]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp
Merge clang 7.0.1 and several follow-up changes
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / Instrumentation / AddressSanitizer.cpp
1 //===- AddressSanitizer.cpp - memory error detector -----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of AddressSanitizer, an address sanity checker.
11 // Details of the algorithm:
12 //  https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/TargetLibraryInfo.h"
28 #include "llvm/Transforms/Utils/Local.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/BinaryFormat/MachO.h"
31 #include "llvm/IR/Argument.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/CallSite.h"
35 #include "llvm/IR/Comdat.h"
36 #include "llvm/IR/Constant.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DIBuilder.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DebugInfoMetadata.h"
41 #include "llvm/IR/DebugLoc.h"
42 #include "llvm/IR/DerivedTypes.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GlobalAlias.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/IRBuilder.h"
49 #include "llvm/IR/InlineAsm.h"
50 #include "llvm/IR/InstVisitor.h"
51 #include "llvm/IR/InstrTypes.h"
52 #include "llvm/IR/Instruction.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/IntrinsicInst.h"
55 #include "llvm/IR/Intrinsics.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/MDBuilder.h"
58 #include "llvm/IR/Metadata.h"
59 #include "llvm/IR/Module.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/IR/Use.h"
62 #include "llvm/IR/Value.h"
63 #include "llvm/MC/MCSectionMachO.h"
64 #include "llvm/Pass.h"
65 #include "llvm/Support/Casting.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/MathExtras.h"
70 #include "llvm/Support/ScopedPrinter.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include "llvm/Transforms/Instrumentation.h"
73 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h"
74 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
75 #include "llvm/Transforms/Utils/ModuleUtils.h"
76 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
77 #include <algorithm>
78 #include <cassert>
79 #include <cstddef>
80 #include <cstdint>
81 #include <iomanip>
82 #include <limits>
83 #include <memory>
84 #include <sstream>
85 #include <string>
86 #include <tuple>
87
88 using namespace llvm;
89
90 #define DEBUG_TYPE "asan"
91
92 static const uint64_t kDefaultShadowScale = 3;
93 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29;
94 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44;
95 static const uint64_t kDynamicShadowSentinel =
96     std::numeric_limits<uint64_t>::max();
97 static const uint64_t kIOSShadowOffset32 = 1ULL << 30;
98 static const uint64_t kIOSSimShadowOffset32 = 1ULL << 30;
99 static const uint64_t kIOSSimShadowOffset64 = kDefaultShadowOffset64;
100 static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF;  // < 2G.
101 static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL;
102 static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000;
103 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44;
104 static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52;
105 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000;
106 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37;
107 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36;
108 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30;
109 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46;
110 static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30;
111 static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46;
112 static const uint64_t kPS4CPU_ShadowOffset64 = 1ULL << 40;
113 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28;
114
115 static const uint64_t kMyriadShadowScale = 5;
116 static const uint64_t kMyriadMemoryOffset32 = 0x80000000ULL;
117 static const uint64_t kMyriadMemorySize32 = 0x20000000ULL;
118 static const uint64_t kMyriadTagShift = 29;
119 static const uint64_t kMyriadDDRTag = 4;
120 static const uint64_t kMyriadCacheBitMask32 = 0x40000000ULL;
121
122 // The shadow memory space is dynamically allocated.
123 static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel;
124
125 static const size_t kMinStackMallocSize = 1 << 6;   // 64B
126 static const size_t kMaxStackMallocSize = 1 << 16;  // 64K
127 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3;
128 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E;
129
130 static const char *const kAsanModuleCtorName = "asan.module_ctor";
131 static const char *const kAsanModuleDtorName = "asan.module_dtor";
132 static const uint64_t kAsanCtorAndDtorPriority = 1;
133 static const char *const kAsanReportErrorTemplate = "__asan_report_";
134 static const char *const kAsanRegisterGlobalsName = "__asan_register_globals";
135 static const char *const kAsanUnregisterGlobalsName =
136     "__asan_unregister_globals";
137 static const char *const kAsanRegisterImageGlobalsName =
138   "__asan_register_image_globals";
139 static const char *const kAsanUnregisterImageGlobalsName =
140   "__asan_unregister_image_globals";
141 static const char *const kAsanRegisterElfGlobalsName =
142   "__asan_register_elf_globals";
143 static const char *const kAsanUnregisterElfGlobalsName =
144   "__asan_unregister_elf_globals";
145 static const char *const kAsanPoisonGlobalsName = "__asan_before_dynamic_init";
146 static const char *const kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init";
147 static const char *const kAsanInitName = "__asan_init";
148 static const char *const kAsanVersionCheckNamePrefix =
149     "__asan_version_mismatch_check_v";
150 static const char *const kAsanPtrCmp = "__sanitizer_ptr_cmp";
151 static const char *const kAsanPtrSub = "__sanitizer_ptr_sub";
152 static const char *const kAsanHandleNoReturnName = "__asan_handle_no_return";
153 static const int kMaxAsanStackMallocSizeClass = 10;
154 static const char *const kAsanStackMallocNameTemplate = "__asan_stack_malloc_";
155 static const char *const kAsanStackFreeNameTemplate = "__asan_stack_free_";
156 static const char *const kAsanGenPrefix = "___asan_gen_";
157 static const char *const kODRGenPrefix = "__odr_asan_gen_";
158 static const char *const kSanCovGenPrefix = "__sancov_gen_";
159 static const char *const kAsanSetShadowPrefix = "__asan_set_shadow_";
160 static const char *const kAsanPoisonStackMemoryName =
161     "__asan_poison_stack_memory";
162 static const char *const kAsanUnpoisonStackMemoryName =
163     "__asan_unpoison_stack_memory";
164
165 // ASan version script has __asan_* wildcard. Triple underscore prevents a
166 // linker (gold) warning about attempting to export a local symbol.
167 static const char *const kAsanGlobalsRegisteredFlagName =
168     "___asan_globals_registered";
169
170 static const char *const kAsanOptionDetectUseAfterReturn =
171     "__asan_option_detect_stack_use_after_return";
172
173 static const char *const kAsanShadowMemoryDynamicAddress =
174     "__asan_shadow_memory_dynamic_address";
175
176 static const char *const kAsanAllocaPoison = "__asan_alloca_poison";
177 static const char *const kAsanAllocasUnpoison = "__asan_allocas_unpoison";
178
179 // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
180 static const size_t kNumberOfAccessSizes = 5;
181
182 static const unsigned kAllocaRzSize = 32;
183
184 // Command-line flags.
185
186 static cl::opt<bool> ClEnableKasan(
187     "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"),
188     cl::Hidden, cl::init(false));
189
190 static cl::opt<bool> ClRecover(
191     "asan-recover",
192     cl::desc("Enable recovery mode (continue-after-error)."),
193     cl::Hidden, cl::init(false));
194
195 // This flag may need to be replaced with -f[no-]asan-reads.
196 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads",
197                                        cl::desc("instrument read instructions"),
198                                        cl::Hidden, cl::init(true));
199
200 static cl::opt<bool> ClInstrumentWrites(
201     "asan-instrument-writes", cl::desc("instrument write instructions"),
202     cl::Hidden, cl::init(true));
203
204 static cl::opt<bool> ClInstrumentAtomics(
205     "asan-instrument-atomics",
206     cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden,
207     cl::init(true));
208
209 static cl::opt<bool> ClAlwaysSlowPath(
210     "asan-always-slow-path",
211     cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden,
212     cl::init(false));
213
214 static cl::opt<bool> ClForceDynamicShadow(
215     "asan-force-dynamic-shadow",
216     cl::desc("Load shadow address into a local variable for each function"),
217     cl::Hidden, cl::init(false));
218
219 static cl::opt<bool>
220     ClWithIfunc("asan-with-ifunc",
221                 cl::desc("Access dynamic shadow through an ifunc global on "
222                          "platforms that support this"),
223                 cl::Hidden, cl::init(true));
224
225 static cl::opt<bool> ClWithIfuncSuppressRemat(
226     "asan-with-ifunc-suppress-remat",
227     cl::desc("Suppress rematerialization of dynamic shadow address by passing "
228              "it through inline asm in prologue."),
229     cl::Hidden, cl::init(true));
230
231 // This flag limits the number of instructions to be instrumented
232 // in any given BB. Normally, this should be set to unlimited (INT_MAX),
233 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary
234 // set it to 10000.
235 static cl::opt<int> ClMaxInsnsToInstrumentPerBB(
236     "asan-max-ins-per-bb", cl::init(10000),
237     cl::desc("maximal number of instructions to instrument in any given BB"),
238     cl::Hidden);
239
240 // This flag may need to be replaced with -f[no]asan-stack.
241 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"),
242                              cl::Hidden, cl::init(true));
243 static cl::opt<uint32_t> ClMaxInlinePoisoningSize(
244     "asan-max-inline-poisoning-size",
245     cl::desc(
246         "Inline shadow poisoning for blocks up to the given size in bytes."),
247     cl::Hidden, cl::init(64));
248
249 static cl::opt<bool> ClUseAfterReturn("asan-use-after-return",
250                                       cl::desc("Check stack-use-after-return"),
251                                       cl::Hidden, cl::init(true));
252
253 static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args",
254                                         cl::desc("Create redzones for byval "
255                                                  "arguments (extra copy "
256                                                  "required)"), cl::Hidden,
257                                         cl::init(true));
258
259 static cl::opt<bool> ClUseAfterScope("asan-use-after-scope",
260                                      cl::desc("Check stack-use-after-scope"),
261                                      cl::Hidden, cl::init(false));
262
263 // This flag may need to be replaced with -f[no]asan-globals.
264 static cl::opt<bool> ClGlobals("asan-globals",
265                                cl::desc("Handle global objects"), cl::Hidden,
266                                cl::init(true));
267
268 static cl::opt<bool> ClInitializers("asan-initialization-order",
269                                     cl::desc("Handle C++ initializer order"),
270                                     cl::Hidden, cl::init(true));
271
272 static cl::opt<bool> ClInvalidPointerPairs(
273     "asan-detect-invalid-pointer-pair",
274     cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden,
275     cl::init(false));
276
277 static cl::opt<unsigned> ClRealignStack(
278     "asan-realign-stack",
279     cl::desc("Realign stack to the value of this flag (power of two)"),
280     cl::Hidden, cl::init(32));
281
282 static cl::opt<int> ClInstrumentationWithCallsThreshold(
283     "asan-instrumentation-with-call-threshold",
284     cl::desc(
285         "If the function being instrumented contains more than "
286         "this number of memory accesses, use callbacks instead of "
287         "inline checks (-1 means never use callbacks)."),
288     cl::Hidden, cl::init(7000));
289
290 static cl::opt<std::string> ClMemoryAccessCallbackPrefix(
291     "asan-memory-access-callback-prefix",
292     cl::desc("Prefix for memory access callbacks"), cl::Hidden,
293     cl::init("__asan_"));
294
295 static cl::opt<bool>
296     ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas",
297                                cl::desc("instrument dynamic allocas"),
298                                cl::Hidden, cl::init(true));
299
300 static cl::opt<bool> ClSkipPromotableAllocas(
301     "asan-skip-promotable-allocas",
302     cl::desc("Do not instrument promotable allocas"), cl::Hidden,
303     cl::init(true));
304
305 // These flags allow to change the shadow mapping.
306 // The shadow mapping looks like
307 //    Shadow = (Mem >> scale) + offset
308
309 static cl::opt<int> ClMappingScale("asan-mapping-scale",
310                                    cl::desc("scale of asan shadow mapping"),
311                                    cl::Hidden, cl::init(0));
312
313 static cl::opt<unsigned long long> ClMappingOffset(
314     "asan-mapping-offset",
315     cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"), cl::Hidden,
316     cl::init(0));
317
318 // Optimization flags. Not user visible, used mostly for testing
319 // and benchmarking the tool.
320
321 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"),
322                            cl::Hidden, cl::init(true));
323
324 static cl::opt<bool> ClOptSameTemp(
325     "asan-opt-same-temp", cl::desc("Instrument the same temp just once"),
326     cl::Hidden, cl::init(true));
327
328 static cl::opt<bool> ClOptGlobals("asan-opt-globals",
329                                   cl::desc("Don't instrument scalar globals"),
330                                   cl::Hidden, cl::init(true));
331
332 static cl::opt<bool> ClOptStack(
333     "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"),
334     cl::Hidden, cl::init(false));
335
336 static cl::opt<bool> ClDynamicAllocaStack(
337     "asan-stack-dynamic-alloca",
338     cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden,
339     cl::init(true));
340
341 static cl::opt<uint32_t> ClForceExperiment(
342     "asan-force-experiment",
343     cl::desc("Force optimization experiment (for testing)"), cl::Hidden,
344     cl::init(0));
345
346 static cl::opt<bool>
347     ClUsePrivateAliasForGlobals("asan-use-private-alias",
348                                 cl::desc("Use private aliases for global"
349                                          " variables"),
350                                 cl::Hidden, cl::init(false));
351
352 static cl::opt<bool>
353     ClUseGlobalsGC("asan-globals-live-support",
354                    cl::desc("Use linker features to support dead "
355                             "code stripping of globals"),
356                    cl::Hidden, cl::init(true));
357
358 // This is on by default even though there is a bug in gold:
359 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002
360 static cl::opt<bool>
361     ClWithComdat("asan-with-comdat",
362                  cl::desc("Place ASan constructors in comdat sections"),
363                  cl::Hidden, cl::init(true));
364
365 // Debug flags.
366
367 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden,
368                             cl::init(0));
369
370 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"),
371                                  cl::Hidden, cl::init(0));
372
373 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden,
374                                         cl::desc("Debug func"));
375
376 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"),
377                                cl::Hidden, cl::init(-1));
378
379 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"),
380                                cl::Hidden, cl::init(-1));
381
382 STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
383 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
384 STATISTIC(NumOptimizedAccessesToGlobalVar,
385           "Number of optimized accesses to global vars");
386 STATISTIC(NumOptimizedAccessesToStackVar,
387           "Number of optimized accesses to stack vars");
388
389 namespace {
390
391 /// Frontend-provided metadata for source location.
392 struct LocationMetadata {
393   StringRef Filename;
394   int LineNo = 0;
395   int ColumnNo = 0;
396
397   LocationMetadata() = default;
398
399   bool empty() const { return Filename.empty(); }
400
401   void parse(MDNode *MDN) {
402     assert(MDN->getNumOperands() == 3);
403     MDString *DIFilename = cast<MDString>(MDN->getOperand(0));
404     Filename = DIFilename->getString();
405     LineNo =
406         mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue();
407     ColumnNo =
408         mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue();
409   }
410 };
411
412 /// Frontend-provided metadata for global variables.
413 class GlobalsMetadata {
414 public:
415   struct Entry {
416     LocationMetadata SourceLoc;
417     StringRef Name;
418     bool IsDynInit = false;
419     bool IsBlacklisted = false;
420
421     Entry() = default;
422   };
423
424   GlobalsMetadata() = default;
425
426   void reset() {
427     inited_ = false;
428     Entries.clear();
429   }
430
431   void init(Module &M) {
432     assert(!inited_);
433     inited_ = true;
434     NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals");
435     if (!Globals) return;
436     for (auto MDN : Globals->operands()) {
437       // Metadata node contains the global and the fields of "Entry".
438       assert(MDN->getNumOperands() == 5);
439       auto *GV = mdconst::extract_or_null<GlobalVariable>(MDN->getOperand(0));
440       // The optimizer may optimize away a global entirely.
441       if (!GV) continue;
442       // We can already have an entry for GV if it was merged with another
443       // global.
444       Entry &E = Entries[GV];
445       if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1)))
446         E.SourceLoc.parse(Loc);
447       if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2)))
448         E.Name = Name->getString();
449       ConstantInt *IsDynInit =
450           mdconst::extract<ConstantInt>(MDN->getOperand(3));
451       E.IsDynInit |= IsDynInit->isOne();
452       ConstantInt *IsBlacklisted =
453           mdconst::extract<ConstantInt>(MDN->getOperand(4));
454       E.IsBlacklisted |= IsBlacklisted->isOne();
455     }
456   }
457
458   /// Returns metadata entry for a given global.
