]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp
Merge clang 7.0.1 and several follow-up changes
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / Instrumentation / DataFlowSanitizer.cpp
1 //===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow
12 /// analysis.
13 ///
14 /// Unlike other Sanitizer tools, this tool is not designed to detect a specific
15 /// class of bugs on its own.  Instead, it provides a generic dynamic data flow
16 /// analysis framework to be used by clients to help detect application-specific
17 /// issues within their own code.
18 ///
19 /// The analysis is based on automatic propagation of data flow labels (also
20 /// known as taint labels) through a program as it performs computation.  Each
21 /// byte of application memory is backed by two bytes of shadow memory which
22 /// hold the label.  On Linux/x86_64, memory is laid out as follows:
23 ///
24 /// +--------------------+ 0x800000000000 (top of memory)
25 /// | application memory |
26 /// +--------------------+ 0x700000008000 (kAppAddr)
27 /// |                    |
28 /// |       unused       |
29 /// |                    |
30 /// +--------------------+ 0x200200000000 (kUnusedAddr)
31 /// |    union table     |
32 /// +--------------------+ 0x200000000000 (kUnionTableAddr)
33 /// |   shadow memory    |
34 /// +--------------------+ 0x000000010000 (kShadowAddr)
35 /// | reserved by kernel |
36 /// +--------------------+ 0x000000000000
37 ///
38 /// To derive a shadow memory address from an application memory address,
39 /// bits 44-46 are cleared to bring the address into the range
40 /// [0x000000008000,0x100000000000).  Then the address is shifted left by 1 to
41 /// account for the double byte representation of shadow labels and move the
42 /// address into the shadow memory range.  See the function
43 /// DataFlowSanitizer::getShadowAddress below.
44 ///
45 /// For more information, please refer to the design document:
46 /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html
47 //
48 //===----------------------------------------------------------------------===//
49
50 #include "llvm/ADT/DenseMap.h"
51 #include "llvm/ADT/DenseSet.h"
52 #include "llvm/ADT/DepthFirstIterator.h"
53 #include "llvm/ADT/None.h"
54 #include "llvm/ADT/SmallPtrSet.h"
55 #include "llvm/ADT/SmallVector.h"
56 #include "llvm/ADT/StringExtras.h"
57 #include "llvm/ADT/StringRef.h"
58 #include "llvm/ADT/Triple.h"
59 #include "llvm/Transforms/Utils/Local.h"
60 #include "llvm/Analysis/ValueTracking.h"
61 #include "llvm/IR/Argument.h"
62 #include "llvm/IR/Attributes.h"
63 #include "llvm/IR/BasicBlock.h"
64 #include "llvm/IR/CallSite.h"
65 #include "llvm/IR/Constant.h"
66 #include "llvm/IR/Constants.h"
67 #include "llvm/IR/DataLayout.h"
68 #include "llvm/IR/DerivedTypes.h"
69 #include "llvm/IR/Dominators.h"
70 #include "llvm/IR/Function.h"
71 #include "llvm/IR/GlobalAlias.h"
72 #include "llvm/IR/GlobalValue.h"
73 #include "llvm/IR/GlobalVariable.h"
74 #include "llvm/IR/IRBuilder.h"
75 #include "llvm/IR/InlineAsm.h"
76 #include "llvm/IR/InstVisitor.h"
77 #include "llvm/IR/InstrTypes.h"
78 #include "llvm/IR/Instruction.h"
79 #include "llvm/IR/Instructions.h"
80 #include "llvm/IR/IntrinsicInst.h"
81 #include "llvm/IR/LLVMContext.h"
82 #include "llvm/IR/MDBuilder.h"
83 #include "llvm/IR/Module.h"
84 #include "llvm/IR/Type.h"
85 #include "llvm/IR/User.h"
86 #include "llvm/IR/Value.h"
87 #include "llvm/Pass.h"
88 #include "llvm/Support/Casting.h"
89 #include "llvm/Support/CommandLine.h"
90 #include "llvm/Support/ErrorHandling.h"
91 #include "llvm/Support/SpecialCaseList.h"
92 #include "llvm/Transforms/Instrumentation.h"
93 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
94 #include <algorithm>
95 #include <cassert>
96 #include <cstddef>
97 #include <cstdint>
98 #include <iterator>
99 #include <memory>
100 #include <set>
101 #include <string>
102 #include <utility>
103 #include <vector>
104
105 using namespace llvm;
106
107 // External symbol to be used when generating the shadow address for
108 // architectures with multiple VMAs. Instead of using a constant integer
109 // the runtime will set the external mask based on the VMA range.
110 static const char *const kDFSanExternShadowPtrMask = "__dfsan_shadow_ptr_mask";
111
112 // The -dfsan-preserve-alignment flag controls whether this pass assumes that
113 // alignment requirements provided by the input IR are correct.  For example,
114 // if the input IR contains a load with alignment 8, this flag will cause
115 // the shadow load to have alignment 16.  This flag is disabled by default as
116 // we have unfortunately encountered too much code (including Clang itself;
117 // see PR14291) which performs misaligned access.
118 static cl::opt<bool> ClPreserveAlignment(
119     "dfsan-preserve-alignment",
120     cl::desc("respect alignment requirements provided by input IR"), cl::Hidden,
121     cl::init(false));
122
123 // The ABI list files control how shadow parameters are passed. The pass treats
124 // every function labelled "uninstrumented" in the ABI list file as conforming
125 // to the "native" (i.e. unsanitized) ABI.  Unless the ABI list contains
126 // additional annotations for those functions, a call to one of those functions
127 // will produce a warning message, as the labelling behaviour of the function is
128 // unknown.  The other supported annotations are "functional" and "discard",
129 // which are described below under DataFlowSanitizer::WrapperKind.
130 static cl::list<std::string> ClABIListFiles(
131     "dfsan-abilist",
132     cl::desc("File listing native ABI functions and how the pass treats them"),
133     cl::Hidden);
134
135 // Controls whether the pass uses IA_Args or IA_TLS as the ABI for instrumented
136 // functions (see DataFlowSanitizer::InstrumentedABI below).
137 static cl::opt<bool> ClArgsABI(
138     "dfsan-args-abi",
139     cl::desc("Use the argument ABI rather than the TLS ABI"),
140     cl::Hidden);
141
142 // Controls whether the pass includes or ignores the labels of pointers in load
143 // instructions.
144 static cl::opt<bool> ClCombinePointerLabelsOnLoad(
145     "dfsan-combine-pointer-labels-on-load",
146     cl::desc("Combine the label of the pointer with the label of the data when "
147              "loading from memory."),
148     cl::Hidden, cl::init(true));
149
150 // Controls whether the pass includes or ignores the labels of pointers in
151 // stores instructions.
152 static cl::opt<bool> ClCombinePointerLabelsOnStore(
153     "dfsan-combine-pointer-labels-on-store",
154     cl::desc("Combine the label of the pointer with the label of the data when "
155              "storing in memory."),
156     cl::Hidden, cl::init(false));
157
158 static cl::opt<bool> ClDebugNonzeroLabels(
159     "dfsan-debug-nonzero-labels",
160     cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, "
161              "load or return with a nonzero label"),
162     cl::Hidden);
163
164 static StringRef GetGlobalTypeString(const GlobalValue &G) {
165   // Types of GlobalVariables are always pointer types.
166   Type *GType = G.getValueType();
167   // For now we support blacklisting struct types only.
168   if (StructType *SGType = dyn_cast<StructType>(GType)) {
169     if (!SGType->isLiteral())
170       return SGType->getName();
171   }
172   return "<unknown type>";
173 }
174
175 namespace {
176
177 class DFSanABIList {
178   std::unique_ptr<SpecialCaseList> SCL;
179
180  public:
181   DFSanABIList() = default;
182
183   void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); }
184
185   /// Returns whether either this function or its source file are listed in the
186   /// given category.
187   bool isIn(const Function &F, StringRef Category) const {
188     return isIn(*F.getParent(), Category) ||
189            SCL->inSection("dataflow", "fun", F.getName(), Category);
190   }
191
192   /// Returns whether this global alias is listed in the given category.
193   ///
194   /// If GA aliases a function, the alias's name is matched as a function name
195   /// would be.  Similarly, aliases of globals are matched like globals.
196   bool isIn(const GlobalAlias &GA, StringRef Category) const {
197     if (isIn(*GA.getParent(), Category))
198       return true;
199
200     if (isa<FunctionType>(GA.getValueType()))
201       return SCL->inSection("dataflow", "fun", GA.getName(), Category);
202
203     return SCL->inSection("dataflow", "global", GA.getName(), Category) ||
204            SCL->inSection("dataflow", "type", GetGlobalTypeString(GA),
205                           Category);
206   }
207
208   /// Returns whether this module is listed in the given category.
209   bool isIn(const Module &M, StringRef Category) const {
210     return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category);
211   }
212 };
213
214 /// TransformedFunction is used to express the result of transforming one
215 /// function type into another.  This struct is immutable.  It holds metadata
216 /// useful for updating calls of the old function to the new type.
217 struct TransformedFunction {
218   TransformedFunction(FunctionType* OriginalType,
219                       FunctionType* TransformedType,
220                       std::vector<unsigned> ArgumentIndexMapping)
221       : OriginalType(OriginalType),
222         TransformedType(TransformedType),
223         ArgumentIndexMapping(ArgumentIndexMapping) {}
224
225   // Disallow copies.
226   TransformedFunction(const TransformedFunction&) = delete;
227   TransformedFunction& operator=(const TransformedFunction&) = delete;
228
229   // Allow moves.
