]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/Scalar/AlignmentFromAssumptions.cpp
Merge ^/head r311314 through r311459.
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / Scalar / AlignmentFromAssumptions.cpp
1 //===----------------------- AlignmentFromAssumptions.cpp -----------------===//
2 //                  Set Load/Store Alignments From Assumptions
3 //
4 //                     The LLVM Compiler Infrastructure
5 //
6 // This file is distributed under the University of Illinois Open Source
7 // License. See LICENSE.TXT for details.
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 // This file implements a ScalarEvolution-based transformation to set
12 // the alignments of load, stores and memory intrinsics based on the truth
13 // expressions of assume intrinsics. The primary motivation is to handle
14 // complex alignment assumptions that apply to vector loads and stores that
15 // appear after vectorization and unrolling.
16 //
17 //===----------------------------------------------------------------------===//
18
19 #define AA_NAME "alignment-from-assumptions"
20 #define DEBUG_TYPE AA_NAME
21 #include "llvm/Transforms/Scalar/AlignmentFromAssumptions.h"
22 #include "llvm/Transforms/Scalar.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/Analysis/GlobalsModRef.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/LoopInfo.h"
29 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/Constant.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/Module.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/raw_ostream.h"
38 using namespace llvm;
39
40 STATISTIC(NumLoadAlignChanged,
41   "Number of loads changed by alignment assumptions");
42 STATISTIC(NumStoreAlignChanged,
43   "Number of stores changed by alignment assumptions");
44 STATISTIC(NumMemIntAlignChanged,
45   "Number of memory intrinsics changed by alignment assumptions");
46
47 namespace {
48 struct AlignmentFromAssumptions : public FunctionPass {
49   static char ID; // Pass identification, replacement for typeid
50   AlignmentFromAssumptions() : FunctionPass(ID) {
51     initializeAlignmentFromAssumptionsPass(*PassRegistry::getPassRegistry());
52   }
53
54   bool runOnFunction(Function &F) override;
55
56   void getAnalysisUsage(AnalysisUsage &AU) const override {
57     AU.addRequired<AssumptionCacheTracker>();
58     AU.addRequired<ScalarEvolutionWrapperPass>();
59     AU.addRequired<DominatorTreeWrapperPass>();
60
61     AU.setPreservesCFG();
62     AU.addPreserved<AAResultsWrapperPass>();
63     AU.addPreserved<GlobalsAAWrapperPass>();
64     AU.addPreserved<LoopInfoWrapperPass>();
65     AU.addPreserved<DominatorTreeWrapperPass>();
66     AU.addPreserved<ScalarEvolutionWrapperPass>();
67   }
68
69   AlignmentFromAssumptionsPass Impl;
70 };
71 }
72
73 char AlignmentFromAssumptions::ID = 0;
74 static const char aip_name[] = "Alignment from assumptions";
75 INITIALIZE_PASS_BEGIN(AlignmentFromAssumptions, AA_NAME,
76                       aip_name, false, false)
77 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
78 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
79 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
80 INITIALIZE_PASS_END(AlignmentFromAssumptions, AA_NAME,
81                     aip_name, false, false)
82
83 FunctionPass *llvm::createAlignmentFromAssumptionsPass() {
84   return new AlignmentFromAssumptions();
85 }
86
87 // Given an expression for the (constant) alignment, AlignSCEV, and an
88 // expression for the displacement between a pointer and the aligned address,
89 // DiffSCEV, compute the alignment of the displaced pointer if it can be reduced
90 // to a constant. Using SCEV to compute alignment handles the case where
91 // DiffSCEV is a recurrence with constant start such that the aligned offset
92 // is constant. e.g. {16,+,32} % 32 -> 16.
