]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp
Merge llvm, clang, compiler-rt, libc++, lld and lldb release_40 branch
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / Instrumentation / AddressSanitizer.cpp
1 //===-- AddressSanitizer.cpp - memory error detector ------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of AddressSanitizer, an address sanity checker.
11 // Details of the algorithm:
12 //  http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/Analysis/MemoryBuiltins.h"
26 #include "llvm/Analysis/TargetLibraryInfo.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/CallSite.h"
29 #include "llvm/IR/DIBuilder.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/InlineAsm.h"
35 #include "llvm/IR/InstVisitor.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/MDBuilder.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/MC/MCSectionMachO.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/DataTypes.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/Endian.h"
46 #include "llvm/Support/SwapByteOrder.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include "llvm/Transforms/Instrumentation.h"
49 #include "llvm/Transforms/Scalar.h"
50 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h"
51 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
52 #include "llvm/Transforms/Utils/Cloning.h"
53 #include "llvm/Transforms/Utils/Local.h"
54 #include "llvm/Transforms/Utils/ModuleUtils.h"
55 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
56 #include <algorithm>
57 #include <iomanip>
58 #include <limits>
59 #include <sstream>
60 #include <string>
61 #include <system_error>
62
63 using namespace llvm;
64
65 #define DEBUG_TYPE "asan"
66
67 static const uint64_t kDefaultShadowScale = 3;
68 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29;
69 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44;
70 static const uint64_t kDynamicShadowSentinel = ~(uint64_t)0;
71 static const uint64_t kIOSShadowOffset32 = 1ULL << 30;
72 static const uint64_t kIOSSimShadowOffset32 = 1ULL << 30;
73 static const uint64_t kIOSSimShadowOffset64 = kDefaultShadowOffset64;
74 static const uint64_t kSmallX86_64ShadowOffset = 0x7FFF8000;  // < 2G.
75 static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000;
76 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 41;
77 static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52;
78 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000;
79 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37;
80 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36;
81 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30;
82 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46;
83 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28;
84 // The shadow memory space is dynamically allocated.
85 static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel;
86
87 static const size_t kMinStackMallocSize = 1 << 6;   // 64B
88 static const size_t kMaxStackMallocSize = 1 << 16;  // 64K
89 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3;
90 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E;
91
92 static const char *const kAsanModuleCtorName = "asan.module_ctor";
93 static const char *const kAsanModuleDtorName = "asan.module_dtor";
94 static const uint64_t kAsanCtorAndDtorPriority = 1;
95 static const char *const kAsanReportErrorTemplate = "__asan_report_";
96 static const char *const kAsanRegisterGlobalsName = "__asan_register_globals";
97 static const char *const kAsanUnregisterGlobalsName =
98     "__asan_unregister_globals";
99 static const char *const kAsanRegisterImageGlobalsName =
100   "__asan_register_image_globals";
101 static const char *const kAsanUnregisterImageGlobalsName =
102   "__asan_unregister_image_globals";
103 static const char *const kAsanPoisonGlobalsName = "__asan_before_dynamic_init";
104 static const char *const kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init";
105 static const char *const kAsanInitName = "__asan_init";
106 static const char *const kAsanVersionCheckName =
107     "__asan_version_mismatch_check_v8";
108 static const char *const kAsanPtrCmp = "__sanitizer_ptr_cmp";
109 static const char *const kAsanPtrSub = "__sanitizer_ptr_sub";
110 static const char *const kAsanHandleNoReturnName = "__asan_handle_no_return";
111 static const int kMaxAsanStackMallocSizeClass = 10;
112 static const char *const kAsanStackMallocNameTemplate = "__asan_stack_malloc_";
113 static const char *const kAsanStackFreeNameTemplate = "__asan_stack_free_";
114 static const char *const kAsanGenPrefix = "__asan_gen_";
115 static const char *const kODRGenPrefix = "__odr_asan_gen_";
116 static const char *const kSanCovGenPrefix = "__sancov_gen_";
117 static const char *const kAsanSetShadowPrefix = "__asan_set_shadow_";
118 static const char *const kAsanPoisonStackMemoryName =
119     "__asan_poison_stack_memory";
120 static const char *const kAsanUnpoisonStackMemoryName =
121     "__asan_unpoison_stack_memory";
122 static const char *const kAsanGlobalsRegisteredFlagName =
123     "__asan_globals_registered";
124
125 static const char *const kAsanOptionDetectUseAfterReturn =
126     "__asan_option_detect_stack_use_after_return";
127
128 static const char *const kAsanShadowMemoryDynamicAddress =
129     "__asan_shadow_memory_dynamic_address";
130
131 static const char *const kAsanAllocaPoison = "__asan_alloca_poison";
132 static const char *const kAsanAllocasUnpoison = "__asan_allocas_unpoison";
133
134 // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
135 static const size_t kNumberOfAccessSizes = 5;
136
137 static const unsigned kAllocaRzSize = 32;
138
139 // Command-line flags.
140 static cl::opt<bool> ClEnableKasan(
141     "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"),
142     cl::Hidden, cl::init(false));
143 static cl::opt<bool> ClRecover(
144     "asan-recover",
145     cl::desc("Enable recovery mode (continue-after-error)."),
146     cl::Hidden, cl::init(false));
147
148 // This flag may need to be replaced with -f[no-]asan-reads.
149 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads",
150                                        cl::desc("instrument read instructions"),
151                                        cl::Hidden, cl::init(true));
152 static cl::opt<bool> ClInstrumentWrites(
153     "asan-instrument-writes", cl::desc("instrument write instructions"),
154     cl::Hidden, cl::init(true));
155 static cl::opt<bool> ClInstrumentAtomics(
156     "asan-instrument-atomics",
157     cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden,
158     cl::init(true));
159 static cl::opt<bool> ClAlwaysSlowPath(
160     "asan-always-slow-path",
161     cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden,
162     cl::init(false));
163 static cl::opt<bool> ClForceDynamicShadow(
164     "asan-force-dynamic-shadow",
165     cl::desc("Load shadow address into a local variable for each function"),
166     cl::Hidden, cl::init(false));
167
168 // This flag limits the number of instructions to be instrumented
169 // in any given BB. Normally, this should be set to unlimited (INT_MAX),
170 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary
171 // set it to 10000.
172 static cl::opt<int> ClMaxInsnsToInstrumentPerBB(
173     "asan-max-ins-per-bb", cl::init(10000),
174     cl::desc("maximal number of instructions to instrument in any given BB"),
175     cl::Hidden);
176 // This flag may need to be replaced with -f[no]asan-stack.
177 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"),
178                              cl::Hidden, cl::init(true));
179 static cl::opt<uint32_t> ClMaxInlinePoisoningSize(
180     "asan-max-inline-poisoning-size",
181     cl::desc(
182         "Inline shadow poisoning for blocks up to the given size in bytes."),
183     cl::Hidden, cl::init(64));
184 static cl::opt<bool> ClUseAfterReturn("asan-use-after-return",
185                                       cl::desc("Check stack-use-after-return"),
186                                       cl::Hidden, cl::init(true));
187 static cl::opt<bool> ClUseAfterScope("asan-use-after-scope",
188                                      cl::desc("Check stack-use-after-scope"),
189                                      cl::Hidden, cl::init(false));
190 // This flag may need to be replaced with -f[no]asan-globals.
191 static cl::opt<bool> ClGlobals("asan-globals",
192                                cl::desc("Handle global objects"), cl::Hidden,
193                                cl::init(true));
194 static cl::opt<bool> ClInitializers("asan-initialization-order",
195                                     cl::desc("Handle C++ initializer order"),
196                                     cl::Hidden, cl::init(true));
197 static cl::opt<bool> ClInvalidPointerPairs(
198     "asan-detect-invalid-pointer-pair",
199     cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden,
200     cl::init(false));
201 static cl::opt<unsigned> ClRealignStack(
202     "asan-realign-stack",
203     cl::desc("Realign stack to the value of this flag (power of two)"),
204     cl::Hidden, cl::init(32));
205 static cl::opt<int> ClInstrumentationWithCallsThreshold(
206     "asan-instrumentation-with-call-threshold",
207     cl::desc(
208         "If the function being instrumented contains more than "
209         "this number of memory accesses, use callbacks instead of "
210         "inline checks (-1 means never use callbacks)."),
211     cl::Hidden, cl::init(7000));
212 static cl::opt<std::string> ClMemoryAccessCallbackPrefix(
213     "asan-memory-access-callback-prefix",
214     cl::desc("Prefix for memory access callbacks"), cl::Hidden,
215     cl::init("__asan_"));
216 static cl::opt<bool>
217     ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas",
218                                cl::desc("instrument dynamic allocas"),
219                                cl::Hidden, cl::init(true));
220 static cl::opt<bool> ClSkipPromotableAllocas(
221     "asan-skip-promotable-allocas",
222     cl::desc("Do not instrument promotable allocas"), cl::Hidden,
223     cl::init(true));
224
225 // These flags allow to change the shadow mapping.
226 // The shadow mapping looks like
227 //    Shadow = (Mem >> scale) + offset
228 static cl::opt<int> ClMappingScale("asan-mapping-scale",
229                                    cl::desc("scale of asan shadow mapping"),
230                                    cl::Hidden, cl::init(0));
231 static cl::opt<unsigned long long> ClMappingOffset(
232     "asan-mapping-offset",
233     cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"), cl::Hidden,
234     cl::init(0));
235
236 // Optimization flags. Not user visible, used mostly for testing
237 // and benchmarking the tool.
238 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"),
239                            cl::Hidden, cl::init(true));
240 static cl::opt<bool> ClOptSameTemp(
241     "asan-opt-same-temp", cl::desc("Instrument the same temp just once"),
242     cl::Hidden, cl::init(true));
243 static cl::opt<bool> ClOptGlobals("asan-opt-globals",
244                                   cl::desc("Don't instrument scalar globals"),
245                                   cl::Hidden, cl::init(true));
246 static cl::opt<bool> ClOptStack(
247     "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"),
248     cl::Hidden, cl::init(false));
249
250 static cl::opt<bool> ClDynamicAllocaStack(
251     "asan-stack-dynamic-alloca",
252     cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden,
253     cl::init(true));
254
255 static cl::opt<uint32_t> ClForceExperiment(
256     "asan-force-experiment",
257     cl::desc("Force optimization experiment (for testing)"), cl::Hidden,
258     cl::init(0));
259
260 static cl::opt<bool>
261     ClUsePrivateAliasForGlobals("asan-use-private-alias",
262                                 cl::desc("Use private aliases for global"
263                                          " variables"),
264                                 cl::Hidden, cl::init(false));
265
266 static cl::opt<bool>
267     ClUseMachOGlobalsSection("asan-globals-live-support",
268                              cl::desc("Use linker features to support dead "
269                                       "code stripping of globals "
270                                       "(Mach-O only)"),
271                              cl::Hidden, cl::init(true));
272
273 // Debug flags.
274 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden,
275                             cl::init(0));
276 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"),
277                                  cl::Hidden, cl::init(0));
278 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden,
279                                         cl::desc("Debug func"));
280 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"),
281                                cl::Hidden, cl::init(-1));
282 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"),
283                                cl::Hidden, cl::init(-1));
284
285 STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
286 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
287 STATISTIC(NumOptimizedAccessesToGlobalVar,
288           "Number of optimized accesses to global vars");
289 STATISTIC(NumOptimizedAccessesToStackVar,
290           "Number of optimized accesses to stack vars");
291
292 namespace {
293 /// Frontend-provided metadata for source location.
294 struct LocationMetadata {
295   StringRef Filename;
296   int LineNo;
297   int ColumnNo;
298
299   LocationMetadata() : Filename(), LineNo(0), ColumnNo(0) {}
300
301   bool empty() const { return Filename.empty(); }
302
303   void parse(MDNode *MDN) {
304     assert(MDN->getNumOperands() == 3);
305     MDString *DIFilename = cast<MDString>(MDN->getOperand(0));
306     Filename = DIFilename->getString();
307     LineNo =
308         mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue();
309     ColumnNo =
310         mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue();
311   }
312 };
313
314 /// Frontend-provided metadata for global variables.
315 class GlobalsMetadata {
316  public:
317   struct Entry {
318     Entry() : SourceLoc(), Name(), IsDynInit(false), IsBlacklisted(false) {}
319     LocationMetadata SourceLoc;
320     StringRef Name;
321     bool IsDynInit;
322     bool IsBlacklisted;
323   };
324
325   GlobalsMetadata() : inited_(false) {}
326
327   void reset() {
328     inited_ = false;
329     Entries.clear();
330   }
331
332   void init(Module &M) {
333     assert(!inited_);
334     inited_ = true;
335     NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals");
336     if (!Globals) return;
337     for (auto MDN : Globals->operands()) {
338       // Metadata node contains the global and the fields of "Entry".
339       assert(MDN->getNumOperands() == 5);
340       auto *GV = mdconst::extract_or_null<GlobalVariable>(MDN->getOperand(0));
341       // The optimizer may optimize away a global entirely.
342       if (!GV) continue;
343       // We can already have an entry for GV if it was merged with another
344       // global.
345       Entry &E = Entries[GV];
346       if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1)))
347         E.SourceLoc.parse(Loc);
348       if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2)))
349         E.Name = Name->getString();
350       ConstantInt *IsDynInit =
351           mdconst::extract<ConstantInt>(MDN->getOperand(3));
352       E.IsDynInit |= IsDynInit->isOne();
353       ConstantInt *IsBlacklisted =
354           mdconst::extract<ConstantInt>(MDN->getOperand(4));
355       E.IsBlacklisted |= IsBlacklisted->isOne();
356     }
357   }
358
359   /// Returns metadata entry for a given global.
360   Entry get(GlobalVariable *G) const {
361     auto Pos = Entries.find(G);
362     return (Pos != Entries.end()) ? Pos->second : Entry();
363   }
364
365  private:
366   bool inited_;
367   DenseMap<GlobalVariable *, Entry> Entries;
368 };
369
370 /// This struct defines the shadow mapping using the rule:
371 ///   shadow = (mem >> Scale) ADD-or-OR Offset.
