]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/Scalar/InferAddressSpaces.cpp
Merge clang 7.0.1 and several follow-up changes
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / Scalar / InferAddressSpaces.cpp
1 //===- InferAddressSpace.cpp - --------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // CUDA C/C++ includes memory space designation as variable type qualifers (such
11 // as __global__ and __shared__). Knowing the space of a memory access allows
12 // CUDA compilers to emit faster PTX loads and stores. For example, a load from
13 // shared memory can be translated to `ld.shared` which is roughly 10% faster
14 // than a generic `ld` on an NVIDIA Tesla K40c.
15 //
16 // Unfortunately, type qualifiers only apply to variable declarations, so CUDA
17 // compilers must infer the memory space of an address expression from
18 // type-qualified variables.
19 //
20 // LLVM IR uses non-zero (so-called) specific address spaces to represent memory
21 // spaces (e.g. addrspace(3) means shared memory). The Clang frontend
22 // places only type-qualified variables in specific address spaces, and then
23 // conservatively `addrspacecast`s each type-qualified variable to addrspace(0)
24 // (so-called the generic address space) for other instructions to use.
25 //
26 // For example, the Clang translates the following CUDA code
27 //   __shared__ float a[10];
28 //   float v = a[i];
29 // to
30 //   %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]*
31 //   %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i
32 //   %v = load float, float* %1 ; emits ld.f32
33 // @a is in addrspace(3) since it's type-qualified, but its use from %1 is
34 // redirected to %0 (the generic version of @a).
35 //
36 // The optimization implemented in this file propagates specific address spaces
37 // from type-qualified variable declarations to its users. For example, it
38 // optimizes the above IR to
39 //   %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i
40 //   %v = load float addrspace(3)* %1 ; emits ld.shared.f32
41 // propagating the addrspace(3) from @a to %1. As the result, the NVPTX
42 // codegen is able to emit ld.shared.f32 for %v.
43 //
44 // Address space inference works in two steps. First, it uses a data-flow
45 // analysis to infer as many generic pointers as possible to point to only one
46 // specific address space. In the above example, it can prove that %1 only
47 // points to addrspace(3). This algorithm was published in
48 //   CUDA: Compiling and optimizing for a GPU platform
49 //   Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang
50 //   ICCS 2012
51 //
52 // Then, address space inference replaces all refinable generic pointers with
53 // equivalent specific pointers.
54 //
55 // The major challenge of implementing this optimization is handling PHINodes,
56 // which may create loops in the data flow graph. This brings two complications.
57 //
58 // First, the data flow analysis in Step 1 needs to be circular. For example,
59 //     %generic.input = addrspacecast float addrspace(3)* %input to float*
60 //   loop:
61 //     %y = phi [ %generic.input, %y2 ]
62 //     %y2 = getelementptr %y, 1
63 //     %v = load %y2
64 //     br ..., label %loop, ...
65 // proving %y specific requires proving both %generic.input and %y2 specific,
66 // but proving %y2 specific circles back to %y. To address this complication,
67 // the data flow analysis operates on a lattice:
68 //   uninitialized > specific address spaces > generic.
69 // All address expressions (our implementation only considers phi, bitcast,
70 // addrspacecast, and getelementptr) start with the uninitialized address space.
71 // The monotone transfer function moves the address space of a pointer down a
72 // lattice path from uninitialized to specific and then to generic. A join
73 // operation of two different specific address spaces pushes the expression down
74 // to the generic address space. The analysis completes once it reaches a fixed
75 // point.
76 //
77 // Second, IR rewriting in Step 2 also needs to be circular. For example,
78 // converting %y to addrspace(3) requires the compiler to know the converted
79 // %y2, but converting %y2 needs the converted %y. To address this complication,
80 // we break these cycles using "undef" placeholders. When converting an
81 // instruction `I` to a new address space, if its operand `Op` is not converted
82 // yet, we let `I` temporarily use `undef` and fix all the uses of undef later.