459   Entry get(GlobalVariable *G) const {
460     auto Pos = Entries.find(G);
461     return (Pos != Entries.end()) ? Pos->second : Entry();
462   }
463
464 private:
465   bool inited_ = false;
466   DenseMap<GlobalVariable *, Entry> Entries;
467 };
468
469 /// This struct defines the shadow mapping using the rule:
470 ///   shadow = (mem >> Scale) ADD-or-OR Offset.
471 /// If InGlobal is true, then
472 ///   extern char __asan_shadow[];
473 ///   shadow = (mem >> Scale) + &__asan_shadow
474 struct ShadowMapping {
475   int Scale;
476   uint64_t Offset;
477   bool OrShadowOffset;
478   bool InGlobal;
479 };
480
481 } // end anonymous namespace
482
483 static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize,
484                                       bool IsKasan) {
485   bool IsAndroid = TargetTriple.isAndroid();
486   bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS();
487   bool IsFreeBSD = TargetTriple.isOSFreeBSD();
488   bool IsNetBSD = TargetTriple.isOSNetBSD();
489   bool IsPS4CPU = TargetTriple.isPS4CPU();
490   bool IsLinux = TargetTriple.isOSLinux();
491   bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 ||
492                  TargetTriple.getArch() == Triple::ppc64le;
493   bool IsSystemZ = TargetTriple.getArch() == Triple::systemz;
494   bool IsX86 = TargetTriple.getArch() == Triple::x86;
495   bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64;
496   bool IsMIPS32 = TargetTriple.isMIPS32();
497   bool IsMIPS64 = TargetTriple.isMIPS64();
498   bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb();
499   bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64;
500   bool IsWindows = TargetTriple.isOSWindows();
501   bool IsFuchsia = TargetTriple.isOSFuchsia();
502   bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad;
503
504   ShadowMapping Mapping;
505
506   Mapping.Scale = IsMyriad ? kMyriadShadowScale : kDefaultShadowScale;
507   if (ClMappingScale.getNumOccurrences() > 0) {
508     Mapping.Scale = ClMappingScale;
509   }
510
511   if (LongSize == 32) {
512     if (IsAndroid)
513       Mapping.Offset = kDynamicShadowSentinel;
514     else if (IsMIPS32)
515       Mapping.Offset = kMIPS32_ShadowOffset32;
516     else if (IsFreeBSD)
517       Mapping.Offset = kFreeBSD_ShadowOffset32;
518     else if (IsNetBSD)
519       Mapping.Offset = kNetBSD_ShadowOffset32;
520     else if (IsIOS)
521       // If we're targeting iOS and x86, the binary is built for iOS simulator.
522       Mapping.Offset = IsX86 ? kIOSSimShadowOffset32 : kIOSShadowOffset32;
523     else if (IsWindows)
524       Mapping.Offset = kWindowsShadowOffset32;
525     else if (IsMyriad) {
526       uint64_t ShadowOffset = (kMyriadMemoryOffset32 + kMyriadMemorySize32 -
527                                (kMyriadMemorySize32 >> Mapping.Scale));
528       Mapping.Offset = ShadowOffset - (kMyriadMemoryOffset32 >> Mapping.Scale);
529     }
530     else
531       Mapping.Offset = kDefaultShadowOffset32;
532   } else {  // LongSize == 64
533     // Fuchsia is always PIE, which means that the beginning of the address
534     // space is always available.
535     if (IsFuchsia)
536       Mapping.Offset = 0;
537     else if (IsPPC64)
538       Mapping.Offset = kPPC64_ShadowOffset64;
539     else if (IsSystemZ)
540       Mapping.Offset = kSystemZ_ShadowOffset64;
541     else if (IsFreeBSD)
542       Mapping.Offset = kFreeBSD_ShadowOffset64;
543     else if (IsNetBSD)
544       Mapping.Offset = kNetBSD_ShadowOffset64;
545     else if (IsPS4CPU)
546       Mapping.Offset = kPS4CPU_ShadowOffset64;
547     else if (IsLinux && IsX86_64) {
548       if (IsKasan)
549         Mapping.Offset = kLinuxKasan_ShadowOffset64;
550       else
551         Mapping.Offset = (kSmallX86_64ShadowOffsetBase &
552                           (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale));
553     } else if (IsWindows && IsX86_64) {
554       Mapping.Offset = kWindowsShadowOffset64;
555     } else if (IsMIPS64)
556       Mapping.Offset = kMIPS64_ShadowOffset64;
557     else if (IsIOS)
558       // If we're targeting iOS and x86, the binary is built for iOS simulator.
559       // We are using dynamic shadow offset on the 64-bit devices.
560       Mapping.Offset =
561         IsX86_64 ? kIOSSimShadowOffset64 : kDynamicShadowSentinel;
562     else if (IsAArch64)
563       Mapping.Offset = kAArch64_ShadowOffset64;
564     else
565       Mapping.Offset = kDefaultShadowOffset64;
566   }
567
568   if (ClForceDynamicShadow) {
569     Mapping.Offset = kDynamicShadowSentinel;
570   }
571
572   if (ClMappingOffset.getNumOccurrences() > 0) {
573     Mapping.Offset = ClMappingOffset;
574   }
575
576   // OR-ing shadow offset if more efficient (at least on x86) if the offset
577   // is a power of two, but on ppc64 we have to use add since the shadow
578   // offset is not necessary 1/8-th of the address space.  On SystemZ,
579   // we could OR the constant in a single instruction, but it's more
580   // efficient to load it once and use indexed addressing.
581   Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS4CPU &&
582                            !(Mapping.Offset & (Mapping.Offset - 1)) &&
583                            Mapping.Offset != kDynamicShadowSentinel;
584   bool IsAndroidWithIfuncSupport =
585       IsAndroid && !TargetTriple.isAndroidVersionLT(21);
586   Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb;
587
588   return Mapping;
589 }
590
591 static size_t RedzoneSizeForScale(int MappingScale) {
592   // Redzone used for stack and globals is at least 32 bytes.
593   // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
594   return std::max(32U, 1U << MappingScale);
595 }
596
597 namespace {
598
599 /// AddressSanitizer: instrument the code in module to find memory bugs.
600 struct AddressSanitizer : public FunctionPass {
601   // Pass identification, replacement for typeid
602   static char ID;
603
604   explicit AddressSanitizer(bool CompileKernel = false, bool Recover = false,
605                             bool UseAfterScope = false)
606       : FunctionPass(ID), UseAfterScope(UseAfterScope || ClUseAfterScope) {
607     this->Recover = ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover;
608     this->CompileKernel = ClEnableKasan.getNumOccurrences() > 0 ?
609         ClEnableKasan : CompileKernel;
610     initializeAddressSanitizerPass(*PassRegistry::getPassRegistry());
611   }
612
613   StringRef getPassName() const override {
614     return "AddressSanitizerFunctionPass";
615   }
616
617   void getAnalysisUsage(AnalysisUsage &AU) const override {
618     AU.addRequired<DominatorTreeWrapperPass>();
619     AU.addRequired<TargetLibraryInfoWrapperPass>();
620   }
621
622   uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const {
623     uint64_t ArraySize = 1;
624     if (AI.isArrayAllocation()) {
625       const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize());
626       assert(CI && "non-constant array size");
627       ArraySize = CI->getZExtValue();
628     }
629     Type *Ty = AI.getAllocatedType();
630     uint64_t SizeInBytes =
631         AI.getModule()->getDataLayout().getTypeAllocSize(Ty);
632     return SizeInBytes * ArraySize;
633   }
634
635   /// Check if we want (and can) handle this alloca.
636   bool isInterestingAlloca(const AllocaInst &AI);
637
638   /// If it is an interesting memory access, return the PointerOperand
639   /// and set IsWrite/Alignment. Otherwise return nullptr.
640   /// MaybeMask is an output parameter for the mask Value, if we're looking at a
641   /// masked load/store.
642   Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite,
643                                    uint64_t *TypeSize, unsigned *Alignment,
644                                    Value **MaybeMask = nullptr);
645
646   void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, Instruction *I,
647                      bool UseCalls, const DataLayout &DL);
648   void instrumentPointerComparisonOrSubtraction(Instruction *I);
649   void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
650                          Value *Addr, uint32_t TypeSize, bool IsWrite,
651                          Value *SizeArgument, bool UseCalls, uint32_t Exp);
652   void instrumentUnusualSizeOrAlignment(Instruction *I,
653                                         Instruction *InsertBefore, Value *Addr,
654                                         uint32_t TypeSize, bool IsWrite,
655                                         Value *SizeArgument, bool UseCalls,
656                                         uint32_t Exp);
657   Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
658                            Value *ShadowValue, uint32_t TypeSize);
659   Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr,
660                                  bool IsWrite, size_t AccessSizeIndex,
661                                  Value *SizeArgument, uint32_t Exp);
662   void instrumentMemIntrinsic(MemIntrinsic *MI);
663   Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
664   bool runOnFunction(Function &F) override;
665   bool maybeInsertAsanInitAtFunctionEntry(Function &F);
666   void maybeInsertDynamicShadowAtFunctionEntry(Function &F);
667   void markEscapedLocalAllocas(Function &F);
668   bool doInitialization(Module &M) override;
669   bool doFinalization(Module &M) override;
670
671   DominatorTree &getDominatorTree() const { return *DT; }
672
673 private:
674   friend struct FunctionStackPoisoner;
675
676   void initializeCallbacks(Module &M);
677
678   bool LooksLikeCodeInBug11395(Instruction *I);
679   bool GlobalIsLinkerInitialized(GlobalVariable *G);
680   bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr,
681                     uint64_t TypeSize) const;
682
683   /// Helper to cleanup per-function state.
684   struct FunctionStateRAII {
685     AddressSanitizer *Pass;
686
687     FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) {
688       assert(Pass->ProcessedAllocas.empty() &&
689              "last pass forgot to clear cache");
690       assert(!Pass->LocalDynamicShadow);
691     }
692
693     ~FunctionStateRAII() {
694       Pass->LocalDynamicShadow = nullptr;
695       Pass->ProcessedAllocas.clear();
696     }
697   };
698
699   LLVMContext *C;
700   Triple TargetTriple;
701   int LongSize;
702   bool CompileKernel;
703   bool Recover;
704   bool UseAfterScope;
705   Type *IntptrTy;
706   ShadowMapping Mapping;
707   DominatorTree *DT;
708   Function *AsanHandleNoReturnFunc;
709   Function *AsanPtrCmpFunction, *AsanPtrSubFunction;
710   Constant *AsanShadowGlobal;
711
712   // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize).
713   Function *AsanErrorCallback[2][2][kNumberOfAccessSizes];
714   Function *AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes];
715
716   // These arrays is indexed by AccessIsWrite and Experiment.
717   Function *AsanErrorCallbackSized[2][2];
718   Function *AsanMemoryAccessCallbackSized[2][2];
719
720   Function *AsanMemmove, *AsanMemcpy, *AsanMemset;
721   InlineAsm *EmptyAsm;
722   Value *LocalDynamicShadow = nullptr;
723   GlobalsMetadata GlobalsMD;
724   DenseMap<const AllocaInst *, bool> ProcessedAllocas;
725 };
726
727 class AddressSanitizerModule : public ModulePass {
728 public:
729   // Pass identification, replacement for typeid
730   static char ID;
731
732   explicit AddressSanitizerModule(bool CompileKernel = false,
733                                   bool Recover = false,
734                                   bool UseGlobalsGC = true)
735       : ModulePass(ID),
736         UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC),
737         // Not a typo: ClWithComdat is almost completely pointless without
738         // ClUseGlobalsGC (because then it only works on modules without
739         // globals, which are rare); it is a prerequisite for ClUseGlobalsGC;
740         // and both suffer from gold PR19002 for which UseGlobalsGC constructor
741         // argument is designed as workaround. Therefore, disable both
742         // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to
743         // do globals-gc.
744         UseCtorComdat(UseGlobalsGC && ClWithComdat) {
745           this->Recover = ClRecover.getNumOccurrences() > 0 ?
746               ClRecover : Recover;
747           this->CompileKernel = ClEnableKasan.getNumOccurrences() > 0 ?
748               ClEnableKasan : CompileKernel;
749         }
750
751   bool runOnModule(Module &M) override;
752   StringRef getPassName() const override { return "AddressSanitizerModule"; }
753
754 private:
755   void initializeCallbacks(Module &M);
756
757   bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat);
758   void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M,
759                              ArrayRef<GlobalVariable *> ExtendedGlobals,
760                              ArrayRef<Constant *> MetadataInitializers);
761   void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M,
762                             ArrayRef<GlobalVariable *> ExtendedGlobals,
763                             ArrayRef<Constant *> MetadataInitializers,
764                             const std::string &UniqueModuleId);
765   void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M,
766                               ArrayRef<GlobalVariable *> ExtendedGlobals,
767                               ArrayRef<Constant *> MetadataInitializers);
768   void
769   InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M,
770                                      ArrayRef<GlobalVariable *> ExtendedGlobals,
771                                      ArrayRef<Constant *> MetadataInitializers);
772
773   GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer,
774                                        StringRef OriginalName);
775   void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata,
776                                   StringRef InternalSuffix);
777   IRBuilder<> CreateAsanModuleDtor(Module &M);
778
779   bool ShouldInstrumentGlobal(GlobalVariable *G);
780   bool ShouldUseMachOGlobalsSection() const;
781   StringRef getGlobalMetadataSection() const;
782   void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName);
783   void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName);
784   size_t MinRedzoneSizeForGlobal() const {
785     return RedzoneSizeForScale(Mapping.Scale);
786   }
787   int GetAsanVersion(const Module &M) const;
788
789   GlobalsMetadata GlobalsMD;
790   bool CompileKernel;
791   bool Recover;
792   bool UseGlobalsGC;
793   bool UseCtorComdat;
794   Type *IntptrTy;
795   LLVMContext *C;
796   Triple TargetTriple;
797   ShadowMapping Mapping;
798   Function *AsanPoisonGlobals;
799   Function *AsanUnpoisonGlobals;
800   Function *AsanRegisterGlobals;
801   Function *AsanUnregisterGlobals;
802   Function *AsanRegisterImageGlobals;
803   Function *AsanUnregisterImageGlobals;
804   Function *AsanRegisterElfGlobals;
805   Function *AsanUnregisterElfGlobals;
806
807   Function *AsanCtorFunction = nullptr;
808   Function *AsanDtorFunction = nullptr;
809 };
810
811 // Stack poisoning does not play well with exception handling.
812 // When an exception is thrown, we essentially bypass the code
813 // that unpoisones the stack. This is why the run-time library has
814 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
815 // stack in the interceptor. This however does not work inside the
816 // actual function which catches the exception. Most likely because the
817 // compiler hoists the load of the shadow value somewhere too high.
818 // This causes asan to report a non-existing bug on 453.povray.
819 // It sounds like an LLVM bug.
820 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
821   Function &F;
822   AddressSanitizer &ASan;
823   DIBuilder DIB;
824   LLVMContext *C;
825   Type *IntptrTy;
826   Type *IntptrPtrTy;
827   ShadowMapping Mapping;
828
829   SmallVector<AllocaInst *, 16> AllocaVec;
830   SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp;
831   SmallVector<Instruction *, 8> RetVec;
832   unsigned StackAlignment;
833
834   Function *AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1],
835       *AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1];
836   Function *AsanSetShadowFunc[0x100] = {};
837   Function *AsanPoisonStackMemoryFunc, *AsanUnpoisonStackMemoryFunc;
838   Function *AsanAllocaPoisonFunc, *AsanAllocasUnpoisonFunc;
839
840   // Stores a place and arguments of poisoning/unpoisoning call for alloca.