230   TransformedFunction(TransformedFunction&&) = default;
231   TransformedFunction& operator=(TransformedFunction&&) = default;
232
233   /// Type of the function before the transformation.
234   FunctionType *OriginalType;
235
236   /// Type of the function after the transformation.
237   FunctionType *TransformedType;
238
239   /// Transforming a function may change the position of arguments.  This
240   /// member records the mapping from each argument's old position to its new
241   /// position.  Argument positions are zero-indexed.  If the transformation
242   /// from F to F' made the first argument of F into the third argument of F',
243   /// then ArgumentIndexMapping[0] will equal 2.
244   std::vector<unsigned> ArgumentIndexMapping;
245 };
246
247 /// Given function attributes from a call site for the original function,
248 /// return function attributes appropriate for a call to the transformed
249 /// function.
250 AttributeList TransformFunctionAttributes(
251     const TransformedFunction& TransformedFunction,
252     LLVMContext& Ctx, AttributeList CallSiteAttrs) {
253
254   // Construct a vector of AttributeSet for each function argument.
255   std::vector<llvm::AttributeSet> ArgumentAttributes(
256       TransformedFunction.TransformedType->getNumParams());
257
258   // Copy attributes from the parameter of the original function to the
259   // transformed version.  'ArgumentIndexMapping' holds the mapping from
260   // old argument position to new.
261   for (unsigned i=0, ie = TransformedFunction.ArgumentIndexMapping.size();
262        i < ie; ++i) {
263     unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[i];
264     ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttributes(i);
265   }
266
267   // Copy annotations on varargs arguments.
268   for (unsigned i = TransformedFunction.OriginalType->getNumParams(),
269        ie = CallSiteAttrs.getNumAttrSets(); i<ie; ++i) {
270     ArgumentAttributes.push_back(CallSiteAttrs.getParamAttributes(i));
271   }
272
273   return AttributeList::get(
274       Ctx,
275       CallSiteAttrs.getFnAttributes(),
276       CallSiteAttrs.getRetAttributes(),
277       llvm::makeArrayRef(ArgumentAttributes));
278 }
279
280 class DataFlowSanitizer : public ModulePass {
281   friend struct DFSanFunction;
282   friend class DFSanVisitor;
283
284   enum {
285     ShadowWidth = 16
286   };
287
288   /// Which ABI should be used for instrumented functions?
289   enum InstrumentedABI {
290     /// Argument and return value labels are passed through additional
291     /// arguments and by modifying the return type.
292     IA_Args,
293
294     /// Argument and return value labels are passed through TLS variables
295     /// __dfsan_arg_tls and __dfsan_retval_tls.
296     IA_TLS
297   };
298
299   /// How should calls to uninstrumented functions be handled?
300   enum WrapperKind {
301     /// This function is present in an uninstrumented form but we don't know
302     /// how it should be handled.  Print a warning and call the function anyway.
303     /// Don't label the return value.
304     WK_Warning,
305
306     /// This function does not write to (user-accessible) memory, and its return
307     /// value is unlabelled.
308     WK_Discard,
309
310     /// This function does not write to (user-accessible) memory, and the label
311     /// of its return value is the union of the label of its arguments.
312     WK_Functional,
313
314     /// Instead of calling the function, a custom wrapper __dfsw_F is called,
315     /// where F is the name of the function.  This function may wrap the
316     /// original function or provide its own implementation.  This is similar to
317     /// the IA_Args ABI, except that IA_Args uses a struct return type to
318     /// pass the return value shadow in a register, while WK_Custom uses an
319     /// extra pointer argument to return the shadow.  This allows the wrapped
320     /// form of the function type to be expressed in C.
321     WK_Custom
322   };
323
324   Module *Mod;
325   LLVMContext *Ctx;
326   IntegerType *ShadowTy;
327   PointerType *ShadowPtrTy;
328   IntegerType *IntptrTy;
329   ConstantInt *ZeroShadow;
330   ConstantInt *ShadowPtrMask;
331   ConstantInt *ShadowPtrMul;
332   Constant *ArgTLS;
333   Constant *RetvalTLS;
334   void *(*GetArgTLSPtr)();
335   void *(*GetRetvalTLSPtr)();
336   Constant *GetArgTLS;
337   Constant *GetRetvalTLS;
338   Constant *ExternalShadowMask;
339   FunctionType *DFSanUnionFnTy;
340   FunctionType *DFSanUnionLoadFnTy;
341   FunctionType *DFSanUnimplementedFnTy;
342   FunctionType *DFSanSetLabelFnTy;
343   FunctionType *DFSanNonzeroLabelFnTy;
344   FunctionType *DFSanVarargWrapperFnTy;
345   Constant *DFSanUnionFn;
346   Constant *DFSanCheckedUnionFn;
347   Constant *DFSanUnionLoadFn;
348   Constant *DFSanUnimplementedFn;
349   Constant *DFSanSetLabelFn;
350   Constant *DFSanNonzeroLabelFn;
351   Constant *DFSanVarargWrapperFn;
352   MDNode *ColdCallWeights;
353   DFSanABIList ABIList;
354   DenseMap<Value *, Function *> UnwrappedFnMap;
355   AttrBuilder ReadOnlyNoneAttrs;
356   bool DFSanRuntimeShadowMask = false;
357
358   Value *getShadowAddress(Value *Addr, Instruction *Pos);
359   bool isInstrumented(const Function *F);
360   bool isInstrumented(const GlobalAlias *GA);
361   FunctionType *getArgsFunctionType(FunctionType *T);
362   FunctionType *getTrampolineFunctionType(FunctionType *T);
363   TransformedFunction getCustomFunctionType(FunctionType *T);
364   InstrumentedABI getInstrumentedABI();
365   WrapperKind getWrapperKind(Function *F);
366   void addGlobalNamePrefix(GlobalValue *GV);
367   Function *buildWrapperFunction(Function *F, StringRef NewFName,
368                                  GlobalValue::LinkageTypes NewFLink,
369                                  FunctionType *NewFT);
370   Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName);
371
372 public:
373   static char ID;
374
375   DataFlowSanitizer(
376       const std::vector<std::string> &ABIListFiles = std::vector<std::string>(),
377       void *(*getArgTLS)() = nullptr, void *(*getRetValTLS)() = nullptr);
378
379   bool doInitialization(Module &M) override;
380   bool runOnModule(Module &M) override;
381 };
382
383 struct DFSanFunction {
384   DataFlowSanitizer &DFS;
385   Function *F;
386   DominatorTree DT;
387   DataFlowSanitizer::InstrumentedABI IA;
388   bool IsNativeABI;
389   Value *ArgTLSPtr = nullptr;
390   Value *RetvalTLSPtr = nullptr;
391   AllocaInst *LabelReturnAlloca = nullptr;
392   DenseMap<Value *, Value *> ValShadowMap;
393   DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap;
394   std::vector<std::pair<PHINode *, PHINode *>> PHIFixups;
395   DenseSet<Instruction *> SkipInsts;
396   std::vector<Value *> NonZeroChecks;
397   bool AvoidNewBlocks;
398
399   struct CachedCombinedShadow {
400     BasicBlock *Block;
401     Value *Shadow;
402   };
403   DenseMap<std::pair<Value *, Value *>, CachedCombinedShadow>
404       CachedCombinedShadows;
405   DenseMap<Value *, std::set<Value *>> ShadowElements;
406
407   DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI)
408       : DFS(DFS), F(F), IA(DFS.getInstrumentedABI()), IsNativeABI(IsNativeABI) {
409     DT.recalculate(*F);
410     // FIXME: Need to track down the register allocator issue which causes poor
411     // performance in pathological cases with large numbers of basic blocks.
