]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/Instrumentation/SafeStack.cpp
Merge ^/head r293280 through r293429.
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / Instrumentation / SafeStack.cpp
1 //===-- SafeStack.cpp - Safe Stack Insertion ------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass splits the stack into the safe stack (kept as-is for LLVM backend)
11 // and the unsafe stack (explicitly allocated and managed through the runtime
12 // support library).
13 //
14 // http://clang.llvm.org/docs/SafeStack.html
15 //
16 //===----------------------------------------------------------------------===//
17
18 #include "llvm/Transforms/Instrumentation.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/Triple.h"
21 #include "llvm/Analysis/ScalarEvolution.h"
22 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
23 #include "llvm/CodeGen/Passes.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/DIBuilder.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/InstIterator.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/Pass.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/Format.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_os_ostream.h"
41 #include "llvm/Target/TargetLowering.h"
42 #include "llvm/Target/TargetSubtargetInfo.h"
43 #include "llvm/Transforms/Utils/Local.h"
44 #include "llvm/Transforms/Utils/ModuleUtils.h"
45
46 using namespace llvm;
47
48 #define DEBUG_TYPE "safestack"
49
50 enum UnsafeStackPtrStorageVal { ThreadLocalUSP, SingleThreadUSP };
51
52 static cl::opt<UnsafeStackPtrStorageVal> USPStorage("safe-stack-usp-storage",
53     cl::Hidden, cl::init(ThreadLocalUSP),
54     cl::desc("Type of storage for the unsafe stack pointer"),
55     cl::values(clEnumValN(ThreadLocalUSP, "thread-local",
56                           "Thread-local storage"),
57                clEnumValN(SingleThreadUSP, "single-thread",
58                           "Non-thread-local storage"),
59                clEnumValEnd));
60
61 namespace llvm {
62
63 STATISTIC(NumFunctions, "Total number of functions");
64 STATISTIC(NumUnsafeStackFunctions, "Number of functions with unsafe stack");
65 STATISTIC(NumUnsafeStackRestorePointsFunctions,
66           "Number of functions that use setjmp or exceptions");
67
68 STATISTIC(NumAllocas, "Total number of allocas");
69 STATISTIC(NumUnsafeStaticAllocas, "Number of unsafe static allocas");
70 STATISTIC(NumUnsafeDynamicAllocas, "Number of unsafe dynamic allocas");
71 STATISTIC(NumUnsafeByValArguments, "Number of unsafe byval arguments");
72 STATISTIC(NumUnsafeStackRestorePoints, "Number of setjmps and landingpads");
73
74 } // namespace llvm
75
76 namespace {
77
78 /// Rewrite an SCEV expression for a memory access address to an expression that
79 /// represents offset from the given alloca.
80 ///
81 /// The implementation simply replaces all mentions of the alloca with zero.
82 class AllocaOffsetRewriter : public SCEVRewriteVisitor<AllocaOffsetRewriter> {
83   const Value *AllocaPtr;
84
85 public:
86   AllocaOffsetRewriter(ScalarEvolution &SE, const Value *AllocaPtr)
87       : SCEVRewriteVisitor(SE), AllocaPtr(AllocaPtr) {}
88
89   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
90     if (Expr->getValue() == AllocaPtr)
91       return SE.getZero(Expr->getType());
92     return Expr;
93   }
94 };
95
96 /// The SafeStack pass splits the stack of each function into the safe
97 /// stack, which is only accessed through memory safe dereferences (as
98 /// determined statically), and the unsafe stack, which contains all
99 /// local variables that are accessed in ways that we can't prove to
100 /// be safe.
101 class SafeStack : public FunctionPass {
102   const TargetMachine *TM;
103   const TargetLoweringBase *TL;
104   const DataLayout *DL;
105   ScalarEvolution *SE;
106
107   Type *StackPtrTy;
108   Type *IntPtrTy;
109   Type *Int32Ty;
110   Type *Int8Ty;
111
112   Value *UnsafeStackPtr = nullptr;
113
114   /// Unsafe stack alignment. Each stack frame must ensure that the stack is
115   /// aligned to this value. We need to re-align the unsafe stack if the
116   /// alignment of any object on the stack exceeds this value.