841   struct AllocaPoisonCall {
842     IntrinsicInst *InsBefore;
843     AllocaInst *AI;
844     uint64_t Size;
845     bool DoPoison;
846   };
847   SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec;
848   SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec;
849
850   SmallVector<AllocaInst *, 1> DynamicAllocaVec;
851   SmallVector<IntrinsicInst *, 1> StackRestoreVec;
852   AllocaInst *DynamicAllocaLayout = nullptr;
853   IntrinsicInst *LocalEscapeCall = nullptr;
854
855   // Maps Value to an AllocaInst from which the Value is originated.
856   using AllocaForValueMapTy = DenseMap<Value *, AllocaInst *>;
857   AllocaForValueMapTy AllocaForValue;
858
859   bool HasNonEmptyInlineAsm = false;
860   bool HasReturnsTwiceCall = false;
861   std::unique_ptr<CallInst> EmptyInlineAsm;
862
863   FunctionStackPoisoner(Function &F, AddressSanitizer &ASan)
864       : F(F),
865         ASan(ASan),
866         DIB(*F.getParent(), /*AllowUnresolved*/ false),
867         C(ASan.C),
868         IntptrTy(ASan.IntptrTy),
869         IntptrPtrTy(PointerType::get(IntptrTy, 0)),
870         Mapping(ASan.Mapping),
871         StackAlignment(1 << Mapping.Scale),
872         EmptyInlineAsm(CallInst::Create(ASan.EmptyAsm)) {}
873
874   bool runOnFunction() {
875     if (!ClStack) return false;
876
877     if (ClRedzoneByvalArgs)
878       copyArgsPassedByValToAllocas();
879
880     // Collect alloca, ret, lifetime instructions etc.
881     for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB);
882
883     if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false;
884
885     initializeCallbacks(*F.getParent());
886
887     processDynamicAllocas();
888     processStaticAllocas();
889
890     if (ClDebugStack) {
891       LLVM_DEBUG(dbgs() << F);
892     }
893     return true;
894   }
895
896   // Arguments marked with the "byval" attribute are implicitly copied without
897   // using an alloca instruction.  To produce redzones for those arguments, we
898   // copy them a second time into memory allocated with an alloca instruction.
899   void copyArgsPassedByValToAllocas();
900
901   // Finds all Alloca instructions and puts
902   // poisoned red zones around all of them.
903   // Then unpoison everything back before the function returns.
904   void processStaticAllocas();
905   void processDynamicAllocas();
906
907   void createDynamicAllocasInitStorage();
908
909   // ----------------------- Visitors.
910   /// Collect all Ret instructions.
911   void visitReturnInst(ReturnInst &RI) { RetVec.push_back(&RI); }
912
913   /// Collect all Resume instructions.
914   void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); }
915
916   /// Collect all CatchReturnInst instructions.
917   void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); }
918
919   void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore,
920                                         Value *SavedStack) {
921     IRBuilder<> IRB(InstBefore);
922     Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy);
923     // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we
924     // need to adjust extracted SP to compute the address of the most recent
925     // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for
926     // this purpose.
927     if (!isa<ReturnInst>(InstBefore)) {
928       Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration(
929           InstBefore->getModule(), Intrinsic::get_dynamic_area_offset,
930           {IntptrTy});
931
932       Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {});
933
934       DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy),
935                                      DynamicAreaOffset);
936     }
937
938     IRB.CreateCall(AsanAllocasUnpoisonFunc,
939                    {IRB.CreateLoad(DynamicAllocaLayout), DynamicAreaPtr});
940   }
941
942   // Unpoison dynamic allocas redzones.
943   void unpoisonDynamicAllocas() {
944     for (auto &Ret : RetVec)
945       unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout);
946
947     for (auto &StackRestoreInst : StackRestoreVec)
948       unpoisonDynamicAllocasBeforeInst(StackRestoreInst,
949                                        StackRestoreInst->getOperand(0));
950   }
951
952   // Deploy and poison redzones around dynamic alloca call. To do this, we
953   // should replace this call with another one with changed parameters and
954   // replace all its uses with new address, so
955   //   addr = alloca type, old_size, align
956   // is replaced by
957   //   new_size = (old_size + additional_size) * sizeof(type)
958   //   tmp = alloca i8, new_size, max(align, 32)
959   //   addr = tmp + 32 (first 32 bytes are for the left redzone).
960   // Additional_size is added to make new memory allocation contain not only
961   // requested memory, but also left, partial and right redzones.
962   void handleDynamicAllocaCall(AllocaInst *AI);
963
964   /// Collect Alloca instructions we want (and can) handle.
965   void visitAllocaInst(AllocaInst &AI) {
966     if (!ASan.isInterestingAlloca(AI)) {
967       if (AI.isStaticAlloca()) {
968         // Skip over allocas that are present *before* the first instrumented
969         // alloca, we don't want to move those around.
970         if (AllocaVec.empty())
971           return;
972
973         StaticAllocasToMoveUp.push_back(&AI);
974       }
975       return;
976     }
977
978     StackAlignment = std::max(StackAlignment, AI.getAlignment());
979     if (!AI.isStaticAlloca())
980       DynamicAllocaVec.push_back(&AI);
981     else
982       AllocaVec.push_back(&AI);
983   }
984
985   /// Collect lifetime intrinsic calls to check for use-after-scope
986   /// errors.
987   void visitIntrinsicInst(IntrinsicInst &II) {
988     Intrinsic::ID ID = II.getIntrinsicID();
989     if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II);
990     if (ID == Intrinsic::localescape) LocalEscapeCall = &II;
991     if (!ASan.UseAfterScope)
992       return;
993     if (ID != Intrinsic::lifetime_start && ID != Intrinsic::lifetime_end)
994       return;
995     // Found lifetime intrinsic, add ASan instrumentation if necessary.
996     ConstantInt *Size = dyn_cast<ConstantInt>(II.getArgOperand(0));
997     // If size argument is undefined, don't do anything.
998     if (Size->isMinusOne()) return;
999     // Check that size doesn't saturate uint64_t and can
1000     // be stored in IntptrTy.
1001     const uint64_t SizeValue = Size->getValue().getLimitedValue();
1002     if (SizeValue == ~0ULL ||
1003         !ConstantInt::isValueValidForType(IntptrTy, SizeValue))
1004       return;
1005     // Find alloca instruction that corresponds to llvm.lifetime argument.
1006     AllocaInst *AI = findAllocaForValue(II.getArgOperand(1));
1007     if (!AI || !ASan.isInterestingAlloca(*AI))
1008       return;
1009     bool DoPoison = (ID == Intrinsic::lifetime_end);
1010     AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison};
1011     if (AI->isStaticAlloca())
1012       StaticAllocaPoisonCallVec.push_back(APC);
1013     else if (ClInstrumentDynamicAllocas)
1014       DynamicAllocaPoisonCallVec.push_back(APC);
1015   }
1016
1017   void visitCallSite(CallSite CS) {
1018     Instruction *I = CS.getInstruction();
1019     if (CallInst *CI = dyn_cast<CallInst>(I)) {
1020       HasNonEmptyInlineAsm |= CI->isInlineAsm() &&
1021                               !CI->isIdenticalTo(EmptyInlineAsm.get()) &&
1022                               I != ASan.LocalDynamicShadow;
1023       HasReturnsTwiceCall |= CI->canReturnTwice();
1024     }
1025   }
1026
1027   // ---------------------- Helpers.
1028   void initializeCallbacks(Module &M);
1029
1030   bool doesDominateAllExits(const Instruction *I) const {
1031     for (auto Ret : RetVec) {
1032       if (!ASan.getDominatorTree().dominates(I, Ret)) return false;
1033     }
1034     return true;
1035   }
1036
1037   /// Finds alloca where the value comes from.
1038   AllocaInst *findAllocaForValue(Value *V);
1039
1040   // Copies bytes from ShadowBytes into shadow memory for indexes where
1041   // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that
1042   // ShadowBytes[i] is constantly zero and doesn't need to be overwritten.
1043   void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
1044                     IRBuilder<> &IRB, Value *ShadowBase);
1045   void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
1046                     size_t Begin, size_t End, IRBuilder<> &IRB,
1047                     Value *ShadowBase);
1048   void copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
1049                           ArrayRef<uint8_t> ShadowBytes, size_t Begin,
1050                           size_t End, IRBuilder<> &IRB, Value *ShadowBase);
1051
1052   void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison);
1053
1054   Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L,
1055                                bool Dynamic);
1056   PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue,
1057                      Instruction *ThenTerm, Value *ValueIfFalse);
1058 };
1059
1060 } // end anonymous namespace
1061
1062 char AddressSanitizer::ID = 0;
1063
1064 INITIALIZE_PASS_BEGIN(
1065     AddressSanitizer, "asan",
1066     "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
1067     false)
1068 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1069 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1070 INITIALIZE_PASS_END(
1071     AddressSanitizer, "asan",
1072     "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
1073     false)
1074
1075 FunctionPass *llvm::createAddressSanitizerFunctionPass(bool CompileKernel,
1076                                                        bool Recover,
1077                                                        bool UseAfterScope) {
1078   assert(!CompileKernel || Recover);
1079   return new AddressSanitizer(CompileKernel, Recover, UseAfterScope);
1080 }
1081
1082 char AddressSanitizerModule::ID = 0;
1083
1084 INITIALIZE_PASS(
1085     AddressSanitizerModule, "asan-module",
1086     "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
1087     "ModulePass",
1088     false, false)
1089
1090 ModulePass *llvm::createAddressSanitizerModulePass(bool CompileKernel,
1091                                                    bool Recover,
1092                                                    bool UseGlobalsGC) {
1093   assert(!CompileKernel || Recover);
1094   return new AddressSanitizerModule(CompileKernel, Recover, UseGlobalsGC);
1095 }
1096
1097 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) {
1098   size_t Res = countTrailingZeros(TypeSize / 8);
1099   assert(Res < kNumberOfAccessSizes);
1100   return Res;
1101 }
1102
1103 // Create a constant for Str so that we can pass it to the run-time lib.
1104 static GlobalVariable *createPrivateGlobalForString(Module &M, StringRef Str,
1105                                                     bool AllowMerging) {
1106   Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
1107   // We use private linkage for module-local strings. If they can be merged
1108   // with another one, we set the unnamed_addr attribute.
1109   GlobalVariable *GV =
1110       new GlobalVariable(M, StrConst->getType(), true,
1111                          GlobalValue::PrivateLinkage, StrConst, kAsanGenPrefix);
1112   if (AllowMerging) GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
1113   GV->setAlignment(1);  // Strings may not be merged w/o setting align 1.
1114   return GV;
1115 }
1116
1117 /// Create a global describing a source location.
1118 static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M,
1119                                                        LocationMetadata MD) {
1120   Constant *LocData[] = {
1121       createPrivateGlobalForString(M, MD.Filename, true),
1122       ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo),
1123       ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo),
1124   };
1125   auto LocStruct = ConstantStruct::getAnon(LocData);
1126   auto GV = new GlobalVariable(M, LocStruct->getType(), true,
1127                                GlobalValue::PrivateLinkage, LocStruct,
1128                                kAsanGenPrefix);
1129   GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
1130   return GV;
1131 }
1132
1133 /// Check if \p G has been created by a trusted compiler pass.
1134 static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) {
1135   // Do not instrument asan globals.
1136   if (G->getName().startswith(kAsanGenPrefix) ||
1137       G->getName().startswith(kSanCovGenPrefix) ||
1138       G->getName().startswith(kODRGenPrefix))
1139     return true;
1140
1141   // Do not instrument gcov counter arrays.
1142   if (G->getName() == "__llvm_gcov_ctr")
1143     return true;
1144
1145   return false;
1146 }
1147
1148 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
1149   // Shadow >> scale
1150   Shadow = IRB.CreateLShr(Shadow, Mapping.Scale);
1151   if (Mapping.Offset == 0) return Shadow;
1152   // (Shadow >> scale) | offset
1153   Value *ShadowBase;
1154   if (LocalDynamicShadow)
1155     ShadowBase = LocalDynamicShadow;
1156   else
1157     ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset);
1158   if (Mapping.OrShadowOffset)
1159     return IRB.CreateOr(Shadow, ShadowBase);
1160   else
1161     return IRB.CreateAdd(Shadow, ShadowBase);
1162 }
1163
1164 // Instrument memset/memmove/memcpy
1165 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
1166   IRBuilder<> IRB(MI);
1167   if (isa<MemTransferInst>(MI)) {
1168     IRB.CreateCall(
1169         isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy,
1170         {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
1171          IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()),
1172          IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
1173   } else if (isa<MemSetInst>(MI)) {
1174     IRB.CreateCall(
1175         AsanMemset,
1176         {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
1177          IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false),
1178          IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
1179   }
1180   MI->eraseFromParent();
1181 }
1182
1183 /// Check if we want (and can) handle this alloca.
1184 bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) {
1185   auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI);
1186
1187   if (PreviouslySeenAllocaInfo != ProcessedAllocas.end())
1188     return PreviouslySeenAllocaInfo->getSecond();
1189
1190   bool IsInteresting =
1191       (AI.getAllocatedType()->isSized() &&
1192        // alloca() may be called with 0 size, ignore it.
1193        ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) &&
1194        // We are only interested in allocas not promotable to registers.
1195        // Promotable allocas are common under -O0.
1196        (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) &&
1197        // inalloca allocas are not treated as static, and we don't want
1198        // dynamic alloca instrumentation for them as well.
1199        !AI.isUsedWithInAlloca() &&
1200        // swifterror allocas are register promoted by ISel
1201        !AI.isSwiftError());
1202
1203   ProcessedAllocas[&AI] = IsInteresting;
1204   return IsInteresting;
1205 }
1206
1207 Value *AddressSanitizer::isInterestingMemoryAccess(Instruction *I,
1208                                                    bool *IsWrite,
1209                                                    uint64_t *TypeSize,
1210                                                    unsigned *Alignment,
1211                                                    Value **MaybeMask) {
1212   // Skip memory accesses inserted by another instrumentation.
1213   if (I->getMetadata("nosanitize")) return nullptr;
1214
1215   // Do not instrument the load fetching the dynamic shadow address.
1216   if (LocalDynamicShadow == I)
1217     return nullptr;
1218
1219   Value *PtrOperand = nullptr;
1220   const DataLayout &DL = I->getModule()->getDataLayout();
1221   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1222     if (!ClInstrumentReads) return nullptr;
1223     *IsWrite = false;
1224     *TypeSize = DL.getTypeStoreSizeInBits(LI->getType());
1225     *Alignment = LI->getAlignment();
1226     PtrOperand = LI->getPointerOperand();
1227   } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1228     if (!ClInstrumentWrites) return nullptr;
1229     *IsWrite = true;
1230     *TypeSize = DL.getTypeStoreSizeInBits(SI->getValueOperand()->getType());
1231     *Alignment = SI->getAlignment();
1232     PtrOperand = SI->getPointerOperand();
1233   } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
1234     if (!ClInstrumentAtomics) return nullptr;
1235     *IsWrite = true;
1236     *TypeSize = DL.getTypeStoreSizeInBits(RMW->getValOperand()->getType());
1237     *Alignment = 0;
1238     PtrOperand = RMW->getPointerOperand();
1239   } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
1240     if (!ClInstrumentAtomics) return nullptr;
1241     *IsWrite = true;
1242     *TypeSize = DL.getTypeStoreSizeInBits(XCHG->getCompareOperand()->getType());
1243     *Alignment = 0;
1244     PtrOperand = XCHG->getPointerOperand();
1245   } else if (auto CI = dyn_cast<CallInst>(I)) {
1246     auto *F = dyn_cast<Function>(CI->getCalledValue());
1247     if (F && (F->getName().startswith("llvm.masked.load.") ||
1248               F->getName().startswith("llvm.masked.store."))) {
1249       unsigned OpOffset = 0;
1250       if (F->getName().startswith("llvm.masked.store.")) {
1251         if (!ClInstrumentWrites)
1252           return nullptr;
1253         // Masked store has an initial operand for the value.