372 struct ShadowMapping {
373   int Scale;
374   uint64_t Offset;
375   bool OrShadowOffset;
376 };
377
378 static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize,
379                                       bool IsKasan) {
380   bool IsAndroid = TargetTriple.isAndroid();
381   bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS();
382   bool IsFreeBSD = TargetTriple.isOSFreeBSD();
383   bool IsLinux = TargetTriple.isOSLinux();
384   bool IsPPC64 = TargetTriple.getArch() == llvm::Triple::ppc64 ||
385                  TargetTriple.getArch() == llvm::Triple::ppc64le;
386   bool IsSystemZ = TargetTriple.getArch() == llvm::Triple::systemz;
387   bool IsX86 = TargetTriple.getArch() == llvm::Triple::x86;
388   bool IsX86_64 = TargetTriple.getArch() == llvm::Triple::x86_64;
389   bool IsMIPS32 = TargetTriple.getArch() == llvm::Triple::mips ||
390                   TargetTriple.getArch() == llvm::Triple::mipsel;
391   bool IsMIPS64 = TargetTriple.getArch() == llvm::Triple::mips64 ||
392                   TargetTriple.getArch() == llvm::Triple::mips64el;
393   bool IsAArch64 = TargetTriple.getArch() == llvm::Triple::aarch64;
394   bool IsWindows = TargetTriple.isOSWindows();
395
396   ShadowMapping Mapping;
397
398   if (LongSize == 32) {
399     // Android is always PIE, which means that the beginning of the address
400     // space is always available.
401     if (IsAndroid)
402       Mapping.Offset = 0;
403     else if (IsMIPS32)
404       Mapping.Offset = kMIPS32_ShadowOffset32;
405     else if (IsFreeBSD)
406       Mapping.Offset = kFreeBSD_ShadowOffset32;
407     else if (IsIOS)
408       // If we're targeting iOS and x86, the binary is built for iOS simulator.
409       Mapping.Offset = IsX86 ? kIOSSimShadowOffset32 : kIOSShadowOffset32;
410     else if (IsWindows)
411       Mapping.Offset = kWindowsShadowOffset32;
412     else
413       Mapping.Offset = kDefaultShadowOffset32;
414   } else {  // LongSize == 64
415     if (IsPPC64)
416       Mapping.Offset = kPPC64_ShadowOffset64;
417     else if (IsSystemZ)
418       Mapping.Offset = kSystemZ_ShadowOffset64;
419     else if (IsFreeBSD)
420       Mapping.Offset = kFreeBSD_ShadowOffset64;
421     else if (IsLinux && IsX86_64) {
422       if (IsKasan)
423         Mapping.Offset = kLinuxKasan_ShadowOffset64;
424       else
425         Mapping.Offset = kSmallX86_64ShadowOffset;
426     } else if (IsWindows && IsX86_64) {
427       Mapping.Offset = kWindowsShadowOffset64;
428     } else if (IsMIPS64)
429       Mapping.Offset = kMIPS64_ShadowOffset64;
430     else if (IsIOS)
431       // If we're targeting iOS and x86, the binary is built for iOS simulator.
432       // We are using dynamic shadow offset on the 64-bit devices.
433       Mapping.Offset =
434         IsX86_64 ? kIOSSimShadowOffset64 : kDynamicShadowSentinel;
435     else if (IsAArch64)
436       Mapping.Offset = kAArch64_ShadowOffset64;
437     else
438       Mapping.Offset = kDefaultShadowOffset64;
439   }
440
441   if (ClForceDynamicShadow) {
442     Mapping.Offset = kDynamicShadowSentinel;
443   }
444
445   Mapping.Scale = kDefaultShadowScale;
446   if (ClMappingScale.getNumOccurrences() > 0) {
447     Mapping.Scale = ClMappingScale;
448   }
449
450   if (ClMappingOffset.getNumOccurrences() > 0) {
451     Mapping.Offset = ClMappingOffset;
452   }
453
454   // OR-ing shadow offset if more efficient (at least on x86) if the offset
455   // is a power of two, but on ppc64 we have to use add since the shadow
456   // offset is not necessary 1/8-th of the address space.  On SystemZ,
457   // we could OR the constant in a single instruction, but it's more
458   // efficient to load it once and use indexed addressing.
459   Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ
460                            && !(Mapping.Offset & (Mapping.Offset - 1))
461                            && Mapping.Offset != kDynamicShadowSentinel;
462
463   return Mapping;
464 }
465
466 static size_t RedzoneSizeForScale(int MappingScale) {
467   // Redzone used for stack and globals is at least 32 bytes.
468   // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
469   return std::max(32U, 1U << MappingScale);
470 }
471
472 /// AddressSanitizer: instrument the code in module to find memory bugs.
473 struct AddressSanitizer : public FunctionPass {
474   explicit AddressSanitizer(bool CompileKernel = false, bool Recover = false,
475                             bool UseAfterScope = false)
476       : FunctionPass(ID), CompileKernel(CompileKernel || ClEnableKasan),
477         Recover(Recover || ClRecover),
478         UseAfterScope(UseAfterScope || ClUseAfterScope),
479         LocalDynamicShadow(nullptr) {
480     initializeAddressSanitizerPass(*PassRegistry::getPassRegistry());
481   }
482   StringRef getPassName() const override {
483     return "AddressSanitizerFunctionPass";
484   }
485   void getAnalysisUsage(AnalysisUsage &AU) const override {
486     AU.addRequired<DominatorTreeWrapperPass>();
487     AU.addRequired<TargetLibraryInfoWrapperPass>();
488   }
489   uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const {
490     uint64_t ArraySize = 1;
491     if (AI.isArrayAllocation()) {
492       const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize());
493       assert(CI && "non-constant array size");
494       ArraySize = CI->getZExtValue();
495     }
496     Type *Ty = AI.getAllocatedType();
497     uint64_t SizeInBytes =
498         AI.getModule()->getDataLayout().getTypeAllocSize(Ty);
499     return SizeInBytes * ArraySize;
500   }
501   /// Check if we want (and can) handle this alloca.
502   bool isInterestingAlloca(const AllocaInst &AI);
503
504   /// If it is an interesting memory access, return the PointerOperand
505   /// and set IsWrite/Alignment. Otherwise return nullptr.
506   /// MaybeMask is an output parameter for the mask Value, if we're looking at a
507   /// masked load/store.
508   Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite,
509                                    uint64_t *TypeSize, unsigned *Alignment,
510                                    Value **MaybeMask = nullptr);
511   void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, Instruction *I,
512                      bool UseCalls, const DataLayout &DL);
513   void instrumentPointerComparisonOrSubtraction(Instruction *I);
514   void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
515                          Value *Addr, uint32_t TypeSize, bool IsWrite,
516                          Value *SizeArgument, bool UseCalls, uint32_t Exp);
517   void instrumentUnusualSizeOrAlignment(Instruction *I,
518                                         Instruction *InsertBefore, Value *Addr,
519                                         uint32_t TypeSize, bool IsWrite,
520                                         Value *SizeArgument, bool UseCalls,
521                                         uint32_t Exp);
522   Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
523                            Value *ShadowValue, uint32_t TypeSize);
524   Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr,
525                                  bool IsWrite, size_t AccessSizeIndex,
526                                  Value *SizeArgument, uint32_t Exp);
527   void instrumentMemIntrinsic(MemIntrinsic *MI);
528   Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
529   bool runOnFunction(Function &F) override;
530   bool maybeInsertAsanInitAtFunctionEntry(Function &F);
531   void maybeInsertDynamicShadowAtFunctionEntry(Function &F);
532   void markEscapedLocalAllocas(Function &F);
533   bool doInitialization(Module &M) override;
534   bool doFinalization(Module &M) override;
535   static char ID;  // Pass identification, replacement for typeid
536
537   DominatorTree &getDominatorTree() const { return *DT; }
538
539  private:
540   void initializeCallbacks(Module &M);
541
542   bool LooksLikeCodeInBug11395(Instruction *I);
543   bool GlobalIsLinkerInitialized(GlobalVariable *G);
544   bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr,
545                     uint64_t TypeSize) const;
546
547   /// Helper to cleanup per-function state.
548   struct FunctionStateRAII {
549     AddressSanitizer *Pass;
550     FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) {
551       assert(Pass->ProcessedAllocas.empty() &&
552              "last pass forgot to clear cache");
553       assert(!Pass->LocalDynamicShadow);
554     }
555     ~FunctionStateRAII() {
556       Pass->LocalDynamicShadow = nullptr;
557       Pass->ProcessedAllocas.clear();
558     }
559   };
560
561   LLVMContext *C;
562   Triple TargetTriple;
563   int LongSize;
564   bool CompileKernel;
565   bool Recover;
566   bool UseAfterScope;
567   Type *IntptrTy;
568   ShadowMapping Mapping;
569   DominatorTree *DT;
570   Function *AsanCtorFunction = nullptr;
571   Function *AsanInitFunction = nullptr;
572   Function *AsanHandleNoReturnFunc;
573   Function *AsanPtrCmpFunction, *AsanPtrSubFunction;
574   // This array is indexed by AccessIsWrite, Experiment and log2(AccessSize).
575   Function *AsanErrorCallback[2][2][kNumberOfAccessSizes];
576   Function *AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes];
577   // This array is indexed by AccessIsWrite and Experiment.
578   Function *AsanErrorCallbackSized[2][2];
579   Function *AsanMemoryAccessCallbackSized[2][2];
580   Function *AsanMemmove, *AsanMemcpy, *AsanMemset;
581   InlineAsm *EmptyAsm;
582   Value *LocalDynamicShadow;
583   GlobalsMetadata GlobalsMD;
584   DenseMap<const AllocaInst *, bool> ProcessedAllocas;
585
586   friend struct FunctionStackPoisoner;
587 };
588
589 class AddressSanitizerModule : public ModulePass {
590  public:
591   explicit AddressSanitizerModule(bool CompileKernel = false,
592                                   bool Recover = false)
593       : ModulePass(ID), CompileKernel(CompileKernel || ClEnableKasan),
594         Recover(Recover || ClRecover) {}
595   bool runOnModule(Module &M) override;
596   static char ID;  // Pass identification, replacement for typeid
597   StringRef getPassName() const override { return "AddressSanitizerModule"; }
598
599 private:
600   void initializeCallbacks(Module &M);
601
602   bool InstrumentGlobals(IRBuilder<> &IRB, Module &M);
603   void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M,
604                              ArrayRef<GlobalVariable *> ExtendedGlobals,
605                              ArrayRef<Constant *> MetadataInitializers);
606   void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M,
607                               ArrayRef<GlobalVariable *> ExtendedGlobals,
608                               ArrayRef<Constant *> MetadataInitializers);
609   void
610   InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M,
611                                      ArrayRef<GlobalVariable *> ExtendedGlobals,
612                                      ArrayRef<Constant *> MetadataInitializers);
613
614   GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer,
615                                        StringRef OriginalName);
616   void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata);
617   IRBuilder<> CreateAsanModuleDtor(Module &M);
618
619   bool ShouldInstrumentGlobal(GlobalVariable *G);
620   bool ShouldUseMachOGlobalsSection() const;
621   StringRef getGlobalMetadataSection() const;
622   void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName);
623   void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName);
624   size_t MinRedzoneSizeForGlobal() const {
625     return RedzoneSizeForScale(Mapping.Scale);
626   }
627
628   GlobalsMetadata GlobalsMD;
629   bool CompileKernel;
630   bool Recover;
631   Type *IntptrTy;
632   LLVMContext *C;
633   Triple TargetTriple;
634   ShadowMapping Mapping;
635   Function *AsanPoisonGlobals;
636   Function *AsanUnpoisonGlobals;
637   Function *AsanRegisterGlobals;
638   Function *AsanUnregisterGlobals;
639   Function *AsanRegisterImageGlobals;
640   Function *AsanUnregisterImageGlobals;
641 };
642
643 // Stack poisoning does not play well with exception handling.
644 // When an exception is thrown, we essentially bypass the code
645 // that unpoisones the stack. This is why the run-time library has
646 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
647 // stack in the interceptor. This however does not work inside the
648 // actual function which catches the exception. Most likely because the
649 // compiler hoists the load of the shadow value somewhere too high.
650 // This causes asan to report a non-existing bug on 453.povray.
651 // It sounds like an LLVM bug.
652 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
653   Function &F;
654   AddressSanitizer &ASan;
655   DIBuilder DIB;
656   LLVMContext *C;
657   Type *IntptrTy;
658   Type *IntptrPtrTy;
659   ShadowMapping Mapping;
660
661   SmallVector<AllocaInst *, 16> AllocaVec;
662   SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp;
663   SmallVector<Instruction *, 8> RetVec;
664   unsigned StackAlignment;
665
666   Function *AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1],
667       *AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1];
668   Function *AsanSetShadowFunc[0x100] = {};
669   Function *AsanPoisonStackMemoryFunc, *AsanUnpoisonStackMemoryFunc;
670   Function *AsanAllocaPoisonFunc, *AsanAllocasUnpoisonFunc;
671
672   // Stores a place and arguments of poisoning/unpoisoning call for alloca.
673   struct AllocaPoisonCall {
674     IntrinsicInst *InsBefore;
675     AllocaInst *AI;
676     uint64_t Size;
677     bool DoPoison;
678   };
679   SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec;
680   SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec;
681
682   SmallVector<AllocaInst *, 1> DynamicAllocaVec;
683   SmallVector<IntrinsicInst *, 1> StackRestoreVec;
684   AllocaInst *DynamicAllocaLayout = nullptr;
685   IntrinsicInst *LocalEscapeCall = nullptr;
686
687   // Maps Value to an AllocaInst from which the Value is originated.
688   typedef DenseMap<Value *, AllocaInst *> AllocaForValueMapTy;
689   AllocaForValueMapTy AllocaForValue;
690
691   bool HasNonEmptyInlineAsm = false;
692   bool HasReturnsTwiceCall = false;
693   std::unique_ptr<CallInst> EmptyInlineAsm;
694
695   FunctionStackPoisoner(Function &F, AddressSanitizer &ASan)
696       : F(F),
697         ASan(ASan),
698         DIB(*F.getParent(), /*AllowUnresolved*/ false),
699         C(ASan.C),
700         IntptrTy(ASan.IntptrTy),
701         IntptrPtrTy(PointerType::get(IntptrTy, 0)),
702         Mapping(ASan.Mapping),
703         StackAlignment(1 << Mapping.Scale),
704         EmptyInlineAsm(CallInst::Create(ASan.EmptyAsm)) {}
705
706   bool runOnFunction() {
707     if (!ClStack) return false;
708     // Collect alloca, ret, lifetime instructions etc.