117   ///
118   /// 16 seems like a reasonable upper bound on the alignment of objects that we
119   /// might expect to appear on the stack on most common targets.
120   enum { StackAlignment = 16 };
121
122   /// \brief Build a value representing a pointer to the unsafe stack pointer.
123   Value *getOrCreateUnsafeStackPtr(IRBuilder<> &IRB, Function &F);
124
125   /// \brief Find all static allocas, dynamic allocas, return instructions and
126   /// stack restore points (exception unwind blocks and setjmp calls) in the
127   /// given function and append them to the respective vectors.
128   void findInsts(Function &F, SmallVectorImpl<AllocaInst *> &StaticAllocas,
129                  SmallVectorImpl<AllocaInst *> &DynamicAllocas,
130                  SmallVectorImpl<Argument *> &ByValArguments,
131                  SmallVectorImpl<ReturnInst *> &Returns,
132                  SmallVectorImpl<Instruction *> &StackRestorePoints);
133
134   /// \brief Calculate the allocation size of a given alloca. Returns 0 if the
135   /// size can not be statically determined.
136   uint64_t getStaticAllocaAllocationSize(const AllocaInst* AI);
137
138   /// \brief Allocate space for all static allocas in \p StaticAllocas,
139   /// replace allocas with pointers into the unsafe stack and generate code to
140   /// restore the stack pointer before all return instructions in \p Returns.
141   ///
142   /// \returns A pointer to the top of the unsafe stack after all unsafe static
143   /// allocas are allocated.
144   Value *moveStaticAllocasToUnsafeStack(IRBuilder<> &IRB, Function &F,
145                                         ArrayRef<AllocaInst *> StaticAllocas,
146                                         ArrayRef<Argument *> ByValArguments,
147                                         ArrayRef<ReturnInst *> Returns);
148
149   /// \brief Generate code to restore the stack after all stack restore points
150   /// in \p StackRestorePoints.
151   ///
152   /// \returns A local variable in which to maintain the dynamic top of the
153   /// unsafe stack if needed.
154   AllocaInst *
155   createStackRestorePoints(IRBuilder<> &IRB, Function &F,
156                            ArrayRef<Instruction *> StackRestorePoints,
157                            Value *StaticTop, bool NeedDynamicTop);
158
159   /// \brief Replace all allocas in \p DynamicAllocas with code to allocate
160   /// space dynamically on the unsafe stack and store the dynamic unsafe stack
161   /// top to \p DynamicTop if non-null.
162   void moveDynamicAllocasToUnsafeStack(Function &F, Value *UnsafeStackPtr,
163                                        AllocaInst *DynamicTop,
164                                        ArrayRef<AllocaInst *> DynamicAllocas);
165
166   bool IsSafeStackAlloca(const Value *AllocaPtr, uint64_t AllocaSize);
167
168   bool IsMemIntrinsicSafe(const MemIntrinsic *MI, const Use &U,
169                           const Value *AllocaPtr, uint64_t AllocaSize);
170   bool IsAccessSafe(Value *Addr, uint64_t Size, const Value *AllocaPtr,
171                     uint64_t AllocaSize);
172
173 public:
174   static char ID; // Pass identification, replacement for typeid.