1254         OpOffset = 1;
1255         *IsWrite = true;
1256       } else {
1257         if (!ClInstrumentReads)
1258           return nullptr;
1259         *IsWrite = false;
1260       }
1261
1262       auto BasePtr = CI->getOperand(0 + OpOffset);
1263       auto Ty = cast<PointerType>(BasePtr->getType())->getElementType();
1264       *TypeSize = DL.getTypeStoreSizeInBits(Ty);
1265       if (auto AlignmentConstant =
1266               dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset)))
1267         *Alignment = (unsigned)AlignmentConstant->getZExtValue();
1268       else
1269         *Alignment = 1; // No alignment guarantees. We probably got Undef
1270       if (MaybeMask)
1271         *MaybeMask = CI->getOperand(2 + OpOffset);
1272       PtrOperand = BasePtr;
1273     }
1274   }
1275
1276   if (PtrOperand) {
1277     // Do not instrument acesses from different address spaces; we cannot deal
1278     // with them.
1279     Type *PtrTy = cast<PointerType>(PtrOperand->getType()->getScalarType());
1280     if (PtrTy->getPointerAddressSpace() != 0)
1281       return nullptr;
1282
1283     // Ignore swifterror addresses.
1284     // swifterror memory addresses are mem2reg promoted by instruction
1285     // selection. As such they cannot have regular uses like an instrumentation
1286     // function and it makes no sense to track them as memory.
1287     if (PtrOperand->isSwiftError())
1288       return nullptr;
1289   }
1290
1291   // Treat memory accesses to promotable allocas as non-interesting since they
1292   // will not cause memory violations. This greatly speeds up the instrumented
1293   // executable at -O0.
1294   if (ClSkipPromotableAllocas)
1295     if (auto AI = dyn_cast_or_null<AllocaInst>(PtrOperand))
1296       return isInterestingAlloca(*AI) ? AI : nullptr;
1297
1298   return PtrOperand;
1299 }
1300
1301 static bool isPointerOperand(Value *V) {
1302   return V->getType()->isPointerTy() || isa<PtrToIntInst>(V);
1303 }
1304
1305 // This is a rough heuristic; it may cause both false positives and
1306 // false negatives. The proper implementation requires cooperation with
1307 // the frontend.
1308 static bool isInterestingPointerComparisonOrSubtraction(Instruction *I) {
1309   if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) {
1310     if (!Cmp->isRelational()) return false;
1311   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
1312     if (BO->getOpcode() != Instruction::Sub) return false;
1313   } else {
1314     return false;
1315   }
1316   return isPointerOperand(I->getOperand(0)) &&
1317          isPointerOperand(I->getOperand(1));
1318 }
1319
1320 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) {
1321   // If a global variable does not have dynamic initialization we don't
1322   // have to instrument it.  However, if a global does not have initializer
1323   // at all, we assume it has dynamic initializer (in other TU).
1324   return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit;
1325 }
1326
1327 void AddressSanitizer::instrumentPointerComparisonOrSubtraction(
1328     Instruction *I) {
1329   IRBuilder<> IRB(I);
1330   Function *F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction;
1331   Value *Param[2] = {I->getOperand(0), I->getOperand(1)};
1332   for (Value *&i : Param) {
1333     if (i->getType()->isPointerTy())
1334       i = IRB.CreatePointerCast(i, IntptrTy);
1335   }
1336   IRB.CreateCall(F, Param);
1337 }
1338
1339 static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I,
1340                                 Instruction *InsertBefore, Value *Addr,
1341                                 unsigned Alignment, unsigned Granularity,
1342                                 uint32_t TypeSize, bool IsWrite,
1343                                 Value *SizeArgument, bool UseCalls,
1344                                 uint32_t Exp) {
1345   // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check
1346   // if the data is properly aligned.
1347   if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 ||
1348        TypeSize == 128) &&
1349       (Alignment >= Granularity || Alignment == 0 || Alignment >= TypeSize / 8))
1350     return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite,
1351                                    nullptr, UseCalls, Exp);
1352   Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize,
1353                                          IsWrite, nullptr, UseCalls, Exp);
1354 }
1355
1356 static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass,
1357                                         const DataLayout &DL, Type *IntptrTy,
1358                                         Value *Mask, Instruction *I,
1359                                         Value *Addr, unsigned Alignment,
1360                                         unsigned Granularity, uint32_t TypeSize,
1361                                         bool IsWrite, Value *SizeArgument,
1362                                         bool UseCalls, uint32_t Exp) {
1363   auto *VTy = cast<PointerType>(Addr->getType())->getElementType();
1364   uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType());
1365   unsigned Num = VTy->getVectorNumElements();
1366   auto Zero = ConstantInt::get(IntptrTy, 0);
1367   for (unsigned Idx = 0; Idx < Num; ++Idx) {
1368     Value *InstrumentedAddress = nullptr;
1369     Instruction *InsertBefore = I;
1370     if (auto *Vector = dyn_cast<ConstantVector>(Mask)) {
1371       // dyn_cast as we might get UndefValue
1372       if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) {
1373         if (Masked->isZero())
1374           // Mask is constant false, so no instrumentation needed.
1375           continue;
1376         // If we have a true or undef value, fall through to doInstrumentAddress
1377         // with InsertBefore == I
1378       }
1379     } else {
1380       IRBuilder<> IRB(I);
1381       Value *MaskElem = IRB.CreateExtractElement(Mask, Idx);
1382       TerminatorInst *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false);
1383       InsertBefore = ThenTerm;
1384     }
1385
1386     IRBuilder<> IRB(InsertBefore);
1387     InstrumentedAddress =
1388         IRB.CreateGEP(Addr, {Zero, ConstantInt::get(IntptrTy, Idx)});
1389     doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment,
1390                         Granularity, ElemTypeSize, IsWrite, SizeArgument,
1391                         UseCalls, Exp);
1392   }
1393 }
1394
1395 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
1396                                      Instruction *I, bool UseCalls,
1397                                      const DataLayout &DL) {
1398   bool IsWrite = false;
1399   unsigned Alignment = 0;
1400   uint64_t TypeSize = 0;
1401   Value *MaybeMask = nullptr;
1402   Value *Addr =
1403       isInterestingMemoryAccess(I, &IsWrite, &TypeSize, &Alignment, &MaybeMask);
1404   assert(Addr);
1405
1406   // Optimization experiments.
1407   // The experiments can be used to evaluate potential optimizations that remove
1408   // instrumentation (assess false negatives). Instead of completely removing
1409   // some instrumentation, you set Exp to a non-zero value (mask of optimization
1410   // experiments that want to remove instrumentation of this instruction).
1411   // If Exp is non-zero, this pass will emit special calls into runtime
1412   // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls
1413   // make runtime terminate the program in a special way (with a different
1414   // exit status). Then you run the new compiler on a buggy corpus, collect
1415   // the special terminations (ideally, you don't see them at all -- no false
1416   // negatives) and make the decision on the optimization.
1417   uint32_t Exp = ClForceExperiment;
1418
1419   if (ClOpt && ClOptGlobals) {
1420     // If initialization order checking is disabled, a simple access to a
1421     // dynamically initialized global is always valid.
1422     GlobalVariable *G = dyn_cast<GlobalVariable>(GetUnderlyingObject(Addr, DL));
1423     if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) &&
1424         isSafeAccess(ObjSizeVis, Addr, TypeSize)) {
1425       NumOptimizedAccessesToGlobalVar++;
1426       return;
1427     }
1428   }
1429
1430   if (ClOpt && ClOptStack) {
1431     // A direct inbounds access to a stack variable is always valid.
1432     if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) &&
1433         isSafeAccess(ObjSizeVis, Addr, TypeSize)) {
1434       NumOptimizedAccessesToStackVar++;
1435       return;
1436     }
1437   }
1438
1439   if (IsWrite)
1440     NumInstrumentedWrites++;
1441   else
1442     NumInstrumentedReads++;
1443
1444   unsigned Granularity = 1 << Mapping.Scale;
1445   if (MaybeMask) {
1446     instrumentMaskedLoadOrStore(this, DL, IntptrTy, MaybeMask, I, Addr,
1447                                 Alignment, Granularity, TypeSize, IsWrite,
1448                                 nullptr, UseCalls, Exp);
1449   } else {
1450     doInstrumentAddress(this, I, I, Addr, Alignment, Granularity, TypeSize,
1451                         IsWrite, nullptr, UseCalls, Exp);
1452   }
1453 }
1454
1455 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore,
1456                                                  Value *Addr, bool IsWrite,
1457                                                  size_t AccessSizeIndex,
1458                                                  Value *SizeArgument,
1459                                                  uint32_t Exp) {
1460   IRBuilder<> IRB(InsertBefore);
1461   Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp);
1462   CallInst *Call = nullptr;
1463   if (SizeArgument) {
1464     if (Exp == 0)
1465       Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0],
1466                             {Addr, SizeArgument});
1467     else
1468       Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1],
1469                             {Addr, SizeArgument, ExpVal});
1470   } else {
1471     if (Exp == 0)
1472       Call =
1473           IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr);
1474     else
1475       Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex],
1476                             {Addr, ExpVal});
1477   }
1478
1479   // We don't do Call->setDoesNotReturn() because the BB already has
1480   // UnreachableInst at the end.
1481   // This EmptyAsm is required to avoid callback merge.
1482   IRB.CreateCall(EmptyAsm, {});
1483   return Call;
1484 }
1485
1486 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
1487                                            Value *ShadowValue,
1488                                            uint32_t TypeSize) {
1489   size_t Granularity = static_cast<size_t>(1) << Mapping.Scale;
1490   // Addr & (Granularity - 1)
1491   Value *LastAccessedByte =
1492       IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1));
1493   // (Addr & (Granularity - 1)) + size - 1
1494   if (TypeSize / 8 > 1)
1495     LastAccessedByte = IRB.CreateAdd(
1496         LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1));
1497   // (uint8_t) ((Addr & (Granularity-1)) + size - 1)
1498   LastAccessedByte =
1499       IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false);
1500   // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
1501   return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue);
1502 }
1503
1504 void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
1505                                          Instruction *InsertBefore, Value *Addr,
1506                                          uint32_t TypeSize, bool IsWrite,
1507                                          Value *SizeArgument, bool UseCalls,
1508                                          uint32_t Exp) {
1509   bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad;
1510
1511   IRBuilder<> IRB(InsertBefore);
1512   Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
1513   size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize);
1514
1515   if (UseCalls) {
1516     if (Exp == 0)
1517       IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex],
1518                      AddrLong);
1519     else
1520       IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex],
1521                      {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)});
1522     return;
1523   }
1524
1525   if (IsMyriad) {
1526     // Strip the cache bit and do range check.
1527     // AddrLong &= ~kMyriadCacheBitMask32
1528     AddrLong = IRB.CreateAnd(AddrLong, ~kMyriadCacheBitMask32);
1529     // Tag = AddrLong >> kMyriadTagShift
1530     Value *Tag = IRB.CreateLShr(AddrLong, kMyriadTagShift);
1531     // Tag == kMyriadDDRTag
1532     Value *TagCheck =
1533         IRB.CreateICmpEQ(Tag, ConstantInt::get(IntptrTy, kMyriadDDRTag));
1534
1535     TerminatorInst *TagCheckTerm = SplitBlockAndInsertIfThen(
1536         TagCheck, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000));
1537     assert(cast<BranchInst>(TagCheckTerm)->isUnconditional());
1538     IRB.SetInsertPoint(TagCheckTerm);
1539     InsertBefore = TagCheckTerm;
1540   }
1541
1542   Type *ShadowTy =
1543       IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale));
1544   Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
1545   Value *ShadowPtr = memToShadow(AddrLong, IRB);
1546   Value *CmpVal = Constant::getNullValue(ShadowTy);
1547   Value *ShadowValue =
1548       IRB.CreateLoad(IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy));
1549
1550   Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal);
1551   size_t Granularity = 1ULL << Mapping.Scale;
1552   TerminatorInst *CrashTerm = nullptr;
1553
1554   if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) {
1555     // We use branch weights for the slow path check, to indicate that the slow
1556     // path is rarely taken. This seems to be the case for SPEC benchmarks.
1557     TerminatorInst *CheckTerm = SplitBlockAndInsertIfThen(
1558         Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000));
1559     assert(cast<BranchInst>(CheckTerm)->isUnconditional());
1560     BasicBlock *NextBB = CheckTerm->getSuccessor(0);
1561     IRB.SetInsertPoint(CheckTerm);
1562     Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize);
1563     if (Recover) {
1564       CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false);
1565     } else {
1566       BasicBlock *CrashBlock =
1567         BasicBlock::Create(*C, "", NextBB->getParent(), NextBB);
1568       CrashTerm = new UnreachableInst(*C, CrashBlock);
1569       BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2);
1570       ReplaceInstWithInst(CheckTerm, NewTerm);
1571     }
1572   } else {
1573     CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover);
1574   }
1575
1576   Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite,
1577                                          AccessSizeIndex, SizeArgument, Exp);
1578   Crash->setDebugLoc(OrigIns->getDebugLoc());
1579 }
1580
1581 // Instrument unusual size or unusual alignment.
1582 // We can not do it with a single check, so we do 1-byte check for the first
1583 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able
1584 // to report the actual access size.
1585 void AddressSanitizer::instrumentUnusualSizeOrAlignment(
1586     Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize,
1587     bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) {
1588   IRBuilder<> IRB(InsertBefore);
1589   Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8);
1590   Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
1591   if (UseCalls) {
1592     if (Exp == 0)
1593       IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0],
1594                      {AddrLong, Size});
1595     else
1596       IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1],
1597                      {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)});
1598   } else {
1599     Value *LastByte = IRB.CreateIntToPtr(
1600         IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)),
1601         Addr->getType());
1602     instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp);
1603     instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp);
1604   }
1605 }
1606
1607 void AddressSanitizerModule::poisonOneInitializer(Function &GlobalInit,
1608                                                   GlobalValue *ModuleName) {
1609   // Set up the arguments to our poison/unpoison functions.
1610   IRBuilder<> IRB(&GlobalInit.front(),
1611                   GlobalInit.front().getFirstInsertionPt());
1612
1613   // Add a call to poison all external globals before the given function starts.
1614   Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy);
1615   IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr);
1616
1617   // Add calls to unpoison all globals before each return instruction.
1618   for (auto &BB : GlobalInit.getBasicBlockList())
1619     if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
1620       CallInst::Create(AsanUnpoisonGlobals, "", RI);
1621 }
1622
1623 void AddressSanitizerModule::createInitializerPoisonCalls(
1624     Module &M, GlobalValue *ModuleName) {
1625   GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
1626   if (!GV)
1627     return;
1628
1629   ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer());
1630   if (!CA)
1631     return;
1632
1633   for (Use &OP : CA->operands()) {
1634     if (isa<ConstantAggregateZero>(OP)) continue;
1635     ConstantStruct *CS = cast<ConstantStruct>(OP);
1636
1637     // Must have a function or null ptr.
1638     if (Function *F = dyn_cast<Function>(CS->getOperand(1))) {
1639       if (F->getName() == kAsanModuleCtorName) continue;
1640       ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1641       // Don't instrument CTORs that will run before asan.module_ctor.
1642       if (Priority->getLimitedValue() <= kAsanCtorAndDtorPriority) continue;
1643       poisonOneInitializer(*F, ModuleName);
1644     }
1645   }
1646 }
1647
1648 bool AddressSanitizerModule::ShouldInstrumentGlobal(GlobalVariable *G) {
1649   Type *Ty = G->getValueType();
1650   LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n");
1651
1652   if (GlobalsMD.get(G).IsBlacklisted) return false;
1653   if (!Ty->isSized()) return false;
1654   if (!G->hasInitializer()) return false;
1655   if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals.
1656   // Touch only those globals that will not be defined in other modules.
1657   // Don't handle ODR linkage types and COMDATs since other modules may be built
1658   // without ASan.