412     AvoidNewBlocks = F->size() > 1000;
413   }
414
415   Value *getArgTLSPtr();
416   Value *getArgTLS(unsigned Index, Instruction *Pos);
417   Value *getRetvalTLS();
418   Value *getShadow(Value *V);
419   void setShadow(Instruction *I, Value *Shadow);
420   Value *combineShadows(Value *V1, Value *V2, Instruction *Pos);
421   Value *combineOperandShadows(Instruction *Inst);
422   Value *loadShadow(Value *ShadowAddr, uint64_t Size, uint64_t Align,
423                     Instruction *Pos);
424   void storeShadow(Value *Addr, uint64_t Size, uint64_t Align, Value *Shadow,
425                    Instruction *Pos);
426 };
427
428 class DFSanVisitor : public InstVisitor<DFSanVisitor> {
429 public:
430   DFSanFunction &DFSF;
431
432   DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {}
433
434   const DataLayout &getDataLayout() const {
435     return DFSF.F->getParent()->getDataLayout();
436   }
437
438   void visitOperandShadowInst(Instruction &I);
439   void visitBinaryOperator(BinaryOperator &BO);
440   void visitCastInst(CastInst &CI);
441   void visitCmpInst(CmpInst &CI);
442   void visitGetElementPtrInst(GetElementPtrInst &GEPI);
443   void visitLoadInst(LoadInst &LI);
444   void visitStoreInst(StoreInst &SI);
445   void visitReturnInst(ReturnInst &RI);
446   void visitCallSite(CallSite CS);
447   void visitPHINode(PHINode &PN);
448   void visitExtractElementInst(ExtractElementInst &I);
449   void visitInsertElementInst(InsertElementInst &I);
450   void visitShuffleVectorInst(ShuffleVectorInst &I);
451   void visitExtractValueInst(ExtractValueInst &I);
452   void visitInsertValueInst(InsertValueInst &I);
453   void visitAllocaInst(AllocaInst &I);
454   void visitSelectInst(SelectInst &I);
455   void visitMemSetInst(MemSetInst &I);
456   void visitMemTransferInst(MemTransferInst &I);
457 };
458
459 } // end anonymous namespace
460
461 char DataFlowSanitizer::ID;
462
463 INITIALIZE_PASS(DataFlowSanitizer, "dfsan",
464                 "DataFlowSanitizer: dynamic data flow analysis.", false, false)
465
466 ModulePass *
467 llvm::createDataFlowSanitizerPass(const std::vector<std::string> &ABIListFiles,
468                                   void *(*getArgTLS)(),
469                                   void *(*getRetValTLS)()) {
470   return new DataFlowSanitizer(ABIListFiles, getArgTLS, getRetValTLS);
471 }
472
473 DataFlowSanitizer::DataFlowSanitizer(
474     const std::vector<std::string> &ABIListFiles, void *(*getArgTLS)(),
475     void *(*getRetValTLS)())
476     : ModulePass(ID), GetArgTLSPtr(getArgTLS), GetRetvalTLSPtr(getRetValTLS) {
477   std::vector<std::string> AllABIListFiles(std::move(ABIListFiles));
478   AllABIListFiles.insert(AllABIListFiles.end(), ClABIListFiles.begin(),
479                          ClABIListFiles.end());
480   ABIList.set(SpecialCaseList::createOrDie(AllABIListFiles));
481 }
482
483 FunctionType *DataFlowSanitizer::getArgsFunctionType(FunctionType *T) {
484   SmallVector<Type *, 4> ArgTypes(T->param_begin(), T->param_end());
485   ArgTypes.append(T->getNumParams(), ShadowTy);
486   if (T->isVarArg())
487     ArgTypes.push_back(ShadowPtrTy);
488   Type *RetType = T->getReturnType();
489   if (!RetType->isVoidTy())
490     RetType = StructType::get(RetType, ShadowTy);
491   return FunctionType::get(RetType, ArgTypes, T->isVarArg());
492 }
493
494 FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) {
495   assert(!T->isVarArg());
496   SmallVector<Type *, 4> ArgTypes;
497   ArgTypes.push_back(T->getPointerTo());
498   ArgTypes.append(T->param_begin(), T->param_end());
499   ArgTypes.append(T->getNumParams(), ShadowTy);
500   Type *RetType = T->getReturnType();
501   if (!RetType->isVoidTy())
502     ArgTypes.push_back(ShadowPtrTy);
503   return FunctionType::get(T->getReturnType(), ArgTypes, false);
504 }
505
506 TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) {
507   SmallVector<Type *, 4> ArgTypes;
508
509   // Some parameters of the custom function being constructed are
510   // parameters of T.  Record the mapping from parameters of T to
511   // parameters of the custom function, so that parameter attributes
512   // at call sites can be updated.
513   std::vector<unsigned> ArgumentIndexMapping;
514   for (unsigned i = 0, ie = T->getNumParams(); i != ie; ++i) {
515     Type* param_type = T->getParamType(i);
516     FunctionType *FT;
517     if (isa<PointerType>(param_type) && (FT = dyn_cast<FunctionType>(
518             cast<PointerType>(param_type)->getElementType()))) {
519       ArgumentIndexMapping.push_back(ArgTypes.size());
520       ArgTypes.push_back(getTrampolineFunctionType(FT)->getPointerTo());
521       ArgTypes.push_back(Type::getInt8PtrTy(*Ctx));
522     } else {
523       ArgumentIndexMapping.push_back(ArgTypes.size());
524       ArgTypes.push_back(param_type);
525     }
526   }
527   for (unsigned i = 0, e = T->getNumParams(); i != e; ++i)
528     ArgTypes.push_back(ShadowTy);
529   if (T->isVarArg())
530     ArgTypes.push_back(ShadowPtrTy);
531   Type *RetType = T->getReturnType();
532   if (!RetType->isVoidTy())
533     ArgTypes.push_back(ShadowPtrTy);
534   return TransformedFunction(
535       T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()),
536       ArgumentIndexMapping);
537 }
538
539 bool DataFlowSanitizer::doInitialization(Module &M) {
540   Triple TargetTriple(M.getTargetTriple());
541   bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64;
542   bool IsMIPS64 = TargetTriple.isMIPS64();
543   bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64 ||
544                    TargetTriple.getArch() == Triple::aarch64_be;
545
546   const DataLayout &DL = M.getDataLayout();
547
548   Mod = &M;
549   Ctx = &M.getContext();
550   ShadowTy = IntegerType::get(*Ctx, ShadowWidth);
551   ShadowPtrTy = PointerType::getUnqual(ShadowTy);
552   IntptrTy = DL.getIntPtrType(*Ctx);
553   ZeroShadow = ConstantInt::getSigned(ShadowTy, 0);
554   ShadowPtrMul = ConstantInt::getSigned(IntptrTy, ShadowWidth / 8);
555   if (IsX86_64)
556     ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0x700000000000LL);
557   else if (IsMIPS64)
558     ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0xF000000000LL);
559   // AArch64 supports multiple VMAs and the shadow mask is set at runtime.
560   else if (IsAArch64)
561     DFSanRuntimeShadowMask = true;
562   else
563     report_fatal_error("unsupported triple");
564
565   Type *DFSanUnionArgs[2] = { ShadowTy, ShadowTy };
566   DFSanUnionFnTy =
567       FunctionType::get(ShadowTy, DFSanUnionArgs, /*isVarArg=*/ false);
568   Type *DFSanUnionLoadArgs[2] = { ShadowPtrTy, IntptrTy };
569   DFSanUnionLoadFnTy =
570       FunctionType::get(ShadowTy, DFSanUnionLoadArgs, /*isVarArg=*/ false);
571   DFSanUnimplementedFnTy = FunctionType::get(
572       Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
573   Type *DFSanSetLabelArgs[3] = { ShadowTy, Type::getInt8PtrTy(*Ctx), IntptrTy };
574   DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx),
575                                         DFSanSetLabelArgs, /*isVarArg=*/false);
576   DFSanNonzeroLabelFnTy = FunctionType::get(
577       Type::getVoidTy(*Ctx), None, /*isVarArg=*/false);
578   DFSanVarargWrapperFnTy = FunctionType::get(
579       Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
580
581   if (GetArgTLSPtr) {
582     Type *ArgTLSTy = ArrayType::get(ShadowTy, 64);
583     ArgTLS = nullptr;
584     GetArgTLS = ConstantExpr::getIntToPtr(
585         ConstantInt::get(IntptrTy, uintptr_t(GetArgTLSPtr)),
586         PointerType::getUnqual(
587             FunctionType::get(PointerType::getUnqual(ArgTLSTy), false)));
588   }
589   if (GetRetvalTLSPtr) {
590     RetvalTLS = nullptr;
591     GetRetvalTLS = ConstantExpr::getIntToPtr(
592         ConstantInt::get(IntptrTy, uintptr_t(GetRetvalTLSPtr)),
593         PointerType::getUnqual(
594             FunctionType::get(PointerType::getUnqual(ShadowTy), false)));
595   }
596
597   ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000);
598   return true;
599 }
600
601 bool DataFlowSanitizer::isInstrumented(const Function *F) {
602   return !ABIList.isIn(*F, "uninstrumented");
603 }
604
605 bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) {
606   return !ABIList.isIn(*GA, "uninstrumented");
607 }
608
609 DataFlowSanitizer::InstrumentedABI DataFlowSanitizer::getInstrumentedABI() {
610   return ClArgsABI ? IA_Args : IA_TLS;
611 }
612
613 DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) {
614   if (ABIList.isIn(*F, "functional"))
615     return WK_Functional;
616   if (ABIList.isIn(*F, "discard"))
617     return WK_Discard;
618   if (ABIList.isIn(*F, "custom"))
619     return WK_Custom;
620
621   return WK_Warning;
622 }
623
624 void DataFlowSanitizer::addGlobalNamePrefix(GlobalValue *GV) {
625   std::string GVName = GV->getName(), Prefix = "dfs$";
626   GV->setName(Prefix + GVName);
627
628   // Try to change the name of the function in module inline asm.  We only do
629   // this for specific asm directives, currently only ".symver", to try to avoid
630   // corrupting asm which happens to contain the symbol name as a substring.
631   // Note that the substitution for .symver assumes that the versioned symbol
632   // also has an instrumented name.