175   SafeStack(const TargetMachine *TM)
176       : FunctionPass(ID), TM(TM), TL(nullptr), DL(nullptr) {
177     initializeSafeStackPass(*PassRegistry::getPassRegistry());
178   }
179   SafeStack() : SafeStack(nullptr) {}
180
181   void getAnalysisUsage(AnalysisUsage &AU) const override {
182     AU.addRequired<ScalarEvolutionWrapperPass>();
183   }
184
185   bool doInitialization(Module &M) override {
186     DL = &M.getDataLayout();
187
188     StackPtrTy = Type::getInt8PtrTy(M.getContext());
189     IntPtrTy = DL->getIntPtrType(M.getContext());
190     Int32Ty = Type::getInt32Ty(M.getContext());
191     Int8Ty = Type::getInt8Ty(M.getContext());
192
193     return false;
194   }
195
196   bool runOnFunction(Function &F) override;
197 }; // class SafeStack
198
199 uint64_t SafeStack::getStaticAllocaAllocationSize(const AllocaInst* AI) {
200   uint64_t Size = DL->getTypeAllocSize(AI->getAllocatedType());
201   if (AI->isArrayAllocation()) {
202     auto C = dyn_cast<ConstantInt>(AI->getArraySize());
203     if (!C)
204       return 0;
205     Size *= C->getZExtValue();
206   }
207   return Size;
208 }
209
210 bool SafeStack::IsAccessSafe(Value *Addr, uint64_t AccessSize,
211                              const Value *AllocaPtr, uint64_t AllocaSize) {
212   AllocaOffsetRewriter Rewriter(*SE, AllocaPtr);
213   const SCEV *Expr = Rewriter.visit(SE->getSCEV(Addr));
214
215   uint64_t BitWidth = SE->getTypeSizeInBits(Expr->getType());
216   ConstantRange AccessStartRange = SE->getUnsignedRange(Expr);
217   ConstantRange SizeRange =
218       ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, AccessSize));
219   ConstantRange AccessRange = AccessStartRange.add(SizeRange);
220   ConstantRange AllocaRange =
221       ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, AllocaSize));
222   bool Safe = AllocaRange.contains(AccessRange);
223
224   DEBUG(dbgs() << "[SafeStack] "
225                << (isa<AllocaInst>(AllocaPtr) ? "Alloca " : "ByValArgument ")
226                << *AllocaPtr << "\n"
227                << "            Access " << *Addr << "\n"
228                << "            SCEV " << *Expr
229                << " U: " << SE->getUnsignedRange(Expr)
230                << ", S: " << SE->getSignedRange(Expr) << "\n"
231                << "            Range " << AccessRange << "\n"
232                << "            AllocaRange " << AllocaRange << "\n"
233                << "            " << (Safe ? "safe" : "unsafe") << "\n");
234
235   return Safe;
236 }
237
238 bool SafeStack::IsMemIntrinsicSafe(const MemIntrinsic *MI, const Use &U,
239                                    const Value *AllocaPtr,
240                                    uint64_t AllocaSize) {
241   // All MemIntrinsics have destination address in Arg0 and size in Arg2.
242   if (MI->getRawDest() != U) return true;
243   const auto *Len = dyn_cast<ConstantInt>(MI->getLength());
244   // Non-constant size => unsafe. FIXME: try SCEV getRange.
245   if (!Len) return false;
246   return IsAccessSafe(U, Len->getZExtValue(), AllocaPtr, AllocaSize);
247 }
248
249 /// Check whether a given allocation must be put on the safe
250 /// stack or not. The function analyzes all uses of AI and checks whether it is
251 /// only accessed in a memory safe way (as decided statically).
252 bool SafeStack::IsSafeStackAlloca(const Value *AllocaPtr, uint64_t AllocaSize) {
253   // Go through all uses of this alloca and check whether all accesses to the
254   // allocated object are statically known to be memory safe and, hence, the
255   // object can be placed on the safe stack.
256   SmallPtrSet<const Value *, 16> Visited;
257   SmallVector<const Value *, 8> WorkList;
258   WorkList.push_back(AllocaPtr);
259
260   // A DFS search through all uses of the alloca in bitcasts/PHI/GEPs/etc.
261   while (!WorkList.empty()) {
262     const Value *V = WorkList.pop_back_val();
263     for (const Use &UI : V->uses()) {
264       auto I = cast<const Instruction>(UI.getUser());
265       assert(V == UI.get());
266
267       switch (I->getOpcode()) {
268       case Instruction::Load: {
269         if (!IsAccessSafe(UI, DL->getTypeStoreSize(I->getType()), AllocaPtr,
270                           AllocaSize))
271           return false;
272         break;
273       }
274       case Instruction::VAArg:
275         // "va-arg" from a pointer is safe.
276         break;
277       case Instruction::Store: {
278         if (V == I->getOperand(0)) {
279           // Stored the pointer - conservatively assume it may be unsafe.
280           DEBUG(dbgs() << "[SafeStack] Unsafe alloca: " << *AllocaPtr
281                        << "\n            store of address: " << *I << "\n");
282           return false;
283         }
284
285         if (!IsAccessSafe(UI, DL->getTypeStoreSize(I->getOperand(0)->getType()),
286                           AllocaPtr, AllocaSize))
287           return false;
288         break;
289       }
290       case Instruction::Ret: {
291         // Information leak.