83 // For instance, our algorithm first converts %y to
84 //   %y' = phi float addrspace(3)* [ %input, undef ]
85 // Then, it converts %y2 to
86 //   %y2' = getelementptr %y', 1
87 // Finally, it fixes the undef in %y' so that
88 //   %y' = phi float addrspace(3)* [ %input, %y2' ]
89 //
90 //===----------------------------------------------------------------------===//
91
92 #include "llvm/ADT/ArrayRef.h"
93 #include "llvm/ADT/DenseMap.h"
94 #include "llvm/ADT/DenseSet.h"
95 #include "llvm/ADT/None.h"
96 #include "llvm/ADT/Optional.h"
97 #include "llvm/ADT/SetVector.h"
98 #include "llvm/ADT/SmallVector.h"
99 #include "llvm/Analysis/TargetTransformInfo.h"
100 #include "llvm/Transforms/Utils/Local.h"
101 #include "llvm/IR/BasicBlock.h"
102 #include "llvm/IR/Constant.h"
103 #include "llvm/IR/Constants.h"
104 #include "llvm/IR/Function.h"
105 #include "llvm/IR/IRBuilder.h"
106 #include "llvm/IR/InstIterator.h"
107 #include "llvm/IR/Instruction.h"
108 #include "llvm/IR/Instructions.h"
109 #include "llvm/IR/IntrinsicInst.h"
110 #include "llvm/IR/Intrinsics.h"
111 #include "llvm/IR/LLVMContext.h"
112 #include "llvm/IR/Operator.h"
113 #include "llvm/IR/Type.h"
114 #include "llvm/IR/Use.h"
115 #include "llvm/IR/User.h"
116 #include "llvm/IR/Value.h"
117 #include "llvm/IR/ValueHandle.h"
118 #include "llvm/Pass.h"
119 #include "llvm/Support/Casting.h"
120 #include "llvm/Support/Compiler.h"
121 #include "llvm/Support/Debug.h"
122 #include "llvm/Support/ErrorHandling.h"
123 #include "llvm/Support/raw_ostream.h"
124 #include "llvm/Transforms/Scalar.h"
125 #include "llvm/Transforms/Utils/ValueMapper.h"
126 #include <cassert>
127 #include <iterator>
128 #include <limits>
129 #include <utility>
130 #include <vector>
131
132 #define DEBUG_TYPE "infer-address-spaces"
133
134 using namespace llvm;
135
136 static const unsigned UninitializedAddressSpace =
137     std::numeric_limits<unsigned>::max();
138
139 namespace {
140
141 using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>;
142
143 /// InferAddressSpaces
144 class InferAddressSpaces : public FunctionPass {
145   /// Target specific address space which uses of should be replaced if
146   /// possible.
147   unsigned FlatAddrSpace;
148
149 public:
150   static char ID;
151
152   InferAddressSpaces() : FunctionPass(ID) {}
153
154   void getAnalysisUsage(AnalysisUsage &AU) const override {
155     AU.setPreservesCFG();
156     AU.addRequired<TargetTransformInfoWrapperPass>();
157   }
158
159   bool runOnFunction(Function &F) override;
160
161 private:
162   // Returns the new address space of V if updated; otherwise, returns None.
163   Optional<unsigned>
164   updateAddressSpace(const Value &V,
165                      const ValueToAddrSpaceMapTy &InferredAddrSpace) const;
166
167   // Tries to infer the specific address space of each address expression in
168   // Postorder.
169   void inferAddressSpaces(ArrayRef<WeakTrackingVH> Postorder,
170                           ValueToAddrSpaceMapTy *InferredAddrSpace) const;
171
172   bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const;
173
174   // Changes the flat address expressions in function F to point to specific
175   // address spaces if InferredAddrSpace says so. Postorder is the postorder of
176   // all flat expressions in the use-def graph of function F.
177   bool rewriteWithNewAddressSpaces(
178       const TargetTransformInfo &TTI, ArrayRef<WeakTrackingVH> Postorder,
179       const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const;
180
181   void appendsFlatAddressExpressionToPostorderStack(
182     Value *V, std::vector<std::pair<Value *, bool>> &PostorderStack,
183     DenseSet<Value *> &Visited) const;
184
185   bool rewriteIntrinsicOperands(IntrinsicInst *II,
186                                 Value *OldV, Value *NewV) const;
187   void collectRewritableIntrinsicOperands(
188     IntrinsicInst *II,
189     std::vector<std::pair<Value *, bool>> &PostorderStack,
190     DenseSet<Value *> &Visited) const;
191
192   std::vector<WeakTrackingVH> collectFlatAddressExpressions(Function &F) const;
193
194   Value *cloneValueWithNewAddressSpace(
195     Value *V, unsigned NewAddrSpace,
196     const ValueToValueMapTy &ValueWithNewAddrSpace,
197     SmallVectorImpl<const Use *> *UndefUsesToFix) const;
198   unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const;
199 };
200
201 } // end anonymous namespace
202
203 char InferAddressSpaces::ID = 0;
204
205 namespace llvm {
206
207 void initializeInferAddressSpacesPass(PassRegistry &);
208
209 } // end namespace llvm
210
211 INITIALIZE_PASS(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces",
212                 false, false)
213
214 // Returns true if V is an address expression.
215 // TODO: Currently, we consider only phi, bitcast, addrspacecast, and
216 // getelementptr operators.
217 static bool isAddressExpression(const Value &V) {
218   if (!isa<Operator>(V))
219     return false;
220
221   switch (cast<Operator>(V).getOpcode()) {
222   case Instruction::PHI:
223   case Instruction::BitCast:
224   case Instruction::AddrSpaceCast:
225   case Instruction::GetElementPtr:
226   case Instruction::Select:
227     return true;
228   default:
229     return false;
230   }
231 }
232
233 // Returns the pointer operands of V.
234 //
235 // Precondition: V is an address expression.
236 static SmallVector<Value *, 2> getPointerOperands(const Value &V) {
237   const Operator &Op = cast<Operator>(V);
238   switch (Op.getOpcode()) {
239   case Instruction::PHI: {
240     auto IncomingValues = cast<PHINode>(Op).incoming_values();
241     return SmallVector<Value *, 2>(IncomingValues.begin(),
242                                    IncomingValues.end());
243   }
244   case Instruction::BitCast:
245   case Instruction::AddrSpaceCast:
246   case Instruction::GetElementPtr:
247     return {Op.getOperand(0)};
248   case Instruction::Select:
249     return {Op.getOperand(1), Op.getOperand(2)};
250   default:
251     llvm_unreachable("Unexpected instruction type.");
252   }
253 }
254
255 // TODO: Move logic to TTI?