93 static unsigned getNewAlignmentDiff(const SCEV *DiffSCEV,
94                                     const SCEV *AlignSCEV,
95                                     ScalarEvolution *SE) {
96   // DiffUnits = Diff % int64_t(Alignment)
97   const SCEV *DiffAlignDiv = SE->getUDivExpr(DiffSCEV, AlignSCEV);
98   const SCEV *DiffAlign = SE->getMulExpr(DiffAlignDiv, AlignSCEV);
99   const SCEV *DiffUnitsSCEV = SE->getMinusSCEV(DiffAlign, DiffSCEV);
100
101   DEBUG(dbgs() << "\talignment relative to " << *AlignSCEV << " is " <<
102                   *DiffUnitsSCEV << " (diff: " << *DiffSCEV << ")\n");
103
104   if (const SCEVConstant *ConstDUSCEV =
105       dyn_cast<SCEVConstant>(DiffUnitsSCEV)) {
106     int64_t DiffUnits = ConstDUSCEV->getValue()->getSExtValue();
107
108     // If the displacement is an exact multiple of the alignment, then the
109     // displaced pointer has the same alignment as the aligned pointer, so
110     // return the alignment value.
111     if (!DiffUnits)
112       return (unsigned)
113         cast<SCEVConstant>(AlignSCEV)->getValue()->getSExtValue();
114
115     // If the displacement is not an exact multiple, but the remainder is a
116     // constant, then return this remainder (but only if it is a power of 2).
117     uint64_t DiffUnitsAbs = std::abs(DiffUnits);
118     if (isPowerOf2_64(DiffUnitsAbs))
119       return (unsigned) DiffUnitsAbs;
120   }
121
122   return 0;
123 }
124
125 // There is an address given by an offset OffSCEV from AASCEV which has an
126 // alignment AlignSCEV. Use that information, if possible, to compute a new
127 // alignment for Ptr.
128 static unsigned getNewAlignment(const SCEV *AASCEV, const SCEV *AlignSCEV,
129                                 const SCEV *OffSCEV, Value *Ptr,
130                                 ScalarEvolution *SE) {
131   const SCEV *PtrSCEV = SE->getSCEV(Ptr);
132   const SCEV *DiffSCEV = SE->getMinusSCEV(PtrSCEV, AASCEV);
133
134   // On 32-bit platforms, DiffSCEV might now have type i32 -- we've always
135   // sign-extended OffSCEV to i64, so make sure they agree again.
136   DiffSCEV = SE->getNoopOrSignExtend(DiffSCEV, OffSCEV->getType());
137
138   // What we really want to know is the overall offset to the aligned
139   // address. This address is displaced by the provided offset.
140   DiffSCEV = SE->getMinusSCEV(DiffSCEV, OffSCEV);
141
142   DEBUG(dbgs() << "AFI: alignment of " << *Ptr << " relative to " <<
143                   *AlignSCEV << " and offset " << *OffSCEV <<
144                   " using diff " << *DiffSCEV << "\n");
145
146   unsigned NewAlignment = getNewAlignmentDiff(DiffSCEV, AlignSCEV, SE);
147   DEBUG(dbgs() << "\tnew alignment: " << NewAlignment << "\n");
148
149   if (NewAlignment) {
150     return NewAlignment;
151   } else if (const SCEVAddRecExpr *DiffARSCEV =
152              dyn_cast<SCEVAddRecExpr>(DiffSCEV)) {
153     // The relative offset to the alignment assumption did not yield a constant,
154     // but we should try harder: if we assume that a is 32-byte aligned, then in
155     // for (i = 0; i < 1024; i += 4) r += a[i]; not all of the loads from a are
156     // 32-byte aligned, but instead alternate between 32 and 16-byte alignment.
157     // As a result, the new alignment will not be a constant, but can still
158     // be improved over the default (of 4) to 16.
159
160     const SCEV *DiffStartSCEV = DiffARSCEV->getStart();
161     const SCEV *DiffIncSCEV = DiffARSCEV->getStepRecurrence(*SE);
162
163     DEBUG(dbgs() << "\ttrying start/inc alignment using start " <<
164                     *DiffStartSCEV << " and inc " << *DiffIncSCEV << "\n");
165
166     // Now compute the new alignment using the displacement to the value in the
167     // first iteration, and also the alignment using the per-iteration delta.
168     // If these are the same, then use that answer. Otherwise, use the smaller
169     // one, but only if it divides the larger one.