292         return false;
293       }
294
295       case Instruction::Call:
296       case Instruction::Invoke: {
297         ImmutableCallSite CS(I);
298
299         if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
300           if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
301               II->getIntrinsicID() == Intrinsic::lifetime_end)
302             continue;
303         }
304
305         if (const MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
306           if (!IsMemIntrinsicSafe(MI, UI, AllocaPtr, AllocaSize)) {
307             DEBUG(dbgs() << "[SafeStack] Unsafe alloca: " << *AllocaPtr
308                          << "\n            unsafe memintrinsic: " << *I
309                          << "\n");
310             return false;
311           }
312           continue;
313         }
314
315         // LLVM 'nocapture' attribute is only set for arguments whose address
316         // is not stored, passed around, or used in any other non-trivial way.
317         // We assume that passing a pointer to an object as a 'nocapture
318         // readnone' argument is safe.
319         // FIXME: a more precise solution would require an interprocedural
320         // analysis here, which would look at all uses of an argument inside
321         // the function being called.
322         ImmutableCallSite::arg_iterator B = CS.arg_begin(), E = CS.arg_end();
323         for (ImmutableCallSite::arg_iterator A = B; A != E; ++A)
324           if (A->get() == V)
325             if (!(CS.doesNotCapture(A - B) && (CS.doesNotAccessMemory(A - B) ||
326                                                CS.doesNotAccessMemory()))) {
327               DEBUG(dbgs() << "[SafeStack] Unsafe alloca: " << *AllocaPtr
328                            << "\n            unsafe call: " << *I << "\n");
329               return false;
330             }
331         continue;
332       }
333
334       default:
335         if (Visited.insert(I).second)
336           WorkList.push_back(cast<const Instruction>(I));
337       }
338     }
339   }
340
341   // All uses of the alloca are safe, we can place it on the safe stack.
342   return true;
343 }
344
345 Value *SafeStack::getOrCreateUnsafeStackPtr(IRBuilder<> &IRB, Function &F) {
346   // Check if there is a target-specific location for the unsafe stack pointer.
347   if (TL)
348     if (Value *V = TL->getSafeStackPointerLocation(IRB))
349       return V;
350
351   // Otherwise, assume the target links with compiler-rt, which provides a
352   // thread-local variable with a magic name.
353   Module &M = *F.getParent();
354   const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
355   auto UnsafeStackPtr =
356       dyn_cast_or_null<GlobalVariable>(M.getNamedValue(UnsafeStackPtrVar));
357
358   bool UseTLS = USPStorage == ThreadLocalUSP;
359
360   if (!UnsafeStackPtr) {
361     auto TLSModel = UseTLS ?
362         GlobalValue::InitialExecTLSModel :
363         GlobalValue::NotThreadLocal;
364     // The global variable is not defined yet, define it ourselves.
365     // We use the initial-exec TLS model because we do not support the
366     // variable living anywhere other than in the main executable.
367     UnsafeStackPtr = new GlobalVariable(
368         M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
369         UnsafeStackPtrVar, nullptr, TLSModel);
370   } else {
371     // The variable exists, check its type and attributes.
372     if (UnsafeStackPtr->getValueType() != StackPtrTy)
373       report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
374     if (UseTLS != UnsafeStackPtr->isThreadLocal())
375       report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
376                          (UseTLS ? "" : "not ") + "be thread-local");
377   }
378   return UnsafeStackPtr;
379 }
380
381 void SafeStack::findInsts(Function &F,
382                           SmallVectorImpl<AllocaInst *> &StaticAllocas,
383                           SmallVectorImpl<AllocaInst *> &DynamicAllocas,
384                           SmallVectorImpl<Argument *> &ByValArguments,
385                           SmallVectorImpl<ReturnInst *> &Returns,
386                           SmallVectorImpl<Instruction *> &StackRestorePoints) {
387   for (Instruction &I : instructions(&F)) {
388     if (auto AI = dyn_cast<AllocaInst>(&I)) {
389       ++NumAllocas;
390
391       uint64_t Size = getStaticAllocaAllocationSize(AI);
392       if (IsSafeStackAlloca(AI, Size))
393         continue;
394
395       if (AI->isStaticAlloca()) {
396         ++NumUnsafeStaticAllocas;
397         StaticAllocas.push_back(AI);
398       } else {
399         ++NumUnsafeDynamicAllocas;
400         DynamicAllocas.push_back(AI);
401       }
402     } else if (auto RI = dyn_cast<ReturnInst>(&I)) {
403       Returns.push_back(RI);
404     } else if (auto CI = dyn_cast<CallInst>(&I)) {
405       // setjmps require stack restore.