256 bool InferAddressSpaces::rewriteIntrinsicOperands(IntrinsicInst *II,
257                                                   Value *OldV,
258                                                   Value *NewV) const {
259   Module *M = II->getParent()->getParent()->getParent();
260
261   switch (II->getIntrinsicID()) {
262   case Intrinsic::amdgcn_atomic_inc:
263   case Intrinsic::amdgcn_atomic_dec:
264   case Intrinsic::amdgcn_ds_fadd:
265   case Intrinsic::amdgcn_ds_fmin:
266   case Intrinsic::amdgcn_ds_fmax: {
267     const ConstantInt *IsVolatile = dyn_cast<ConstantInt>(II->getArgOperand(4));
268     if (!IsVolatile || !IsVolatile->isZero())
269       return false;
270
271     LLVM_FALLTHROUGH;
272   }
273   case Intrinsic::objectsize: {
274     Type *DestTy = II->getType();
275     Type *SrcTy = NewV->getType();
276     Function *NewDecl =
277         Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy});
278     II->setArgOperand(0, NewV);
279     II->setCalledFunction(NewDecl);
280     return true;
281   }
282   default:
283     return false;
284   }
285 }
286
287 // TODO: Move logic to TTI?
288 void InferAddressSpaces::collectRewritableIntrinsicOperands(
289     IntrinsicInst *II, std::vector<std::pair<Value *, bool>> &PostorderStack,
290     DenseSet<Value *> &Visited) const {
291   switch (II->getIntrinsicID()) {
292   case Intrinsic::objectsize:
293   case Intrinsic::amdgcn_atomic_inc:
294   case Intrinsic::amdgcn_atomic_dec:
295   case Intrinsic::amdgcn_ds_fadd:
296   case Intrinsic::amdgcn_ds_fmin:
297   case Intrinsic::amdgcn_ds_fmax:
298     appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0),
299                                                  PostorderStack, Visited);
300     break;
301   default:
302     break;
303   }
304 }
305
306 // Returns all flat address expressions in function F. The elements are
307 // If V is an unvisited flat address expression, appends V to PostorderStack
308 // and marks it as visited.
309 void InferAddressSpaces::appendsFlatAddressExpressionToPostorderStack(
310     Value *V, std::vector<std::pair<Value *, bool>> &PostorderStack,
311     DenseSet<Value *> &Visited) const {
312   assert(V->getType()->isPointerTy());
313
314   // Generic addressing expressions may be hidden in nested constant
315   // expressions.
316   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
317     // TODO: Look in non-address parts, like icmp operands.
318     if (isAddressExpression(*CE) && Visited.insert(CE).second)
319       PostorderStack.push_back(std::make_pair(CE, false));
320
321     return;
322   }
323
324   if (isAddressExpression(*V) &&
325       V->getType()->getPointerAddressSpace() == FlatAddrSpace) {
326     if (Visited.insert(V).second) {
327       PostorderStack.push_back(std::make_pair(V, false));
328
329       Operator *Op = cast<Operator>(V);
330       for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I) {
331         if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op->getOperand(I))) {
332           if (isAddressExpression(*CE) && Visited.insert(CE).second)
333             PostorderStack.emplace_back(CE, false);
334         }
335       }
336     }
337   }
338 }
339
340 // Returns all flat address expressions in function F. The elements are ordered
341 // ordered in postorder.
342 std::vector<WeakTrackingVH>
343 InferAddressSpaces::collectFlatAddressExpressions(Function &F) const {
344   // This function implements a non-recursive postorder traversal of a partial
345   // use-def graph of function F.
346   std::vector<std::pair<Value *, bool>> PostorderStack;
347   // The set of visited expressions.
348   DenseSet<Value *> Visited;
349
350   auto PushPtrOperand = [&](Value *Ptr) {
351     appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack,
352                                                  Visited);
353   };
354
355   // Look at operations that may be interesting accelerate by moving to a known
356   // address space. We aim at generating after loads and stores, but pure
357   // addressing calculations may also be faster.
358   for (Instruction &I : instructions(F)) {
359     if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
360       if (!GEP->getType()->isVectorTy())
361         PushPtrOperand(GEP->getPointerOperand());
362     } else if (auto *LI = dyn_cast<LoadInst>(&I))
363       PushPtrOperand(LI->getPointerOperand());
364     else if (auto *SI = dyn_cast<StoreInst>(&I))
365       PushPtrOperand(SI->getPointerOperand());
366     else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I))
367       PushPtrOperand(RMW->getPointerOperand());
368     else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I))
369       PushPtrOperand(CmpX->getPointerOperand());
370     else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) {
371       // For memset/memcpy/memmove, any pointer operand can be replaced.
372       PushPtrOperand(MI->getRawDest());
373
374       // Handle 2nd operand for memcpy/memmove.