170     NewAlignment = getNewAlignmentDiff(DiffStartSCEV, AlignSCEV, SE);
171     unsigned NewIncAlignment = getNewAlignmentDiff(DiffIncSCEV, AlignSCEV, SE);
172
173     DEBUG(dbgs() << "\tnew start alignment: " << NewAlignment << "\n");
174     DEBUG(dbgs() << "\tnew inc alignment: " << NewIncAlignment << "\n");
175
176     if (!NewAlignment || !NewIncAlignment) {
177       return 0;
178     } else if (NewAlignment > NewIncAlignment) {
179       if (NewAlignment % NewIncAlignment == 0) {
180         DEBUG(dbgs() << "\tnew start/inc alignment: " <<
181                         NewIncAlignment << "\n");
182         return NewIncAlignment;
183       }
184     } else if (NewIncAlignment > NewAlignment) {
185       if (NewIncAlignment % NewAlignment == 0) {
186         DEBUG(dbgs() << "\tnew start/inc alignment: " <<
187                         NewAlignment << "\n");
188         return NewAlignment;
189       }
190     } else if (NewIncAlignment == NewAlignment) {
191       DEBUG(dbgs() << "\tnew start/inc alignment: " <<
192                       NewAlignment << "\n");
193       return NewAlignment;
194     }
195   }
196
197   return 0;
198 }
199
200 bool AlignmentFromAssumptionsPass::extractAlignmentInfo(CallInst *I,
201                                                         Value *&AAPtr,
202                                                         const SCEV *&AlignSCEV,
203                                                         const SCEV *&OffSCEV) {
204   // An alignment assume must be a statement about the least-significant
205   // bits of the pointer being zero, possibly with some offset.
206   ICmpInst *ICI = dyn_cast<ICmpInst>(I->getArgOperand(0));
207   if (!ICI)
208     return false;
209
210   // This must be an expression of the form: x & m == 0.
211   if (ICI->getPredicate() != ICmpInst::ICMP_EQ)
212     return false;
213
214   // Swap things around so that the RHS is 0.
215   Value *CmpLHS = ICI->getOperand(0);
216   Value *CmpRHS = ICI->getOperand(1);
217   const SCEV *CmpLHSSCEV = SE->getSCEV(CmpLHS);
218   const SCEV *CmpRHSSCEV = SE->getSCEV(CmpRHS);
219   if (CmpLHSSCEV->isZero())
220     std::swap(CmpLHS, CmpRHS);
221   else if (!CmpRHSSCEV->isZero())
222     return false;
223
224   BinaryOperator *CmpBO = dyn_cast<BinaryOperator>(CmpLHS);
225   if (!CmpBO || CmpBO->getOpcode() != Instruction::And)
226     return false;
227
228   // Swap things around so that the right operand of the and is a constant
229   // (the mask); we cannot deal with variable masks.
230   Value *AndLHS = CmpBO->getOperand(0);
231   Value *AndRHS = CmpBO->getOperand(1);
232   const SCEV *AndLHSSCEV = SE->getSCEV(AndLHS);
233   const SCEV *AndRHSSCEV = SE->getSCEV(AndRHS);
234   if (isa<SCEVConstant>(AndLHSSCEV)) {
235     std::swap(AndLHS, AndRHS);
236     std::swap(AndLHSSCEV, AndRHSSCEV);
237   }
238
239   const SCEVConstant *MaskSCEV = dyn_cast<SCEVConstant>(AndRHSSCEV);
240   if (!MaskSCEV)
241     return false;
242
243   // The mask must have some trailing ones (otherwise the condition is
244   // trivial and tells us nothing about the alignment of the left operand).
245   unsigned TrailingOnes = MaskSCEV->getAPInt().countTrailingOnes();
246   if (!TrailingOnes)
247     return false;
248
249   // Cap the alignment at the maximum with which LLVM can deal (and make sure
250   // we don't overflow the shift).
251   uint64_t Alignment;
252   TrailingOnes = std::min(TrailingOnes,
253     unsigned(sizeof(unsigned) * CHAR_BIT - 1));
254   Alignment = std::min(1u << TrailingOnes, +Value::MaximumAlignment);
255
256   Type *Int64Ty = Type::getInt64Ty(I->getParent()->getParent()->getContext());
257   AlignSCEV = SE->getConstant(Int64Ty, Alignment);
258
259   // The LHS might be a ptrtoint instruction, or it might be the pointer
260   // with an offset.