1659   if (G->getLinkage() != GlobalVariable::ExternalLinkage &&
1660       G->getLinkage() != GlobalVariable::PrivateLinkage &&
1661       G->getLinkage() != GlobalVariable::InternalLinkage)
1662     return false;
1663   if (G->hasComdat()) return false;
1664   // Two problems with thread-locals:
1665   //   - The address of the main thread's copy can't be computed at link-time.
1666   //   - Need to poison all copies, not just the main thread's one.
1667   if (G->isThreadLocal()) return false;
1668   // For now, just ignore this Global if the alignment is large.
1669   if (G->getAlignment() > MinRedzoneSizeForGlobal()) return false;
1670
1671   if (G->hasSection()) {
1672     StringRef Section = G->getSection();
1673
1674     // Globals from llvm.metadata aren't emitted, do not instrument them.
1675     if (Section == "llvm.metadata") return false;
1676     // Do not instrument globals from special LLVM sections.
1677     if (Section.find("__llvm") != StringRef::npos || Section.find("__LLVM") != StringRef::npos) return false;
1678
1679     // Do not instrument function pointers to initialization and termination
1680     // routines: dynamic linker will not properly handle redzones.
1681     if (Section.startswith(".preinit_array") ||
1682         Section.startswith(".init_array") ||
1683         Section.startswith(".fini_array")) {
1684       return false;
1685     }
1686
1687     // On COFF, if the section name contains '$', it is highly likely that the
1688     // user is using section sorting to create an array of globals similar to
1689     // the way initialization callbacks are registered in .init_array and
1690     // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones
1691     // to such globals is counterproductive, because the intent is that they
1692     // will form an array, and out-of-bounds accesses are expected.
1693     // See https://github.com/google/sanitizers/issues/305
1694     // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx
1695     if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) {
1696       LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): "
1697                         << *G << "\n");
1698       return false;
1699     }
1700
1701     if (TargetTriple.isOSBinFormatMachO()) {
1702       StringRef ParsedSegment, ParsedSection;
1703       unsigned TAA = 0, StubSize = 0;
1704       bool TAAParsed;
1705       std::string ErrorCode = MCSectionMachO::ParseSectionSpecifier(
1706           Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize);
1707       assert(ErrorCode.empty() && "Invalid section specifier.");
1708
1709       // Ignore the globals from the __OBJC section. The ObjC runtime assumes
1710       // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
1711       // them.
1712       if (ParsedSegment == "__OBJC" ||
1713           (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) {
1714         LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n");
1715         return false;
1716       }
1717       // See https://github.com/google/sanitizers/issues/32
1718       // Constant CFString instances are compiled in the following way:
1719       //  -- the string buffer is emitted into
1720       //     __TEXT,__cstring,cstring_literals
1721       //  -- the constant NSConstantString structure referencing that buffer
1722       //     is placed into __DATA,__cfstring
1723       // Therefore there's no point in placing redzones into __DATA,__cfstring.
1724       // Moreover, it causes the linker to crash on OS X 10.7
1725       if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") {
1726         LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n");
1727         return false;
1728       }
1729       // The linker merges the contents of cstring_literals and removes the
1730       // trailing zeroes.
1731       if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) {
1732         LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n");
1733         return false;
1734       }
1735     }
1736   }
1737
1738   return true;
1739 }
1740
1741 // On Mach-O platforms, we emit global metadata in a separate section of the
1742 // binary in order to allow the linker to properly dead strip. This is only
1743 // supported on recent versions of ld64.
1744 bool AddressSanitizerModule::ShouldUseMachOGlobalsSection() const {
1745   if (!TargetTriple.isOSBinFormatMachO())
1746     return false;
1747
1748   if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11))
1749     return true;
1750   if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9))
1751     return true;
1752   if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2))
1753     return true;
1754
1755   return false;
1756 }
1757
1758 StringRef AddressSanitizerModule::getGlobalMetadataSection() const {
1759   switch (TargetTriple.getObjectFormat()) {
1760   case Triple::COFF:  return ".ASAN$GL";
1761   case Triple::ELF:   return "asan_globals";
1762   case Triple::MachO: return "__DATA,__asan_globals,regular";
1763   default: break;
1764   }
1765   llvm_unreachable("unsupported object format");
1766 }
1767
1768 void AddressSanitizerModule::initializeCallbacks(Module &M) {
1769   IRBuilder<> IRB(*C);
1770
1771   // Declare our poisoning and unpoisoning functions.
1772   AsanPoisonGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1773       kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy));
1774   AsanPoisonGlobals->setLinkage(Function::ExternalLinkage);
1775   AsanUnpoisonGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1776       kAsanUnpoisonGlobalsName, IRB.getVoidTy()));
1777   AsanUnpoisonGlobals->setLinkage(Function::ExternalLinkage);
1778
1779   // Declare functions that register/unregister globals.
1780   AsanRegisterGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1781       kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy));
1782   AsanRegisterGlobals->setLinkage(Function::ExternalLinkage);
1783   AsanUnregisterGlobals = checkSanitizerInterfaceFunction(
1784       M.getOrInsertFunction(kAsanUnregisterGlobalsName, IRB.getVoidTy(),
1785                             IntptrTy, IntptrTy));
1786   AsanUnregisterGlobals->setLinkage(Function::ExternalLinkage);
1787
1788   // Declare the functions that find globals in a shared object and then invoke
1789   // the (un)register function on them.
1790   AsanRegisterImageGlobals =
1791       checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1792           kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy));
1793   AsanRegisterImageGlobals->setLinkage(Function::ExternalLinkage);
1794
1795   AsanUnregisterImageGlobals =
1796       checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1797           kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy));
1798   AsanUnregisterImageGlobals->setLinkage(Function::ExternalLinkage);
1799
1800   AsanRegisterElfGlobals = checkSanitizerInterfaceFunction(
1801       M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(),
1802                             IntptrTy, IntptrTy, IntptrTy));
1803   AsanRegisterElfGlobals->setLinkage(Function::ExternalLinkage);
1804
1805   AsanUnregisterElfGlobals = checkSanitizerInterfaceFunction(
1806       M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(),
1807                             IntptrTy, IntptrTy, IntptrTy));
1808   AsanUnregisterElfGlobals->setLinkage(Function::ExternalLinkage);
1809 }
1810
1811 // Put the metadata and the instrumented global in the same group. This ensures
1812 // that the metadata is discarded if the instrumented global is discarded.
1813 void AddressSanitizerModule::SetComdatForGlobalMetadata(
1814     GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) {
1815   Module &M = *G->getParent();
1816   Comdat *C = G->getComdat();
1817   if (!C) {
1818     if (!G->hasName()) {
1819       // If G is unnamed, it must be internal. Give it an artificial name
1820       // so we can put it in a comdat.
1821       assert(G->hasLocalLinkage());
1822       G->setName(Twine(kAsanGenPrefix) + "_anon_global");
1823     }
1824
1825     if (!InternalSuffix.empty() && G->hasLocalLinkage()) {
1826       std::string Name = G->getName();
1827       Name += InternalSuffix;
1828       C = M.getOrInsertComdat(Name);
1829     } else {
1830       C = M.getOrInsertComdat(G->getName());
1831     }
1832
1833     // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private
1834     // linkage to internal linkage so that a symbol table entry is emitted. This
1835     // is necessary in order to create the comdat group.
1836     if (TargetTriple.isOSBinFormatCOFF()) {
1837       C->setSelectionKind(Comdat::NoDuplicates);
1838       if (G->hasPrivateLinkage())
1839         G->setLinkage(GlobalValue::InternalLinkage);
1840     }
1841     G->setComdat(C);
1842   }
1843
1844   assert(G->hasComdat());
1845   Metadata->setComdat(G->getComdat());
1846 }
1847
1848 // Create a separate metadata global and put it in the appropriate ASan
1849 // global registration section.
1850 GlobalVariable *
1851 AddressSanitizerModule::CreateMetadataGlobal(Module &M, Constant *Initializer,
1852                                              StringRef OriginalName) {
1853   auto Linkage = TargetTriple.isOSBinFormatMachO()
1854                      ? GlobalVariable::InternalLinkage
1855                      : GlobalVariable::PrivateLinkage;
1856   GlobalVariable *Metadata = new GlobalVariable(
1857       M, Initializer->getType(), false, Linkage, Initializer,
1858       Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName));
1859   Metadata->setSection(getGlobalMetadataSection());
1860   return Metadata;
1861 }
1862
1863 IRBuilder<> AddressSanitizerModule::CreateAsanModuleDtor(Module &M) {
1864   AsanDtorFunction =
1865       Function::Create(FunctionType::get(Type::getVoidTy(*C), false),
1866                        GlobalValue::InternalLinkage, kAsanModuleDtorName, &M);
1867   BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction);
1868
1869   return IRBuilder<>(ReturnInst::Create(*C, AsanDtorBB));
1870 }
1871
1872 void AddressSanitizerModule::InstrumentGlobalsCOFF(
1873     IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
1874     ArrayRef<Constant *> MetadataInitializers) {
1875   assert(ExtendedGlobals.size() == MetadataInitializers.size());
1876   auto &DL = M.getDataLayout();
1877
1878   for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
1879     Constant *Initializer = MetadataInitializers[i];
1880     GlobalVariable *G = ExtendedGlobals[i];
1881     GlobalVariable *Metadata =
1882         CreateMetadataGlobal(M, Initializer, G->getName());
1883
1884     // The MSVC linker always inserts padding when linking incrementally. We
1885     // cope with that by aligning each struct to its size, which must be a power
1886     // of two.
1887     unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType());
1888     assert(isPowerOf2_32(SizeOfGlobalStruct) &&
1889            "global metadata will not be padded appropriately");
1890     Metadata->setAlignment(SizeOfGlobalStruct);
1891
1892     SetComdatForGlobalMetadata(G, Metadata, "");
1893   }
1894 }
1895
1896 void AddressSanitizerModule::InstrumentGlobalsELF(
1897     IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
1898     ArrayRef<Constant *> MetadataInitializers,
1899     const std::string &UniqueModuleId) {
1900   assert(ExtendedGlobals.size() == MetadataInitializers.size());
1901
1902   SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size());
1903   for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
1904     GlobalVariable *G = ExtendedGlobals[i];
1905     GlobalVariable *Metadata =
1906         CreateMetadataGlobal(M, MetadataInitializers[i], G->getName());
1907     MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G));
1908     Metadata->setMetadata(LLVMContext::MD_associated, MD);
1909     MetadataGlobals[i] = Metadata;
1910
1911     SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId);
1912   }
1913
1914   // Update llvm.compiler.used, adding the new metadata globals. This is
1915   // needed so that during LTO these variables stay alive.
1916   if (!MetadataGlobals.empty())
1917     appendToCompilerUsed(M, MetadataGlobals);
1918
1919   // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
1920   // to look up the loaded image that contains it. Second, we can store in it
1921   // whether registration has already occurred, to prevent duplicate
1922   // registration.
1923   //
1924   // Common linkage ensures that there is only one global per shared library.
1925   GlobalVariable *RegisteredFlag = new GlobalVariable(
1926       M, IntptrTy, false, GlobalVariable::CommonLinkage,
1927       ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
1928   RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);
1929
1930   // Create start and stop symbols.
1931   GlobalVariable *StartELFMetadata = new GlobalVariable(
1932       M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr,
1933       "__start_" + getGlobalMetadataSection());
1934   StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility);
1935   GlobalVariable *StopELFMetadata = new GlobalVariable(
1936       M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr,
1937       "__stop_" + getGlobalMetadataSection());
1938   StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility);
1939
1940   // Create a call to register the globals with the runtime.
1941   IRB.CreateCall(AsanRegisterElfGlobals,
1942                  {IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
1943                   IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
1944                   IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});
1945
1946   // We also need to unregister globals at the end, e.g., when a shared library
1947   // gets closed.
1948   IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M);
1949   IRB_Dtor.CreateCall(AsanUnregisterElfGlobals,
1950                       {IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
1951                        IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
1952                        IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});
1953 }
1954
1955 void AddressSanitizerModule::InstrumentGlobalsMachO(
1956     IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
1957     ArrayRef<Constant *> MetadataInitializers) {
1958   assert(ExtendedGlobals.size() == MetadataInitializers.size());
1959
1960   // On recent Mach-O platforms, use a structure which binds the liveness of
1961   // the global variable to the metadata struct. Keep the list of "Liveness" GV
1962   // created to be added to llvm.compiler.used
1963   StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy);
1964   SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size());
1965
1966   for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
1967     Constant *Initializer = MetadataInitializers[i];
1968     GlobalVariable *G = ExtendedGlobals[i];
1969     GlobalVariable *Metadata =
1970         CreateMetadataGlobal(M, Initializer, G->getName());
1971
1972     // On recent Mach-O platforms, we emit the global metadata in a way that
1973     // allows the linker to properly strip dead globals.
1974     auto LivenessBinder =
1975         ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u),
1976                             ConstantExpr::getPointerCast(Metadata, IntptrTy));
1977     GlobalVariable *Liveness = new GlobalVariable(
1978         M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder,
1979         Twine("__asan_binder_") + G->getName());
1980     Liveness->setSection("__DATA,__asan_liveness,regular,live_support");
1981     LivenessGlobals[i] = Liveness;
1982   }
1983
1984   // Update llvm.compiler.used, adding the new liveness globals. This is
1985   // needed so that during LTO these variables stay alive. The alternative
1986   // would be to have the linker handling the LTO symbols, but libLTO
1987   // current API does not expose access to the section for each symbol.
1988   if (!LivenessGlobals.empty())
1989     appendToCompilerUsed(M, LivenessGlobals);
1990
1991   // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
1992   // to look up the loaded image that contains it. Second, we can store in it
1993   // whether registration has already occurred, to prevent duplicate
1994   // registration.
1995   //
1996   // common linkage ensures that there is only one global per shared library.
1997   GlobalVariable *RegisteredFlag = new GlobalVariable(
1998       M, IntptrTy, false, GlobalVariable::CommonLinkage,
1999       ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
2000   RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);
2001
2002   IRB.CreateCall(AsanRegisterImageGlobals,
2003                  {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
2004
2005   // We also need to unregister globals at the end, e.g., when a shared library
2006   // gets closed.
2007   IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M);
2008   IRB_Dtor.CreateCall(AsanUnregisterImageGlobals,
2009                       {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
2010 }
2011
2012 void AddressSanitizerModule::InstrumentGlobalsWithMetadataArray(
2013     IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2014     ArrayRef<Constant *> MetadataInitializers) {
2015   assert(ExtendedGlobals.size() == MetadataInitializers.size());
2016   unsigned N = ExtendedGlobals.size();
2017   assert(N > 0);
2018
2019   // On platforms that don't have a custom metadata section, we emit an array
2020   // of global metadata structures.
2021   ArrayType *ArrayOfGlobalStructTy =
2022       ArrayType::get(MetadataInitializers[0]->getType(), N);
2023   auto AllGlobals = new GlobalVariable(
2024       M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage,
2025       ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), "");
2026   if (Mapping.Scale > 3)
2027     AllGlobals->setAlignment(1ULL << Mapping.Scale);
2028
2029   IRB.CreateCall(AsanRegisterGlobals,
2030                  {IRB.CreatePointerCast(AllGlobals, IntptrTy),
2031                   ConstantInt::get(IntptrTy, N)});
2032
2033   // We also need to unregister globals at the end, e.g., when a shared library
2034   // gets closed.
2035   IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M);
2036   IRB_Dtor.CreateCall(AsanUnregisterGlobals,
2037                       {IRB.CreatePointerCast(AllGlobals, IntptrTy),
2038                        ConstantInt::get(IntptrTy, N)});
2039 }
2040
2041 // This function replaces all global variables with new variables that have
2042 // trailing redzones. It also creates a function that poisons
2043 // redzones and inserts this function into llvm.global_ctors.
2044 // Sets *CtorComdat to true if the global registration code emitted into the
2045 // asan constructor is comdat-compatible.