375       if (auto *MTI = dyn_cast<MemTransferInst>(MI))
376         PushPtrOperand(MTI->getRawSource());
377     } else if (auto *II = dyn_cast<IntrinsicInst>(&I))
378       collectRewritableIntrinsicOperands(II, PostorderStack, Visited);
379     else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) {
380       // FIXME: Handle vectors of pointers
381       if (Cmp->getOperand(0)->getType()->isPointerTy()) {
382         PushPtrOperand(Cmp->getOperand(0));
383         PushPtrOperand(Cmp->getOperand(1));
384       }
385     } else if (auto *ASC = dyn_cast<AddrSpaceCastInst>(&I)) {
386       if (!ASC->getType()->isVectorTy())
387         PushPtrOperand(ASC->getPointerOperand());
388     }
389   }
390
391   std::vector<WeakTrackingVH> Postorder; // The resultant postorder.
392   while (!PostorderStack.empty()) {
393     Value *TopVal = PostorderStack.back().first;
394     // If the operands of the expression on the top are already explored,
395     // adds that expression to the resultant postorder.
396     if (PostorderStack.back().second) {
397       if (TopVal->getType()->getPointerAddressSpace() == FlatAddrSpace)
398         Postorder.push_back(TopVal);
399       PostorderStack.pop_back();
400       continue;
401     }
402     // Otherwise, adds its operands to the stack and explores them.
403     PostorderStack.back().second = true;
404     for (Value *PtrOperand : getPointerOperands(*TopVal)) {
405       appendsFlatAddressExpressionToPostorderStack(PtrOperand, PostorderStack,
406                                                    Visited);
407     }
408   }
409   return Postorder;
410 }
411
412 // A helper function for cloneInstructionWithNewAddressSpace. Returns the clone
413 // of OperandUse.get() in the new address space. If the clone is not ready yet,
414 // returns an undef in the new address space as a placeholder.
415 static Value *operandWithNewAddressSpaceOrCreateUndef(
416     const Use &OperandUse, unsigned NewAddrSpace,
417     const ValueToValueMapTy &ValueWithNewAddrSpace,
418     SmallVectorImpl<const Use *> *UndefUsesToFix) {
419   Value *Operand = OperandUse.get();
420
421   Type *NewPtrTy =
422       Operand->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
423
424   if (Constant *C = dyn_cast<Constant>(Operand))
425     return ConstantExpr::getAddrSpaceCast(C, NewPtrTy);
426
427   if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand))
428     return NewOperand;
429
430   UndefUsesToFix->push_back(&OperandUse);
431   return UndefValue::get(NewPtrTy);
432 }
433
434 // Returns a clone of `I` with its operands converted to those specified in
435 // ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an
436 // operand whose address space needs to be modified might not exist in
437 // ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and
438 // adds that operand use to UndefUsesToFix so that caller can fix them later.
439 //
440 // Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast
441 // from a pointer whose type already matches. Therefore, this function returns a
442 // Value* instead of an Instruction*.
443 static Value *cloneInstructionWithNewAddressSpace(
444     Instruction *I, unsigned NewAddrSpace,
445     const ValueToValueMapTy &ValueWithNewAddrSpace,
446     SmallVectorImpl<const Use *> *UndefUsesToFix) {
447   Type *NewPtrType =
448       I->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
449
450   if (I->getOpcode() == Instruction::AddrSpaceCast) {
451     Value *Src = I->getOperand(0);
452     // Because `I` is flat, the source address space must be specific.
453     // Therefore, the inferred address space must be the source space, according
454     // to our algorithm.
455     assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
456     if (Src->getType() != NewPtrType)
457       return new BitCastInst(Src, NewPtrType);
458     return Src;
459   }
460
461   // Computes the converted pointer operands.
462   SmallVector<Value *, 4> NewPointerOperands;
463   for (const Use &OperandUse : I->operands()) {
464     if (!OperandUse.get()->getType()->isPointerTy())
465       NewPointerOperands.push_back(nullptr);
466     else
467       NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef(
468                                      OperandUse, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix));
469   }
470
471   switch (I->getOpcode()) {
472   case Instruction::BitCast:
473     return new BitCastInst(NewPointerOperands[0], NewPtrType);
474   case Instruction::PHI: {
475     assert(I->getType()->isPointerTy());
476     PHINode *PHI = cast<PHINode>(I);
477     PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues());
478     for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) {
479       unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index);
480       NewPHI->addIncoming(NewPointerOperands[OperandNo],
481                           PHI->getIncomingBlock(Index));
482     }
483     return NewPHI;
484   }
485   case Instruction::GetElementPtr: {
486     GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
487     GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
488         GEP->getSourceElementType(), NewPointerOperands[0],
489         SmallVector<Value *, 4>(GEP->idx_begin(), GEP->idx_end()));
490     NewGEP->setIsInBounds(GEP->isInBounds());
491     return NewGEP;
492   }
493   case Instruction::Select:
494     assert(I->getType()->isPointerTy());
495     return SelectInst::Create(I->getOperand(0), NewPointerOperands[1],
496                               NewPointerOperands[2], "", nullptr, I);
497   default:
498     llvm_unreachable("Unexpected opcode");
499   }
500 }
501
502 // Similar to cloneInstructionWithNewAddressSpace, returns a clone of the
503 // constant expression `CE` with its operands replaced as specified in
504 // ValueWithNewAddrSpace.