261   AAPtr = nullptr;
262   OffSCEV = nullptr;
263   if (PtrToIntInst *PToI = dyn_cast<PtrToIntInst>(AndLHS)) {
264     AAPtr = PToI->getPointerOperand();
265     OffSCEV = SE->getZero(Int64Ty);
266   } else if (const SCEVAddExpr* AndLHSAddSCEV =
267              dyn_cast<SCEVAddExpr>(AndLHSSCEV)) {
268     // Try to find the ptrtoint; subtract it and the rest is the offset.
269     for (SCEVAddExpr::op_iterator J = AndLHSAddSCEV->op_begin(),
270          JE = AndLHSAddSCEV->op_end(); J != JE; ++J)
271       if (const SCEVUnknown *OpUnk = dyn_cast<SCEVUnknown>(*J))
272         if (PtrToIntInst *PToI = dyn_cast<PtrToIntInst>(OpUnk->getValue())) {
273           AAPtr = PToI->getPointerOperand();
274           OffSCEV = SE->getMinusSCEV(AndLHSAddSCEV, *J);
275           break;
276         }
277   }
278
279   if (!AAPtr)
280     return false;
281
282   // Sign extend the offset to 64 bits (so that it is like all of the other
283   // expressions). 
284   unsigned OffSCEVBits = OffSCEV->getType()->getPrimitiveSizeInBits();
285   if (OffSCEVBits < 64)
286     OffSCEV = SE->getSignExtendExpr(OffSCEV, Int64Ty);
287   else if (OffSCEVBits > 64)
288     return false;
289
290   AAPtr = AAPtr->stripPointerCasts();
291   return true;
292 }
293
294 bool AlignmentFromAssumptionsPass::processAssumption(CallInst *ACall) {
295   Value *AAPtr;
296   const SCEV *AlignSCEV, *OffSCEV;
297   if (!extractAlignmentInfo(ACall, AAPtr, AlignSCEV, OffSCEV))
298     return false;
299
300   // Skip ConstantPointerNull and UndefValue.  Assumptions on these shouldn't
301   // affect other users.
302   if (isa<ConstantData>(AAPtr))
303     return false;
304
305   const SCEV *AASCEV = SE->getSCEV(AAPtr);
306
307   // Apply the assumption to all other users of the specified pointer.
308   SmallPtrSet<Instruction *, 32> Visited;
309   SmallVector<Instruction*, 16> WorkList;
310   for (User *J : AAPtr->users()) {
311     if (J == ACall)
312       continue;
313
314     if (Instruction *K = dyn_cast<Instruction>(J))
315       if (isValidAssumeForContext(ACall, K, DT))
316         WorkList.push_back(K);
317   }
318
319   while (!WorkList.empty()) {
320     Instruction *J = WorkList.pop_back_val();
321
322     if (LoadInst *LI = dyn_cast<LoadInst>(J)) {
323       unsigned NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
324         LI->getPointerOperand(), SE);
325
326       if (NewAlignment > LI->getAlignment()) {
327         LI->setAlignment(NewAlignment);
328         ++NumLoadAlignChanged;
329       }
330     } else if (StoreInst *SI = dyn_cast<StoreInst>(J)) {
331       unsigned NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
332         SI->getPointerOperand(), SE);
333
334       if (NewAlignment > SI->getAlignment()) {
335         SI->setAlignment(NewAlignment);
336         ++NumStoreAlignChanged;
337       }
338     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(J)) {
339       unsigned NewDestAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
340         MI->getDest(), SE);
341
342       // For memory transfers, we need a common alignment for both the
343       // source and destination. If we have a new alignment for this
344       // instruction, but only for one operand, save it. If we reach the
345       // other operand through another assumption later, then we may
346       // change the alignment at that point.
347       if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
348         unsigned NewSrcAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
349           MTI->getSource(), SE);
350
351         DenseMap<MemTransferInst *, unsigned>::iterator DI =
352           NewDestAlignments.find(MTI);
353         unsigned AltDestAlignment = (DI == NewDestAlignments.end()) ?