633   std::string Asm = GV->getParent()->getModuleInlineAsm();
634   std::string SearchStr = ".symver " + GVName + ",";
635   size_t Pos = Asm.find(SearchStr);
636   if (Pos != std::string::npos) {
637     Asm.replace(Pos, SearchStr.size(),
638                 ".symver " + Prefix + GVName + "," + Prefix);
639     GV->getParent()->setModuleInlineAsm(Asm);
640   }
641 }
642
643 Function *
644 DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName,
645                                         GlobalValue::LinkageTypes NewFLink,
646                                         FunctionType *NewFT) {
647   FunctionType *FT = F->getFunctionType();
648   Function *NewF = Function::Create(NewFT, NewFLink, NewFName,
649                                     F->getParent());
650   NewF->copyAttributesFrom(F);
651   NewF->removeAttributes(
652       AttributeList::ReturnIndex,
653       AttributeFuncs::typeIncompatible(NewFT->getReturnType()));
654
655   BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF);
656   if (F->isVarArg()) {
657     NewF->removeAttributes(AttributeList::FunctionIndex,
658                            AttrBuilder().addAttribute("split-stack"));
659     CallInst::Create(DFSanVarargWrapperFn,
660                      IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "",
661                      BB);
662     new UnreachableInst(*Ctx, BB);
663   } else {
664     std::vector<Value *> Args;
665     unsigned n = FT->getNumParams();
666     for (Function::arg_iterator ai = NewF->arg_begin(); n != 0; ++ai, --n)
667       Args.push_back(&*ai);
668     CallInst *CI = CallInst::Create(F, Args, "", BB);
669     if (FT->getReturnType()->isVoidTy())
670       ReturnInst::Create(*Ctx, BB);
671     else
672       ReturnInst::Create(*Ctx, CI, BB);
673   }
674
675   return NewF;
676 }
677
678 Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT,
679                                                           StringRef FName) {
680   FunctionType *FTT = getTrampolineFunctionType(FT);
681   Constant *C = Mod->getOrInsertFunction(FName, FTT);
682   Function *F = dyn_cast<Function>(C);
683   if (F && F->isDeclaration()) {
684     F->setLinkage(GlobalValue::LinkOnceODRLinkage);
685     BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F);
686     std::vector<Value *> Args;
687     Function::arg_iterator AI = F->arg_begin(); ++AI;
688     for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N)
689       Args.push_back(&*AI);
690     CallInst *CI = CallInst::Create(&*F->arg_begin(), Args, "", BB);
691     ReturnInst *RI;
692     if (FT->getReturnType()->isVoidTy())
693       RI = ReturnInst::Create(*Ctx, BB);
694     else
695       RI = ReturnInst::Create(*Ctx, CI, BB);
696
697     DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true);
698     Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI; ++ValAI;
699     for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++ShadowAI, --N)
700       DFSF.ValShadowMap[&*ValAI] = &*ShadowAI;
701     DFSanVisitor(DFSF).visitCallInst(*CI);
702     if (!FT->getReturnType()->isVoidTy())
703       new StoreInst(DFSF.getShadow(RI->getReturnValue()),
704                     &*std::prev(F->arg_end()), RI);
705   }
706
707   return C;
708 }
709
710 bool DataFlowSanitizer::runOnModule(Module &M) {
711   if (ABIList.isIn(M, "skip"))
712     return false;
713
714   if (!GetArgTLSPtr) {
715     Type *ArgTLSTy = ArrayType::get(ShadowTy, 64);
716     ArgTLS = Mod->getOrInsertGlobal("__dfsan_arg_tls", ArgTLSTy);
717     if (GlobalVariable *G = dyn_cast<GlobalVariable>(ArgTLS))
718       G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel);
719   }
720   if (!GetRetvalTLSPtr) {
721     RetvalTLS = Mod->getOrInsertGlobal("__dfsan_retval_tls", ShadowTy);
722     if (GlobalVariable *G = dyn_cast<GlobalVariable>(RetvalTLS))
723       G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel);
724   }
725
726   ExternalShadowMask =
727       Mod->getOrInsertGlobal(kDFSanExternShadowPtrMask, IntptrTy);
728
729   DFSanUnionFn = Mod->getOrInsertFunction("__dfsan_union", DFSanUnionFnTy);
730   if (Function *F = dyn_cast<Function>(DFSanUnionFn)) {
731     F->addAttribute(AttributeList::FunctionIndex, Attribute::NoUnwind);
732     F->addAttribute(AttributeList::FunctionIndex, Attribute::ReadNone);
733     F->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
734     F->addParamAttr(0, Attribute::ZExt);
735     F->addParamAttr(1, Attribute::ZExt);
736   }
737   DFSanCheckedUnionFn = Mod->getOrInsertFunction("dfsan_union", DFSanUnionFnTy);
738   if (Function *F = dyn_cast<Function>(DFSanCheckedUnionFn)) {
739     F->addAttribute(AttributeList::FunctionIndex, Attribute::NoUnwind);
740     F->addAttribute(AttributeList::FunctionIndex, Attribute::ReadNone);
741     F->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
742     F->addParamAttr(0, Attribute::ZExt);
743     F->addParamAttr(1, Attribute::ZExt);
744   }
745   DFSanUnionLoadFn =
746       Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy);
747   if (Function *F = dyn_cast<Function>(DFSanUnionLoadFn)) {
748     F->addAttribute(AttributeList::FunctionIndex, Attribute::NoUnwind);
749     F->addAttribute(AttributeList::FunctionIndex, Attribute::ReadOnly);
750     F->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
751   }
752   DFSanUnimplementedFn =
753       Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy);
754   DFSanSetLabelFn =
755       Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy);
756   if (Function *F = dyn_cast<Function>(DFSanSetLabelFn)) {
757     F->addParamAttr(0, Attribute::ZExt);
758   }
759   DFSanNonzeroLabelFn =
760       Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy);
761   DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper",
762                                                   DFSanVarargWrapperFnTy);
763
764   std::vector<Function *> FnsToInstrument;
765   SmallPtrSet<Function *, 2> FnsWithNativeABI;
766   for (Function &i : M) {
767     if (!i.isIntrinsic() &&
768         &i != DFSanUnionFn &&
769         &i != DFSanCheckedUnionFn &&
770         &i != DFSanUnionLoadFn &&
771         &i != DFSanUnimplementedFn &&
772         &i != DFSanSetLabelFn &&
773         &i != DFSanNonzeroLabelFn &&
774         &i != DFSanVarargWrapperFn)
775       FnsToInstrument.push_back(&i);
776   }
777
778   // Give function aliases prefixes when necessary, and build wrappers where the
779   // instrumentedness is inconsistent.
780   for (Module::alias_iterator i = M.alias_begin(), e = M.alias_end(); i != e;) {
781     GlobalAlias *GA = &*i;
782     ++i;
783     // Don't stop on weak.  We assume people aren't playing games with the
784     // instrumentedness of overridden weak aliases.
785     if (auto F = dyn_cast<Function>(GA->getBaseObject())) {
786       bool GAInst = isInstrumented(GA), FInst = isInstrumented(F);
787       if (GAInst && FInst) {
788         addGlobalNamePrefix(GA);
789       } else if (GAInst != FInst) {
790         // Non-instrumented alias of an instrumented function, or vice versa.
791         // Replace the alias with a native-ABI wrapper of the aliasee.  The pass
792         // below will take care of instrumenting it.
793         Function *NewF =
794             buildWrapperFunction(F, "", GA->getLinkage(), F->getFunctionType());
795         GA->replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA->getType()));
796         NewF->takeName(GA);
797         GA->eraseFromParent();
798         FnsToInstrument.push_back(NewF);
799       }
800     }
801   }
802
803   ReadOnlyNoneAttrs.addAttribute(Attribute::ReadOnly)
804       .addAttribute(Attribute::ReadNone);
805
806   // First, change the ABI of every function in the module.  ABI-listed
807   // functions keep their original ABI and get a wrapper function.
808   for (std::vector<Function *>::iterator i = FnsToInstrument.begin(),
809                                          e = FnsToInstrument.end();
810        i != e; ++i) {
811     Function &F = **i;
812     FunctionType *FT = F.getFunctionType();
813
814     bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() &&
815                               FT->getReturnType()->isVoidTy());
816
817     if (isInstrumented(&F)) {
818       // Instrumented functions get a 'dfs$' prefix.  This allows us to more
819       // easily identify cases of mismatching ABIs.
820       if (getInstrumentedABI() == IA_Args && !IsZeroArgsVoidRet) {
821         FunctionType *NewFT = getArgsFunctionType(FT);
822         Function *NewF = Function::Create(NewFT, F.getLinkage(), "", &M);
823         NewF->copyAttributesFrom(&F);
824         NewF->removeAttributes(
825             AttributeList::ReturnIndex,
826             AttributeFuncs::typeIncompatible(NewFT->getReturnType()));
827         for (Function::arg_iterator FArg = F.arg_begin(),
828                                     NewFArg = NewF->arg_begin(),
829                                     FArgEnd = F.arg_end();
830              FArg != FArgEnd; ++FArg, ++NewFArg) {
831           FArg->replaceAllUsesWith(&*NewFArg);
832         }
833         NewF->getBasicBlockList().splice(NewF->begin(), F.getBasicBlockList());
834
835         for (Function::user_iterator UI = F.user_begin(), UE = F.user_end();
836              UI != UE;) {
837           BlockAddress *BA = dyn_cast<BlockAddress>(*UI);
838           ++UI;
839           if (BA) {
840             BA->replaceAllUsesWith(
841                 BlockAddress::get(NewF, BA->getBasicBlock()));
842             delete BA;
843           }
844         }
845         F.replaceAllUsesWith(
846             ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)));
847         NewF->takeName(&F);
848         F.eraseFromParent();
849         *i = NewF;
850         addGlobalNamePrefix(NewF);
851       } else {
852         addGlobalNamePrefix(&F);
853       }
854     } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) {
855       // Build a wrapper function for F.  The wrapper simply calls F, and is
856       // added to FnsToInstrument so that any instrumentation according to its
857       // WrapperKind is done in the second pass below.
858       FunctionType *NewFT = getInstrumentedABI() == IA_Args
859                                 ? getArgsFunctionType(FT)
860                                 : FT;
861
862       // If the function being wrapped has local linkage, then preserve the
863       // function's linkage in the wrapper function.