406       if (CI->getCalledFunction() && CI->canReturnTwice())
407         StackRestorePoints.push_back(CI);
408     } else if (auto LP = dyn_cast<LandingPadInst>(&I)) {
409       // Exception landing pads require stack restore.
410       StackRestorePoints.push_back(LP);
411     } else if (auto II = dyn_cast<IntrinsicInst>(&I)) {
412       if (II->getIntrinsicID() == Intrinsic::gcroot)
413         llvm::report_fatal_error(
414             "gcroot intrinsic not compatible with safestack attribute");
415     }
416   }
417   for (Argument &Arg : F.args()) {
418     if (!Arg.hasByValAttr())
419       continue;
420     uint64_t Size =
421         DL->getTypeStoreSize(Arg.getType()->getPointerElementType());
422     if (IsSafeStackAlloca(&Arg, Size))
423       continue;
424
425     ++NumUnsafeByValArguments;
426     ByValArguments.push_back(&Arg);
427   }
428 }
429
430 AllocaInst *
431 SafeStack::createStackRestorePoints(IRBuilder<> &IRB, Function &F,
432                                     ArrayRef<Instruction *> StackRestorePoints,
433                                     Value *StaticTop, bool NeedDynamicTop) {
434   if (StackRestorePoints.empty())
435     return nullptr;
436
437   // We need the current value of the shadow stack pointer to restore
438   // after longjmp or exception catching.
439
440   // FIXME: On some platforms this could be handled by the longjmp/exception
441   // runtime itself.
442
443   AllocaInst *DynamicTop = nullptr;
444   if (NeedDynamicTop)
445     // If we also have dynamic alloca's, the stack pointer value changes
446     // throughout the function. For now we store it in an alloca.
447     DynamicTop = IRB.CreateAlloca(StackPtrTy, /*ArraySize=*/nullptr,
448                                   "unsafe_stack_dynamic_ptr");
449
450   if (!StaticTop)
451     // We need the original unsafe stack pointer value, even if there are
452     // no unsafe static allocas.
453     StaticTop = IRB.CreateLoad(UnsafeStackPtr, false, "unsafe_stack_ptr");
454
455   if (NeedDynamicTop)
456     IRB.CreateStore(StaticTop, DynamicTop);
457
458   // Restore current stack pointer after longjmp/exception catch.
459   for (Instruction *I : StackRestorePoints) {
460     ++NumUnsafeStackRestorePoints;
461
462     IRB.SetInsertPoint(I->getNextNode());
463     Value *CurrentTop = DynamicTop ? IRB.CreateLoad(DynamicTop) : StaticTop;
464     IRB.CreateStore(CurrentTop, UnsafeStackPtr);
465   }
466
467   return DynamicTop;
468 }
469
470 Value *SafeStack::moveStaticAllocasToUnsafeStack(
471     IRBuilder<> &IRB, Function &F, ArrayRef<AllocaInst *> StaticAllocas,
472     ArrayRef<Argument *> ByValArguments, ArrayRef<ReturnInst *> Returns) {
473   if (StaticAllocas.empty() && ByValArguments.empty())
474     return nullptr;
475
476   DIBuilder DIB(*F.getParent());
477
478   // We explicitly compute and set the unsafe stack layout for all unsafe
479   // static alloca instructions. We save the unsafe "base pointer" in the
480   // prologue into a local variable and restore it in the epilogue.
481
482   // Load the current stack pointer (we'll also use it as a base pointer).
483   // FIXME: use a dedicated register for it ?
484   Instruction *BasePointer =
485       IRB.CreateLoad(UnsafeStackPtr, false, "unsafe_stack_ptr");
486   assert(BasePointer->getType() == StackPtrTy);
487
488   for (ReturnInst *RI : Returns) {
489     IRB.SetInsertPoint(RI);
490     IRB.CreateStore(BasePointer, UnsafeStackPtr);
491   }
492
493   // Compute maximum alignment among static objects on the unsafe stack.