2046 bool AddressSanitizerModule::InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat) {
2047   *CtorComdat = false;
2048   GlobalsMD.init(M);
2049
2050   SmallVector<GlobalVariable *, 16> GlobalsToChange;
2051
2052   for (auto &G : M.globals()) {
2053     if (ShouldInstrumentGlobal(&G)) GlobalsToChange.push_back(&G);
2054   }
2055
2056   size_t n = GlobalsToChange.size();
2057   if (n == 0) {
2058     *CtorComdat = true;
2059     return false;
2060   }
2061
2062   auto &DL = M.getDataLayout();
2063
2064   // A global is described by a structure
2065   //   size_t beg;
2066   //   size_t size;
2067   //   size_t size_with_redzone;
2068   //   const char *name;
2069   //   const char *module_name;
2070   //   size_t has_dynamic_init;
2071   //   void *source_location;
2072   //   size_t odr_indicator;
2073   // We initialize an array of such structures and pass it to a run-time call.
2074   StructType *GlobalStructTy =
2075       StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy,
2076                       IntptrTy, IntptrTy, IntptrTy);
2077   SmallVector<GlobalVariable *, 16> NewGlobals(n);
2078   SmallVector<Constant *, 16> Initializers(n);
2079
2080   bool HasDynamicallyInitializedGlobals = false;
2081
2082   // We shouldn't merge same module names, as this string serves as unique
2083   // module ID in runtime.
2084   GlobalVariable *ModuleName = createPrivateGlobalForString(
2085       M, M.getModuleIdentifier(), /*AllowMerging*/ false);
2086
2087   for (size_t i = 0; i < n; i++) {
2088     static const uint64_t kMaxGlobalRedzone = 1 << 18;
2089     GlobalVariable *G = GlobalsToChange[i];
2090
2091     auto MD = GlobalsMD.get(G);
2092     StringRef NameForGlobal = G->getName();
2093     // Create string holding the global name (use global name from metadata
2094     // if it's available, otherwise just write the name of global variable).
2095     GlobalVariable *Name = createPrivateGlobalForString(
2096         M, MD.Name.empty() ? NameForGlobal : MD.Name,
2097         /*AllowMerging*/ true);
2098
2099     Type *Ty = G->getValueType();
2100     uint64_t SizeInBytes = DL.getTypeAllocSize(Ty);
2101     uint64_t MinRZ = MinRedzoneSizeForGlobal();
2102     // MinRZ <= RZ <= kMaxGlobalRedzone
2103     // and trying to make RZ to be ~ 1/4 of SizeInBytes.
2104     uint64_t RZ = std::max(
2105         MinRZ, std::min(kMaxGlobalRedzone, (SizeInBytes / MinRZ / 4) * MinRZ));
2106     uint64_t RightRedzoneSize = RZ;
2107     // Round up to MinRZ
2108     if (SizeInBytes % MinRZ) RightRedzoneSize += MinRZ - (SizeInBytes % MinRZ);
2109     assert(((RightRedzoneSize + SizeInBytes) % MinRZ) == 0);
2110     Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);
2111
2112     StructType *NewTy = StructType::get(Ty, RightRedZoneTy);
2113     Constant *NewInitializer = ConstantStruct::get(
2114         NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy));
2115
2116     // Create a new global variable with enough space for a redzone.
2117     GlobalValue::LinkageTypes Linkage = G->getLinkage();
2118     if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage)
2119       Linkage = GlobalValue::InternalLinkage;
2120     GlobalVariable *NewGlobal =
2121         new GlobalVariable(M, NewTy, G->isConstant(), Linkage, NewInitializer,
2122                            "", G, G->getThreadLocalMode());
2123     NewGlobal->copyAttributesFrom(G);
2124     NewGlobal->setAlignment(MinRZ);
2125
2126     // Move null-terminated C strings to "__asan_cstring" section on Darwin.
2127     if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() &&
2128         G->isConstant()) {
2129       auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer());
2130       if (Seq && Seq->isCString())
2131         NewGlobal->setSection("__TEXT,__asan_cstring,regular");
2132     }
2133
2134     // Transfer the debug info.  The payload starts at offset zero so we can
2135     // copy the debug info over as is.
2136     SmallVector<DIGlobalVariableExpression *, 1> GVs;
2137     G->getDebugInfo(GVs);
2138     for (auto *GV : GVs)
2139       NewGlobal->addDebugInfo(GV);
2140
2141     Value *Indices2[2];
2142     Indices2[0] = IRB.getInt32(0);
2143     Indices2[1] = IRB.getInt32(0);
2144
2145     G->replaceAllUsesWith(
2146         ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true));
2147     NewGlobal->takeName(G);
2148     G->eraseFromParent();
2149     NewGlobals[i] = NewGlobal;
2150
2151     Constant *SourceLoc;
2152     if (!MD.SourceLoc.empty()) {
2153       auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc);
2154       SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy);
2155     } else {
2156       SourceLoc = ConstantInt::get(IntptrTy, 0);
2157     }
2158
2159     Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy());
2160     GlobalValue *InstrumentedGlobal = NewGlobal;
2161
2162     bool CanUsePrivateAliases =
2163         TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() ||
2164         TargetTriple.isOSBinFormatWasm();
2165     if (CanUsePrivateAliases && ClUsePrivateAliasForGlobals) {
2166       // Create local alias for NewGlobal to avoid crash on ODR between
2167       // instrumented and non-instrumented libraries.
2168       auto *GA = GlobalAlias::create(GlobalValue::InternalLinkage,
2169                                      NameForGlobal + M.getName(), NewGlobal);
2170
2171       // With local aliases, we need to provide another externally visible
2172       // symbol __odr_asan_XXX to detect ODR violation.
2173       auto *ODRIndicatorSym =
2174           new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage,
2175                              Constant::getNullValue(IRB.getInt8Ty()),
2176                              kODRGenPrefix + NameForGlobal, nullptr,
2177                              NewGlobal->getThreadLocalMode());
2178
2179       // Set meaningful attributes for indicator symbol.
2180       ODRIndicatorSym->setVisibility(NewGlobal->getVisibility());
2181       ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass());
2182       ODRIndicatorSym->setAlignment(1);
2183       ODRIndicator = ODRIndicatorSym;
2184       InstrumentedGlobal = GA;
2185     }
2186
2187     Constant *Initializer = ConstantStruct::get(
2188         GlobalStructTy,
2189         ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy),
2190         ConstantInt::get(IntptrTy, SizeInBytes),
2191         ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize),
2192         ConstantExpr::getPointerCast(Name, IntptrTy),
2193         ConstantExpr::getPointerCast(ModuleName, IntptrTy),
2194         ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc,
2195         ConstantExpr::getPointerCast(ODRIndicator, IntptrTy));
2196
2197     if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true;
2198
2199     LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n");
2200
2201     Initializers[i] = Initializer;
2202   }
2203
2204   // Add instrumented globals to llvm.compiler.used list to avoid LTO from
2205   // ConstantMerge'ing them.
2206   SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList;
2207   for (size_t i = 0; i < n; i++) {
2208     GlobalVariable *G = NewGlobals[i];
2209     if (G->getName().empty()) continue;
2210     GlobalsToAddToUsedList.push_back(G);
2211   }
2212   appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList));
2213
2214   std::string ELFUniqueModuleId =
2215       (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M)
2216                                                         : "";
2217
2218   if (!ELFUniqueModuleId.empty()) {
2219     InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId);
2220     *CtorComdat = true;
2221   } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) {
2222     InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers);
2223   } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) {
2224     InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers);
2225   } else {
2226     InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers);
2227   }
2228
2229   // Create calls for poisoning before initializers run and unpoisoning after.
2230   if (HasDynamicallyInitializedGlobals)
2231     createInitializerPoisonCalls(M, ModuleName);
2232
2233   LLVM_DEBUG(dbgs() << M);
2234   return true;
2235 }
2236
2237 int AddressSanitizerModule::GetAsanVersion(const Module &M) const {
2238   int LongSize = M.getDataLayout().getPointerSizeInBits();
2239   bool isAndroid = Triple(M.getTargetTriple()).isAndroid();
2240   int Version = 8;
2241   // 32-bit Android is one version ahead because of the switch to dynamic
2242   // shadow.
2243   Version += (LongSize == 32 && isAndroid);
2244   return Version;
2245 }
2246
2247 bool AddressSanitizerModule::runOnModule(Module &M) {
2248   C = &(M.getContext());
2249   int LongSize = M.getDataLayout().getPointerSizeInBits();
2250   IntptrTy = Type::getIntNTy(*C, LongSize);
2251   TargetTriple = Triple(M.getTargetTriple());
2252   Mapping = getShadowMapping(TargetTriple, LongSize, CompileKernel);
2253   initializeCallbacks(M);
2254
2255   if (CompileKernel)
2256     return false;
2257
2258   // Create a module constructor. A destructor is created lazily because not all
2259   // platforms, and not all modules need it.
2260   std::string VersionCheckName =
2261       kAsanVersionCheckNamePrefix + std::to_string(GetAsanVersion(M));
2262   std::tie(AsanCtorFunction, std::ignore) = createSanitizerCtorAndInitFunctions(
2263       M, kAsanModuleCtorName, kAsanInitName, /*InitArgTypes=*/{},
2264       /*InitArgs=*/{}, VersionCheckName);
2265
2266   bool CtorComdat = true;
2267   bool Changed = false;
2268   // TODO(glider): temporarily disabled globals instrumentation for KASan.
2269   if (ClGlobals) {
2270     IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator());
2271     Changed |= InstrumentGlobals(IRB, M, &CtorComdat);
2272   }
2273
2274   // Put the constructor and destructor in comdat if both
2275   // (1) global instrumentation is not TU-specific
2276   // (2) target is ELF.
2277   if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) {
2278     AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName));
2279     appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndDtorPriority,
2280                         AsanCtorFunction);
2281     if (AsanDtorFunction) {
2282       AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName));
2283       appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndDtorPriority,
2284                           AsanDtorFunction);
2285     }
2286   } else {
2287     appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndDtorPriority);
2288     if (AsanDtorFunction)
2289       appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndDtorPriority);
2290   }
2291
2292   return Changed;
2293 }
2294
2295 void AddressSanitizer::initializeCallbacks(Module &M) {
2296   IRBuilder<> IRB(*C);
2297   // Create __asan_report* callbacks.
2298   // IsWrite, TypeSize and Exp are encoded in the function name.
2299   for (int Exp = 0; Exp < 2; Exp++) {
2300     for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
2301       const std::string TypeStr = AccessIsWrite ? "store" : "load";
2302       const std::string ExpStr = Exp ? "exp_" : "";
2303       const std::string EndingStr = Recover ? "_noabort" : "";
2304
2305       SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy};
2306       SmallVector<Type *, 2> Args1{1, IntptrTy};
2307       if (Exp) {
2308         Type *ExpType = Type::getInt32Ty(*C);
2309         Args2.push_back(ExpType);
2310         Args1.push_back(ExpType);
2311       }
2312       AsanErrorCallbackSized[AccessIsWrite][Exp] =
2313           checkSanitizerInterfaceFunction(M.getOrInsertFunction(
2314               kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr,
2315               FunctionType::get(IRB.getVoidTy(), Args2, false)));
2316
2317       AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] =
2318           checkSanitizerInterfaceFunction(M.getOrInsertFunction(
2319               ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr,
2320               FunctionType::get(IRB.getVoidTy(), Args2, false)));
2321
2322       for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
2323            AccessSizeIndex++) {
2324         const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex);
2325         AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] =
2326             checkSanitizerInterfaceFunction(M.getOrInsertFunction(
2327                 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr,
2328                 FunctionType::get(IRB.getVoidTy(), Args1, false)));
2329
2330         AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] =
2331             checkSanitizerInterfaceFunction(M.getOrInsertFunction(
2332                 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr,
2333                 FunctionType::get(IRB.getVoidTy(), Args1, false)));
2334       }
2335     }
2336   }
2337
2338   const std::string MemIntrinCallbackPrefix =
2339       CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix;
2340   AsanMemmove = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
2341       MemIntrinCallbackPrefix + "memmove", IRB.getInt8PtrTy(),
2342       IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy));
2343   AsanMemcpy = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
2344       MemIntrinCallbackPrefix + "memcpy", IRB.getInt8PtrTy(),
2345       IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy));
2346   AsanMemset = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
2347       MemIntrinCallbackPrefix + "memset", IRB.getInt8PtrTy(),
2348       IRB.getInt8PtrTy(), IRB.getInt32Ty(), IntptrTy));
2349
2350   AsanHandleNoReturnFunc = checkSanitizerInterfaceFunction(
2351       M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy()));
2352
2353   AsanPtrCmpFunction = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
2354       kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy));
2355   AsanPtrSubFunction = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
2356       kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy));
2357   // We insert an empty inline asm after __asan_report* to avoid callback merge.
2358   EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
2359                             StringRef(""), StringRef(""),
2360                             /*hasSideEffects=*/true);
2361   if (Mapping.InGlobal)
2362     AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow",
2363                                            ArrayType::get(IRB.getInt8Ty(), 0));
2364 }
2365
2366 // virtual
2367 bool AddressSanitizer::doInitialization(Module &M) {
2368   // Initialize the private fields. No one has accessed them before.
2369   GlobalsMD.init(M);
2370
2371   C = &(M.getContext());
2372   LongSize = M.getDataLayout().getPointerSizeInBits();
2373   IntptrTy = Type::getIntNTy(*C, LongSize);
2374   TargetTriple = Triple(M.getTargetTriple());
2375
2376   Mapping = getShadowMapping(TargetTriple, LongSize, CompileKernel);
2377   return true;
2378 }
2379
2380 bool AddressSanitizer::doFinalization(Module &M) {
2381   GlobalsMD.reset();
2382   return false;
2383 }
2384
2385 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) {
2386   // For each NSObject descendant having a +load method, this method is invoked
2387   // by the ObjC runtime before any of the static constructors is called.
2388   // Therefore we need to instrument such methods with a call to __asan_init
2389   // at the beginning in order to initialize our runtime before any access to
2390   // the shadow memory.
2391   // We cannot just ignore these methods, because they may call other
2392   // instrumented functions.
2393   if (F.getName().find(" load]") != std::string::npos) {
2394     Function *AsanInitFunction =
2395         declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {});
2396     IRBuilder<> IRB(&F.front(), F.front().begin());
2397     IRB.CreateCall(AsanInitFunction, {});
2398     return true;
2399   }
2400   return false;
2401 }
2402
2403 void AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) {
2404   // Generate code only when dynamic addressing is needed.
2405   if (Mapping.Offset != kDynamicShadowSentinel)
2406     return;
2407
2408   IRBuilder<> IRB(&F.front().front());
2409   if (Mapping.InGlobal) {
2410     if (ClWithIfuncSuppressRemat) {
2411       // An empty inline asm with input reg == output reg.
2412       // An opaque pointer-to-int cast, basically.
2413       InlineAsm *Asm = InlineAsm::get(
2414           FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false),
2415           StringRef(""), StringRef("=r,0"),
2416           /*hasSideEffects=*/false);
2417       LocalDynamicShadow =
2418           IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow");
2419     } else {
2420       LocalDynamicShadow =
2421           IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow");
2422     }
2423   } else {
2424     Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal(
2425         kAsanShadowMemoryDynamicAddress, IntptrTy);
2426     LocalDynamicShadow = IRB.CreateLoad(GlobalDynamicAddress);
2427   }
2428 }
2429
2430 void AddressSanitizer::markEscapedLocalAllocas(Function &F) {
2431   // Find the one possible call to llvm.localescape and pre-mark allocas passed
2432   // to it as uninteresting. This assumes we haven't started processing allocas
2433   // yet. This check is done up front because iterating the use list in
2434   // isInterestingAlloca would be algorithmically slower.
2435   assert(ProcessedAllocas.empty() && "must process localescape before allocas");
2436
2437   // Try to get the declaration of llvm.localescape. If it's not in the module,
2438   // we can exit early.
2439   if (!F.getParent()->getFunction("llvm.localescape")) return;
2440
2441   // Look for a call to llvm.localescape call in the entry block. It can't be in
2442   // any other block.
