]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/Scalar/LoopDistribute.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / Scalar / LoopDistribute.cpp
1 //===- LoopDistribute.cpp - Loop Distribution Pass ------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Loop Distribution Pass.  Its main focus is to
11 // distribute loops that cannot be vectorized due to dependence cycles.  It
12 // tries to isolate the offending dependences into a new loop allowing
13 // vectorization of the remaining parts.
14 //
15 // For dependence analysis, the pass uses the LoopVectorizer's
16 // LoopAccessAnalysis.  Because this analysis presumes no change in the order of
17 // memory operations, special care is taken to preserve the lexical order of
18 // these operations.
19 //
20 // Similarly to the Vectorizer, the pass also supports loop versioning to
21 // run-time disambiguate potentially overlapping arrays.
22 //
23 //===----------------------------------------------------------------------===//
24
25 #include "llvm/Transforms/Scalar/LoopDistribute.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/DepthFirstIterator.h"
28 #include "llvm/ADT/EquivalenceClasses.h"
29 #include "llvm/ADT/Optional.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/ADT/StringRef.h"
35 #include "llvm/ADT/Twine.h"
36 #include "llvm/ADT/iterator_range.h"
37 #include "llvm/Analysis/AliasAnalysis.h"
38 #include "llvm/Analysis/AssumptionCache.h"
39 #include "llvm/Analysis/GlobalsModRef.h"
40 #include "llvm/Analysis/LoopAccessAnalysis.h"
41 #include "llvm/Analysis/LoopAnalysisManager.h"
42 #include "llvm/Analysis/LoopInfo.h"
43 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
44 #include "llvm/Analysis/ScalarEvolution.h"
45 #include "llvm/Analysis/TargetLibraryInfo.h"
46 #include "llvm/Analysis/TargetTransformInfo.h"
47 #include "llvm/IR/BasicBlock.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DiagnosticInfo.h"
50 #include "llvm/IR/Dominators.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/InstrTypes.h"
53 #include "llvm/IR/Instruction.h"
54 #include "llvm/IR/Instructions.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/PassManager.h"
58 #include "llvm/IR/Value.h"
59 #include "llvm/Pass.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Transforms/Scalar.h"
65 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
66 #include "llvm/Transforms/Utils/Cloning.h"
67 #include "llvm/Transforms/Utils/LoopUtils.h"
68 #include "llvm/Transforms/Utils/LoopVersioning.h"
69 #include "llvm/Transforms/Utils/ValueMapper.h"
70 #include <cassert>
71 #include <functional>
72 #include <list>
73 #include <tuple>
74 #include <utility>
75
76 using namespace llvm;
77
78 #define LDIST_NAME "loop-distribute"
79 #define DEBUG_TYPE LDIST_NAME
80
81 /// @{
82 /// Metadata attribute names
83 static const char *const LLVMLoopDistributeFollowupAll =
84     "llvm.loop.distribute.followup_all";
85 static const char *const LLVMLoopDistributeFollowupCoincident =
86     "llvm.loop.distribute.followup_coincident";
87 static const char *const LLVMLoopDistributeFollowupSequential =
88     "llvm.loop.distribute.followup_sequential";
89 static const char *const LLVMLoopDistributeFollowupFallback =
90     "llvm.loop.distribute.followup_fallback";
91 /// @}
92
93 static cl::opt<bool>
94     LDistVerify("loop-distribute-verify", cl::Hidden,
95                 cl::desc("Turn on DominatorTree and LoopInfo verification "
96                          "after Loop Distribution"),
97                 cl::init(false));
98
99 static cl::opt<bool> DistributeNonIfConvertible(
100     "loop-distribute-non-if-convertible", cl::Hidden,
101     cl::desc("Whether to distribute into a loop that may not be "
102              "if-convertible by the loop vectorizer"),
103     cl::init(false));
104
105 static cl::opt<unsigned> DistributeSCEVCheckThreshold(
106     "loop-distribute-scev-check-threshold", cl::init(8), cl::Hidden,
107     cl::desc("The maximum number of SCEV checks allowed for Loop "
108              "Distribution"));
109
110 static cl::opt<unsigned> PragmaDistributeSCEVCheckThreshold(
111     "loop-distribute-scev-check-threshold-with-pragma", cl::init(128),
112     cl::Hidden,
113     cl::desc(
114         "The maximum number of SCEV checks allowed for Loop "
115         "Distribution for loop marked with #pragma loop distribute(enable)"));
116
117 static cl::opt<bool> EnableLoopDistribute(
118     "enable-loop-distribute", cl::Hidden,
119     cl::desc("Enable the new, experimental LoopDistribution Pass"),
120     cl::init(false));
121
122 STATISTIC(NumLoopsDistributed, "Number of loops distributed");
123
124 namespace {
125
126 /// Maintains the set of instructions of the loop for a partition before
127 /// cloning.  After cloning, it hosts the new loop.
128 class InstPartition {
129   using InstructionSet = SmallPtrSet<Instruction *, 8>;
130
131 public:
132   InstPartition(Instruction *I, Loop *L, bool DepCycle = false)
133       : DepCycle(DepCycle), OrigLoop(L) {
134     Set.insert(I);
135   }
136
137   /// Returns whether this partition contains a dependence cycle.