505 static Value *cloneConstantExprWithNewAddressSpace(
506   ConstantExpr *CE, unsigned NewAddrSpace,
507   const ValueToValueMapTy &ValueWithNewAddrSpace) {
508   Type *TargetType =
509     CE->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
510
511   if (CE->getOpcode() == Instruction::AddrSpaceCast) {
512     // Because CE is flat, the source address space must be specific.
513     // Therefore, the inferred address space must be the source space according
514     // to our algorithm.
515     assert(CE->getOperand(0)->getType()->getPointerAddressSpace() ==
516            NewAddrSpace);
517     return ConstantExpr::getBitCast(CE->getOperand(0), TargetType);
518   }
519
520   if (CE->getOpcode() == Instruction::BitCast) {
521     if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0)))
522       return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType);
523     return ConstantExpr::getAddrSpaceCast(CE, TargetType);
524   }
525
526   if (CE->getOpcode() == Instruction::Select) {
527     Constant *Src0 = CE->getOperand(1);
528     Constant *Src1 = CE->getOperand(2);
529     if (Src0->getType()->getPointerAddressSpace() ==
530         Src1->getType()->getPointerAddressSpace()) {
531
532       return ConstantExpr::getSelect(
533           CE->getOperand(0), ConstantExpr::getAddrSpaceCast(Src0, TargetType),
534           ConstantExpr::getAddrSpaceCast(Src1, TargetType));
535     }
536   }
537
538   // Computes the operands of the new constant expression.
539   bool IsNew = false;
540   SmallVector<Constant *, 4> NewOperands;
541   for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) {
542     Constant *Operand = CE->getOperand(Index);
543     // If the address space of `Operand` needs to be modified, the new operand
544     // with the new address space should already be in ValueWithNewAddrSpace
545     // because (1) the constant expressions we consider (i.e. addrspacecast,
546     // bitcast, and getelementptr) do not incur cycles in the data flow graph
547     // and (2) this function is called on constant expressions in postorder.
548     if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) {
549       IsNew = true;
550       NewOperands.push_back(cast<Constant>(NewOperand));
551     } else {
552       // Otherwise, reuses the old operand.
553       NewOperands.push_back(Operand);
554     }
555   }
556
557   // If !IsNew, we will replace the Value with itself. However, replaced values
558   // are assumed to wrapped in a addrspace cast later so drop it now.
559   if (!IsNew)
560     return nullptr;
561
562   if (CE->getOpcode() == Instruction::GetElementPtr) {
563     // Needs to specify the source type while constructing a getelementptr
564     // constant expression.
565     return CE->getWithOperands(
566       NewOperands, TargetType, /*OnlyIfReduced=*/false,
567       NewOperands[0]->getType()->getPointerElementType());
568   }
569
570   return CE->getWithOperands(NewOperands, TargetType);
571 }
572
573 // Returns a clone of the value `V`, with its operands replaced as specified in
574 // ValueWithNewAddrSpace. This function is called on every flat address
575 // expression whose address space needs to be modified, in postorder.
576 //
577 // See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix.
578 Value *InferAddressSpaces::cloneValueWithNewAddressSpace(
579   Value *V, unsigned NewAddrSpace,
580   const ValueToValueMapTy &ValueWithNewAddrSpace,
581   SmallVectorImpl<const Use *> *UndefUsesToFix) const {
582   // All values in Postorder are flat address expressions.
583   assert(isAddressExpression(*V) &&
584          V->getType()->getPointerAddressSpace() == FlatAddrSpace);
585
586   if (Instruction *I = dyn_cast<Instruction>(V)) {
587     Value *NewV = cloneInstructionWithNewAddressSpace(
588       I, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix);
589     if (Instruction *NewI = dyn_cast<Instruction>(NewV)) {
590       if (NewI->getParent() == nullptr) {
591         NewI->insertBefore(I);
592         NewI->takeName(I);
593       }
594     }
595     return NewV;
596   }
597
598   return cloneConstantExprWithNewAddressSpace(
599     cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace);
600 }
601
602 // Defines the join operation on the address space lattice (see the file header
603 // comments).
604 unsigned InferAddressSpaces::joinAddressSpaces(unsigned AS1,
605                                                unsigned AS2) const {
606   if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace)
607     return FlatAddrSpace;
608
609   if (AS1 == UninitializedAddressSpace)
610     return AS2;
611   if (AS2 == UninitializedAddressSpace)
612     return AS1;
613
614   // The join of two different specific address spaces is flat.
615   return (AS1 == AS2) ? AS1 : FlatAddrSpace;
616 }
617
618 bool InferAddressSpaces::runOnFunction(Function &F) {
619   if (skipFunction(F))
620     return false;
621
622   const TargetTransformInfo &TTI =
623       getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
624   FlatAddrSpace = TTI.getFlatAddressSpace();
625   if (FlatAddrSpace == UninitializedAddressSpace)
626     return false;
627
628   // Collects all flat address expressions in postorder.