494   unsigned MaxAlignment = 0;
495   for (Argument *Arg : ByValArguments) {
496     Type *Ty = Arg->getType()->getPointerElementType();
497     unsigned Align = std::max((unsigned)DL->getPrefTypeAlignment(Ty),
498                               Arg->getParamAlignment());
499     if (Align > MaxAlignment)
500       MaxAlignment = Align;
501   }
502   for (AllocaInst *AI : StaticAllocas) {
503     Type *Ty = AI->getAllocatedType();
504     unsigned Align =
505         std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI->getAlignment());
506     if (Align > MaxAlignment)
507       MaxAlignment = Align;
508   }
509
510   if (MaxAlignment > StackAlignment) {
511     // Re-align the base pointer according to the max requested alignment.
512     assert(isPowerOf2_32(MaxAlignment));
513     IRB.SetInsertPoint(BasePointer->getNextNode());
514     BasePointer = cast<Instruction>(IRB.CreateIntToPtr(
515         IRB.CreateAnd(IRB.CreatePtrToInt(BasePointer, IntPtrTy),
516                       ConstantInt::get(IntPtrTy, ~uint64_t(MaxAlignment - 1))),
517         StackPtrTy));
518   }
519
520   int64_t StaticOffset = 0; // Current stack top.
521   IRB.SetInsertPoint(BasePointer->getNextNode());
522
523   for (Argument *Arg : ByValArguments) {
524     Type *Ty = Arg->getType()->getPointerElementType();
525
526     uint64_t Size = DL->getTypeStoreSize(Ty);
527     if (Size == 0)
528       Size = 1; // Don't create zero-sized stack objects.
529
530     // Ensure the object is properly aligned.
531     unsigned Align = std::max((unsigned)DL->getPrefTypeAlignment(Ty),
532                               Arg->getParamAlignment());
533
534     // Add alignment.
535     // NOTE: we ensure that BasePointer itself is aligned to >= Align.
536     StaticOffset += Size;
537     StaticOffset = RoundUpToAlignment(StaticOffset, Align);
538
539     Value *Off = IRB.CreateGEP(BasePointer, // BasePointer is i8*
540                                ConstantInt::get(Int32Ty, -StaticOffset));
541     Value *NewArg = IRB.CreateBitCast(Off, Arg->getType(),
542                                      Arg->getName() + ".unsafe-byval");
543
544     // Replace alloc with the new location.
545     replaceDbgDeclare(Arg, BasePointer, BasePointer->getNextNode(), DIB,
546                       /*Deref=*/true, -StaticOffset);
547     Arg->replaceAllUsesWith(NewArg);
548     IRB.SetInsertPoint(cast<Instruction>(NewArg)->getNextNode());
549     IRB.CreateMemCpy(Off, Arg, Size, Arg->getParamAlignment());
550   }
551
552   // Allocate space for every unsafe static AllocaInst on the unsafe stack.
553   for (AllocaInst *AI : StaticAllocas) {
554     IRB.SetInsertPoint(AI);
555
556     Type *Ty = AI->getAllocatedType();
557     uint64_t Size = getStaticAllocaAllocationSize(AI);
558     if (Size == 0)
559       Size = 1; // Don't create zero-sized stack objects.
560
561     // Ensure the object is properly aligned.
562     unsigned Align =
563         std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI->getAlignment());
564
565     // Add alignment.
566     // NOTE: we ensure that BasePointer itself is aligned to >= Align.
567     StaticOffset += Size;
568     StaticOffset = RoundUpToAlignment(StaticOffset, Align);
569
570     Value *Off = IRB.CreateGEP(BasePointer, // BasePointer is i8*
571                                ConstantInt::get(Int32Ty, -StaticOffset));
572     Value *NewAI = IRB.CreateBitCast(Off, AI->getType(), AI->getName());
573     if (AI->hasName() && isa<Instruction>(NewAI))
574       cast<Instruction>(NewAI)->takeName(AI);
575
576     // Replace alloc with the new location.