2443   for (Instruction &I : F.getEntryBlock()) {
2444     IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
2445     if (II && II->getIntrinsicID() == Intrinsic::localescape) {
2446       // We found a call. Mark all the allocas passed in as uninteresting.
2447       for (Value *Arg : II->arg_operands()) {
2448         AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
2449         assert(AI && AI->isStaticAlloca() &&
2450                "non-static alloca arg to localescape");
2451         ProcessedAllocas[AI] = false;
2452       }
2453       break;
2454     }
2455   }
2456 }
2457
2458 bool AddressSanitizer::runOnFunction(Function &F) {
2459   if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false;
2460   if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false;
2461   if (F.getName().startswith("__asan_")) return false;
2462
2463   bool FunctionModified = false;
2464
2465   // If needed, insert __asan_init before checking for SanitizeAddress attr.
2466   // This function needs to be called even if the function body is not
2467   // instrumented.
2468   if (maybeInsertAsanInitAtFunctionEntry(F))
2469     FunctionModified = true;
2470
2471   // Leave if the function doesn't need instrumentation.
2472   if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified;
2473
2474   LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n");
2475
2476   initializeCallbacks(*F.getParent());
2477   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2478
2479   FunctionStateRAII CleanupObj(this);
2480
2481   maybeInsertDynamicShadowAtFunctionEntry(F);
2482
2483   // We can't instrument allocas used with llvm.localescape. Only static allocas
2484   // can be passed to that intrinsic.
2485   markEscapedLocalAllocas(F);
2486
2487   // We want to instrument every address only once per basic block (unless there
2488   // are calls between uses).
2489   SmallPtrSet<Value *, 16> TempsToInstrument;
2490   SmallVector<Instruction *, 16> ToInstrument;
2491   SmallVector<Instruction *, 8> NoReturnCalls;
2492   SmallVector<BasicBlock *, 16> AllBlocks;
2493   SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts;
2494   int NumAllocas = 0;
2495   bool IsWrite;
2496   unsigned Alignment;
2497   uint64_t TypeSize;
2498   const TargetLibraryInfo *TLI =
2499       &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
2500
2501   // Fill the set of memory operations to instrument.
2502   for (auto &BB : F) {
2503     AllBlocks.push_back(&BB);
2504     TempsToInstrument.clear();
2505     int NumInsnsPerBB = 0;
2506     for (auto &Inst : BB) {
2507       if (LooksLikeCodeInBug11395(&Inst)) return false;
2508       Value *MaybeMask = nullptr;
2509       if (Value *Addr = isInterestingMemoryAccess(&Inst, &IsWrite, &TypeSize,
2510                                                   &Alignment, &MaybeMask)) {
2511         if (ClOpt && ClOptSameTemp) {
2512           // If we have a mask, skip instrumentation if we've already
2513           // instrumented the full object. But don't add to TempsToInstrument
2514           // because we might get another load/store with a different mask.
2515           if (MaybeMask) {
2516             if (TempsToInstrument.count(Addr))
2517               continue; // We've seen this (whole) temp in the current BB.
2518           } else {
2519             if (!TempsToInstrument.insert(Addr).second)
2520               continue; // We've seen this temp in the current BB.
2521           }
2522         }
2523       } else if (ClInvalidPointerPairs &&
2524                  isInterestingPointerComparisonOrSubtraction(&Inst)) {
2525         PointerComparisonsOrSubtracts.push_back(&Inst);
2526         continue;
2527       } else if (isa<MemIntrinsic>(Inst)) {
2528         // ok, take it.
2529       } else {
2530         if (isa<AllocaInst>(Inst)) NumAllocas++;
2531         CallSite CS(&Inst);
2532         if (CS) {
2533           // A call inside BB.
2534           TempsToInstrument.clear();
2535           if (CS.doesNotReturn()) NoReturnCalls.push_back(CS.getInstruction());
2536         }
2537         if (CallInst *CI = dyn_cast<CallInst>(&Inst))
2538           maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI);
2539         continue;
2540       }
2541       ToInstrument.push_back(&Inst);
2542       NumInsnsPerBB++;
2543       if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break;
2544     }
2545   }
2546
2547   bool UseCalls =
2548       (ClInstrumentationWithCallsThreshold >= 0 &&
2549        ToInstrument.size() > (unsigned)ClInstrumentationWithCallsThreshold);
2550   const DataLayout &DL = F.getParent()->getDataLayout();
2551   ObjectSizeOpts ObjSizeOpts;
2552   ObjSizeOpts.RoundToAlign = true;
2553   ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts);
2554
2555   // Instrument.
2556   int NumInstrumented = 0;
2557   for (auto Inst : ToInstrument) {
2558     if (ClDebugMin < 0 || ClDebugMax < 0 ||
2559         (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) {
2560       if (isInterestingMemoryAccess(Inst, &IsWrite, &TypeSize, &Alignment))
2561         instrumentMop(ObjSizeVis, Inst, UseCalls,
2562                       F.getParent()->getDataLayout());
2563       else
2564         instrumentMemIntrinsic(cast<MemIntrinsic>(Inst));
2565     }
2566     NumInstrumented++;
2567   }
2568
2569   FunctionStackPoisoner FSP(F, *this);
2570   bool ChangedStack = FSP.runOnFunction();
2571
2572   // We must unpoison the stack before every NoReturn call (throw, _exit, etc).
2573   // See e.g. https://github.com/google/sanitizers/issues/37
2574   for (auto CI : NoReturnCalls) {
2575     IRBuilder<> IRB(CI);
2576     IRB.CreateCall(AsanHandleNoReturnFunc, {});
2577   }
2578
2579   for (auto Inst : PointerComparisonsOrSubtracts) {
2580     instrumentPointerComparisonOrSubtraction(Inst);
2581     NumInstrumented++;
2582   }
2583
2584   if (NumInstrumented > 0 || ChangedStack || !NoReturnCalls.empty())
2585     FunctionModified = true;
2586
2587   LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " "
2588                     << F << "\n");
2589
2590   return FunctionModified;
2591 }
2592
2593 // Workaround for bug 11395: we don't want to instrument stack in functions
2594 // with large assembly blobs (32-bit only), otherwise reg alloc may crash.
2595 // FIXME: remove once the bug 11395 is fixed.
2596 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
2597   if (LongSize != 32) return false;
2598   CallInst *CI = dyn_cast<CallInst>(I);
2599   if (!CI || !CI->isInlineAsm()) return false;
2600   if (CI->getNumArgOperands() <= 5) return false;
2601   // We have inline assembly with quite a few arguments.
2602   return true;
2603 }
2604
2605 void FunctionStackPoisoner::initializeCallbacks(Module &M) {
2606   IRBuilder<> IRB(*C);
2607   for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) {
2608     std::string Suffix = itostr(i);
2609     AsanStackMallocFunc[i] = checkSanitizerInterfaceFunction(
2610         M.getOrInsertFunction(kAsanStackMallocNameTemplate + Suffix, IntptrTy,
2611                               IntptrTy));
2612     AsanStackFreeFunc[i] = checkSanitizerInterfaceFunction(
2613         M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix,
2614                               IRB.getVoidTy(), IntptrTy, IntptrTy));
2615   }
2616   if (ASan.UseAfterScope) {
2617     AsanPoisonStackMemoryFunc = checkSanitizerInterfaceFunction(
2618         M.getOrInsertFunction(kAsanPoisonStackMemoryName, IRB.getVoidTy(),
2619                               IntptrTy, IntptrTy));
2620     AsanUnpoisonStackMemoryFunc = checkSanitizerInterfaceFunction(
2621         M.getOrInsertFunction(kAsanUnpoisonStackMemoryName, IRB.getVoidTy(),
2622                               IntptrTy, IntptrTy));
2623   }
2624
2625   for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) {
2626     std::ostringstream Name;
2627     Name << kAsanSetShadowPrefix;
2628     Name << std::setw(2) << std::setfill('0') << std::hex << Val;
2629     AsanSetShadowFunc[Val] =
2630         checkSanitizerInterfaceFunction(M.getOrInsertFunction(
2631             Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy));
2632   }
2633
2634   AsanAllocaPoisonFunc = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
2635       kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy));
2636   AsanAllocasUnpoisonFunc =
2637       checkSanitizerInterfaceFunction(M.getOrInsertFunction(
2638           kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy));
2639 }
2640
2641 void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
2642                                                ArrayRef<uint8_t> ShadowBytes,
2643                                                size_t Begin, size_t End,
2644                                                IRBuilder<> &IRB,
2645                                                Value *ShadowBase) {
2646   if (Begin >= End)
2647     return;
2648
2649   const size_t LargestStoreSizeInBytes =
2650       std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8);
2651
2652   const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian();
2653
2654   // Poison given range in shadow using larges store size with out leading and
2655   // trailing zeros in ShadowMask. Zeros never change, so they need neither
2656   // poisoning nor up-poisoning. Still we don't mind if some of them get into a
2657   // middle of a store.
2658   for (size_t i = Begin; i < End;) {
2659     if (!ShadowMask[i]) {
2660       assert(!ShadowBytes[i]);
2661       ++i;
2662       continue;
2663     }
2664
2665     size_t StoreSizeInBytes = LargestStoreSizeInBytes;
2666     // Fit store size into the range.
2667     while (StoreSizeInBytes > End - i)
2668       StoreSizeInBytes /= 2;
2669
2670     // Minimize store size by trimming trailing zeros.
2671     for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) {
2672       while (j <= StoreSizeInBytes / 2)
2673         StoreSizeInBytes /= 2;
2674     }
2675
2676     uint64_t Val = 0;
2677     for (size_t j = 0; j < StoreSizeInBytes; j++) {
2678       if (IsLittleEndian)
2679         Val |= (uint64_t)ShadowBytes[i + j] << (8 * j);
2680       else
2681         Val = (Val << 8) | ShadowBytes[i + j];
2682     }
2683
2684     Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i));
2685     Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val);
2686     IRB.CreateAlignedStore(
2687         Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()), 1);
2688
2689     i += StoreSizeInBytes;
2690   }
2691 }
2692
2693 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
2694                                          ArrayRef<uint8_t> ShadowBytes,
2695                                          IRBuilder<> &IRB, Value *ShadowBase) {
2696   copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase);
2697 }
2698
2699 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
2700                                          ArrayRef<uint8_t> ShadowBytes,
2701                                          size_t Begin, size_t End,
2702                                          IRBuilder<> &IRB, Value *ShadowBase) {
2703   assert(ShadowMask.size() == ShadowBytes.size());
2704   size_t Done = Begin;
2705   for (size_t i = Begin, j = Begin + 1; i < End; i = j++) {
2706     if (!ShadowMask[i]) {
2707       assert(!ShadowBytes[i]);
2708       continue;
2709     }
2710     uint8_t Val = ShadowBytes[i];
2711     if (!AsanSetShadowFunc[Val])
2712       continue;
2713
2714     // Skip same values.
2715     for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) {
2716     }
2717
2718     if (j - i >= ClMaxInlinePoisoningSize) {
2719       copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase);
2720       IRB.CreateCall(AsanSetShadowFunc[Val],
2721                      {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)),
2722                       ConstantInt::get(IntptrTy, j - i)});
2723       Done = j;
2724     }
2725   }
2726
2727   copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase);
2728 }
2729
2730 // Fake stack allocator (asan_fake_stack.h) has 11 size classes
2731 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass
2732 static int StackMallocSizeClass(uint64_t LocalStackSize) {
2733   assert(LocalStackSize <= kMaxStackMallocSize);
2734   uint64_t MaxSize = kMinStackMallocSize;
2735   for (int i = 0;; i++, MaxSize *= 2)
2736     if (LocalStackSize <= MaxSize) return i;
2737   llvm_unreachable("impossible LocalStackSize");
2738 }
2739
2740 void FunctionStackPoisoner::copyArgsPassedByValToAllocas() {
2741   Instruction *CopyInsertPoint = &F.front().front();
2742   if (CopyInsertPoint == ASan.LocalDynamicShadow) {
2743     // Insert after the dynamic shadow location is determined
2744     CopyInsertPoint = CopyInsertPoint->getNextNode();
2745     assert(CopyInsertPoint);
2746   }
2747   IRBuilder<> IRB(CopyInsertPoint);
2748   const DataLayout &DL = F.getParent()->getDataLayout();
2749   for (Argument &Arg : F.args()) {
2750     if (Arg.hasByValAttr()) {
2751       Type *Ty = Arg.getType()->getPointerElementType();
2752       unsigned Align = Arg.getParamAlignment();
2753       if (Align == 0) Align = DL.getABITypeAlignment(Ty);
2754
2755       AllocaInst *AI = IRB.CreateAlloca(
2756           Ty, nullptr,
2757           (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) +
2758               ".byval");
2759       AI->setAlignment(Align);
2760       Arg.replaceAllUsesWith(AI);
2761
2762       uint64_t AllocSize = DL.getTypeAllocSize(Ty);
2763       IRB.CreateMemCpy(AI, Align, &Arg, Align, AllocSize);
2764     }
2765   }
2766 }
2767
2768 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond,
2769                                           Value *ValueIfTrue,
2770                                           Instruction *ThenTerm,
2771                                           Value *ValueIfFalse) {
2772   PHINode *PHI = IRB.CreatePHI(IntptrTy, 2);
2773   BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent();
2774   PHI->addIncoming(ValueIfFalse, CondBlock);
2775   BasicBlock *ThenBlock = ThenTerm->getParent();
2776   PHI->addIncoming(ValueIfTrue, ThenBlock);
2777   return PHI;
2778 }
2779
2780 Value *FunctionStackPoisoner::createAllocaForLayout(
2781     IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) {
2782   AllocaInst *Alloca;
2783   if (Dynamic) {
2784     Alloca = IRB.CreateAlloca(IRB.getInt8Ty(),
2785                               ConstantInt::get(IRB.getInt64Ty(), L.FrameSize),
2786                               "MyAlloca");
2787   } else {
2788     Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize),
2789                               nullptr, "MyAlloca");
2790     assert(Alloca->isStaticAlloca());
2791   }
2792   assert((ClRealignStack & (ClRealignStack - 1)) == 0);
2793   size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack);
2794   Alloca->setAlignment(FrameAlignment);
2795   return IRB.CreatePointerCast(Alloca, IntptrTy);
2796 }
2797
2798 void FunctionStackPoisoner::createDynamicAllocasInitStorage() {
2799   BasicBlock &FirstBB = *F.begin();
2800   IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin()));
2801   DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr);
2802   IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout);
2803   DynamicAllocaLayout->setAlignment(32);
2804 }
2805
2806 void FunctionStackPoisoner::processDynamicAllocas() {
2807   if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) {
2808     assert(DynamicAllocaPoisonCallVec.empty());
2809     return;
2810   }
2811
2812   // Insert poison calls for lifetime intrinsics for dynamic allocas.
2813   for (const auto &APC : DynamicAllocaPoisonCallVec) {
2814     assert(APC.InsBefore);
2815     assert(APC.AI);
2816     assert(ASan.isInterestingAlloca(*APC.AI));
2817     assert(!APC.AI->isStaticAlloca());
2818
2819     IRBuilder<> IRB(APC.InsBefore);
2820     poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison);
2821     // Dynamic allocas will be unpoisoned unconditionally below in
2822     // unpoisonDynamicAllocas.
2823     // Flag that we need unpoison static allocas.
2824   }
2825
2826   // Handle dynamic allocas.
2827   createDynamicAllocasInitStorage();
2828   for (auto &AI : DynamicAllocaVec)
2829     handleDynamicAllocaCall(AI);
2830   unpoisonDynamicAllocas();
2831 }
2832
2833 void FunctionStackPoisoner::processStaticAllocas() {
2834   if (AllocaVec.empty()) {
2835     assert(StaticAllocaPoisonCallVec.empty());
2836     return;
2837   }
2838
2839   int StackMallocIdx = -1;
2840   DebugLoc EntryDebugLocation;
2841   if (auto SP = F.getSubprogram())
2842     EntryDebugLocation = DebugLoc::get(SP->getScopeLine(), 0, SP);
2843
2844   Instruction *InsBefore = AllocaVec[0];
2845   IRBuilder<> IRB(InsBefore);
2846   IRB.SetCurrentDebugLocation(EntryDebugLocation);
2847
2848   // Make sure non-instrumented allocas stay in the entry block. Otherwise,
2849   // debug info is broken, because only entry-block allocas are treated as
2850   // regular stack slots.
