or 4
1384   if (RHSShuffle && RHSOp0Width == LHSWidth) {
1385     newRHS = RHSOp0;
1386   }
1387   // case 4
1388   if (LHSOp0 == RHSOp0) {
1389     newLHS = LHSOp0;
1390     newRHS = nullptr;
1391   }
1392
1393   if (newLHS == LHS && newRHS == RHS)
1394     return MadeChange ? &SVI : nullptr;
1395
1396   SmallVector<int, 16> LHSMask;
1397   SmallVector<int, 16> RHSMask;
1398   if (newLHS != LHS)
1399     LHSMask = LHSShuffle->getShuffleMask();
1400   if (RHSShuffle && newRHS != RHS)
1401     RHSMask = RHSShuffle->getShuffleMask();
1402
1403   unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
1404   SmallVector<int, 16> newMask;
1405   bool isSplat = true;
1406   int SplatElt = -1;
1407   // Create a new mask for the new ShuffleVectorInst so that the new
1408   // ShuffleVectorInst is equivalent to the original one.
1409   for (unsigned i = 0; i < VWidth; ++i) {
1410     int eltMask;
1411     if (Mask[i] < 0) {
1412       // This element is an undef value.
1413       eltMask = -1;
1414     } else if (Mask[i] < (int)LHSWidth) {
1415       // This element is from left hand side vector operand.
1416       //
1417       // If LHS is going to be replaced (case 1, 2, or 4), calculate the
1418       // new mask value for the element.
1419       if (newLHS != LHS) {
1420         eltMask = LHSMask[Mask[i]];
1421         // If the value selected is an undef value, explicitly specify it
1422         // with a -1 mask value.
1423         if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
1424           eltMask = -1;
1425       } else
1426         eltMask = Mask[i];
1427     } else {
1428       // This element is from right hand side vector operand
1429       //
1430       // If the value selected is an undef value, explicitly specify it
1431       // with a -1 mask value. (case 1)
1432       if (isa<UndefValue>(RHS))
1433         eltMask = -1;
1434       // If RHS is going to be replaced (case 3 or 4), calculate the
1435       // new mask value for the element.
1436       else if (newRHS != RHS) {
1437         eltMask = RHSMask[Mask[i]-LHSWidth];
1438         // If the value selected is an undef value, explicitly specify it
1439         // with a -1 mask value.
1440         if (eltMask >= (int)RHSOp0Width) {
1441           assert(isa<UndefValue>(RHSShuffle->getOperand(1))
1442                  && "should have been check above");
1443           eltMask = -1;
1444         }
1445       } else
1446         eltMask = Mask[i]-LHSWidth;
1447
1448       // If LHS's width is changed, shift the mask value accordingly.
1449       // If newRHS == NULL, i.e. LHSOp0 == RHSOp0, we want to remap any
1450       // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
1451       // If newRHS == newLHS, we want to remap any references from newRHS to
1452       // newLHS so that we can properly identify splats that may occur due to
1453       // obfuscation across the two vectors.
1454       if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS)
1455         eltMask += newLHSWidth;
1456     }
1457
1458     // Check if this could still be a splat.
1459     if (eltMask >= 0) {
1460       if (SplatElt >= 0 && SplatElt != eltMask)
1461         isSplat = false;
1462       SplatElt = eltMask;
1463     }
1464
1465     newMask.push_back(eltMask);
1466   }
1467
1468   // If the result mask is equal to one of the original shuffle masks,
1469   // or is a splat, do the replacement.
1470   if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
1471     SmallVector<Constant*, 16> Elts;
1472     for (unsigned i = 0, e = newMask.size(); i != e; ++i) {
1473       if (newMask[i] < 0) {
1474         Elts.push_back(UndefValue::get(Int32Ty));
1475       } else {
1476         Elts.push_back(ConstantInt::get(Int32Ty, newMask[i]));
1477       }
1478     }
1479     if (!newRHS)
1480       newRHS = UndefValue::get(newLHS->getType());
1481     return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts));
1482   }
1483
1484   // If the result mask is an identity, replace uses of this instruction with
1485   // corresponding argument.
1486   bool isLHSID, isRHSID;
1487   recognizeIdentityMask(newMask, isLHSID, isRHSID);
1488   if (isLHSID && VWidth == LHSOp0Width) return replaceInstUsesWith(SVI, newLHS);
1489   if (isRHSID && VWidth == RHSOp0Width) return replaceInstUsesWith(SVI, newRHS);
1490
1491   return MadeChange ? &SVI : nullptr;
1492 }