864       GlobalValue::LinkageTypes wrapperLinkage =
865           F.hasLocalLinkage()
866               ? F.getLinkage()
867               : GlobalValue::LinkOnceODRLinkage;
868
869       Function *NewF = buildWrapperFunction(
870           &F, std::string("dfsw$") + std::string(F.getName()),
871           wrapperLinkage, NewFT);
872       if (getInstrumentedABI() == IA_TLS)
873         NewF->removeAttributes(AttributeList::FunctionIndex, ReadOnlyNoneAttrs);
874
875       Value *WrappedFnCst =
876           ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT));
877       F.replaceAllUsesWith(WrappedFnCst);
878
879       UnwrappedFnMap[WrappedFnCst] = &F;
880       *i = NewF;
881
882       if (!F.isDeclaration()) {
883         // This function is probably defining an interposition of an
884         // uninstrumented function and hence needs to keep the original ABI.
885         // But any functions it may call need to use the instrumented ABI, so
886         // we instrument it in a mode which preserves the original ABI.
887         FnsWithNativeABI.insert(&F);
888
889         // This code needs to rebuild the iterators, as they may be invalidated
890         // by the push_back, taking care that the new range does not include
891         // any functions added by this code.
892         size_t N = i - FnsToInstrument.begin(),
893                Count = e - FnsToInstrument.begin();
894         FnsToInstrument.push_back(&F);
895         i = FnsToInstrument.begin() + N;
896         e = FnsToInstrument.begin() + Count;
897       }
898                // Hopefully, nobody will try to indirectly call a vararg
899                // function... yet.
900     } else if (FT->isVarArg()) {
901       UnwrappedFnMap[&F] = &F;
902       *i = nullptr;
903     }
904   }
905
906   for (Function *i : FnsToInstrument) {
907     if (!i || i->isDeclaration())
908       continue;
909
910     removeUnreachableBlocks(*i);
911
912     DFSanFunction DFSF(*this, i, FnsWithNativeABI.count(i));
913
914     // DFSanVisitor may create new basic blocks, which confuses df_iterator.
915     // Build a copy of the list before iterating over it.
916     SmallVector<BasicBlock *, 4> BBList(depth_first(&i->getEntryBlock()));
917
918     for (BasicBlock *i : BBList) {
919       Instruction *Inst = &i->front();
920       while (true) {
921         // DFSanVisitor may split the current basic block, changing the current
922         // instruction's next pointer and moving the next instruction to the
923         // tail block from which we should continue.
924         Instruction *Next = Inst->getNextNode();
925         // DFSanVisitor may delete Inst, so keep track of whether it was a
926         // terminator.
927         bool IsTerminator = isa<TerminatorInst>(Inst);
928         if (!DFSF.SkipInsts.count(Inst))
929           DFSanVisitor(DFSF).visit(Inst);
930         if (IsTerminator)
931           break;
932         Inst = Next;
933       }
934     }
935
936     // We will not necessarily be able to compute the shadow for every phi node
937     // until we have visited every block.  Therefore, the code that handles phi
938     // nodes adds them to the PHIFixups list so that they can be properly
939     // handled here.
940     for (std::vector<std::pair<PHINode *, PHINode *>>::iterator
941              i = DFSF.PHIFixups.begin(),
942              e = DFSF.PHIFixups.end();
943          i != e; ++i) {
944       for (unsigned val = 0, n = i->first->getNumIncomingValues(); val != n;
945            ++val) {
946         i->second->setIncomingValue(
947             val, DFSF.getShadow(i->first->getIncomingValue(val)));
948       }
949     }
950
951     // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy
952     // places (i.e. instructions in basic blocks we haven't even begun visiting
953     // yet).  To make our life easier, do this work in a pass after the main
954     // instrumentation.
955     if (ClDebugNonzeroLabels) {
956       for (Value *V : DFSF.NonZeroChecks) {
957         Instruction *Pos;
958         if (Instruction *I = dyn_cast<Instruction>(V))
959           Pos = I->getNextNode();
960         else
961           Pos = &DFSF.F->getEntryBlock().front();
962         while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos))
963           Pos = Pos->getNextNode();
964         IRBuilder<> IRB(Pos);
965         Value *Ne = IRB.CreateICmpNE(V, DFSF.DFS.ZeroShadow);
966         BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen(
967             Ne, Pos, /*Unreachable=*/false, ColdCallWeights));
968         IRBuilder<> ThenIRB(BI);
969         ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {});
970       }
971     }
972   }
973
974   return false;
975 }
976
977 Value *DFSanFunction::getArgTLSPtr() {
978   if (ArgTLSPtr)
979     return ArgTLSPtr;
980   if (DFS.ArgTLS)
981     return ArgTLSPtr = DFS.ArgTLS;
982
983   IRBuilder<> IRB(&F->getEntryBlock().front());
984   return ArgTLSPtr = IRB.CreateCall(DFS.GetArgTLS, {});
985 }
986
987 Value *DFSanFunction::getRetvalTLS() {
988   if (RetvalTLSPtr)
989     return RetvalTLSPtr;
990   if (DFS.RetvalTLS)
991     return RetvalTLSPtr = DFS.RetvalTLS;
992
993   IRBuilder<> IRB(&F->getEntryBlock().front());
994   return RetvalTLSPtr = IRB.CreateCall(DFS.GetRetvalTLS, {});
995 }
996
997 Value *DFSanFunction::getArgTLS(unsigned Idx, Instruction *Pos) {
998   IRBuilder<> IRB(Pos);
999   return IRB.CreateConstGEP2_64(getArgTLSPtr(), 0, Idx);
1000 }
1001
1002 Value *DFSanFunction::getShadow(Value *V) {
1003   if (!isa<Argument>(V) && !isa<Instruction>(V))
1004     return DFS.ZeroShadow;
1005   Value *&Shadow = ValShadowMap[V];
1006   if (!Shadow) {
1007     if (Argument *A = dyn_cast<Argument>(V)) {
1008       if (IsNativeABI)
1009         return DFS.ZeroShadow;
1010       switch (IA) {
1011       case DataFlowSanitizer::IA_TLS: {
1012         Value *ArgTLSPtr = getArgTLSPtr();
1013         Instruction *ArgTLSPos =
1014             DFS.ArgTLS ? &*F->getEntryBlock().begin()
1015                        : cast<Instruction>(ArgTLSPtr)->getNextNode();
1016         IRBuilder<> IRB(ArgTLSPos);
1017         Shadow = IRB.CreateLoad(getArgTLS(A->getArgNo(), ArgTLSPos));
1018         break;
1019       }
1020       case DataFlowSanitizer::IA_Args: {
1021         unsigned ArgIdx = A->getArgNo() + F->arg_size() / 2;
1022         Function::arg_iterator i = F->arg_begin();
1023         while (ArgIdx--)
1024           ++i;
1025         Shadow = &*i;
1026         assert(Shadow->getType() == DFS.ShadowTy);
1027         break;
1028       }
1029       }
1030       NonZeroChecks.push_back(Shadow);
1031     } else {
1032       Shadow = DFS.ZeroShadow;
1033     }
1034   }
1035   return Shadow;
1036 }
1037
1038 void DFSanFunction::setShadow(Instruction *I, Value *Shadow) {
1039   assert(!ValShadowMap.count(I));
1040   assert(Shadow->getType() == DFS.ShadowTy);
1041   ValShadowMap[I] = Shadow;
1042 }
1043
1044 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) {
1045   assert(Addr != RetvalTLS && "Reinstrumenting?");
1046   IRBuilder<> IRB(Pos);
1047   Value *ShadowPtrMaskValue;
1048   if (DFSanRuntimeShadowMask)
1049     ShadowPtrMaskValue = IRB.CreateLoad(IntptrTy, ExternalShadowMask);
1050   else
1051     ShadowPtrMaskValue = ShadowPtrMask;
1052   return IRB.CreateIntToPtr(
1053       IRB.CreateMul(
1054           IRB.CreateAnd(IRB.CreatePtrToInt(Addr, IntptrTy),
1055                         IRB.CreatePtrToInt(ShadowPtrMaskValue, IntptrTy)),
1056           ShadowPtrMul),
1057       ShadowPtrTy);
1058 }
1059
1060 // Generates IR to compute the union of the two given shadows, inserting it
1061 // before Pos.  Returns the computed union Value.