2851   auto InsBeforeB = InsBefore->getParent();
2852   assert(InsBeforeB == &F.getEntryBlock());
2853   for (auto *AI : StaticAllocasToMoveUp)
2854     if (AI->getParent() == InsBeforeB)
2855       AI->moveBefore(InsBefore);
2856
2857   // If we have a call to llvm.localescape, keep it in the entry block.
2858   if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore);
2859
2860   SmallVector<ASanStackVariableDescription, 16> SVD;
2861   SVD.reserve(AllocaVec.size());
2862   for (AllocaInst *AI : AllocaVec) {
2863     ASanStackVariableDescription D = {AI->getName().data(),
2864                                       ASan.getAllocaSizeInBytes(*AI),
2865                                       0,
2866                                       AI->getAlignment(),
2867                                       AI,
2868                                       0,
2869                                       0};
2870     SVD.push_back(D);
2871   }
2872
2873   // Minimal header size (left redzone) is 4 pointers,
2874   // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms.
2875   size_t Granularity = 1ULL << Mapping.Scale;
2876   size_t MinHeaderSize = std::max((size_t)ASan.LongSize / 2, Granularity);
2877   const ASanStackFrameLayout &L =
2878       ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize);
2879
2880   // Build AllocaToSVDMap for ASanStackVariableDescription lookup.
2881   DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap;
2882   for (auto &Desc : SVD)
2883     AllocaToSVDMap[Desc.AI] = &Desc;
2884
2885   // Update SVD with information from lifetime intrinsics.
2886   for (const auto &APC : StaticAllocaPoisonCallVec) {
2887     assert(APC.InsBefore);
2888     assert(APC.AI);
2889     assert(ASan.isInterestingAlloca(*APC.AI));
2890     assert(APC.AI->isStaticAlloca());
2891
2892     ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
2893     Desc.LifetimeSize = Desc.Size;
2894     if (const DILocation *FnLoc = EntryDebugLocation.get()) {
2895       if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) {
2896         if (LifetimeLoc->getFile() == FnLoc->getFile())
2897           if (unsigned Line = LifetimeLoc->getLine())
2898             Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line);
2899       }
2900     }
2901   }
2902
2903   auto DescriptionString = ComputeASanStackFrameDescription(SVD);
2904   LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n");
2905   uint64_t LocalStackSize = L.FrameSize;
2906   bool DoStackMalloc = ClUseAfterReturn && !ASan.CompileKernel &&
2907                        LocalStackSize <= kMaxStackMallocSize;
2908   bool DoDynamicAlloca = ClDynamicAllocaStack;
2909   // Don't do dynamic alloca or stack malloc if:
2910   // 1) There is inline asm: too often it makes assumptions on which registers
2911   //    are available.
2912   // 2) There is a returns_twice call (typically setjmp), which is
2913   //    optimization-hostile, and doesn't play well with introduced indirect
2914   //    register-relative calculation of local variable addresses.
2915   DoDynamicAlloca &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall;
2916   DoStackMalloc &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall;
2917
2918   Value *StaticAlloca =
2919       DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false);
2920
2921   Value *FakeStack;
2922   Value *LocalStackBase;
2923   Value *LocalStackBaseAlloca;
2924   bool Deref;
2925
2926   if (DoStackMalloc) {
2927     LocalStackBaseAlloca =
2928         IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base");
2929     // void *FakeStack = __asan_option_detect_stack_use_after_return
2930     //     ? __asan_stack_malloc_N(LocalStackSize)
2931     //     : nullptr;
2932     // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize);
2933     Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal(
2934         kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty());
2935     Value *UseAfterReturnIsEnabled =
2936         IRB.CreateICmpNE(IRB.CreateLoad(OptionDetectUseAfterReturn),
2937                          Constant::getNullValue(IRB.getInt32Ty()));
2938     Instruction *Term =
2939         SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false);
2940     IRBuilder<> IRBIf(Term);
2941     IRBIf.SetCurrentDebugLocation(EntryDebugLocation);
2942     StackMallocIdx = StackMallocSizeClass(LocalStackSize);
2943     assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass);
2944     Value *FakeStackValue =
2945         IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx],
2946                          ConstantInt::get(IntptrTy, LocalStackSize));
2947     IRB.SetInsertPoint(InsBefore);
2948     IRB.SetCurrentDebugLocation(EntryDebugLocation);
2949     FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term,
2950                           ConstantInt::get(IntptrTy, 0));
2951
2952     Value *NoFakeStack =
2953         IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy));
2954     Term = SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false);
2955     IRBIf.SetInsertPoint(Term);
2956     IRBIf.SetCurrentDebugLocation(EntryDebugLocation);
2957     Value *AllocaValue =
2958         DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca;
2959
2960     IRB.SetInsertPoint(InsBefore);
2961     IRB.SetCurrentDebugLocation(EntryDebugLocation);
2962     LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack);
2963     IRB.SetCurrentDebugLocation(EntryDebugLocation);
2964     IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca);
2965     Deref = true;
2966   } else {
2967     // void *FakeStack = nullptr;
2968     // void *LocalStackBase = alloca(LocalStackSize);
2969     FakeStack = ConstantInt::get(IntptrTy, 0);
2970     LocalStackBase =
2971         DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca;
2972     LocalStackBaseAlloca = LocalStackBase;
2973     Deref = false;
2974   }
2975
2976   // Replace Alloca instructions with base+offset.
2977   for (const auto &Desc : SVD) {
2978     AllocaInst *AI = Desc.AI;
2979     replaceDbgDeclareForAlloca(AI, LocalStackBaseAlloca, DIB, Deref,
2980                                Desc.Offset, DIExpression::NoDeref);
2981     Value *NewAllocaPtr = IRB.CreateIntToPtr(
2982         IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)),
2983         AI->getType());
2984     AI->replaceAllUsesWith(NewAllocaPtr);
2985   }
2986
2987   // The left-most redzone has enough space for at least 4 pointers.
2988   // Write the Magic value to redzone[0].
2989   Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy);
2990   IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic),
2991                   BasePlus0);
2992   // Write the frame description constant to redzone[1].
2993   Value *BasePlus1 = IRB.CreateIntToPtr(
2994       IRB.CreateAdd(LocalStackBase,
2995                     ConstantInt::get(IntptrTy, ASan.LongSize / 8)),
2996       IntptrPtrTy);
2997   GlobalVariable *StackDescriptionGlobal =
2998       createPrivateGlobalForString(*F.getParent(), DescriptionString,
2999                                    /*AllowMerging*/ true);
3000   Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy);
3001   IRB.CreateStore(Description, BasePlus1);
3002   // Write the PC to redzone[2].
3003   Value *BasePlus2 = IRB.CreateIntToPtr(
3004       IRB.CreateAdd(LocalStackBase,
3005                     ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)),
3006       IntptrPtrTy);
3007   IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2);
3008
3009   const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L);
3010
3011   // Poison the stack red zones at the entry.
3012   Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB);
3013   // As mask we must use most poisoned case: red zones and after scope.
3014   // As bytes we can use either the same or just red zones only.
3015   copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase);
3016
3017   if (!StaticAllocaPoisonCallVec.empty()) {
3018     const auto &ShadowInScope = GetShadowBytes(SVD, L);
3019
3020     // Poison static allocas near lifetime intrinsics.
3021     for (const auto &APC : StaticAllocaPoisonCallVec) {
3022       const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
3023       assert(Desc.Offset % L.Granularity == 0);
3024       size_t Begin = Desc.Offset / L.Granularity;
3025       size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity;
3026
3027       IRBuilder<> IRB(APC.InsBefore);
3028       copyToShadow(ShadowAfterScope,
3029                    APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End,
3030                    IRB, ShadowBase);
3031     }
3032   }
3033
3034   SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0);
3035   SmallVector<uint8_t, 64> ShadowAfterReturn;
3036
3037   // (Un)poison the stack before all ret instructions.
3038   for (auto Ret : RetVec) {
3039     IRBuilder<> IRBRet(Ret);
3040     // Mark the current frame as retired.
3041     IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic),
3042                        BasePlus0);
3043     if (DoStackMalloc) {
3044       assert(StackMallocIdx >= 0);
3045       // if FakeStack != 0  // LocalStackBase == FakeStack
3046       //     // In use-after-return mode, poison the whole stack frame.
3047       //     if StackMallocIdx <= 4
3048       //         // For small sizes inline the whole thing:
3049       //         memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize);
3050       //         **SavedFlagPtr(FakeStack) = 0
3051       //     else
3052       //         __asan_stack_free_N(FakeStack, LocalStackSize)
3053       // else
3054       //     <This is not a fake stack; unpoison the redzones>
3055       Value *Cmp =
3056           IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy));
3057       TerminatorInst *ThenTerm, *ElseTerm;
3058       SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm);
3059
3060       IRBuilder<> IRBPoison(ThenTerm);
3061       if (StackMallocIdx <= 4) {
3062         int ClassSize = kMinStackMallocSize << StackMallocIdx;
3063         ShadowAfterReturn.resize(ClassSize / L.Granularity,
3064                                  kAsanStackUseAfterReturnMagic);
3065         copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison,
3066                      ShadowBase);
3067         Value *SavedFlagPtrPtr = IRBPoison.CreateAdd(
3068             FakeStack,
3069             ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8));
3070         Value *SavedFlagPtr = IRBPoison.CreateLoad(
3071             IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy));
3072         IRBPoison.CreateStore(
3073             Constant::getNullValue(IRBPoison.getInt8Ty()),
3074             IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy()));
3075       } else {
3076         // For larger frames call __asan_stack_free_*.
3077         IRBPoison.CreateCall(
3078             AsanStackFreeFunc[StackMallocIdx],
3079             {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)});
3080       }
3081
3082       IRBuilder<> IRBElse(ElseTerm);
3083       copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase);
3084     } else {
3085       copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase);
3086     }
3087   }
3088
3089   // We are done. Remove the old unused alloca instructions.
3090   for (auto AI : AllocaVec) AI->eraseFromParent();
3091 }
3092
3093 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size,
3094                                          IRBuilder<> &IRB, bool DoPoison) {
3095   // For now just insert the call to ASan runtime.
3096   Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy);
3097   Value *SizeArg = ConstantInt::get(IntptrTy, Size);
3098   IRB.CreateCall(
3099       DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc,
3100       {AddrArg, SizeArg});
3101 }
3102
3103 // Handling llvm.lifetime intrinsics for a given %alloca:
3104 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca.
3105 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect
3106 //     invalid accesses) and unpoison it for llvm.lifetime.start (the memory
3107 //     could be poisoned by previous llvm.lifetime.end instruction, as the
3108 //     variable may go in and out of scope several times, e.g. in loops).
3109 // (3) if we poisoned at least one %alloca in a function,
3110 //     unpoison the whole stack frame at function exit.
3111
3112 AllocaInst *FunctionStackPoisoner::findAllocaForValue(Value *V) {
3113   if (AllocaInst *AI = dyn_cast<AllocaInst>(V))
3114     // We're interested only in allocas we can handle.
3115     return ASan.isInterestingAlloca(*AI) ? AI : nullptr;
3116   // See if we've already calculated (or started to calculate) alloca for a
3117   // given value.
3118   AllocaForValueMapTy::iterator I = AllocaForValue.find(V);
3119   if (I != AllocaForValue.end()) return I->second;
3120   // Store 0 while we're calculating alloca for value V to avoid
3121   // infinite recursion if the value references itself.
3122   AllocaForValue[V] = nullptr;
3123   AllocaInst *Res = nullptr;
3124   if (CastInst *CI = dyn_cast<CastInst>(V))
3125     Res = findAllocaForValue(CI->getOperand(0));
3126   else if (PHINode *PN = dyn_cast<PHINode>(V)) {
3127     for (Value *IncValue : PN->incoming_values()) {
3128       // Allow self-referencing phi-nodes.
3129       if (IncValue == PN) continue;
3130       AllocaInst *IncValueAI = findAllocaForValue(IncValue);
3131       // AI for incoming values should exist and should all be equal.
3132       if (IncValueAI == nullptr || (Res != nullptr && IncValueAI != Res))
3133         return nullptr;
3134       Res = IncValueAI;
3135     }
3136   } else if (GetElementPtrInst *EP = dyn_cast<GetElementPtrInst>(V)) {
3137     Res = findAllocaForValue(EP->getPointerOperand());
3138   } else {
3139     LLVM_DEBUG(dbgs() << "Alloca search canceled on unknown instruction: " << *V
3140                       << "\n");
3141   }
3142   if (Res) AllocaForValue[V] = Res;
3143   return Res;
3144 }
3145
3146 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) {
3147   IRBuilder<> IRB(AI);
3148
3149   const unsigned Align = std::max(kAllocaRzSize, AI->getAlignment());
3150   const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1;
3151
3152   Value *Zero = Constant::getNullValue(IntptrTy);
3153   Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize);
3154   Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask);
3155
3156   // Since we need to extend alloca with additional memory to locate
3157   // redzones, and OldSize is number of allocated blocks with
3158   // ElementSize size, get allocated memory size in bytes by
3159   // OldSize * ElementSize.
3160   const unsigned ElementSize =
3161       F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType());
3162   Value *OldSize =
3163       IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false),
3164                     ConstantInt::get(IntptrTy, ElementSize));
3165
3166   // PartialSize = OldSize % 32
3167   Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask);
3168
3169   // Misalign = kAllocaRzSize - PartialSize;
3170   Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize);
3171
3172   // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0;
3173   Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize);
3174   Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero);
3175
3176   // AdditionalChunkSize = Align + PartialPadding + kAllocaRzSize
3177   // Align is added to locate left redzone, PartialPadding for possible
3178   // partial redzone and kAllocaRzSize for right redzone respectively.
3179   Value *AdditionalChunkSize = IRB.CreateAdd(
3180       ConstantInt::get(IntptrTy, Align + kAllocaRzSize), PartialPadding);
3181
3182   Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize);
3183
3184   // Insert new alloca with new NewSize and Align params.
3185   AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize);
3186   NewAlloca->setAlignment(Align);
3187
3188   // NewAddress = Address + Align
3189   Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy),
3190                                     ConstantInt::get(IntptrTy, Align));
3191
3192   // Insert __asan_alloca_poison call for new created alloca.
3193   IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize});
3194
3195   // Store the last alloca's address to DynamicAllocaLayout. We'll need this
3196   // for unpoisoning stuff.
3197   IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout);
3198
3199   Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType());
3200
3201   // Replace all uses of AddessReturnedByAlloca with NewAddressPtr.
3202   AI->replaceAllUsesWith(NewAddressPtr);
3203
3204   // We are done. Erase old alloca from parent.
3205   AI->eraseFromParent();
3206 }
3207
3208 // isSafeAccess returns true if Addr is always inbounds with respect to its
3209 // base object. For example, it is a field access or an array access with
3210 // constant inbounds index.
3211 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis,
3212                                     Value *Addr, uint64_t TypeSize) const {
3213   SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr);
3214   if (!ObjSizeVis.bothKnown(SizeOffset)) return false;
3215   uint64_t Size = SizeOffset.first.getZExtValue();
3216   int64_t Offset = SizeOffset.second.getSExtValue();
3217   // Three checks are required to ensure safety:
3218   // . Offset >= 0  (since the offset is given from the base ptr)
3219   // . Size >= Offset  (unsigned)
3220   // . Size - Offset >= NeededSize  (unsigned)
3221   return Offset >= 0 && Size >= uint64_t(Offset) &&
3222          Size - uint64_t(Offset) >= TypeSize / 8;
3223 }