709     for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB);
710
711     if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false;
712
713     initializeCallbacks(*F.getParent());
714
715     processDynamicAllocas();
716     processStaticAllocas();
717
718     if (ClDebugStack) {
719       DEBUG(dbgs() << F);
720     }
721     return true;
722   }
723
724   // Finds all Alloca instructions and puts
725   // poisoned red zones around all of them.
726   // Then unpoison everything back before the function returns.
727   void processStaticAllocas();
728   void processDynamicAllocas();
729
730   void createDynamicAllocasInitStorage();
731
732   // ----------------------- Visitors.
733   /// \brief Collect all Ret instructions.
734   void visitReturnInst(ReturnInst &RI) { RetVec.push_back(&RI); }
735
736   /// \brief Collect all Resume instructions.
737   void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); }
738
739   /// \brief Collect all CatchReturnInst instructions.
740   void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); }
741
742   void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore,
743                                         Value *SavedStack) {
744     IRBuilder<> IRB(InstBefore);
745     Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy);
746     // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we
747     // need to adjust extracted SP to compute the address of the most recent
748     // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for
749     // this purpose.
750     if (!isa<ReturnInst>(InstBefore)) {
751       Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration(
752           InstBefore->getModule(), Intrinsic::get_dynamic_area_offset,
753           {IntptrTy});
754
755       Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {});
756
757       DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy),
758                                      DynamicAreaOffset);
759     }
760
761     IRB.CreateCall(AsanAllocasUnpoisonFunc,
762                    {IRB.CreateLoad(DynamicAllocaLayout), DynamicAreaPtr});
763   }
764
765   // Unpoison dynamic allocas redzones.
766   void unpoisonDynamicAllocas() {
767     for (auto &Ret : RetVec)
768       unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout);
769
770     for (auto &StackRestoreInst : StackRestoreVec)
771       unpoisonDynamicAllocasBeforeInst(StackRestoreInst,
772                                        StackRestoreInst->getOperand(0));
773   }
774
775   // Deploy and poison redzones around dynamic alloca call. To do this, we
776   // should replace this call with another one with changed parameters and
777   // replace all its uses with new address, so
778   //   addr = alloca type, old_size, align
779   // is replaced by
780   //   new_size = (old_size + additional_size) * sizeof(type)
781   //   tmp = alloca i8, new_size, max(align, 32)
782   //   addr = tmp + 32 (first 32 bytes are for the left redzone).
783   // Additional_size is added to make new memory allocation contain not only
784   // requested memory, but also left, partial and right redzones.
785   void handleDynamicAllocaCall(AllocaInst *AI);
786
787   /// \brief Collect Alloca instructions we want (and can) handle.
788   void visitAllocaInst(AllocaInst &AI) {
789     if (!ASan.isInterestingAlloca(AI)) {
790       if (AI.isStaticAlloca()) {
791         // Skip over allocas that are present *before* the first instrumented
792         // alloca, we don't want to move those around.
793         if (AllocaVec.empty())
794           return;
795
796         StaticAllocasToMoveUp.push_back(&AI);
797       }
798       return;
799     }
800
801     StackAlignment = std::max(StackAlignment, AI.getAlignment());
802     if (!AI.isStaticAlloca())
803       DynamicAllocaVec.push_back(&AI);
804     else
805       AllocaVec.push_back(&AI);
806   }
807
808   /// \brief Collect lifetime intrinsic calls to check for use-after-scope
809   /// errors.
810   void visitIntrinsicInst(IntrinsicInst &II) {
811     Intrinsic::ID ID = II.getIntrinsicID();
812     if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II);
813     if (ID == Intrinsic::localescape) LocalEscapeCall = &II;
814     if (!ASan.UseAfterScope)
815       return;
816     if (ID != Intrinsic::lifetime_start && ID != Intrinsic::lifetime_end)
817       return;
818     // Found lifetime intrinsic, add ASan instrumentation if necessary.
819     ConstantInt *Size = dyn_cast<ConstantInt>(II.getArgOperand(0));
820     // If size argument is undefined, don't do anything.
821     if (Size->isMinusOne()) return;
822     // Check that size doesn't saturate uint64_t and can
823     // be stored in IntptrTy.
824     const uint64_t SizeValue = Size->getValue().getLimitedValue();
825     if (SizeValue == ~0ULL ||
826         !ConstantInt::isValueValidForType(IntptrTy, SizeValue))
827       return;
828     // Find alloca instruction that corresponds to llvm.lifetime argument.
829     AllocaInst *AI = findAllocaForValue(II.getArgOperand(1));
830     if (!AI || !ASan.isInterestingAlloca(*AI))
831       return;
832     bool DoPoison = (ID == Intrinsic::lifetime_end);
833     AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison};
834     if (AI->isStaticAlloca())
835       StaticAllocaPoisonCallVec.push_back(APC);
836     else if (ClInstrumentDynamicAllocas)
837       DynamicAllocaPoisonCallVec.push_back(APC);
838   }
839
840   void visitCallSite(CallSite CS) {
841     Instruction *I = CS.getInstruction();
842     if (CallInst *CI = dyn_cast<CallInst>(I)) {
843       HasNonEmptyInlineAsm |=
844           CI->isInlineAsm() && !CI->isIdenticalTo(EmptyInlineAsm.get());
845       HasReturnsTwiceCall |= CI->canReturnTwice();
846     }
847   }
848
849   // ---------------------- Helpers.
850   void initializeCallbacks(Module &M);
851
852   bool doesDominateAllExits(const Instruction *I) const {
853     for (auto Ret : RetVec) {
854       if (!ASan.getDominatorTree().dominates(I, Ret)) return false;
855     }
856     return true;
857   }
858
859   /// Finds alloca where the value comes from.
860   AllocaInst *findAllocaForValue(Value *V);
861
862   // Copies bytes from ShadowBytes into shadow memory for indexes where
863   // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that
864   // ShadowBytes[i] is constantly zero and doesn't need to be overwritten.
865   void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
866                     IRBuilder<> &IRB, Value *ShadowBase);
867   void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
868                     size_t Begin, size_t End, IRBuilder<> &IRB,
869                     Value *ShadowBase);
870   void copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
871                           ArrayRef<uint8_t> ShadowBytes, size_t Begin,
872                           size_t End, IRBuilder<> &IRB, Value *ShadowBase);
873
874   void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison);
875
876   Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L,
877                                bool Dynamic);
878   PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue,
879                      Instruction *ThenTerm, Value *ValueIfFalse);
880 };
881
882 } // anonymous namespace
883
884 char AddressSanitizer::ID = 0;
885 INITIALIZE_PASS_BEGIN(
886     AddressSanitizer, "asan",
887     "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
888     false)
889 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
890 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
891 INITIALIZE_PASS_END(
892     AddressSanitizer, "asan",
893     "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
894     false)
895 FunctionPass *llvm::createAddressSanitizerFunctionPass(bool CompileKernel,
896                                                        bool Recover,
897                                                        bool UseAfterScope) {
898   assert(!CompileKernel || Recover);
899   return new AddressSanitizer(CompileKernel, Recover, UseAfterScope);
900 }
901
902 char AddressSanitizerModule::ID = 0;
903 INITIALIZE_PASS(
904     AddressSanitizerModule, "asan-module",
905     "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
906     "ModulePass",
907     false, false)
908 ModulePass *llvm::createAddressSanitizerModulePass(bool CompileKernel,
909                                                    bool Recover) {
910   assert(!CompileKernel || Recover);
911   return new AddressSanitizerModule(CompileKernel, Recover);
912 }
913
914 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) {
915   size_t Res = countTrailingZeros(TypeSize / 8);
916   assert(Res < kNumberOfAccessSizes);
917   return Res;
918 }
919
920 // \brief Create a constant for Str so that we can pass it to the run-time lib.
921 static GlobalVariable *createPrivateGlobalForString(Module &M, StringRef Str,
922                                                     bool AllowMerging) {
923   Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
924   // We use private linkage for module-local strings. If they can be merged
925   // with another one, we set the unnamed_addr attribute.
926   GlobalVariable *GV =
927       new GlobalVariable(M, StrConst->getType(), true,
928                          GlobalValue::PrivateLinkage, StrConst, kAsanGenPrefix);
929   if (AllowMerging) GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
930   GV->setAlignment(1);  // Strings may not be merged w/o setting align 1.
931   return GV;
932 }
933
934 /// \brief Create a global describing a source location.
935 static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M,
936                                                        LocationMetadata MD) {
937   Constant *LocData[] = {
938       createPrivateGlobalForString(M, MD.Filename, true),
939       ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo),
940       ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo),
941   };
942   auto LocStruct = ConstantStruct::getAnon(LocData);
943   auto GV = new GlobalVariable(M, LocStruct->getType(), true,
944                                GlobalValue::PrivateLinkage, LocStruct,
945                                kAsanGenPrefix);
946   GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
947   return GV;
948 }
949
950 /// \brief Check if \p G has been created by a trusted compiler pass.
951 static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) {
952   // Do not instrument asan globals.
953   if (G->getName().startswith(kAsanGenPrefix) ||
954       G->getName().startswith(kSanCovGenPrefix) ||
955       G->getName().startswith(kODRGenPrefix))
956     return true;
957
958   // Do not instrument gcov counter arrays.
959   if (G->getName() == "__llvm_gcov_ctr")
960     return true;
961
962   return false;
963 }
964
965 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
966   // Shadow >> scale
967   Shadow = IRB.CreateLShr(Shadow, Mapping.Scale);
968   if (Mapping.Offset == 0) return Shadow;
969   // (Shadow >> scale) | offset
970   Value *ShadowBase;
971   if (LocalDynamicShadow)
972     ShadowBase = LocalDynamicShadow;
973   else
974     ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset);
975   if (Mapping.OrShadowOffset)
976     return IRB.CreateOr(Shadow, ShadowBase);
977   else
978     return IRB.CreateAdd(Shadow, ShadowBase);
979 }
980
981 // Instrument memset/memmove/memcpy
982 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
983   IRBuilder<> IRB(MI);
984   if (isa<MemTransferInst>(MI)) {
985     IRB.CreateCall(
986         isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy,
987         {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
988          IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()),
989          IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
990   } else if (isa<MemSetInst>(MI)) {
991     IRB.CreateCall(
992         AsanMemset,
993         {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
994          IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false),
995          IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
996   }
997   MI->eraseFromParent();
998 }
999
1000 /// Check if we want (and can) handle this alloca.
1001 bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) {
1002   auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI);
1003
1004   if (PreviouslySeenAllocaInfo != ProcessedAllocas.end())
1005     return PreviouslySeenAllocaInfo->getSecond();
1006
1007   bool IsInteresting =
1008       (AI.getAllocatedType()->isSized() &&
1009        // alloca() may be called with 0 size, ignore it.
1010        ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) &&
1011        // We are only interested in allocas not promotable to registers.
1012        // Promotable allocas are common under -O0.
1013        (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) &&
1014        // inalloca allocas are not treated as static, and we don't want
1015        // dynamic alloca instrumentation for them as well.
1016        !AI.isUsedWithInAlloca());
1017
1018   ProcessedAllocas[&AI] = IsInteresting;
1019   return IsInteresting;
1020 }
1021
1022 Value *AddressSanitizer::isInterestingMemoryAccess(Instruction *I,
1023                                                    bool *IsWrite,
1024                                                    uint64_t *TypeSize,
1025                                                    unsigned *Alignment,
1026                                                    Value **MaybeMask) {
1027   // Skip memory accesses inserted by another instrumentation.
1028   if (I->getMetadata("nosanitize")) return nullptr;
1029
1030   // Do not instrument the load fetching the dynamic shadow address.
1031   if (LocalDynamicShadow == I)
1032     return nullptr;
1033
1034   Value *PtrOperand = nullptr;
1035   const DataLayout &DL = I->getModule()->getDataLayout();
1036   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1037     if (!ClInstrumentReads) return nullptr;
1038     *IsWrite = false;
1039     *TypeSize = DL.getTypeStoreSizeInBits(LI->getType());
1040     *Alignment = LI->getAlignment();
1041     PtrOperand = LI->getPointerOperand();
1042   } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1043     if (!ClInstrumentWrites) return nullptr;
1044     *IsWrite = true;
1045     *TypeSize = DL.getTypeStoreSizeInBits(SI->getValueOperand()->getType());
1046     *Alignment = SI->getAlignment();
1047     PtrOperand = SI->getPointerOperand();
1048   } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
1049     if (!ClInstrumentAtomics) return nullptr;
1050     *IsWrite = true;
1051     *TypeSize = DL.getTypeStoreSizeInBits(RMW->getValOperand()->getType());
1052     *Alignment = 0;
1053     PtrOperand = RMW->getPointerOperand();
1054   } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
1055     if (!ClInstrumentAtomics) return nullptr;
1056     *IsWrite = true;
1057     *TypeSize = DL.getTypeStoreSizeInBits(XCHG->getCompareOperand()->getType());
1058     *Alignment = 0;
1059     PtrOperand = XCHG->getPointerOperand();
1060   } else if (auto CI = dyn_cast<CallInst>(I)) {
1061     auto *F = dyn_cast<Function>(CI->getCalledValue());
1062     if (F && (F->getName().startswith("llvm.masked.load.") ||
1063               F->getName().startswith("llvm.masked.store."))) {
1064       unsigned OpOffset = 0;
1065       if (F->getName().startswith("llvm.masked.store.")) {
1066         if (!ClInstrumentWrites)
1067           return nullptr;
1068         // Masked store has an initial operand for the value.