1062 Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) {
1063   if (V1 == DFS.ZeroShadow)
1064     return V2;
1065   if (V2 == DFS.ZeroShadow)
1066     return V1;
1067   if (V1 == V2)
1068     return V1;
1069
1070   auto V1Elems = ShadowElements.find(V1);
1071   auto V2Elems = ShadowElements.find(V2);
1072   if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) {
1073     if (std::includes(V1Elems->second.begin(), V1Elems->second.end(),
1074                       V2Elems->second.begin(), V2Elems->second.end())) {
1075       return V1;
1076     } else if (std::includes(V2Elems->second.begin(), V2Elems->second.end(),
1077                              V1Elems->second.begin(), V1Elems->second.end())) {
1078       return V2;
1079     }
1080   } else if (V1Elems != ShadowElements.end()) {
1081     if (V1Elems->second.count(V2))
1082       return V1;
1083   } else if (V2Elems != ShadowElements.end()) {
1084     if (V2Elems->second.count(V1))
1085       return V2;
1086   }
1087
1088   auto Key = std::make_pair(V1, V2);
1089   if (V1 > V2)
1090     std::swap(Key.first, Key.second);
1091   CachedCombinedShadow &CCS = CachedCombinedShadows[Key];
1092   if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent()))
1093     return CCS.Shadow;
1094
1095   IRBuilder<> IRB(Pos);
1096   if (AvoidNewBlocks) {
1097     CallInst *Call = IRB.CreateCall(DFS.DFSanCheckedUnionFn, {V1, V2});
1098     Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
1099     Call->addParamAttr(0, Attribute::ZExt);
1100     Call->addParamAttr(1, Attribute::ZExt);
1101
1102     CCS.Block = Pos->getParent();
1103     CCS.Shadow = Call;
1104   } else {
1105     BasicBlock *Head = Pos->getParent();
1106     Value *Ne = IRB.CreateICmpNE(V1, V2);
1107     BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen(
1108         Ne, Pos, /*Unreachable=*/false, DFS.ColdCallWeights, &DT));
1109     IRBuilder<> ThenIRB(BI);
1110     CallInst *Call = ThenIRB.CreateCall(DFS.DFSanUnionFn, {V1, V2});
1111     Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
1112     Call->addParamAttr(0, Attribute::ZExt);
1113     Call->addParamAttr(1, Attribute::ZExt);
1114
1115     BasicBlock *Tail = BI->getSuccessor(0);
1116     PHINode *Phi = PHINode::Create(DFS.ShadowTy, 2, "", &Tail->front());
1117     Phi->addIncoming(Call, Call->getParent());
1118     Phi->addIncoming(V1, Head);
1119
1120     CCS.Block = Tail;
1121     CCS.Shadow = Phi;
1122   }
1123
1124   std::set<Value *> UnionElems;
1125   if (V1Elems != ShadowElements.end()) {
1126     UnionElems = V1Elems->second;
1127   } else {
1128     UnionElems.insert(V1);
1129   }
1130   if (V2Elems != ShadowElements.end()) {
1131     UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end());
1132   } else {
1133     UnionElems.insert(V2);
1134   }
1135   ShadowElements[CCS.Shadow] = std::move(UnionElems);
1136
1137   return CCS.Shadow;
1138 }
1139
1140 // A convenience function which folds the shadows of each of the operands
1141 // of the provided instruction Inst, inserting the IR before Inst.  Returns
1142 // the computed union Value.
1143 Value *DFSanFunction::combineOperandShadows(Instruction *Inst) {
1144   if (Inst->getNumOperands() == 0)
1145     return DFS.ZeroShadow;
1146
1147   Value *Shadow = getShadow(Inst->getOperand(0));
1148   for (unsigned i = 1, n = Inst->getNumOperands(); i != n; ++i) {
1149     Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(i)), Inst);
1150   }
1151   return Shadow;
1152 }
1153
1154 void DFSanVisitor::visitOperandShadowInst(Instruction &I) {
1155   Value *CombinedShadow = DFSF.combineOperandShadows(&I);
1156   DFSF.setShadow(&I, CombinedShadow);
1157 }
1158
1159 // Generates IR to load shadow corresponding to bytes [Addr, Addr+Size), where
1160 // Addr has alignment Align, and take the union of each of those shadows.
1161 Value *DFSanFunction::loadShadow(Value *Addr, uint64_t Size, uint64_t Align,
1162                                  Instruction *Pos) {
1163   if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
1164     const auto i = AllocaShadowMap.find(AI);
1165     if (i != AllocaShadowMap.end()) {
1166       IRBuilder<> IRB(Pos);
1167       return IRB.CreateLoad(i->second);
1168     }
1169   }
1170
1171   uint64_t ShadowAlign = Align * DFS.ShadowWidth / 8;
1172   SmallVector<Value *, 2> Objs;
1173   GetUnderlyingObjects(Addr, Objs, Pos->getModule()->getDataLayout());
1174   bool AllConstants = true;
1175   for (Value *Obj : Objs) {
1176     if (isa<Function>(Obj) || isa<BlockAddress>(Obj))
1177       continue;
1178     if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant())
1179       continue;
1180
1181     AllConstants = false;
1182     break;
1183   }
1184   if (AllConstants)
1185     return DFS.ZeroShadow;
1186
1187   Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos);
1188   switch (Size) {
1189   case 0:
1190     return DFS.ZeroShadow;
1191   case 1: {
1192     LoadInst *LI = new LoadInst(ShadowAddr, "", Pos);
1193     LI->setAlignment(ShadowAlign);
1194     return LI;
1195   }
1196   case 2: {
1197     IRBuilder<> IRB(Pos);
1198     Value *ShadowAddr1 = IRB.CreateGEP(DFS.ShadowTy, ShadowAddr,
1199                                        ConstantInt::get(DFS.IntptrTy, 1));
1200     return combineShadows(IRB.CreateAlignedLoad(ShadowAddr, ShadowAlign),
1201                           IRB.CreateAlignedLoad(ShadowAddr1, ShadowAlign), Pos);
1202   }
1203   }
1204   if (!AvoidNewBlocks && Size % (64 / DFS.ShadowWidth) == 0) {
1205     // Fast path for the common case where each byte has identical shadow: load
1206     // shadow 64 bits at a time, fall out to a __dfsan_union_load call if any
1207     // shadow is non-equal.
1208     BasicBlock *FallbackBB = BasicBlock::Create(*DFS.Ctx, "", F);
1209     IRBuilder<> FallbackIRB(FallbackBB);
1210     CallInst *FallbackCall = FallbackIRB.CreateCall(
1211         DFS.DFSanUnionLoadFn,
1212         {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)});
1213     FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
1214
1215     // Compare each of the shadows stored in the loaded 64 bits to each other,
1216     // by computing (WideShadow rotl ShadowWidth) == WideShadow.
1217     IRBuilder<> IRB(Pos);
1218     Value *WideAddr =
1219         IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx));
1220     Value *WideShadow = IRB.CreateAlignedLoad(WideAddr, ShadowAlign);
1221     Value *TruncShadow = IRB.CreateTrunc(WideShadow, DFS.ShadowTy);
1222     Value *ShlShadow = IRB.CreateShl(WideShadow, DFS.ShadowWidth);
1223     Value *ShrShadow = IRB.CreateLShr(WideShadow, 64 - DFS.ShadowWidth);
1224     Value *RotShadow = IRB.CreateOr(ShlShadow, ShrShadow);
1225     Value *ShadowsEq = IRB.CreateICmpEQ(WideShadow, RotShadow);
1226
1227     BasicBlock *Head = Pos->getParent();
1228     BasicBlock *Tail = Head->splitBasicBlock(Pos->getIterator());
1229
1230     if (DomTreeNode *OldNode = DT.getNode(Head)) {
1231       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
1232
1233       DomTreeNode *NewNode = DT.addNewBlock(Tail, Head);
1234       for (auto Child : Children)
1235         DT.changeImmediateDominator(Child, NewNode);
1236     }
1237
1238     // In the following code LastBr will refer to the previous basic block's
1239     // conditional branch instruction, whose true successor is fixed up to point
1240     // to the next block during the loop below or to the tail after the final
1241     // iteration.
1242     BranchInst *LastBr = BranchInst::Create(FallbackBB, FallbackBB, ShadowsEq);
1243     ReplaceInstWithInst(Head->getTerminator(), LastBr);
1244     DT.addNewBlock(FallbackBB, Head);
1245
1246     for (uint64_t Ofs = 64 / DFS.ShadowWidth; Ofs != Size;
1247          Ofs += 64 / DFS.ShadowWidth) {
1248       BasicBlock *NextBB = BasicBlock::Create(*DFS.Ctx, "", F);
1249       DT.addNewBlock(NextBB, LastBr->getParent());
1250       IRBuilder<> NextIRB(NextBB);
1251       WideAddr = NextIRB.CreateGEP(Type::getInt64Ty(*DFS.Ctx), WideAddr,
1252                                    ConstantInt::get(DFS.IntptrTy, 1));
1253       Value *NextWideShadow = NextIRB.CreateAlignedLoad(WideAddr, ShadowAlign);
1254       ShadowsEq = NextIRB.CreateICmpEQ(WideShadow, NextWideShadow);
1255       LastBr->setSuccessor(0, NextBB);
1256       LastBr = NextIRB.CreateCondBr(ShadowsEq, FallbackBB, FallbackBB);
1257     }
1258
1259     LastBr->setSuccessor(0, Tail);
1260     FallbackIRB.CreateBr(Tail);
1261     PHINode *Shadow = PHINode::Create(DFS.ShadowTy, 2, "", &Tail->front());
1262     Shadow->addIncoming(FallbackCall, FallbackBB);
1263     Shadow->addIncoming(TruncShadow, LastBr->getParent());
1264     return Shadow;
1265   }
1266
1267   IRBuilder<> IRB(Pos);
1268   CallInst *FallbackCall = IRB.CreateCall(
1269       DFS.DFSanUnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)});
1270   FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
1271   return FallbackCall;
1272 }
1273
1274 void DFSanVisitor::visitLoadInst(LoadInst &LI) {
1275   auto &DL = LI.getModule()->getDataLayout();
1276   uint64_t Size = DL.getTypeStoreSize(LI.getType());
1277   if (Size == 0) {
1278     DFSF.setShadow(&LI, DFSF.DFS.ZeroShadow);
1279     return;
1280   }
1281
1282   uint64_t Align;
1283   if (ClPreserveAlignment) {
1284     Align = LI.getAlignment();
1285     if (Align == 0)
1286       Align = DL.getABITypeAlignment(LI.getType());
1287   } else {
1288     Align = 1;
1289   }
1290   IRBuilder<> IRB(&LI);
1291   Value *Shadow = DFSF.loadShadow(LI.getPointerOperand(), Size, Align, &LI);