629   std::vector<WeakTrackingVH> Postorder = collectFlatAddressExpressions(F);
630
631   // Runs a data-flow analysis to refine the address spaces of every expression
632   // in Postorder.
633   ValueToAddrSpaceMapTy InferredAddrSpace;
634   inferAddressSpaces(Postorder, &InferredAddrSpace);
635
636   // Changes the address spaces of the flat address expressions who are inferred
637   // to point to a specific address space.
638   return rewriteWithNewAddressSpaces(TTI, Postorder, InferredAddrSpace, &F);
639 }
640
641 // Constants need to be tracked through RAUW to handle cases with nested
642 // constant expressions, so wrap values in WeakTrackingVH.
643 void InferAddressSpaces::inferAddressSpaces(
644     ArrayRef<WeakTrackingVH> Postorder,
645     ValueToAddrSpaceMapTy *InferredAddrSpace) const {
646   SetVector<Value *> Worklist(Postorder.begin(), Postorder.end());
647   // Initially, all expressions are in the uninitialized address space.
648   for (Value *V : Postorder)
649     (*InferredAddrSpace)[V] = UninitializedAddressSpace;
650
651   while (!Worklist.empty()) {
652     Value *V = Worklist.pop_back_val();
653
654     // Tries to update the address space of the stack top according to the
655     // address spaces of its operands.
656     LLVM_DEBUG(dbgs() << "Updating the address space of\n  " << *V << '\n');
657     Optional<unsigned> NewAS = updateAddressSpace(*V, *InferredAddrSpace);
658     if (!NewAS.hasValue())
659       continue;
660     // If any updates are made, grabs its users to the worklist because
661     // their address spaces can also be possibly updated.
662     LLVM_DEBUG(dbgs() << "  to " << NewAS.getValue() << '\n');
663     (*InferredAddrSpace)[V] = NewAS.getValue();
664
665     for (Value *User : V->users()) {
666       // Skip if User is already in the worklist.
667       if (Worklist.count(User))
668         continue;
669
670       auto Pos = InferredAddrSpace->find(User);
671       // Our algorithm only updates the address spaces of flat address
672       // expressions, which are those in InferredAddrSpace.
673       if (Pos == InferredAddrSpace->end())
674         continue;
675
676       // Function updateAddressSpace moves the address space down a lattice
677       // path. Therefore, nothing to do if User is already inferred as flat (the
678       // bottom element in the lattice).
679       if (Pos->second == FlatAddrSpace)
680         continue;
681
682       Worklist.insert(User);
683     }
684   }
685 }
686
687 Optional<unsigned> InferAddressSpaces::updateAddressSpace(
688     const Value &V, const ValueToAddrSpaceMapTy &InferredAddrSpace) const {
689   assert(InferredAddrSpace.count(&V));
690
691   // The new inferred address space equals the join of the address spaces
692   // of all its pointer operands.
693   unsigned NewAS = UninitializedAddressSpace;
694
695   const Operator &Op = cast<Operator>(V);
696   if (Op.getOpcode() == Instruction::Select) {
697     Value *Src0 = Op.getOperand(1);
698     Value *Src1 = Op.getOperand(2);
699
700     auto I = InferredAddrSpace.find(Src0);
701     unsigned Src0AS = (I != InferredAddrSpace.end()) ?
702       I->second : Src0->getType()->getPointerAddressSpace();
703
704     auto J = InferredAddrSpace.find(Src1);
705     unsigned Src1AS = (J != InferredAddrSpace.end()) ?
706       J->second : Src1->getType()->getPointerAddressSpace();
707
708     auto *C0 = dyn_cast<Constant>(Src0);
709     auto *C1 = dyn_cast<Constant>(Src1);
710
711     // If one of the inputs is a constant, we may be able to do a constant
712     // addrspacecast of it. Defer inferring the address space until the input
713     // address space is known.
714     if ((C1 && Src0AS == UninitializedAddressSpace) ||
715         (C0 && Src1AS == UninitializedAddressSpace))
716       return None;
717
718     if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS))
719       NewAS = Src1AS;
720     else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS))
721       NewAS = Src0AS;
722     else
723       NewAS = joinAddressSpaces(Src0AS, Src1AS);
724   } else {
725     for (Value *PtrOperand : getPointerOperands(V)) {
726       auto I = InferredAddrSpace.find(PtrOperand);
727       unsigned OperandAS = I != InferredAddrSpace.end() ?
728         I->second : PtrOperand->getType()->getPointerAddressSpace();
729
730       // join(flat, *) = flat. So we can break if NewAS is already flat.
731       NewAS = joinAddressSpaces(NewAS, OperandAS);
732       if (NewAS == FlatAddrSpace)
733         break;
734     }
735   }
736
737   unsigned OldAS = InferredAddrSpace.lookup(&V);
738   assert(OldAS != FlatAddrSpace);
739   if (OldAS == NewAS)
740     return None;
741   return NewAS;
742 }
743
744 /// \p returns true if \p U is the pointer operand of a memory instruction with
745 /// a single pointer operand that can have its address space changed by simply
746 /// mutating the use to a new value. If the memory instruction is volatile,
747 /// return true only if the target allows the memory instruction to be volatile
748 /// in the new address space.