1069         OpOffset = 1;
1070         *IsWrite = true;
1071       } else {
1072         if (!ClInstrumentReads)
1073           return nullptr;
1074         *IsWrite = false;
1075       }
1076
1077       auto BasePtr = CI->getOperand(0 + OpOffset);
1078       auto Ty = cast<PointerType>(BasePtr->getType())->getElementType();
1079       *TypeSize = DL.getTypeStoreSizeInBits(Ty);
1080       if (auto AlignmentConstant =
1081               dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset)))
1082         *Alignment = (unsigned)AlignmentConstant->getZExtValue();
1083       else
1084         *Alignment = 1; // No alignment guarantees. We probably got Undef
1085       if (MaybeMask)
1086         *MaybeMask = CI->getOperand(2 + OpOffset);
1087       PtrOperand = BasePtr;
1088     }
1089   }
1090
1091   // Do not instrument acesses from different address spaces; we cannot deal
1092   // with them.
1093   if (PtrOperand) {
1094     Type *PtrTy = cast<PointerType>(PtrOperand->getType()->getScalarType());
1095     if (PtrTy->getPointerAddressSpace() != 0)
1096       return nullptr;
1097   }
1098
1099   // Treat memory accesses to promotable allocas as non-interesting since they
1100   // will not cause memory violations. This greatly speeds up the instrumented
1101   // executable at -O0.
1102   if (ClSkipPromotableAllocas)
1103     if (auto AI = dyn_cast_or_null<AllocaInst>(PtrOperand))
1104       return isInterestingAlloca(*AI) ? AI : nullptr;
1105
1106   return PtrOperand;
1107 }
1108
1109 static bool isPointerOperand(Value *V) {
1110   return V->getType()->isPointerTy() || isa<PtrToIntInst>(V);
1111 }
1112
1113 // This is a rough heuristic; it may cause both false positives and
1114 // false negatives. The proper implementation requires cooperation with
1115 // the frontend.
1116 static bool isInterestingPointerComparisonOrSubtraction(Instruction *I) {
1117   if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) {
1118     if (!Cmp->isRelational()) return false;
1119   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
1120     if (BO->getOpcode() != Instruction::Sub) return false;
1121   } else {
1122     return false;
1123   }
1124   return isPointerOperand(I->getOperand(0)) &&
1125          isPointerOperand(I->getOperand(1));
1126 }
1127
1128 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) {
1129   // If a global variable does not have dynamic initialization we don't
1130   // have to instrument it.  However, if a global does not have initializer
1131   // at all, we assume it has dynamic initializer (in other TU).
1132   return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit;
1133 }
1134
1135 void AddressSanitizer::instrumentPointerComparisonOrSubtraction(
1136     Instruction *I) {
1137   IRBuilder<> IRB(I);
1138   Function *F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction;
1139   Value *Param[2] = {I->getOperand(0), I->getOperand(1)};
1140   for (Value *&i : Param) {
1141     if (i->getType()->isPointerTy())
1142       i = IRB.CreatePointerCast(i, IntptrTy);
1143   }
1144   IRB.CreateCall(F, Param);
1145 }
1146
1147 static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I,
1148                                 Instruction *InsertBefore, Value *Addr,
1149                                 unsigned Alignment, unsigned Granularity,
1150                                 uint32_t TypeSize, bool IsWrite,
1151                                 Value *SizeArgument, bool UseCalls,
1152                                 uint32_t Exp) {
1153   // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check
1154   // if the data is properly aligned.
1155   if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 ||
1156        TypeSize == 128) &&
1157       (Alignment >= Granularity || Alignment == 0 || Alignment >= TypeSize / 8))
1158     return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite,
1159                                    nullptr, UseCalls, Exp);
1160   Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize,
1161                                          IsWrite, nullptr, UseCalls, Exp);
1162 }
1163
1164 static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass,
1165                                         const DataLayout &DL, Type *IntptrTy,
1166                                         Value *Mask, Instruction *I,
1167                                         Value *Addr, unsigned Alignment,
1168                                         unsigned Granularity, uint32_t TypeSize,
1169                                         bool IsWrite, Value *SizeArgument,
1170                                         bool UseCalls, uint32_t Exp) {
1171   auto *VTy = cast<PointerType>(Addr->getType())->getElementType();
1172   uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType());
1173   unsigned Num = VTy->getVectorNumElements();
1174   auto Zero = ConstantInt::get(IntptrTy, 0);
1175   for (unsigned Idx = 0; Idx < Num; ++Idx) {
1176     Value *InstrumentedAddress = nullptr;
1177     Instruction *InsertBefore = I;
1178     if (auto *Vector = dyn_cast<ConstantVector>(Mask)) {
1179       // dyn_cast as we might get UndefValue
1180       if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) {
1181         if (Masked->isNullValue())
1182           // Mask is constant false, so no instrumentation needed.
1183           continue;
1184         // If we have a true or undef value, fall through to doInstrumentAddress
1185         // with InsertBefore == I
1186       }
1187     } else {
1188       IRBuilder<> IRB(I);
1189       Value *MaskElem = IRB.CreateExtractElement(Mask, Idx);
1190       TerminatorInst *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false);
1191       InsertBefore = ThenTerm;
1192     }
1193
1194     IRBuilder<> IRB(InsertBefore);
1195     InstrumentedAddress =
1196         IRB.CreateGEP(Addr, {Zero, ConstantInt::get(IntptrTy, Idx)});
1197     doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment,
1198                         Granularity, ElemTypeSize, IsWrite, SizeArgument,
1199                         UseCalls, Exp);
1200   }
1201 }
1202
1203 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
1204                                      Instruction *I, bool UseCalls,
1205                                      const DataLayout &DL) {
1206   bool IsWrite = false;
1207   unsigned Alignment = 0;
1208   uint64_t TypeSize = 0;
1209   Value *MaybeMask = nullptr;
1210   Value *Addr =
1211       isInterestingMemoryAccess(I, &IsWrite, &TypeSize, &Alignment, &MaybeMask);
1212   assert(Addr);
1213
1214   // Optimization experiments.
1215   // The experiments can be used to evaluate potential optimizations that remove
1216   // instrumentation (assess false negatives). Instead of completely removing
1217   // some instrumentation, you set Exp to a non-zero value (mask of optimization
1218   // experiments that want to remove instrumentation of this instruction).
1219   // If Exp is non-zero, this pass will emit special calls into runtime
1220   // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls
1221   // make runtime terminate the program in a special way (with a different
1222   // exit status). Then you run the new compiler on a buggy corpus, collect
1223   // the special terminations (ideally, you don't see them at all -- no false
1224   // negatives) and make the decision on the optimization.
1225   uint32_t Exp = ClForceExperiment;
1226
1227   if (ClOpt && ClOptGlobals) {
1228     // If initialization order checking is disabled, a simple access to a
1229     // dynamically initialized global is always valid.
1230     GlobalVariable *G = dyn_cast<GlobalVariable>(GetUnderlyingObject(Addr, DL));
1231     if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) &&
1232         isSafeAccess(ObjSizeVis, Addr, TypeSize)) {
1233       NumOptimizedAccessesToGlobalVar++;
1234       return;
1235     }
1236   }
1237
1238   if (ClOpt && ClOptStack) {
1239     // A direct inbounds access to a stack variable is always valid.
1240     if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) &&
1241         isSafeAccess(ObjSizeVis, Addr, TypeSize)) {
1242       NumOptimizedAccessesToStackVar++;
1243       return;
1244     }
1245   }
1246
1247   if (IsWrite)
1248     NumInstrumentedWrites++;
1249   else
1250     NumInstrumentedReads++;
1251
1252   unsigned Granularity = 1 << Mapping.Scale;
1253   if (MaybeMask) {
1254     instrumentMaskedLoadOrStore(this, DL, IntptrTy, MaybeMask, I, Addr,
1255                                 Alignment, Granularity, TypeSize, IsWrite,
1256                                 nullptr, UseCalls, Exp);
1257   } else {
1258     doInstrumentAddress(this, I, I, Addr, Alignment, Granularity, TypeSize,
1259                         IsWrite, nullptr, UseCalls, Exp);
1260   }
1261 }
1262
1263 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore,
1264                                                  Value *Addr, bool IsWrite,
1265                                                  size_t AccessSizeIndex,
1266                                                  Value *SizeArgument,
1267                                                  uint32_t Exp) {
1268   IRBuilder<> IRB(InsertBefore);
1269   Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp);
1270   CallInst *Call = nullptr;
1271   if (SizeArgument) {
1272     if (Exp == 0)
1273       Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0],
1274                             {Addr, SizeArgument});
1275     else
1276       Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1],
1277                             {Addr, SizeArgument, ExpVal});
1278   } else {
1279     if (Exp == 0)
1280       Call =
1281           IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr);
1282     else
1283       Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex],
1284                             {Addr, ExpVal});
1285   }
1286
1287   // We don't do Call->setDoesNotReturn() because the BB already has
1288   // UnreachableInst at the end.
1289   // This EmptyAsm is required to avoid callback merge.
1290   IRB.CreateCall(EmptyAsm, {});
1291   return Call;
1292 }
1293
1294 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
1295                                            Value *ShadowValue,
1296                                            uint32_t TypeSize) {
1297   size_t Granularity = static_cast<size_t>(1) << Mapping.Scale;
1298   // Addr & (Granularity - 1)
1299   Value *LastAccessedByte =
1300       IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1));
1301   // (Addr & (Granularity - 1)) + size - 1
1302   if (TypeSize / 8 > 1)
1303     LastAccessedByte = IRB.CreateAdd(
1304         LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1));
1305   // (uint8_t) ((Addr & (Granularity-1)) + size - 1)
1306   LastAccessedByte =
1307       IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false);
1308   // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
1309   return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue);
1310 }
1311
1312 void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
1313                                          Instruction *InsertBefore, Value *Addr,
1314                                          uint32_t TypeSize, bool IsWrite,
1315                                          Value *SizeArgument, bool UseCalls,
1316                                          uint32_t Exp) {
1317   IRBuilder<> IRB(InsertBefore);
1318   Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
1319   size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize);
1320
1321   if (UseCalls) {
1322     if (Exp == 0)
1323       IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex],
1324                      AddrLong);
1325     else
1326       IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex],
1327                      {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)});
1328     return;
1329   }
1330
1331   Type *ShadowTy =
1332       IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale));
1333   Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
1334   Value *ShadowPtr = memToShadow(AddrLong, IRB);
1335   Value *CmpVal = Constant::getNullValue(ShadowTy);
1336   Value *ShadowValue =
1337       IRB.CreateLoad(IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy));
1338
1339   Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal);
1340   size_t Granularity = 1ULL << Mapping.Scale;
1341   TerminatorInst *CrashTerm = nullptr;
1342
1343   if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) {
1344     // We use branch weights for the slow path check, to indicate that the slow
1345     // path is rarely taken. This seems to be the case for SPEC benchmarks.
1346     TerminatorInst *CheckTerm = SplitBlockAndInsertIfThen(
1347         Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000));
1348     assert(cast<BranchInst>(CheckTerm)->isUnconditional());
1349     BasicBlock *NextBB = CheckTerm->getSuccessor(0);
1350     IRB.SetInsertPoint(CheckTerm);
1351     Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize);
1352     if (Recover) {
1353       CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false);
1354     } else {
1355       BasicBlock *CrashBlock =
1356         BasicBlock::Create(*C, "", NextBB->getParent(), NextBB);
1357       CrashTerm = new UnreachableInst(*C, CrashBlock);
1358       BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2);
1359       ReplaceInstWithInst(CheckTerm, NewTerm);
1360     }
1361   } else {
1362     CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover);
1363   }
1364
1365   Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite,
1366                                          AccessSizeIndex, SizeArgument, Exp);
1367   Crash->setDebugLoc(OrigIns->getDebugLoc());
1368 }
1369
1370 // Instrument unusual size or unusual alignment.
1371 // We can not do it with a single check, so we do 1-byte check for the first
1372 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able
1373 // to report the actual access size.
1374 void AddressSanitizer::instrumentUnusualSizeOrAlignment(
1375     Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize,
1376     bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) {
1377   IRBuilder<> IRB(InsertBefore);
1378   Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8);
1379   Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
1380   if (UseCalls) {
1381     if (Exp == 0)
1382       IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0],
1383                      {AddrLong, Size});
1384     else
1385       IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1],
1386                      {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)});
1387   } else {
1388     Value *LastByte = IRB.CreateIntToPtr(
1389         IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)),
1390         Addr->getType());
1391     instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp);
1392     instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp);
1393   }
1394 }
1395
1396 void AddressSanitizerModule::poisonOneInitializer(Function &GlobalInit,
1397                                                   GlobalValue *ModuleName) {
1398   // Set up the arguments to our poison/unpoison functions.
1399   IRBuilder<> IRB(&GlobalInit.front(),
1400                   GlobalInit.front().getFirstInsertionPt());
1401
1402   // Add a call to poison all external globals before the given function starts.
1403   Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy);
1404   IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr);
1405
1406   // Add calls to unpoison all globals before each return instruction.
1407   for (auto &BB : GlobalInit.getBasicBlockList())
1408     if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
1409       CallInst::Create(AsanUnpoisonGlobals, "", RI);
1410 }
1411
1412 void AddressSanitizerModule::createInitializerPoisonCalls(
1413     Module &M, GlobalValue *ModuleName) {
1414   GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
1415
1416   ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
1417   for (Use &OP : CA->operands()) {
1418     if (isa<ConstantAggregateZero>(OP)) continue;
1419     ConstantStruct *CS = cast<ConstantStruct>(OP);
1420
1421     // Must have a function or null ptr.
1422     if (Function *F = dyn_cast<Function>(CS->getOperand(1))) {
1423       if (F->getName() == kAsanModuleCtorName) continue;
1424       ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1425       // Don't instrument CTORs that will run before asan.module_ctor.
1426       if (Priority->getLimitedValue() <= kAsanCtorAndDtorPriority) continue;
1427       poisonOneInitializer(*F, ModuleName);
1428     }
1429   }
1430 }
1431
1432 bool AddressSanitizerModule::ShouldInstrumentGlobal(GlobalVariable *G) {
1433   Type *Ty = G->getValueType();
1434   DEBUG(dbgs() << "GLOBAL: " << *G << "\n");
1435
1436   if (GlobalsMD.get(G).IsBlacklisted) return false;
1437   if (!Ty->isSized()) return false;
1438   if (!G->hasInitializer()) return false;
1439   if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals.
1440   // Touch only those globals that will not be defined in other modules.