577     replaceDbgDeclareForAlloca(AI, BasePointer, DIB, /*Deref=*/true, -StaticOffset);
578     AI->replaceAllUsesWith(NewAI);
579     AI->eraseFromParent();
580   }
581
582   // Re-align BasePointer so that our callees would see it aligned as
583   // expected.
584   // FIXME: no need to update BasePointer in leaf functions.
585   StaticOffset = RoundUpToAlignment(StaticOffset, StackAlignment);
586
587   // Update shadow stack pointer in the function epilogue.
588   IRB.SetInsertPoint(BasePointer->getNextNode());
589
590   Value *StaticTop =
591       IRB.CreateGEP(BasePointer, ConstantInt::get(Int32Ty, -StaticOffset),
592                     "unsafe_stack_static_top");
593   IRB.CreateStore(StaticTop, UnsafeStackPtr);
594   return StaticTop;
595 }
596
597 void SafeStack::moveDynamicAllocasToUnsafeStack(
598     Function &F, Value *UnsafeStackPtr, AllocaInst *DynamicTop,
599     ArrayRef<AllocaInst *> DynamicAllocas) {
600   DIBuilder DIB(*F.getParent());
601
602   for (AllocaInst *AI : DynamicAllocas) {
603     IRBuilder<> IRB(AI);
604
605     // Compute the new SP value (after AI).
606     Value *ArraySize = AI->getArraySize();
607     if (ArraySize->getType() != IntPtrTy)
608       ArraySize = IRB.CreateIntCast(ArraySize, IntPtrTy, false);
609
610     Type *Ty = AI->getAllocatedType();
611     uint64_t TySize = DL->getTypeAllocSize(Ty);
612     Value *Size = IRB.CreateMul(ArraySize, ConstantInt::get(IntPtrTy, TySize));
613
614     Value *SP = IRB.CreatePtrToInt(IRB.CreateLoad(UnsafeStackPtr), IntPtrTy);
615     SP = IRB.CreateSub(SP, Size);
616
617     // Align the SP value to satisfy the AllocaInst, type and stack alignments.
618     unsigned Align = std::max(
619         std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI->getAlignment()),
620         (unsigned)StackAlignment);
621
622     assert(isPowerOf2_32(Align));
623     Value *NewTop = IRB.CreateIntToPtr(
624         IRB.CreateAnd(SP, ConstantInt::get(IntPtrTy, ~uint64_t(Align - 1))),
625         StackPtrTy);
626
627     // Save the stack pointer.
628     IRB.CreateStore(NewTop, UnsafeStackPtr);
629     if (DynamicTop)
630       IRB.CreateStore(NewTop, DynamicTop);
631
632     Value *NewAI = IRB.CreatePointerCast(NewTop, AI->getType());
633     if (AI->hasName() && isa<Instruction>(NewAI))
634       NewAI->takeName(AI);
635
636     replaceDbgDeclareForAlloca(AI, NewAI, DIB, /*Deref=*/true);
637     AI->replaceAllUsesWith(NewAI);
638     AI->eraseFromParent();
639   }
640
641   if (!DynamicAllocas.empty()) {
642     // Now go through the instructions again, replacing stacksave/stackrestore.
643     for (inst_iterator It = inst_begin(&F), Ie = inst_end(&F); It != Ie;) {
644       Instruction *I = &*(It++);
645       auto II = dyn_cast<IntrinsicInst>(I);
646       if (!II)
647         continue;
648
649       if (II->getIntrinsicID() == Intrinsic::stacksave) {
650         IRBuilder<> IRB(II);
651         Instruction *LI = IRB.CreateLoad(UnsafeStackPtr);
652         LI->takeName(II);
653         II->replaceAllUsesWith(LI);
654         II->eraseFromParent();
655       } else if (II->getIntrinsicID() == Intrinsic::stackrestore) {
656         IRBuilder<> IRB(II);
657         Instruction *SI = IRB.CreateStore(II->getArgOperand(0), UnsafeStackPtr);
658         SI->takeName(II);
659         assert(II->use_empty());
660         II->eraseFromParent();
661       }
662     }
663   }
664 }
665
666 bool SafeStack::runOnFunction(Function &F) {
667   DEBUG(dbgs() << "[SafeStack] Function: " << F.getName() << "\n");
668
669   if (!F.hasFnAttribute(Attribute::SafeStack)) {
670     DEBUG(dbgs() << "[SafeStack]     safestack is not requested"
671                     " for this function\n");
672     return false;
673   }
674
675   if (F.isDeclaration()) {
676     DEBUG(dbgs() << "[SafeStack]     function definition"
677                     " is not available\n");
678     return false;
679   }
680
681   TL = TM ? TM->getSubtargetImpl(F)->getTargetLowering() : nullptr;
682   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
683
684   {
685     // Make sure the regular stack protector won't run on this function
686     // (safestack attribute takes precedence).