354                                     0 : DI->second;
355
356         DenseMap<MemTransferInst *, unsigned>::iterator SI =
357           NewSrcAlignments.find(MTI);
358         unsigned AltSrcAlignment = (SI == NewSrcAlignments.end()) ?
359                                    0 : SI->second;
360
361         DEBUG(dbgs() << "\tmem trans: " << NewDestAlignment << " " <<
362                         AltDestAlignment << " " << NewSrcAlignment <<
363                         " " << AltSrcAlignment << "\n");
364
365         // Of these four alignments, pick the largest possible...
366         unsigned NewAlignment = 0;
367         if (NewDestAlignment <= std::max(NewSrcAlignment, AltSrcAlignment))
368           NewAlignment = std::max(NewAlignment, NewDestAlignment);
369         if (AltDestAlignment <= std::max(NewSrcAlignment, AltSrcAlignment))
370           NewAlignment = std::max(NewAlignment, AltDestAlignment);
371         if (NewSrcAlignment <= std::max(NewDestAlignment, AltDestAlignment))
372           NewAlignment = std::max(NewAlignment, NewSrcAlignment);
373         if (AltSrcAlignment <= std::max(NewDestAlignment, AltDestAlignment))
374           NewAlignment = std::max(NewAlignment, AltSrcAlignment);
375
376         if (NewAlignment > MI->getAlignment()) {
377           MI->setAlignment(ConstantInt::get(Type::getInt32Ty(
378             MI->getParent()->getContext()), NewAlignment));
379           ++NumMemIntAlignChanged;
380         }
381
382         NewDestAlignments.insert(std::make_pair(MTI, NewDestAlignment));
383         NewSrcAlignments.insert(std::make_pair(MTI, NewSrcAlignment));
384       } else if (NewDestAlignment > MI->getAlignment()) {
385         assert((!isa<MemIntrinsic>(MI) || isa<MemSetInst>(MI)) &&
386                "Unknown memory intrinsic");
387
388         MI->setAlignment(ConstantInt::get(Type::getInt32Ty(
389           MI->getParent()->getContext()), NewDestAlignment));
390         ++NumMemIntAlignChanged;
391       }
392     }
393
394     // Now that we've updated that use of the pointer, look for other uses of
395     // the pointer to update.
396     Visited.insert(J);
397     for (User *UJ : J->users()) {
398       Instruction *K = cast<Instruction>(UJ);
399       if (!Visited.count(K) && isValidAssumeForContext(ACall, K, DT))
400         WorkList.push_back(K);
401     }
402   }
403
404   return true;
405 }
406
407 bool AlignmentFromAssumptions::runOnFunction(Function &F) {
408   if (skipFunction(F))
409     return false;
410
411   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
412   ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
413   DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
414
415   return Impl.runImpl(F, AC, SE, DT);
416 }
417
418 bool AlignmentFromAssumptionsPass::runImpl(Function &F, AssumptionCache &AC,
419                                            ScalarEvolution *SE_,
420                                            DominatorTree *DT_) {
421   SE = SE_;
422   DT = DT_;
423
424   NewDestAlignments.clear();
425   NewSrcAlignments.clear();
426
427   bool Changed = false;
428   for (auto &AssumeVH : AC.assumptions())
429     if (AssumeVH)
430       Changed |= processAssumption(cast<CallInst>(AssumeVH));
431
432   return Changed;
433 }
434
435 PreservedAnalyses
436 AlignmentFromAssumptionsPass::run(Function &F, FunctionAnalysisManager &AM) {
437
438   AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F);
439   ScalarEvolution &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
440   DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
441   bool Changed = runImpl(F, AC, &SE, &DT);
442
443   // FIXME: We need to invalidate this to avoid PR28400. Is there a better
444   // solution?
445   AM.invalidate<ScalarEvolutionAnalysis>(F);
446
447   if (!Changed)
448     return PreservedAnalyses::all();
449   PreservedAnalyses PA;
450   PA.preserve<AAManager>();
451   PA.preserve<ScalarEvolutionAnalysis>();
452   PA.preserve<GlobalsAA>();
453   PA.preserve<LoopAnalysis>();
454   PA.preserve<DominatorTreeAnalysis>();
455   return PA;
456 }