1441   // Don't handle ODR linkage types and COMDATs since other modules may be built
1442   // without ASan.
1443   if (G->getLinkage() != GlobalVariable::ExternalLinkage &&
1444       G->getLinkage() != GlobalVariable::PrivateLinkage &&
1445       G->getLinkage() != GlobalVariable::InternalLinkage)
1446     return false;
1447   if (G->hasComdat()) return false;
1448   // Two problems with thread-locals:
1449   //   - The address of the main thread's copy can't be computed at link-time.
1450   //   - Need to poison all copies, not just the main thread's one.
1451   if (G->isThreadLocal()) return false;
1452   // For now, just ignore this Global if the alignment is large.
1453   if (G->getAlignment() > MinRedzoneSizeForGlobal()) return false;
1454
1455   if (G->hasSection()) {
1456     StringRef Section = G->getSection();
1457
1458     // Globals from llvm.metadata aren't emitted, do not instrument them.
1459     if (Section == "llvm.metadata") return false;
1460     // Do not instrument globals from special LLVM sections.
1461     if (Section.find("__llvm") != StringRef::npos || Section.find("__LLVM") != StringRef::npos) return false;
1462
1463     // Do not instrument function pointers to initialization and termination
1464     // routines: dynamic linker will not properly handle redzones.
1465     if (Section.startswith(".preinit_array") ||
1466         Section.startswith(".init_array") ||
1467         Section.startswith(".fini_array")) {
1468       return false;
1469     }
1470
1471     // Callbacks put into the CRT initializer/terminator sections
1472     // should not be instrumented.
1473     // See https://code.google.com/p/address-sanitizer/issues/detail?id=305
1474     // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx
1475     if (Section.startswith(".CRT")) {
1476       DEBUG(dbgs() << "Ignoring a global initializer callback: " << *G << "\n");
1477       return false;
1478     }
1479
1480     if (TargetTriple.isOSBinFormatMachO()) {
1481       StringRef ParsedSegment, ParsedSection;
1482       unsigned TAA = 0, StubSize = 0;
1483       bool TAAParsed;
1484       std::string ErrorCode = MCSectionMachO::ParseSectionSpecifier(
1485           Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize);
1486       assert(ErrorCode.empty() && "Invalid section specifier.");
1487
1488       // Ignore the globals from the __OBJC section. The ObjC runtime assumes
1489       // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
1490       // them.
1491       if (ParsedSegment == "__OBJC" ||
1492           (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) {
1493         DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n");
1494         return false;
1495       }
1496       // See http://code.google.com/p/address-sanitizer/issues/detail?id=32
1497       // Constant CFString instances are compiled in the following way:
1498       //  -- the string buffer is emitted into
1499       //     __TEXT,__cstring,cstring_literals
1500       //  -- the constant NSConstantString structure referencing that buffer
1501       //     is placed into __DATA,__cfstring
1502       // Therefore there's no point in placing redzones into __DATA,__cfstring.
1503       // Moreover, it causes the linker to crash on OS X 10.7
1504       if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") {
1505         DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n");
1506         return false;
1507       }
1508       // The linker merges the contents of cstring_literals and removes the
1509       // trailing zeroes.
1510       if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) {
1511         DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n");
1512         return false;
1513       }
1514     }
1515   }
1516
1517   return true;
1518 }
1519
1520 // On Mach-O platforms, we emit global metadata in a separate section of the
1521 // binary in order to allow the linker to properly dead strip. This is only
1522 // supported on recent versions of ld64.
1523 bool AddressSanitizerModule::ShouldUseMachOGlobalsSection() const {
1524   if (!ClUseMachOGlobalsSection)
1525     return false;
1526
1527   if (!TargetTriple.isOSBinFormatMachO())
1528     return false;
1529
1530   if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11))
1531     return true;
1532   if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9))
1533     return true;
1534   if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2))
1535     return true;
1536
1537   return false;
1538 }
1539
1540 StringRef AddressSanitizerModule::getGlobalMetadataSection() const {
1541   switch (TargetTriple.getObjectFormat()) {
1542   case Triple::COFF:  return ".ASAN$GL";
1543   case Triple::ELF:   return "asan_globals";
1544   case Triple::MachO: return "__DATA,__asan_globals,regular";
1545   default: break;
1546   }
1547   llvm_unreachable("unsupported object format");
1548 }
1549
1550 void AddressSanitizerModule::initializeCallbacks(Module &M) {
1551   IRBuilder<> IRB(*C);
1552
1553   // Declare our poisoning and unpoisoning functions.
1554   AsanPoisonGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1555       kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy, nullptr));
1556   AsanPoisonGlobals->setLinkage(Function::ExternalLinkage);
1557   AsanUnpoisonGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1558       kAsanUnpoisonGlobalsName, IRB.getVoidTy(), nullptr));
1559   AsanUnpoisonGlobals->setLinkage(Function::ExternalLinkage);
1560
1561   // Declare functions that register/unregister globals.
1562   AsanRegisterGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1563       kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
1564   AsanRegisterGlobals->setLinkage(Function::ExternalLinkage);
1565   AsanUnregisterGlobals = checkSanitizerInterfaceFunction(
1566       M.getOrInsertFunction(kAsanUnregisterGlobalsName, IRB.getVoidTy(),
1567                             IntptrTy, IntptrTy, nullptr));
1568   AsanUnregisterGlobals->setLinkage(Function::ExternalLinkage);
1569
1570   // Declare the functions that find globals in a shared object and then invoke
1571   // the (un)register function on them.
1572   AsanRegisterImageGlobals =
1573       checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1574           kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy, nullptr));
1575   AsanRegisterImageGlobals->setLinkage(Function::ExternalLinkage);
1576
1577   AsanUnregisterImageGlobals =
1578       checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1579           kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy, nullptr));
1580   AsanUnregisterImageGlobals->setLinkage(Function::ExternalLinkage);
1581 }
1582
1583 // Put the metadata and the instrumented global in the same group. This ensures
1584 // that the metadata is discarded if the instrumented global is discarded.
1585 void AddressSanitizerModule::SetComdatForGlobalMetadata(
1586     GlobalVariable *G, GlobalVariable *Metadata) {
1587   Module &M = *G->getParent();
1588   Comdat *C = G->getComdat();
1589   if (!C) {
1590     if (!G->hasName()) {
1591       // If G is unnamed, it must be internal. Give it an artificial name
1592       // so we can put it in a comdat.
1593       assert(G->hasLocalLinkage());
1594       G->setName(Twine(kAsanGenPrefix) + "_anon_global");
1595     }
1596     C = M.getOrInsertComdat(G->getName());
1597     // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF.
1598     if (TargetTriple.isOSBinFormatCOFF())
1599       C->setSelectionKind(Comdat::NoDuplicates);
1600     G->setComdat(C);
1601   }
1602
1603   assert(G->hasComdat());
1604   Metadata->setComdat(G->getComdat());
1605 }
1606
1607 // Create a separate metadata global and put it in the appropriate ASan
1608 // global registration section.
1609 GlobalVariable *
1610 AddressSanitizerModule::CreateMetadataGlobal(Module &M, Constant *Initializer,
1611                                              StringRef OriginalName) {
1612   GlobalVariable *Metadata =
1613       new GlobalVariable(M, Initializer->getType(), false,
1614                          GlobalVariable::InternalLinkage, Initializer,
1615                          Twine("__asan_global_") +
1616                              GlobalValue::getRealLinkageName(OriginalName));
1617   Metadata->setSection(getGlobalMetadataSection());
1618   return Metadata;
1619 }
1620
1621 IRBuilder<> AddressSanitizerModule::CreateAsanModuleDtor(Module &M) {
1622   Function *AsanDtorFunction =
1623       Function::Create(FunctionType::get(Type::getVoidTy(*C), false),
1624                        GlobalValue::InternalLinkage, kAsanModuleDtorName, &M);
1625   BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction);
1626   appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndDtorPriority);
1627
1628   return IRBuilder<>(ReturnInst::Create(*C, AsanDtorBB));
1629 }
1630
1631 void AddressSanitizerModule::InstrumentGlobalsCOFF(
1632     IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
1633     ArrayRef<Constant *> MetadataInitializers) {
1634   assert(ExtendedGlobals.size() == MetadataInitializers.size());
1635   auto &DL = M.getDataLayout();
1636
1637   for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
1638     Constant *Initializer = MetadataInitializers[i];
1639     GlobalVariable *G = ExtendedGlobals[i];
1640     GlobalVariable *Metadata =
1641         CreateMetadataGlobal(M, Initializer, G->getName());
1642
1643     // The MSVC linker always inserts padding when linking incrementally. We
1644     // cope with that by aligning each struct to its size, which must be a power
1645     // of two.
1646     unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType());
1647     assert(isPowerOf2_32(SizeOfGlobalStruct) &&
1648            "global metadata will not be padded appropriately");
1649     Metadata->setAlignment(SizeOfGlobalStruct);
1650
1651     SetComdatForGlobalMetadata(G, Metadata);
1652   }
1653 }
1654
1655 void AddressSanitizerModule::InstrumentGlobalsMachO(
1656     IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
1657     ArrayRef<Constant *> MetadataInitializers) {
1658   assert(ExtendedGlobals.size() == MetadataInitializers.size());
1659
1660   // On recent Mach-O platforms, use a structure which binds the liveness of
1661   // the global variable to the metadata struct. Keep the list of "Liveness" GV
1662   // created to be added to llvm.compiler.used
1663   StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy, nullptr);
1664   SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size());
1665
1666   for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
1667     Constant *Initializer = MetadataInitializers[i];
1668     GlobalVariable *G = ExtendedGlobals[i];
1669     GlobalVariable *Metadata =
1670         CreateMetadataGlobal(M, Initializer, G->getName());
1671
1672     // On recent Mach-O platforms, we emit the global metadata in a way that
1673     // allows the linker to properly strip dead globals.
1674     auto LivenessBinder = ConstantStruct::get(
1675         LivenessTy, Initializer->getAggregateElement(0u),
1676         ConstantExpr::getPointerCast(Metadata, IntptrTy), nullptr);
1677     GlobalVariable *Liveness = new GlobalVariable(
1678         M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder,
1679         Twine("__asan_binder_") + G->getName());
1680     Liveness->setSection("__DATA,__asan_liveness,regular,live_support");
1681     LivenessGlobals[i] = Liveness;
1682   }
1683
1684   // Update llvm.compiler.used, adding the new liveness globals. This is
1685   // needed so that during LTO these variables stay alive. The alternative
1686   // would be to have the linker handling the LTO symbols, but libLTO
1687   // current API does not expose access to the section for each symbol.
1688   if (!LivenessGlobals.empty())
1689     appendToCompilerUsed(M, LivenessGlobals);
1690
1691   // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
1692   // to look up the loaded image that contains it. Second, we can store in it
1693   // whether registration has already occurred, to prevent duplicate
1694   // registration.
1695   //
1696   // common linkage ensures that there is only one global per shared library.
1697   GlobalVariable *RegisteredFlag = new GlobalVariable(
1698       M, IntptrTy, false, GlobalVariable::CommonLinkage,
1699       ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
1700   RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);
1701
1702   IRB.CreateCall(AsanRegisterImageGlobals,
1703                  {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
1704
1705   // We also need to unregister globals at the end, e.g., when a shared library
1706   // gets closed.
1707   IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M);
1708   IRB_Dtor.CreateCall(AsanUnregisterImageGlobals,
1709                       {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
1710 }
1711
1712 void AddressSanitizerModule::InstrumentGlobalsWithMetadataArray(
1713     IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
1714     ArrayRef<Constant *> MetadataInitializers) {
1715   assert(ExtendedGlobals.size() == MetadataInitializers.size());
1716   unsigned N = ExtendedGlobals.size();
1717   assert(N > 0);
1718
1719   // On platforms that don't have a custom metadata section, we emit an array
1720   // of global metadata structures.
1721   ArrayType *ArrayOfGlobalStructTy =
1722       ArrayType::get(MetadataInitializers[0]->getType(), N);
1723   auto AllGlobals = new GlobalVariable(
1724       M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage,
1725       ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), "");
1726
1727   IRB.CreateCall(AsanRegisterGlobals,
1728                  {IRB.CreatePointerCast(AllGlobals, IntptrTy),
1729                   ConstantInt::get(IntptrTy, N)});
1730
1731   // We also need to unregister globals at the end, e.g., when a shared library
1732   // gets closed.
1733   IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M);
1734   IRB_Dtor.CreateCall(AsanUnregisterGlobals,
1735                       {IRB.CreatePointerCast(AllGlobals, IntptrTy),
1736                        ConstantInt::get(IntptrTy, N)});
1737 }
1738
1739 // This function replaces all global variables with new variables that have
1740 // trailing redzones. It also creates a function that poisons
1741 // redzones and inserts this function into llvm.global_ctors.
1742 bool AddressSanitizerModule::InstrumentGlobals(IRBuilder<> &IRB, Module &M) {
1743   GlobalsMD.init(M);
1744
1745   SmallVector<GlobalVariable *, 16> GlobalsToChange;
1746
1747   for (auto &G : M.globals()) {
1748     if (ShouldInstrumentGlobal(&G)) GlobalsToChange.push_back(&G);
1749   }
1750
1751   size_t n = GlobalsToChange.size();
1752   if (n == 0) return false;
1753
1754   auto &DL = M.getDataLayout();
1755
1756   // A global is described by a structure
1757   //   size_t beg;
1758   //   size_t size;
1759   //   size_t size_with_redzone;
1760   //   const char *name;
1761   //   const char *module_name;
1762   //   size_t has_dynamic_init;
1763   //   void *source_location;
1764   //   size_t odr_indicator;
1765   // We initialize an array of such structures and pass it to a run-time call.
1766   StructType *GlobalStructTy =
1767       StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy,
1768                       IntptrTy, IntptrTy, IntptrTy, nullptr);
1769   SmallVector<GlobalVariable *, 16> NewGlobals(n);
1770   SmallVector<Constant *, 16> Initializers(n);
1771
1772   bool HasDynamicallyInitializedGlobals = false;
1773
1774   // We shouldn't merge same module names, as this string serves as unique
1775   // module ID in runtime.