749 static bool isSimplePointerUseValidToReplace(const TargetTransformInfo &TTI,
750                                              Use &U, unsigned AddrSpace) {
751   User *Inst = U.getUser();
752   unsigned OpNo = U.getOperandNo();
753   bool VolatileIsAllowed = false;
754   if (auto *I = dyn_cast<Instruction>(Inst))
755     VolatileIsAllowed = TTI.hasVolatileVariant(I, AddrSpace);
756
757   if (auto *LI = dyn_cast<LoadInst>(Inst))
758     return OpNo == LoadInst::getPointerOperandIndex() &&
759            (VolatileIsAllowed || !LI->isVolatile());
760
761   if (auto *SI = dyn_cast<StoreInst>(Inst))
762     return OpNo == StoreInst::getPointerOperandIndex() &&
763            (VolatileIsAllowed || !SI->isVolatile());
764
765   if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst))
766     return OpNo == AtomicRMWInst::getPointerOperandIndex() &&
767            (VolatileIsAllowed || !RMW->isVolatile());
768
769   if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst))
770     return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() &&
771            (VolatileIsAllowed || !CmpX->isVolatile());
772
773   return false;
774 }
775
776 /// Update memory intrinsic uses that require more complex processing than
777 /// simple memory instructions. Thse require re-mangling and may have multiple
778 /// pointer operands.
779 static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV,
780                                      Value *NewV) {
781   IRBuilder<> B(MI);
782   MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa);
783   MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope);
784   MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias);
785
786   if (auto *MSI = dyn_cast<MemSetInst>(MI)) {
787     B.CreateMemSet(NewV, MSI->getValue(),
788                    MSI->getLength(), MSI->getDestAlignment(),
789                    false, // isVolatile
790                    TBAA, ScopeMD, NoAliasMD);
791   } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) {
792     Value *Src = MTI->getRawSource();
793     Value *Dest = MTI->getRawDest();
794
795     // Be careful in case this is a self-to-self copy.
796     if (Src == OldV)
797       Src = NewV;
798
799     if (Dest == OldV)
800       Dest = NewV;
801
802     if (isa<MemCpyInst>(MTI)) {
803       MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct);
804       B.CreateMemCpy(Dest, MTI->getDestAlignment(),
805                      Src, MTI->getSourceAlignment(),
806                      MTI->getLength(),
807                      false, // isVolatile
808                      TBAA, TBAAStruct, ScopeMD, NoAliasMD);
809     } else {
810       assert(isa<MemMoveInst>(MTI));
811       B.CreateMemMove(Dest, MTI->getDestAlignment(),
812                       Src, MTI->getSourceAlignment(),
813                       MTI->getLength(),
814                       false, // isVolatile
815                       TBAA, ScopeMD, NoAliasMD);
816     }
817   } else
818     llvm_unreachable("unhandled MemIntrinsic");
819
820   MI->eraseFromParent();
821   return true;
822 }
823
824 // \p returns true if it is OK to change the address space of constant \p C with
825 // a ConstantExpr addrspacecast.
826 bool InferAddressSpaces::isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const {
827   assert(NewAS != UninitializedAddressSpace);
828
829   unsigned SrcAS = C->getType()->getPointerAddressSpace();
830   if (SrcAS == NewAS || isa<UndefValue>(C))
831     return true;
832
833   // Prevent illegal casts between different non-flat address spaces.
834   if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace)
835     return false;
836
837   if (isa<ConstantPointerNull>(C))
838     return true;
839
840   if (auto *Op = dyn_cast<Operator>(C)) {
841     // If we already have a constant addrspacecast, it should be safe to cast it
842     // off.
843     if (Op->getOpcode() == Instruction::AddrSpaceCast)
844       return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), NewAS);
845
846     if (Op->getOpcode() == Instruction::IntToPtr &&
847         Op->getType()->getPointerAddressSpace() == FlatAddrSpace)
848       return true;
849   }
850
851   return false;
852 }
853
854 static Value::use_iterator skipToNextUser(Value::use_iterator I,
855                                           Value::use_iterator End) {
856   User *CurUser = I->getUser();
857   ++I;
858
859   while (I != End && I->getUser() == CurUser)
860     ++I;
861
862   return I;
863 }
864
865 bool InferAddressSpaces::rewriteWithNewAddressSpaces(
866     const TargetTransformInfo &TTI, ArrayRef<WeakTrackingVH> Postorder,
867     const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const {
868   // For each address expression to be modified, creates a clone of it with its
869   // pointer operands converted to the new address space. Since the pointer
870   // operands are converted, the clone is naturally in the new address space by
871   // construction.
872   ValueToValueMapTy ValueWithNewAddrSpace;
873   SmallVector<const Use *, 32> UndefUsesToFix;
874   for (Value* V : Postorder) {
875     unsigned NewAddrSpace = InferredAddrSpace.lookup(V);
876     if (V->getType()->getPointerAddressSpace() != NewAddrSpace) {
877       ValueWithNewAddrSpace[V] = cloneValueWithNewAddressSpace(
878         V, NewAddrSpace, ValueWithNewAddrSpace, &UndefUsesToFix);
879     }
880   }
881
882   if (ValueWithNewAddrSpace.empty())
883     return false;
884
885   // Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace.