1292   if (ClCombinePointerLabelsOnLoad) {
1293     Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand());
1294     Shadow = DFSF.combineShadows(Shadow, PtrShadow, &LI);
1295   }
1296   if (Shadow != DFSF.DFS.ZeroShadow)
1297     DFSF.NonZeroChecks.push_back(Shadow);
1298
1299   DFSF.setShadow(&LI, Shadow);
1300 }
1301
1302 void DFSanFunction::storeShadow(Value *Addr, uint64_t Size, uint64_t Align,
1303                                 Value *Shadow, Instruction *Pos) {
1304   if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
1305     const auto i = AllocaShadowMap.find(AI);
1306     if (i != AllocaShadowMap.end()) {
1307       IRBuilder<> IRB(Pos);
1308       IRB.CreateStore(Shadow, i->second);
1309       return;
1310     }
1311   }
1312
1313   uint64_t ShadowAlign = Align * DFS.ShadowWidth / 8;
1314   IRBuilder<> IRB(Pos);
1315   Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos);
1316   if (Shadow == DFS.ZeroShadow) {
1317     IntegerType *ShadowTy = IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidth);
1318     Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0);
1319     Value *ExtShadowAddr =
1320         IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy));
1321     IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign);
1322     return;
1323   }
1324
1325   const unsigned ShadowVecSize = 128 / DFS.ShadowWidth;
1326   uint64_t Offset = 0;
1327   if (Size >= ShadowVecSize) {
1328     VectorType *ShadowVecTy = VectorType::get(DFS.ShadowTy, ShadowVecSize);
1329     Value *ShadowVec = UndefValue::get(ShadowVecTy);
1330     for (unsigned i = 0; i != ShadowVecSize; ++i) {
1331       ShadowVec = IRB.CreateInsertElement(
1332           ShadowVec, Shadow, ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), i));
1333     }
1334     Value *ShadowVecAddr =
1335         IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy));
1336     do {
1337       Value *CurShadowVecAddr =
1338           IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset);
1339       IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign);
1340       Size -= ShadowVecSize;
1341       ++Offset;
1342     } while (Size >= ShadowVecSize);
1343     Offset *= ShadowVecSize;
1344   }
1345   while (Size > 0) {
1346     Value *CurShadowAddr =
1347         IRB.CreateConstGEP1_32(DFS.ShadowTy, ShadowAddr, Offset);
1348     IRB.CreateAlignedStore(Shadow, CurShadowAddr, ShadowAlign);
1349     --Size;
1350     ++Offset;
1351   }
1352 }
1353
1354 void DFSanVisitor::visitStoreInst(StoreInst &SI) {
1355   auto &DL = SI.getModule()->getDataLayout();
1356   uint64_t Size = DL.getTypeStoreSize(SI.getValueOperand()->getType());
1357   if (Size == 0)
1358     return;
1359
1360   uint64_t Align;
1361   if (ClPreserveAlignment) {
1362     Align = SI.getAlignment();
1363     if (Align == 0)
1364       Align = DL.getABITypeAlignment(SI.getValueOperand()->getType());
1365   } else {
1366     Align = 1;
1367   }
1368
1369   Value* Shadow = DFSF.getShadow(SI.getValueOperand());
1370   if (ClCombinePointerLabelsOnStore) {
1371     Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand());
1372     Shadow = DFSF.combineShadows(Shadow, PtrShadow, &SI);
1373   }
1374   DFSF.storeShadow(SI.getPointerOperand(), Size, Align, Shadow, &SI);
1375 }
1376
1377 void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) {
1378   visitOperandShadowInst(BO);
1379 }
1380
1381 void DFSanVisitor::visitCastInst(CastInst &CI) { visitOperandShadowInst(CI); }
1382
1383 void DFSanVisitor::visitCmpInst(CmpInst &CI) { visitOperandShadowInst(CI); }
1384
1385 void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
1386   visitOperandShadowInst(GEPI);
1387 }
1388
1389 void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) {
1390   visitOperandShadowInst(I);
1391 }
1392
1393 void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) {
1394   visitOperandShadowInst(I);
1395 }
1396
1397 void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) {
1398   visitOperandShadowInst(I);
1399 }
1400
1401 void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) {
1402   visitOperandShadowInst(I);
1403 }
1404
1405 void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) {
1406   visitOperandShadowInst(I);
1407 }
1408
1409 void DFSanVisitor::visitAllocaInst(AllocaInst &I) {
1410   bool AllLoadsStores = true;
1411   for (User *U : I.users()) {
1412     if (isa<LoadInst>(U))
1413       continue;
1414
1415     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1416       if (SI->getPointerOperand() == &I)
1417         continue;
1418     }
1419
1420     AllLoadsStores = false;
1421     break;
1422   }
1423   if (AllLoadsStores) {
1424     IRBuilder<> IRB(&I);
1425     DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.ShadowTy);
1426   }
1427   DFSF.setShadow(&I, DFSF.DFS.ZeroShadow);
1428 }
1429
1430 void DFSanVisitor::visitSelectInst(SelectInst &I) {
1431   Value *CondShadow = DFSF.getShadow(I.getCondition());
1432   Value *TrueShadow = DFSF.getShadow(I.getTrueValue());
1433   Value *FalseShadow = DFSF.getShadow(I.getFalseValue());
1434
1435   if (isa<VectorType>(I.getCondition()->getType())) {
1436     DFSF.setShadow(
1437         &I,
1438         DFSF.combineShadows(
1439             CondShadow, DFSF.combineShadows(TrueShadow, FalseShadow, &I), &I));
1440   } else {
1441     Value *ShadowSel;
1442     if (TrueShadow == FalseShadow) {
1443       ShadowSel = TrueShadow;
1444     } else {
1445       ShadowSel =
1446           SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I);
1447     }
1448     DFSF.setShadow(&I, DFSF.combineShadows(CondShadow, ShadowSel, &I));
1449   }
1450 }
1451
1452 void DFSanVisitor::visitMemSetInst(MemSetInst &I) {
1453   IRBuilder<> IRB(&I);
1454   Value *ValShadow = DFSF.getShadow(I.getValue());
1455   IRB.CreateCall(DFSF.DFS.DFSanSetLabelFn,
1456                  {ValShadow, IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy(
1457                                                                 *DFSF.DFS.Ctx)),
1458                   IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)});
1459 }
1460
1461 void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) {
1462   IRBuilder<> IRB(&I);
1463   Value *DestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I);
1464   Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I);
1465   Value *LenShadow = IRB.CreateMul(
1466       I.getLength(),
1467       ConstantInt::get(I.getLength()->getType(), DFSF.DFS.ShadowWidth / 8));
1468   Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx);
1469   DestShadow = IRB.CreateBitCast(DestShadow, Int8Ptr);
1470   SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr);
1471   auto *MTI = cast<MemTransferInst>(
1472       IRB.CreateCall(I.getCalledValue(),
1473                      {DestShadow, SrcShadow, LenShadow, I.getVolatileCst()}));
1474   if (ClPreserveAlignment) {
1475     MTI->setDestAlignment(I.getDestAlignment() * (DFSF.DFS.ShadowWidth / 8));
1476     MTI->setSourceAlignment(I.getSourceAlignment() * (DFSF.DFS.ShadowWidth / 8));
1477   } else {
1478     MTI->setDestAlignment(DFSF.DFS.ShadowWidth / 8);
1479     MTI->setSourceAlignment(DFSF.DFS.ShadowWidth / 8);
1480   }
1481 }
1482
1483 void DFSanVisitor::visitReturnInst(ReturnInst &RI) {
1484   if (!DFSF.IsNativeABI && RI.getReturnValue()) {
1485     switch (DFSF.IA) {
1486     case DataFlowSanitizer::IA_TLS: {
1487       Value *S = DFSF.getShadow(RI.getReturnValue());
1488       IRBuilder<> IRB(&RI);
1489       IRB.CreateStore(S, DFSF.getRetvalTLS());
1490       break;
1491     }
1492     case DataFlowSanitizer::IA_Args: {
1493       IRBuilder<> IRB(&RI);
1494       Type *RT = DFSF.F->getFunctionType()->getReturnType();
1495       Value *InsVal =
1496           IRB.CreateInsertValue(UndefValue::get(RT), RI.getReturnValue(), 0);
1497       Value *InsShadow =
1498           IRB.CreateInsertValue(InsVal, DFSF.getShadow(RI.getReturnValue()), 1);
1499       RI.setOperand(0, InsShadow);
1500       break;
1501     }
1502     }
1503   }
1504 }
1505
1506 void DFSanVisitor::visitCallSite(CallSite CS) {
1507   Function *F = CS.getCalledFunction();
1508   if ((F && F->isIntrinsic()) || isa<InlineAsm>(CS.getCalledValue())) {
1509     visitOperandShadowInst(*CS.getInstruction());
1510     return;
1511   }
1512
1513   // Calls to this function are synthesized in wrappers, and we shouldn't
1514   // instrument them.
1515   if (F == DFSF.DFS.DFSanVarargWrapperFn)
1516     return;
1517
1518   IRBuilder<> IRB(CS.getInstruction());
1519
1520   DenseMap<Value *, Function *>::iterator i =
1521       DFSF.DFS.UnwrappedFnMap.find(CS.getCalledValue());
1522   if (i != DFSF.DFS.UnwrappedFnMap.end()) {
1523     Function *F = i->second;
1524     switch (DFSF.DFS.getWrapperKind(F)) {
1525     case DataFlowSanitizer::WK_Warning:
1526       CS.setCalledFunction(F);
1527       IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn,
1528                      IRB.CreateGlobalStringPtr(F->getName()));
1529       DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow);
1530       return;
1531     case DataFlowSanitizer::WK_Discard:
1532       CS.setCalledFunction(F);
1533       DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow);
1534       return;
1535     case DataFlowSanitizer::WK_Functional:
1536       CS.setCalledFunction(F);
1537       visitOperandShadowInst(*CS.getInstruction());
1538       return;
1539     case DataFlowSanitizer::WK_Custom:
1540       // Don't try to handle invokes of custom functions, it's too complicated.