1776   GlobalVariable *ModuleName = createPrivateGlobalForString(
1777       M, M.getModuleIdentifier(), /*AllowMerging*/ false);
1778
1779   for (size_t i = 0; i < n; i++) {
1780     static const uint64_t kMaxGlobalRedzone = 1 << 18;
1781     GlobalVariable *G = GlobalsToChange[i];
1782
1783     auto MD = GlobalsMD.get(G);
1784     StringRef NameForGlobal = G->getName();
1785     // Create string holding the global name (use global name from metadata
1786     // if it's available, otherwise just write the name of global variable).
1787     GlobalVariable *Name = createPrivateGlobalForString(
1788         M, MD.Name.empty() ? NameForGlobal : MD.Name,
1789         /*AllowMerging*/ true);
1790
1791     Type *Ty = G->getValueType();
1792     uint64_t SizeInBytes = DL.getTypeAllocSize(Ty);
1793     uint64_t MinRZ = MinRedzoneSizeForGlobal();
1794     // MinRZ <= RZ <= kMaxGlobalRedzone
1795     // and trying to make RZ to be ~ 1/4 of SizeInBytes.
1796     uint64_t RZ = std::max(
1797         MinRZ, std::min(kMaxGlobalRedzone, (SizeInBytes / MinRZ / 4) * MinRZ));
1798     uint64_t RightRedzoneSize = RZ;
1799     // Round up to MinRZ
1800     if (SizeInBytes % MinRZ) RightRedzoneSize += MinRZ - (SizeInBytes % MinRZ);
1801     assert(((RightRedzoneSize + SizeInBytes) % MinRZ) == 0);
1802     Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);
1803
1804     StructType *NewTy = StructType::get(Ty, RightRedZoneTy, nullptr);
1805     Constant *NewInitializer =
1806         ConstantStruct::get(NewTy, G->getInitializer(),
1807                             Constant::getNullValue(RightRedZoneTy), nullptr);
1808
1809     // Create a new global variable with enough space for a redzone.
1810     GlobalValue::LinkageTypes Linkage = G->getLinkage();
1811     if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage)
1812       Linkage = GlobalValue::InternalLinkage;
1813     GlobalVariable *NewGlobal =
1814         new GlobalVariable(M, NewTy, G->isConstant(), Linkage, NewInitializer,
1815                            "", G, G->getThreadLocalMode());
1816     NewGlobal->copyAttributesFrom(G);
1817     NewGlobal->setAlignment(MinRZ);
1818
1819     // Move null-terminated C strings to "__asan_cstring" section on Darwin.
1820     if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() &&
1821         G->isConstant()) {
1822       auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer());
1823       if (Seq && Seq->isCString())
1824         NewGlobal->setSection("__TEXT,__asan_cstring,regular");
1825     }
1826
1827     // Transfer the debug info.  The payload starts at offset zero so we can
1828     // copy the debug info over as is.
1829     SmallVector<DIGlobalVariableExpression *, 1> GVs;
1830     G->getDebugInfo(GVs);
1831     for (auto *GV : GVs)
1832       NewGlobal->addDebugInfo(GV);
1833
1834     Value *Indices2[2];
1835     Indices2[0] = IRB.getInt32(0);
1836     Indices2[1] = IRB.getInt32(0);
1837
1838     G->replaceAllUsesWith(
1839         ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true));
1840     NewGlobal->takeName(G);
1841     G->eraseFromParent();
1842     NewGlobals[i] = NewGlobal;
1843
1844     Constant *SourceLoc;
1845     if (!MD.SourceLoc.empty()) {
1846       auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc);
1847       SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy);
1848     } else {
1849       SourceLoc = ConstantInt::get(IntptrTy, 0);
1850     }
1851
1852     Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy());
1853     GlobalValue *InstrumentedGlobal = NewGlobal;
1854
1855     bool CanUsePrivateAliases =
1856         TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO();
1857     if (CanUsePrivateAliases && ClUsePrivateAliasForGlobals) {
1858       // Create local alias for NewGlobal to avoid crash on ODR between
1859       // instrumented and non-instrumented libraries.
1860       auto *GA = GlobalAlias::create(GlobalValue::InternalLinkage,
1861                                      NameForGlobal + M.getName(), NewGlobal);
1862
1863       // With local aliases, we need to provide another externally visible
1864       // symbol __odr_asan_XXX to detect ODR violation.
1865       auto *ODRIndicatorSym =
1866           new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage,
1867                              Constant::getNullValue(IRB.getInt8Ty()),
1868                              kODRGenPrefix + NameForGlobal, nullptr,
1869                              NewGlobal->getThreadLocalMode());
1870
1871       // Set meaningful attributes for indicator symbol.
1872       ODRIndicatorSym->setVisibility(NewGlobal->getVisibility());
1873       ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass());
1874       ODRIndicatorSym->setAlignment(1);
1875       ODRIndicator = ODRIndicatorSym;
1876       InstrumentedGlobal = GA;
1877     }
1878
1879     Constant *Initializer = ConstantStruct::get(
1880         GlobalStructTy,
1881         ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy),
1882         ConstantInt::get(IntptrTy, SizeInBytes),
1883         ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize),
1884         ConstantExpr::getPointerCast(Name, IntptrTy),
1885         ConstantExpr::getPointerCast(ModuleName, IntptrTy),
1886         ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc,
1887         ConstantExpr::getPointerCast(ODRIndicator, IntptrTy), nullptr);
1888
1889     if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true;
1890
1891     DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n");
1892
1893     Initializers[i] = Initializer;
1894   }
1895
1896   if (TargetTriple.isOSBinFormatCOFF()) {
1897     InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers);
1898   } else if (ShouldUseMachOGlobalsSection()) {
1899     InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers);
1900   } else {
1901     InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers);
1902   }
1903
1904   // Create calls for poisoning before initializers run and unpoisoning after.
1905   if (HasDynamicallyInitializedGlobals)
1906     createInitializerPoisonCalls(M, ModuleName);
1907
1908   DEBUG(dbgs() << M);
1909   return true;
1910 }
1911
1912 bool AddressSanitizerModule::runOnModule(Module &M) {
1913   C = &(M.getContext());
1914   int LongSize = M.getDataLayout().getPointerSizeInBits();
1915   IntptrTy = Type::getIntNTy(*C, LongSize);
1916   TargetTriple = Triple(M.getTargetTriple());
1917   Mapping = getShadowMapping(TargetTriple, LongSize, CompileKernel);
1918   initializeCallbacks(M);
1919
1920   bool Changed = false;
1921
1922   // TODO(glider): temporarily disabled globals instrumentation for KASan.
1923   if (ClGlobals && !CompileKernel) {
1924     Function *CtorFunc = M.getFunction(kAsanModuleCtorName);
1925     assert(CtorFunc);
1926     IRBuilder<> IRB(CtorFunc->getEntryBlock().getTerminator());
1927     Changed |= InstrumentGlobals(IRB, M);
1928   }
1929
1930   return Changed;
1931 }
1932
1933 void AddressSanitizer::initializeCallbacks(Module &M) {
1934   IRBuilder<> IRB(*C);
1935   // Create __asan_report* callbacks.
1936   // IsWrite, TypeSize and Exp are encoded in the function name.
1937   for (int Exp = 0; Exp < 2; Exp++) {
1938     for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
1939       const std::string TypeStr = AccessIsWrite ? "store" : "load";
1940       const std::string ExpStr = Exp ? "exp_" : "";
1941       const std::string SuffixStr = CompileKernel ? "N" : "_n";
1942       const std::string EndingStr = Recover ? "_noabort" : "";
1943       Type *ExpType = Exp ? Type::getInt32Ty(*C) : nullptr;
1944       AsanErrorCallbackSized[AccessIsWrite][Exp] =
1945           checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1946               kAsanReportErrorTemplate + ExpStr + TypeStr + SuffixStr + EndingStr,
1947               IRB.getVoidTy(), IntptrTy, IntptrTy, ExpType, nullptr));
1948       AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] =
1949           checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1950               ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr,
1951               IRB.getVoidTy(), IntptrTy, IntptrTy, ExpType, nullptr));
1952       for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
1953            AccessSizeIndex++) {
1954         const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex);
1955         AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] =
1956             checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1957                 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr,
1958                 IRB.getVoidTy(), IntptrTy, ExpType, nullptr));
1959         AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] =
1960             checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1961                 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr,
1962                 IRB.getVoidTy(), IntptrTy, ExpType, nullptr));
1963       }
1964     }
1965   }
1966
1967   const std::string MemIntrinCallbackPrefix =
1968       CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix;
1969   AsanMemmove = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1970       MemIntrinCallbackPrefix + "memmove", IRB.getInt8PtrTy(),
1971       IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy, nullptr));
1972   AsanMemcpy = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1973       MemIntrinCallbackPrefix + "memcpy", IRB.getInt8PtrTy(),
1974       IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy, nullptr));
1975   AsanMemset = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1976       MemIntrinCallbackPrefix + "memset", IRB.getInt8PtrTy(),
1977       IRB.getInt8PtrTy(), IRB.getInt32Ty(), IntptrTy, nullptr));
1978
1979   AsanHandleNoReturnFunc = checkSanitizerInterfaceFunction(
1980       M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy(), nullptr));
1981
1982   AsanPtrCmpFunction = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1983       kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
1984   AsanPtrSubFunction = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1985       kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
1986   // We insert an empty inline asm after __asan_report* to avoid callback merge.
1987   EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
1988                             StringRef(""), StringRef(""),
1989                             /*hasSideEffects=*/true);
1990 }
1991
1992 // virtual
1993 bool AddressSanitizer::doInitialization(Module &M) {
1994   // Initialize the private fields. No one has accessed them before.
1995
1996   GlobalsMD.init(M);
1997
1998   C = &(M.getContext());
1999   LongSize = M.getDataLayout().getPointerSizeInBits();
2000   IntptrTy = Type::getIntNTy(*C, LongSize);
2001   TargetTriple = Triple(M.getTargetTriple());
2002
2003   if (!CompileKernel) {
2004     std::tie(AsanCtorFunction, AsanInitFunction) =
2005         createSanitizerCtorAndInitFunctions(
2006             M, kAsanModuleCtorName, kAsanInitName,
2007             /*InitArgTypes=*/{}, /*InitArgs=*/{}, kAsanVersionCheckName);
2008     appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndDtorPriority);
2009   }
2010   Mapping = getShadowMapping(TargetTriple, LongSize, CompileKernel);
2011   return true;
2012 }
2013
2014 bool AddressSanitizer::doFinalization(Module &M) {
2015   GlobalsMD.reset();
2016   return false;
2017 }
2018
2019 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) {
2020   // For each NSObject descendant having a +load method, this method is invoked
2021   // by the ObjC runtime before any of the static constructors is called.
2022   // Therefore we need to instrument such methods with a call to __asan_init
2023   // at the beginning in order to initialize our runtime before any access to
2024   // the shadow memory.
2025   // We cannot just ignore these methods, because they may call other
2026   // instrumented functions.
2027   if (F.getName().find(" load]") != std::string::npos) {
2028     IRBuilder<> IRB(&F.front(), F.front().begin());
2029     IRB.CreateCall(AsanInitFunction, {});
2030     return true;
2031   }
2032   return false;
2033 }
2034
2035 void AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) {
2036   // Generate code only when dynamic addressing is needed.
2037   if (Mapping.Offset != kDynamicShadowSentinel)
2038     return;
2039
2040   IRBuilder<> IRB(&F.front().front());
2041   Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal(
2042       kAsanShadowMemoryDynamicAddress, IntptrTy);
2043   LocalDynamicShadow = IRB.CreateLoad(GlobalDynamicAddress);
2044 }
2045
2046 void AddressSanitizer::markEscapedLocalAllocas(Function &F) {
2047   // Find the one possible call to llvm.localescape and pre-mark allocas passed
2048   // to it as uninteresting. This assumes we haven't started processing allocas
2049   // yet. This check is done up front because iterating the use list in
2050   // isInterestingAlloca would be algorithmically slower.
2051   assert(ProcessedAllocas.empty() && "must process localescape before allocas");
2052
2053   // Try to get the declaration of llvm.localescape. If it's not in the module,
2054   // we can exit early.
2055   if (!F.getParent()->getFunction("llvm.localescape")) return;
2056
2057   // Look for a call to llvm.localescape call in the entry block. It can't be in
2058   // any other block.
2059   for (Instruction &I : F.getEntryBlock()) {
2060     IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
2061     if (II && II->getIntrinsicID() == Intrinsic::localescape) {
2062       // We found a call. Mark all the allocas passed in as uninteresting.
2063       for (Value *Arg : II->arg_operands()) {
2064         AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
2065         assert(AI && AI->isStaticAlloca() &&
2066                "non-static alloca arg to localescape");
2067         ProcessedAllocas[AI] = false;
2068       }
2069       break;
2070     }
2071   }
2072 }
2073
2074 bool AddressSanitizer::runOnFunction(Function &F) {
2075   if (&F == AsanCtorFunction) return false;
2076   if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false;
2077   if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false;
2078   if (F.getName().startswith("__asan_")) return false;
2079
2080   bool FunctionModified = false;
2081
2082   // If needed, insert __asan_init before checking for SanitizeAddress attr.
2083   // This function needs to be called even if the function body is not
2084   // instrumented.  
2085   if (maybeInsertAsanInitAtFunctionEntry(F))
2086     FunctionModified = true;
2087   
2088   // Leave if the function doesn't need instrumentation.
2089   if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified;
2090
2091   DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n");
2092
2093   initializeCallbacks(*F.getParent());
2094   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2095
2096   FunctionStateRAII CleanupObj(this);
2097
2098   maybeInsertDynamicShadowAtFunctionEntry(F);
2099
2100   // We can't instrument allocas used with llvm.localescape. Only static allocas
2101   // can be passed to that intrinsic.
2102   markEscapedLocalAllocas(F);
2103
2104   // We want to instrument every address only once per basic block (unless there
2105   // are calls between uses).
2106   SmallSet<Value *, 16> TempsToInstrument;
2107   SmallVector<Instruction *, 16> ToInstrument;
2108   SmallVector<Instruction *, 8> NoReturnCalls;
2109   SmallVector<BasicBlock *, 16> AllBlocks;
2110   SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts;
2111   int NumAllocas = 0;
2112   bool IsWrite;
2113   unsigned Alignment;
2114   uint64_t TypeSize;
2115   const TargetLibraryInfo *TLI =
2116       &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
2117
2118   // Fill the set of memory operations to instrument.