687     AttrBuilder B;
688     B.addAttribute(Attribute::StackProtect)
689         .addAttribute(Attribute::StackProtectReq)
690         .addAttribute(Attribute::StackProtectStrong);
691     F.removeAttributes(
692         AttributeSet::FunctionIndex,
693         AttributeSet::get(F.getContext(), AttributeSet::FunctionIndex, B));
694   }
695
696   ++NumFunctions;
697
698   SmallVector<AllocaInst *, 16> StaticAllocas;
699   SmallVector<AllocaInst *, 4> DynamicAllocas;
700   SmallVector<Argument *, 4> ByValArguments;
701   SmallVector<ReturnInst *, 4> Returns;
702
703   // Collect all points where stack gets unwound and needs to be restored
704   // This is only necessary because the runtime (setjmp and unwind code) is
705   // not aware of the unsafe stack and won't unwind/restore it prorerly.
706   // To work around this problem without changing the runtime, we insert
707   // instrumentation to restore the unsafe stack pointer when necessary.
708   SmallVector<Instruction *, 4> StackRestorePoints;
709
710   // Find all static and dynamic alloca instructions that must be moved to the
711   // unsafe stack, all return instructions and stack restore points.
712   findInsts(F, StaticAllocas, DynamicAllocas, ByValArguments, Returns,
713             StackRestorePoints);
714
715   if (StaticAllocas.empty() && DynamicAllocas.empty() &&
716       ByValArguments.empty() && StackRestorePoints.empty())
717     return false; // Nothing to do in this function.
718
719   if (!StaticAllocas.empty() || !DynamicAllocas.empty() ||
720       !ByValArguments.empty())
721     ++NumUnsafeStackFunctions; // This function has the unsafe stack.
722
723   if (!StackRestorePoints.empty())
724     ++NumUnsafeStackRestorePointsFunctions;
725
726   IRBuilder<> IRB(&F.front(), F.begin()->getFirstInsertionPt());
727   UnsafeStackPtr = getOrCreateUnsafeStackPtr(IRB, F);
728
729   // The top of the unsafe stack after all unsafe static allocas are allocated.
730   Value *StaticTop = moveStaticAllocasToUnsafeStack(IRB, F, StaticAllocas,
731                                                     ByValArguments, Returns);
732
733   // Safe stack object that stores the current unsafe stack top. It is updated
734   // as unsafe dynamic (non-constant-sized) allocas are allocated and freed.
735   // This is only needed if we need to restore stack pointer after longjmp
736   // or exceptions, and we have dynamic allocations.
737   // FIXME: a better alternative might be to store the unsafe stack pointer
738   // before setjmp / invoke instructions.
739   AllocaInst *DynamicTop = createStackRestorePoints(
740       IRB, F, StackRestorePoints, StaticTop, !DynamicAllocas.empty());
741
742   // Handle dynamic allocas.
743   moveDynamicAllocasToUnsafeStack(F, UnsafeStackPtr, DynamicTop,
744                                   DynamicAllocas);
745
746   DEBUG(dbgs() << "[SafeStack]     safestack applied\n");
747   return true;
748 }
749
750 } // anonymous namespace
751
752 char SafeStack::ID = 0;
753 INITIALIZE_TM_PASS_BEGIN(SafeStack, "safe-stack",
754                          "Safe Stack instrumentation pass", false, false)
755 INITIALIZE_TM_PASS_END(SafeStack, "safe-stack",
756                        "Safe Stack instrumentation pass", false, false)
757
758 FunctionPass *llvm::createSafeStackPass(const llvm::TargetMachine *TM) {
759   return new SafeStack(TM);
760 }