1541       // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_
1542       // wrapper.
1543       if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
1544         FunctionType *FT = F->getFunctionType();
1545         TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(FT);
1546         std::string CustomFName = "__dfsw_";
1547         CustomFName += F->getName();
1548         Constant *CustomF = DFSF.DFS.Mod->getOrInsertFunction(
1549             CustomFName, CustomFn.TransformedType);
1550         if (Function *CustomFn = dyn_cast<Function>(CustomF)) {
1551           CustomFn->copyAttributesFrom(F);
1552
1553           // Custom functions returning non-void will write to the return label.
1554           if (!FT->getReturnType()->isVoidTy()) {
1555             CustomFn->removeAttributes(AttributeList::FunctionIndex,
1556                                        DFSF.DFS.ReadOnlyNoneAttrs);
1557           }
1558         }
1559
1560         std::vector<Value *> Args;
1561
1562         CallSite::arg_iterator i = CS.arg_begin();
1563         for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) {
1564           Type *T = (*i)->getType();
1565           FunctionType *ParamFT;
1566           if (isa<PointerType>(T) &&
1567               (ParamFT = dyn_cast<FunctionType>(
1568                    cast<PointerType>(T)->getElementType()))) {
1569             std::string TName = "dfst";
1570             TName += utostr(FT->getNumParams() - n);
1571             TName += "$";
1572             TName += F->getName();
1573             Constant *T = DFSF.DFS.getOrBuildTrampolineFunction(ParamFT, TName);
1574             Args.push_back(T);
1575             Args.push_back(
1576                 IRB.CreateBitCast(*i, Type::getInt8PtrTy(*DFSF.DFS.Ctx)));
1577           } else {
1578             Args.push_back(*i);
1579           }
1580         }
1581
1582         i = CS.arg_begin();
1583         const unsigned ShadowArgStart = Args.size();
1584         for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
1585           Args.push_back(DFSF.getShadow(*i));
1586
1587         if (FT->isVarArg()) {
1588           auto *LabelVATy = ArrayType::get(DFSF.DFS.ShadowTy,
1589                                            CS.arg_size() - FT->getNumParams());
1590           auto *LabelVAAlloca = new AllocaInst(
1591               LabelVATy, getDataLayout().getAllocaAddrSpace(),
1592               "labelva", &DFSF.F->getEntryBlock().front());
1593
1594           for (unsigned n = 0; i != CS.arg_end(); ++i, ++n) {
1595             auto LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, n);
1596             IRB.CreateStore(DFSF.getShadow(*i), LabelVAPtr);
1597           }
1598
1599           Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0));
1600         }
1601
1602         if (!FT->getReturnType()->isVoidTy()) {
1603           if (!DFSF.LabelReturnAlloca) {
1604             DFSF.LabelReturnAlloca =
1605               new AllocaInst(DFSF.DFS.ShadowTy,
1606                              getDataLayout().getAllocaAddrSpace(),
1607                              "labelreturn", &DFSF.F->getEntryBlock().front());
1608           }
1609           Args.push_back(DFSF.LabelReturnAlloca);
1610         }
1611
1612         for (i = CS.arg_begin() + FT->getNumParams(); i != CS.arg_end(); ++i)
1613           Args.push_back(*i);
1614
1615         CallInst *CustomCI = IRB.CreateCall(CustomF, Args);
1616         CustomCI->setCallingConv(CI->getCallingConv());
1617         CustomCI->setAttributes(TransformFunctionAttributes(CustomFn,
1618             CI->getContext(), CI->getAttributes()));
1619
1620         // Update the parameter attributes of the custom call instruction to
1621         // zero extend the shadow parameters. This is required for targets
1622         // which consider ShadowTy an illegal type.
1623         for (unsigned n = 0; n < FT->getNumParams(); n++) {
1624           const unsigned ArgNo = ShadowArgStart + n;
1625           if (CustomCI->getArgOperand(ArgNo)->getType() == DFSF.DFS.ShadowTy)
1626             CustomCI->addParamAttr(ArgNo, Attribute::ZExt);
1627         }
1628
1629         if (!FT->getReturnType()->isVoidTy()) {
1630           LoadInst *LabelLoad = IRB.CreateLoad(DFSF.LabelReturnAlloca);
1631           DFSF.setShadow(CustomCI, LabelLoad);
1632         }
1633
1634         CI->replaceAllUsesWith(CustomCI);
1635         CI->eraseFromParent();
1636         return;
1637       }
1638       break;
1639     }
1640   }
1641
1642   FunctionType *FT = cast<FunctionType>(
1643       CS.getCalledValue()->getType()->getPointerElementType());
1644   if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) {
1645     for (unsigned i = 0, n = FT->getNumParams(); i != n; ++i) {
1646       IRB.CreateStore(DFSF.getShadow(CS.getArgument(i)),
1647                       DFSF.getArgTLS(i, CS.getInstruction()));
1648     }
1649   }
1650
1651   Instruction *Next = nullptr;
1652   if (!CS.getType()->isVoidTy()) {
1653     if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
1654       if (II->getNormalDest()->getSinglePredecessor()) {
1655         Next = &II->getNormalDest()->front();
1656       } else {
1657         BasicBlock *NewBB =
1658             SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT);
1659         Next = &NewBB->front();
1660       }
1661     } else {
1662       assert(CS->getIterator() != CS->getParent()->end());
1663       Next = CS->getNextNode();
1664     }
1665
1666     if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) {
1667       IRBuilder<> NextIRB(Next);
1668       LoadInst *LI = NextIRB.CreateLoad(DFSF.getRetvalTLS());
1669       DFSF.SkipInsts.insert(LI);
1670       DFSF.setShadow(CS.getInstruction(), LI);
1671       DFSF.NonZeroChecks.push_back(LI);
1672     }
1673   }
1674
1675   // Do all instrumentation for IA_Args down here to defer tampering with the
1676   // CFG in a way that SplitEdge may be able to detect.
1677   if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_Args) {
1678     FunctionType *NewFT = DFSF.DFS.getArgsFunctionType(FT);
1679     Value *Func =
1680         IRB.CreateBitCast(CS.getCalledValue(), PointerType::getUnqual(NewFT));
1681     std::vector<Value *> Args;
1682
1683     CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1684     for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
1685       Args.push_back(*i);
1686
1687     i = CS.arg_begin();
1688     for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
1689       Args.push_back(DFSF.getShadow(*i));
1690
1691     if (FT->isVarArg()) {
1692       unsigned VarArgSize = CS.arg_size() - FT->getNumParams();
1693       ArrayType *VarArgArrayTy = ArrayType::get(DFSF.DFS.ShadowTy, VarArgSize);
1694       AllocaInst *VarArgShadow =
1695         new AllocaInst(VarArgArrayTy, getDataLayout().getAllocaAddrSpace(),
1696                        "", &DFSF.F->getEntryBlock().front());
1697       Args.push_back(IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, 0));
1698       for (unsigned n = 0; i != e; ++i, ++n) {
1699         IRB.CreateStore(
1700             DFSF.getShadow(*i),
1701             IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, n));
1702         Args.push_back(*i);
1703       }
1704     }
1705
1706     CallSite NewCS;
1707     if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
1708       NewCS = IRB.CreateInvoke(Func, II->getNormalDest(), II->getUnwindDest(),
1709                                Args);
1710     } else {
1711       NewCS = IRB.CreateCall(Func, Args);
1712     }
1713     NewCS.setCallingConv(CS.getCallingConv());
1714     NewCS.setAttributes(CS.getAttributes().removeAttributes(
1715         *DFSF.DFS.Ctx, AttributeList::ReturnIndex,
1716         AttributeFuncs::typeIncompatible(NewCS.getInstruction()->getType())));
1717
1718     if (Next) {
1719       ExtractValueInst *ExVal =
1720           ExtractValueInst::Create(NewCS.getInstruction(), 0, "", Next);
1721       DFSF.SkipInsts.insert(ExVal);
1722       ExtractValueInst *ExShadow =
1723           ExtractValueInst::Create(NewCS.getInstruction(), 1, "", Next);
1724       DFSF.SkipInsts.insert(ExShadow);
1725       DFSF.setShadow(ExVal, ExShadow);
1726       DFSF.NonZeroChecks.push_back(ExShadow);
1727
1728       CS.getInstruction()->replaceAllUsesWith(ExVal);
1729     }
1730
1731     CS.getInstruction()->eraseFromParent();
1732   }
1733 }
1734
1735 void DFSanVisitor::visitPHINode(PHINode &PN) {
1736   PHINode *ShadowPN =
1737       PHINode::Create(DFSF.DFS.ShadowTy, PN.getNumIncomingValues(), "", &PN);
1738
1739   // Give the shadow phi node valid predecessors to fool SplitEdge into working.
1740   Value *UndefShadow = UndefValue::get(DFSF.DFS.ShadowTy);
1741   for (PHINode::block_iterator i = PN.block_begin(), e = PN.block_end(); i != e;
1742        ++i) {
1743     ShadowPN->addIncoming(UndefShadow, *i);
1744   }
1745
1746   DFSF.PHIFixups.push_back(std::make_pair(&PN, ShadowPN));
1747   DFSF.setShadow(&PN, ShadowPN);
1748 }