2119   for (auto &BB : F) {
2120     AllBlocks.push_back(&BB);
2121     TempsToInstrument.clear();
2122     int NumInsnsPerBB = 0;
2123     for (auto &Inst : BB) {
2124       if (LooksLikeCodeInBug11395(&Inst)) return false;
2125       Value *MaybeMask = nullptr;
2126       if (Value *Addr = isInterestingMemoryAccess(&Inst, &IsWrite, &TypeSize,
2127                                                   &Alignment, &MaybeMask)) {
2128         if (ClOpt && ClOptSameTemp) {
2129           // If we have a mask, skip instrumentation if we've already
2130           // instrumented the full object. But don't add to TempsToInstrument
2131           // because we might get another load/store with a different mask.
2132           if (MaybeMask) {
2133             if (TempsToInstrument.count(Addr))
2134               continue; // We've seen this (whole) temp in the current BB.
2135           } else {
2136             if (!TempsToInstrument.insert(Addr).second)
2137               continue; // We've seen this temp in the current BB.
2138           }
2139         }
2140       } else if (ClInvalidPointerPairs &&
2141                  isInterestingPointerComparisonOrSubtraction(&Inst)) {
2142         PointerComparisonsOrSubtracts.push_back(&Inst);
2143         continue;
2144       } else if (isa<MemIntrinsic>(Inst)) {
2145         // ok, take it.
2146       } else {
2147         if (isa<AllocaInst>(Inst)) NumAllocas++;
2148         CallSite CS(&Inst);
2149         if (CS) {
2150           // A call inside BB.
2151           TempsToInstrument.clear();
2152           if (CS.doesNotReturn()) NoReturnCalls.push_back(CS.getInstruction());
2153         }
2154         if (CallInst *CI = dyn_cast<CallInst>(&Inst))
2155           maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI);
2156         continue;
2157       }
2158       ToInstrument.push_back(&Inst);
2159       NumInsnsPerBB++;
2160       if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break;
2161     }
2162   }
2163
2164   bool UseCalls =
2165       CompileKernel ||
2166       (ClInstrumentationWithCallsThreshold >= 0 &&
2167        ToInstrument.size() > (unsigned)ClInstrumentationWithCallsThreshold);
2168   const DataLayout &DL = F.getParent()->getDataLayout();
2169   ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(),
2170                                      /*RoundToAlign=*/true);
2171
2172   // Instrument.
2173   int NumInstrumented = 0;
2174   for (auto Inst : ToInstrument) {
2175     if (ClDebugMin < 0 || ClDebugMax < 0 ||
2176         (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) {
2177       if (isInterestingMemoryAccess(Inst, &IsWrite, &TypeSize, &Alignment))
2178         instrumentMop(ObjSizeVis, Inst, UseCalls,
2179                       F.getParent()->getDataLayout());
2180       else
2181         instrumentMemIntrinsic(cast<MemIntrinsic>(Inst));
2182     }
2183     NumInstrumented++;
2184   }
2185
2186   FunctionStackPoisoner FSP(F, *this);
2187   bool ChangedStack = FSP.runOnFunction();
2188
2189   // We must unpoison the stack before every NoReturn call (throw, _exit, etc).
2190   // See e.g. http://code.google.com/p/address-sanitizer/issues/detail?id=37
2191   for (auto CI : NoReturnCalls) {
2192     IRBuilder<> IRB(CI);
2193     IRB.CreateCall(AsanHandleNoReturnFunc, {});
2194   }
2195
2196   for (auto Inst : PointerComparisonsOrSubtracts) {
2197     instrumentPointerComparisonOrSubtraction(Inst);
2198     NumInstrumented++;
2199   }
2200
2201   if (NumInstrumented > 0 || ChangedStack || !NoReturnCalls.empty())
2202     FunctionModified = true;
2203
2204   DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " "
2205                << F << "\n");
2206
2207   return FunctionModified;
2208 }
2209
2210 // Workaround for bug 11395: we don't want to instrument stack in functions
2211 // with large assembly blobs (32-bit only), otherwise reg alloc may crash.
2212 // FIXME: remove once the bug 11395 is fixed.
2213 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
2214   if (LongSize != 32) return false;
2215   CallInst *CI = dyn_cast<CallInst>(I);
2216   if (!CI || !CI->isInlineAsm()) return false;
2217   if (CI->getNumArgOperands() <= 5) return false;
2218   // We have inline assembly with quite a few arguments.
2219   return true;
2220 }
2221
2222 void FunctionStackPoisoner::initializeCallbacks(Module &M) {
2223   IRBuilder<> IRB(*C);
2224   for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) {
2225     std::string Suffix = itostr(i);
2226     AsanStackMallocFunc[i] = checkSanitizerInterfaceFunction(
2227         M.getOrInsertFunction(kAsanStackMallocNameTemplate + Suffix, IntptrTy,
2228                               IntptrTy, nullptr));
2229     AsanStackFreeFunc[i] = checkSanitizerInterfaceFunction(
2230         M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix,
2231                               IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
2232   }
2233   if (ASan.UseAfterScope) {
2234     AsanPoisonStackMemoryFunc = checkSanitizerInterfaceFunction(
2235         M.getOrInsertFunction(kAsanPoisonStackMemoryName, IRB.getVoidTy(),
2236                               IntptrTy, IntptrTy, nullptr));
2237     AsanUnpoisonStackMemoryFunc = checkSanitizerInterfaceFunction(
2238         M.getOrInsertFunction(kAsanUnpoisonStackMemoryName, IRB.getVoidTy(),
2239                               IntptrTy, IntptrTy, nullptr));
2240   }
2241
2242   for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) {
2243     std::ostringstream Name;
2244     Name << kAsanSetShadowPrefix;
2245     Name << std::setw(2) << std::setfill('0') << std::hex << Val;
2246     AsanSetShadowFunc[Val] =
2247         checkSanitizerInterfaceFunction(M.getOrInsertFunction(
2248             Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
2249   }
2250
2251   AsanAllocaPoisonFunc = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
2252       kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
2253   AsanAllocasUnpoisonFunc =
2254       checkSanitizerInterfaceFunction(M.getOrInsertFunction(
2255           kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
2256 }
2257
2258 void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
2259                                                ArrayRef<uint8_t> ShadowBytes,
2260                                                size_t Begin, size_t End,
2261                                                IRBuilder<> &IRB,
2262                                                Value *ShadowBase) {
2263   if (Begin >= End)
2264     return;
2265
2266   const size_t LargestStoreSizeInBytes =
2267       std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8);
2268
2269   const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian();
2270
2271   // Poison given range in shadow using larges store size with out leading and
2272   // trailing zeros in ShadowMask. Zeros never change, so they need neither
2273   // poisoning nor up-poisoning. Still we don't mind if some of them get into a
2274   // middle of a store.
2275   for (size_t i = Begin; i < End;) {
2276     if (!ShadowMask[i]) {
2277       assert(!ShadowBytes[i]);
2278       ++i;
2279       continue;
2280     }
2281
2282     size_t StoreSizeInBytes = LargestStoreSizeInBytes;
2283     // Fit store size into the range.
2284     while (StoreSizeInBytes > End - i)
2285       StoreSizeInBytes /= 2;
2286
2287     // Minimize store size by trimming trailing zeros.
2288     for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) {
2289       while (j <= StoreSizeInBytes / 2)
2290         StoreSizeInBytes /= 2;
2291     }
2292
2293     uint64_t Val = 0;
2294     for (size_t j = 0; j < StoreSizeInBytes; j++) {
2295       if (IsLittleEndian)
2296         Val |= (uint64_t)ShadowBytes[i + j] << (8 * j);
2297       else
2298         Val = (Val << 8) | ShadowBytes[i + j];
2299     }
2300
2301     Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i));
2302     Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val);
2303     IRB.CreateAlignedStore(
2304         Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()), 1);
2305
2306     i += StoreSizeInBytes;
2307   }
2308 }
2309
2310 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
2311                                          ArrayRef<uint8_t> ShadowBytes,
2312                                          IRBuilder<> &IRB, Value *ShadowBase) {
2313   copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase);
2314 }
2315
2316 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
2317                                          ArrayRef<uint8_t> ShadowBytes,
2318                                          size_t Begin, size_t End,
2319                                          IRBuilder<> &IRB, Value *ShadowBase) {
2320   assert(ShadowMask.size() == ShadowBytes.size());
2321   size_t Done = Begin;
2322   for (size_t i = Begin, j = Begin + 1; i < End; i = j++) {
2323     if (!ShadowMask[i]) {
2324       assert(!ShadowBytes[i]);
2325       continue;
2326     }
2327     uint8_t Val = ShadowBytes[i];
2328     if (!AsanSetShadowFunc[Val])
2329       continue;
2330
2331     // Skip same values.
2332     for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) {
2333     }
2334
2335     if (j - i >= ClMaxInlinePoisoningSize) {
2336       copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase);
2337       IRB.CreateCall(AsanSetShadowFunc[Val],
2338                      {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)),
2339                       ConstantInt::get(IntptrTy, j - i)});
2340       Done = j;
2341     }
2342   }
2343
2344   copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase);
2345 }
2346
2347 // Fake stack allocator (asan_fake_stack.h) has 11 size classes
2348 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass
2349 static int StackMallocSizeClass(uint64_t LocalStackSize) {
2350   assert(LocalStackSize <= kMaxStackMallocSize);
2351   uint64_t MaxSize = kMinStackMallocSize;
2352   for (int i = 0;; i++, MaxSize *= 2)
2353     if (LocalStackSize <= MaxSize) return i;
2354   llvm_unreachable("impossible LocalStackSize");
2355 }
2356
2357 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond,
2358                                           Value *ValueIfTrue,
2359                                           Instruction *ThenTerm,
2360                                           Value *ValueIfFalse) {
2361   PHINode *PHI = IRB.CreatePHI(IntptrTy, 2);
2362   BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent();
2363   PHI->addIncoming(ValueIfFalse, CondBlock);
2364   BasicBlock *ThenBlock = ThenTerm->getParent();
2365   PHI->addIncoming(ValueIfTrue, ThenBlock);
2366   return PHI;
2367 }
2368
2369 Value *FunctionStackPoisoner::createAllocaForLayout(
2370     IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) {
2371   AllocaInst *Alloca;
2372   if (Dynamic) {
2373     Alloca = IRB.CreateAlloca(IRB.getInt8Ty(),
2374                               ConstantInt::get(IRB.getInt64Ty(), L.FrameSize),
2375                               "MyAlloca");
2376   } else {
2377     Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize),
2378                               nullptr, "MyAlloca");
2379     assert(Alloca->isStaticAlloca());
2380   }
2381   assert((ClRealignStack & (ClRealignStack - 1)) == 0);
2382   size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack);
2383   Alloca->setAlignment(FrameAlignment);
2384   return IRB.CreatePointerCast(Alloca, IntptrTy);
2385 }
2386
2387 void FunctionStackPoisoner::createDynamicAllocasInitStorage() {
2388   BasicBlock &FirstBB = *F.begin();
2389   IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin()));
2390   DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr);
2391   IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout);
2392   DynamicAllocaLayout->setAlignment(32);
2393 }
2394
2395 void FunctionStackPoisoner::processDynamicAllocas() {
2396   if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) {
2397     assert(DynamicAllocaPoisonCallVec.empty());
2398     return;
2399   }
2400
2401   // Insert poison calls for lifetime intrinsics for dynamic allocas.
2402   for (const auto &APC : DynamicAllocaPoisonCallVec) {
2403     assert(APC.InsBefore);
2404     assert(APC.AI);
2405     assert(ASan.isInterestingAlloca(*APC.AI));
2406     assert(!APC.AI->isStaticAlloca());
2407
2408     IRBuilder<> IRB(APC.InsBefore);
2409     poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison);
2410     // Dynamic allocas will be unpoisoned unconditionally below in
2411     // unpoisonDynamicAllocas.
2412     // Flag that we need unpoison static allocas.
2413   }
2414
2415   // Handle dynamic allocas.
2416   createDynamicAllocasInitStorage();
2417   for (auto &AI : DynamicAllocaVec)
2418     handleDynamicAllocaCall(AI);
2419   unpoisonDynamicAllocas();
2420 }
2421
2422 void FunctionStackPoisoner::processStaticAllocas() {
2423   if (AllocaVec.empty()) {
2424     assert(StaticAllocaPoisonCallVec.empty());
2425     return;
2426   }
2427
2428   int StackMallocIdx = -1;
2429   DebugLoc EntryDebugLocation;
2430   if (auto SP = F.getSubprogram())
2431     EntryDebugLocation = DebugLoc::get(SP->getScopeLine(), 0, SP);
2432
2433   Instruction *InsBefore = AllocaVec[0];
2434   IRBuilder<> IRB(InsBefore);
2435   IRB.SetCurrentDebugLocation(EntryDebugLocation);
2436
2437   // Make sure non-instrumented allocas stay in the entry block. Otherwise,
2438   // debug info is broken, because only entry-block allocas are treated as
2439   // regular stack slots.
2440   auto InsBeforeB = InsBefore->getParent();
2441   assert(InsBeforeB == &F.getEntryBlock());
2442   for (auto *AI : StaticAllocasToMoveUp)
2443     if (AI->getParent() == InsBeforeB)
2444       AI->moveBefore(InsBefore);
2445
2446   // If we have a call to llvm.localescape, keep it in the entry block.
2447   if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore);
2448
2449   SmallVector<ASanStackVariableDescription, 16> SVD;
2450   SVD.reserve(AllocaVec.size());
2451   for (AllocaInst *AI : AllocaVec) {
2452     ASanStackVariableDescription D = {AI->getName().data(),
2453                                       ASan.getAllocaSizeInBytes(*AI),
2454                                       0,
2455                                       AI->getAlignment(),
2456                                       AI,
2457                                       0,
2458                                       0};
2459     SVD.push_back(D);
2460   }
2461
2462   // Minimal header size (left redzone) is 4 pointers,
2463   // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms.