886   for (const Use *UndefUse : UndefUsesToFix) {
887     User *V = UndefUse->getUser();
888     User *NewV = cast<User>(ValueWithNewAddrSpace.lookup(V));
889     unsigned OperandNo = UndefUse->getOperandNo();
890     assert(isa<UndefValue>(NewV->getOperand(OperandNo)));
891     NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get()));
892   }
893
894   SmallVector<Instruction *, 16> DeadInstructions;
895
896   // Replaces the uses of the old address expressions with the new ones.
897   for (const WeakTrackingVH &WVH : Postorder) {
898     assert(WVH && "value was unexpectedly deleted");
899     Value *V = WVH;
900     Value *NewV = ValueWithNewAddrSpace.lookup(V);
901     if (NewV == nullptr)
902       continue;
903
904     LLVM_DEBUG(dbgs() << "Replacing the uses of " << *V << "\n  with\n  "
905                       << *NewV << '\n');
906
907     if (Constant *C = dyn_cast<Constant>(V)) {
908       Constant *Replace = ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
909                                                          C->getType());
910       if (C != Replace) {
911         LLVM_DEBUG(dbgs() << "Inserting replacement const cast: " << Replace
912                           << ": " << *Replace << '\n');
913         C->replaceAllUsesWith(Replace);
914         V = Replace;
915       }
916     }
917
918     Value::use_iterator I, E, Next;
919     for (I = V->use_begin(), E = V->use_end(); I != E; ) {
920       Use &U = *I;
921
922       // Some users may see the same pointer operand in multiple operands. Skip
923       // to the next instruction.
924       I = skipToNextUser(I, E);
925
926       if (isSimplePointerUseValidToReplace(
927               TTI, U, V->getType()->getPointerAddressSpace())) {
928         // If V is used as the pointer operand of a compatible memory operation,
929         // sets the pointer operand to NewV. This replacement does not change
930         // the element type, so the resultant load/store is still valid.
931         U.set(NewV);
932         continue;
933       }
934
935       User *CurUser = U.getUser();
936       // Handle more complex cases like intrinsic that need to be remangled.
937       if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) {
938         if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV))
939           continue;
940       }
941
942       if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) {
943         if (rewriteIntrinsicOperands(II, V, NewV))
944           continue;
945       }
946
947       if (isa<Instruction>(CurUser)) {
948         if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) {
949           // If we can infer that both pointers are in the same addrspace,
950           // transform e.g.
951           //   %cmp = icmp eq float* %p, %q
952           // into
953           //   %cmp = icmp eq float addrspace(3)* %new_p, %new_q
954
955           unsigned NewAS = NewV->getType()->getPointerAddressSpace();
956           int SrcIdx = U.getOperandNo();
957           int OtherIdx = (SrcIdx == 0) ? 1 : 0;
958           Value *OtherSrc = Cmp->getOperand(OtherIdx);
959
960           if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) {
961             if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) {
962               Cmp->setOperand(OtherIdx, OtherNewV);
963               Cmp->setOperand(SrcIdx, NewV);
964               continue;
965             }
966           }
967
968           // Even if the type mismatches, we can cast the constant.
969           if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) {
970             if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) {
971               Cmp->setOperand(SrcIdx, NewV);
972               Cmp->setOperand(OtherIdx,
973                 ConstantExpr::getAddrSpaceCast(KOtherSrc, NewV->getType()));
974               continue;
975             }
976           }
977         }
978
979         if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(CurUser)) {
980           unsigned NewAS = NewV->getType()->getPointerAddressSpace();
981           if (ASC->getDestAddressSpace() == NewAS) {
982             if (ASC->getType()->getPointerElementType() !=
983                 NewV->getType()->getPointerElementType()) {
984               NewV = CastInst::Create(Instruction::BitCast, NewV,
985                                       ASC->getType(), "", ASC);
986             }
987             ASC->replaceAllUsesWith(NewV);
988             DeadInstructions.push_back(ASC);
989             continue;
990           }
991         }
992
993         // Otherwise, replaces the use with flat(NewV).
994         if (Instruction *I = dyn_cast<Instruction>(V)) {
995           BasicBlock::iterator InsertPos = std::next(I->getIterator());
996           while (isa<PHINode>(InsertPos))
997             ++InsertPos;
998           U.set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos));
999         } else {
1000           U.set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
1001                                                V->getType()));
1002         }
1003       }
1004     }
1005
1006     if (V->use_empty()) {
1007       if (Instruction *I = dyn_cast<Instruction>(V))
1008         DeadInstructions.push_back(I);
1009     }
1010   }
1011
1012   for (Instruction *I : DeadInstructions)
1013     RecursivelyDeleteTriviallyDeadInstructions(I);
1014
1015   return true;
1016 }
1017
1018 FunctionPass *llvm::createInferAddressSpacesPass() {
1019   return new InferAddressSpaces();
1020 }