2464   size_t MinHeaderSize = ASan.LongSize / 2;
2465   const ASanStackFrameLayout &L =
2466       ComputeASanStackFrameLayout(SVD, 1ULL << Mapping.Scale, MinHeaderSize);
2467
2468   // Build AllocaToSVDMap for ASanStackVariableDescription lookup.
2469   DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap;
2470   for (auto &Desc : SVD)
2471     AllocaToSVDMap[Desc.AI] = &Desc;
2472
2473   // Update SVD with information from lifetime intrinsics.
2474   for (const auto &APC : StaticAllocaPoisonCallVec) {
2475     assert(APC.InsBefore);
2476     assert(APC.AI);
2477     assert(ASan.isInterestingAlloca(*APC.AI));
2478     assert(APC.AI->isStaticAlloca());
2479
2480     ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
2481     Desc.LifetimeSize = Desc.Size;
2482     if (const DILocation *FnLoc = EntryDebugLocation.get()) {
2483       if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) {
2484         if (LifetimeLoc->getFile() == FnLoc->getFile())
2485           if (unsigned Line = LifetimeLoc->getLine())
2486             Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line);
2487       }
2488     }
2489   }
2490
2491   auto DescriptionString = ComputeASanStackFrameDescription(SVD);
2492   DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n");
2493   uint64_t LocalStackSize = L.FrameSize;
2494   bool DoStackMalloc = ClUseAfterReturn && !ASan.CompileKernel &&
2495                        LocalStackSize <= kMaxStackMallocSize;
2496   bool DoDynamicAlloca = ClDynamicAllocaStack;
2497   // Don't do dynamic alloca or stack malloc if:
2498   // 1) There is inline asm: too often it makes assumptions on which registers
2499   //    are available.
2500   // 2) There is a returns_twice call (typically setjmp), which is
2501   //    optimization-hostile, and doesn't play well with introduced indirect
2502   //    register-relative calculation of local variable addresses.
2503   DoDynamicAlloca &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall;
2504   DoStackMalloc &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall;
2505
2506   Value *StaticAlloca =
2507       DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false);
2508
2509   Value *FakeStack;
2510   Value *LocalStackBase;
2511
2512   if (DoStackMalloc) {
2513     // void *FakeStack = __asan_option_detect_stack_use_after_return
2514     //     ? __asan_stack_malloc_N(LocalStackSize)
2515     //     : nullptr;
2516     // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize);
2517     Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal(
2518         kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty());
2519     Value *UseAfterReturnIsEnabled =
2520         IRB.CreateICmpNE(IRB.CreateLoad(OptionDetectUseAfterReturn),
2521                          Constant::getNullValue(IRB.getInt32Ty()));
2522     Instruction *Term =
2523         SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false);
2524     IRBuilder<> IRBIf(Term);
2525     IRBIf.SetCurrentDebugLocation(EntryDebugLocation);
2526     StackMallocIdx = StackMallocSizeClass(LocalStackSize);
2527     assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass);
2528     Value *FakeStackValue =
2529         IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx],
2530                          ConstantInt::get(IntptrTy, LocalStackSize));
2531     IRB.SetInsertPoint(InsBefore);
2532     IRB.SetCurrentDebugLocation(EntryDebugLocation);
2533     FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term,
2534                           ConstantInt::get(IntptrTy, 0));
2535
2536     Value *NoFakeStack =
2537         IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy));
2538     Term = SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false);
2539     IRBIf.SetInsertPoint(Term);
2540     IRBIf.SetCurrentDebugLocation(EntryDebugLocation);
2541     Value *AllocaValue =
2542         DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca;
2543     IRB.SetInsertPoint(InsBefore);
2544     IRB.SetCurrentDebugLocation(EntryDebugLocation);
2545     LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack);
2546   } else {
2547     // void *FakeStack = nullptr;
2548     // void *LocalStackBase = alloca(LocalStackSize);
2549     FakeStack = ConstantInt::get(IntptrTy, 0);
2550     LocalStackBase =
2551         DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca;
2552   }
2553
2554   // Replace Alloca instructions with base+offset.
2555   for (const auto &Desc : SVD) {
2556     AllocaInst *AI = Desc.AI;
2557     Value *NewAllocaPtr = IRB.CreateIntToPtr(
2558         IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)),
2559         AI->getType());
2560     replaceDbgDeclareForAlloca(AI, NewAllocaPtr, DIB, /*Deref=*/true);
2561     AI->replaceAllUsesWith(NewAllocaPtr);
2562   }
2563
2564   // The left-most redzone has enough space for at least 4 pointers.
2565   // Write the Magic value to redzone[0].
2566   Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy);
2567   IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic),
2568                   BasePlus0);
2569   // Write the frame description constant to redzone[1].
2570   Value *BasePlus1 = IRB.CreateIntToPtr(
2571       IRB.CreateAdd(LocalStackBase,
2572                     ConstantInt::get(IntptrTy, ASan.LongSize / 8)),
2573       IntptrPtrTy);
2574   GlobalVariable *StackDescriptionGlobal =
2575       createPrivateGlobalForString(*F.getParent(), DescriptionString,
2576                                    /*AllowMerging*/ true);
2577   Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy);
2578   IRB.CreateStore(Description, BasePlus1);
2579   // Write the PC to redzone[2].
2580   Value *BasePlus2 = IRB.CreateIntToPtr(
2581       IRB.CreateAdd(LocalStackBase,
2582                     ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)),
2583       IntptrPtrTy);
2584   IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2);
2585
2586   const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L);
2587
2588   // Poison the stack red zones at the entry.
2589   Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB);
2590   // As mask we must use most poisoned case: red zones and after scope.
2591   // As bytes we can use either the same or just red zones only.
2592   copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase);
2593
2594   if (!StaticAllocaPoisonCallVec.empty()) {
2595     const auto &ShadowInScope = GetShadowBytes(SVD, L);
2596
2597     // Poison static allocas near lifetime intrinsics.
2598     for (const auto &APC : StaticAllocaPoisonCallVec) {
2599       const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
2600       assert(Desc.Offset % L.Granularity == 0);
2601       size_t Begin = Desc.Offset / L.Granularity;
2602       size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity;
2603
2604       IRBuilder<> IRB(APC.InsBefore);
2605       copyToShadow(ShadowAfterScope,
2606                    APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End,
2607                    IRB, ShadowBase);
2608     }
2609   }
2610
2611   SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0);
2612   SmallVector<uint8_t, 64> ShadowAfterReturn;
2613
2614   // (Un)poison the stack before all ret instructions.
2615   for (auto Ret : RetVec) {
2616     IRBuilder<> IRBRet(Ret);
2617     // Mark the current frame as retired.
2618     IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic),
2619                        BasePlus0);
2620     if (DoStackMalloc) {
2621       assert(StackMallocIdx >= 0);
2622       // if FakeStack != 0  // LocalStackBase == FakeStack
2623       //     // In use-after-return mode, poison the whole stack frame.
2624       //     if StackMallocIdx <= 4
2625       //         // For small sizes inline the whole thing:
2626       //         memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize);
2627       //         **SavedFlagPtr(FakeStack) = 0
2628       //     else
2629       //         __asan_stack_free_N(FakeStack, LocalStackSize)
2630       // else
2631       //     <This is not a fake stack; unpoison the redzones>
2632       Value *Cmp =
2633           IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy));
2634       TerminatorInst *ThenTerm, *ElseTerm;
2635       SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm);
2636
2637       IRBuilder<> IRBPoison(ThenTerm);
2638       if (StackMallocIdx <= 4) {
2639         int ClassSize = kMinStackMallocSize << StackMallocIdx;
2640         ShadowAfterReturn.resize(ClassSize / L.Granularity,
2641                                  kAsanStackUseAfterReturnMagic);
2642         copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison,
2643                      ShadowBase);
2644         Value *SavedFlagPtrPtr = IRBPoison.CreateAdd(
2645             FakeStack,
2646             ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8));
2647         Value *SavedFlagPtr = IRBPoison.CreateLoad(
2648             IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy));
2649         IRBPoison.CreateStore(
2650             Constant::getNullValue(IRBPoison.getInt8Ty()),
2651             IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy()));
2652       } else {
2653         // For larger frames call __asan_stack_free_*.
2654         IRBPoison.CreateCall(
2655             AsanStackFreeFunc[StackMallocIdx],
2656             {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)});
2657       }
2658
2659       IRBuilder<> IRBElse(ElseTerm);
2660       copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase);
2661     } else {
2662       copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase);
2663     }
2664   }
2665
2666   // We are done. Remove the old unused alloca instructions.
2667   for (auto AI : AllocaVec) AI->eraseFromParent();
2668 }
2669
2670 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size,
2671                                          IRBuilder<> &IRB, bool DoPoison) {
2672   // For now just insert the call to ASan runtime.
2673   Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy);
2674   Value *SizeArg = ConstantInt::get(IntptrTy, Size);
2675   IRB.CreateCall(
2676       DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc,
2677       {AddrArg, SizeArg});
2678 }
2679
2680 // Handling llvm.lifetime intrinsics for a given %alloca:
2681 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca.
2682 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect
2683 //     invalid accesses) and unpoison it for llvm.lifetime.start (the memory
2684 //     could be poisoned by previous llvm.lifetime.end instruction, as the
2685 //     variable may go in and out of scope several times, e.g. in loops).
2686 // (3) if we poisoned at least one %alloca in a function,
2687 //     unpoison the whole stack frame at function exit.
2688
2689 AllocaInst *FunctionStackPoisoner::findAllocaForValue(Value *V) {
2690   if (AllocaInst *AI = dyn_cast<AllocaInst>(V))
2691     // We're interested only in allocas we can handle.
2692     return ASan.isInterestingAlloca(*AI) ? AI : nullptr;
2693   // See if we've already calculated (or started to calculate) alloca for a
2694   // given value.
2695   AllocaForValueMapTy::iterator I = AllocaForValue.find(V);
2696   if (I != AllocaForValue.end()) return I->second;
2697   // Store 0 while we're calculating alloca for value V to avoid
2698   // infinite recursion if the value references itself.
2699   AllocaForValue[V] = nullptr;
2700   AllocaInst *Res = nullptr;
2701   if (CastInst *CI = dyn_cast<CastInst>(V))
2702     Res = findAllocaForValue(CI->getOperand(0));
2703   else if (PHINode *PN = dyn_cast<PHINode>(V)) {
2704     for (Value *IncValue : PN->incoming_values()) {
2705       // Allow self-referencing phi-nodes.
2706       if (IncValue == PN) continue;
2707       AllocaInst *IncValueAI = findAllocaForValue(IncValue);
2708       // AI for incoming values should exist and should all be equal.
2709       if (IncValueAI == nullptr || (Res != nullptr && IncValueAI != Res))
2710         return nullptr;
2711       Res = IncValueAI;
2712     }
2713   } else if (GetElementPtrInst *EP = dyn_cast<GetElementPtrInst>(V)) {
2714     Res = findAllocaForValue(EP->getPointerOperand());
2715   } else {
2716     DEBUG(dbgs() << "Alloca search canceled on unknown instruction: " << *V << "\n");
2717   }
2718   if (Res) AllocaForValue[V] = Res;
2719   return Res;
2720 }
2721
2722 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) {
2723   IRBuilder<> IRB(AI);
2724
2725   const unsigned Align = std::max(kAllocaRzSize, AI->getAlignment());
2726   const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1;
2727
2728   Value *Zero = Constant::getNullValue(IntptrTy);
2729   Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize);
2730   Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask);
2731
2732   // Since we need to extend alloca with additional memory to locate
2733   // redzones, and OldSize is number of allocated blocks with
2734   // ElementSize size, get allocated memory size in bytes by
2735   // OldSize * ElementSize.
2736   const unsigned ElementSize =
2737       F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType());
2738   Value *OldSize =
2739       IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false),
2740                     ConstantInt::get(IntptrTy, ElementSize));
2741
2742   // PartialSize = OldSize % 32
2743   Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask);
2744
2745   // Misalign = kAllocaRzSize - PartialSize;
2746   Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize);
2747
2748   // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0;
2749   Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize);
2750   Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero);
2751
2752   // AdditionalChunkSize = Align + PartialPadding + kAllocaRzSize
2753   // Align is added to locate left redzone, PartialPadding for possible
2754   // partial redzone and kAllocaRzSize for right redzone respectively.
2755   Value *AdditionalChunkSize = IRB.CreateAdd(
2756       ConstantInt::get(IntptrTy, Align + kAllocaRzSize), PartialPadding);
2757
2758   Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize);
2759
2760   // Insert new alloca with new NewSize and Align params.
2761   AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize);
2762   NewAlloca->setAlignment(Align);
2763
2764   // NewAddress = Address + Align
2765   Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy),
2766                                     ConstantInt::get(IntptrTy, Align));
2767
2768   // Insert __asan_alloca_poison call for new created alloca.
2769   IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize});
2770
2771   // Store the last alloca's address to DynamicAllocaLayout. We'll need this
2772   // for unpoisoning stuff.
2773   IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout);
2774
2775   Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType());
2776
2777   // Replace all uses of AddessReturnedByAlloca with NewAddressPtr.
2778   AI->replaceAllUsesWith(NewAddressPtr);
2779
2780   // We are done. Erase old alloca from parent.
2781   AI->eraseFromParent();
2782 }
2783
2784 // isSafeAccess returns true if Addr is always inbounds with respect to its
2785 // base object. For example, it is a field access or an array access with
2786 // constant inbounds index.
2787 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis,
2788                                     Value *Addr, uint64_t TypeSize) const {
2789   SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr);
2790   if (!ObjSizeVis.bothKnown(SizeOffset)) return false;
2791   uint64_t Size = SizeOffset.first.getZExtValue();
2792   int64_t Offset = SizeOffset.second.getSExtValue();
2793   // Three checks are required to ensure safety:
2794   // . Offset >= 0  (since the offset is given from the base ptr)
2795   // . Size >= Offset  (unsigned)
2796   // . Size - Offset >= NeededSize  (unsigned)
2797   return Offset >= 0 && Size >= uint64_t(Offset) &&
2798          Size - uint64_t(Offset) >= TypeSize / 8;
2799 }