138   bool hasDepCycle() const { return DepCycle; }
139
140   /// Adds an instruction to this partition.
141   void add(Instruction *I) { Set.insert(I); }
142
143   /// Collection accessors.
144   InstructionSet::iterator begin() { return Set.begin(); }
145   InstructionSet::iterator end() { return Set.end(); }
146   InstructionSet::const_iterator begin() const { return Set.begin(); }
147   InstructionSet::const_iterator end() const { return Set.end(); }
148   bool empty() const { return Set.empty(); }
149
150   /// Moves this partition into \p Other.  This partition becomes empty
151   /// after this.
152   void moveTo(InstPartition &Other) {
153     Other.Set.insert(Set.begin(), Set.end());
154     Set.clear();
155     Other.DepCycle |= DepCycle;
156   }
157
158   /// Populates the partition with a transitive closure of all the
159   /// instructions that the seeded instructions dependent on.
160   void populateUsedSet() {
161     // FIXME: We currently don't use control-dependence but simply include all
162     // blocks (possibly empty at the end) and let simplifycfg mostly clean this
163     // up.
164     for (auto *B : OrigLoop->getBlocks())
165       Set.insert(B->getTerminator());
166
167     // Follow the use-def chains to form a transitive closure of all the
168     // instructions that the originally seeded instructions depend on.
169     SmallVector<Instruction *, 8> Worklist(Set.begin(), Set.end());
170     while (!Worklist.empty()) {
171       Instruction *I = Worklist.pop_back_val();
172       // Insert instructions from the loop that we depend on.
173       for (Value *V : I->operand_values()) {
174         auto *I = dyn_cast<Instruction>(V);
175         if (I && OrigLoop->contains(I->getParent()) && Set.insert(I).second)
176           Worklist.push_back(I);
177       }
178     }
179   }
180
181   /// Clones the original loop.
182   ///
183   /// Updates LoopInfo and DominatorTree using the information that block \p
184   /// LoopDomBB dominates the loop.
185   Loop *cloneLoopWithPreheader(BasicBlock *InsertBefore, BasicBlock *LoopDomBB,
186                                unsigned Index, LoopInfo *LI,
187                                DominatorTree *DT) {
188     ClonedLoop = ::cloneLoopWithPreheader(InsertBefore, LoopDomBB, OrigLoop,
189                                           VMap, Twine(".ldist") + Twine(Index),
190                                           LI, DT, ClonedLoopBlocks);
191     return ClonedLoop;
192   }
193
194   /// The cloned loop.  If this partition is mapped to the original loop,
195   /// this is null.
196   const Loop *getClonedLoop() const { return ClonedLoop; }
197
198   /// Returns the loop where this partition ends up after distribution.
199   /// If this partition is mapped to the original loop then use the block from
200   /// the loop.
201   Loop *getDistributedLoop() const {
202     return ClonedLoop ? ClonedLoop : OrigLoop;
203   }
204
205   /// The VMap that is populated by cloning and then used in
206   /// remapinstruction to remap the cloned instructions.
207   ValueToValueMapTy &getVMap() { return VMap; }
208
209   /// Remaps the cloned instructions using VMap.
210   void remapInstructions() {
211     remapInstructionsInBlocks(ClonedLoopBlocks, VMap);
212   }
213
214   /// Based on the set of instructions selected for this partition,
215   /// removes the unnecessary ones.
216   void removeUnusedInsts() {
217     SmallVector<Instruction *, 8> Unused;
218
219     for (auto *Block : OrigLoop->getBlocks())
220       for (auto &Inst : *Block)
221         if (!Set.count(&Inst)) {
222           Instruction *NewInst = &Inst;
223           if (!VMap.empty())
224             NewInst = cast<Instruction>(VMap[NewInst]);
225
226           assert(!isa<BranchInst>(NewInst) &&
227                  "Branches are marked used early on");
228           Unused.push_back(NewInst);
229         }
230
231     // Delete the instructions backwards, as it has a reduced likelihood of
232     // having to update as many def-use and use-def chains.
233     for (auto *Inst : reverse(Unused)) {
234       if (!Inst->use_empty())
235         Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
236       Inst->eraseFromParent();
237     }
238   }
239
240   void print() const {
241     if (DepCycle)
242       dbgs() << "  (cycle)\n";
243     for (auto *I : Set)
244       // Prefix with the block name.
245       dbgs() << "  " << I->getParent()->getName() << ":" << *I << "\n";
246   }
247
248   void printBlocks() const {
249     for (auto *BB : getDistributedLoop()->getBlocks())
250       dbgs() << *BB;
251   }
252
253 private:
254   /// Instructions from OrigLoop selected for this partition.
255   InstructionSet Set;
256
257   /// Whether this partition contains a dependence cycle.
258   bool DepCycle;
259
260   /// The original loop.
261   Loop *OrigLoop;
262
263   /// The cloned loop.  If this partition is mapped to the original loop,
264   /// this is null.
265   Loop *ClonedLoop = nullptr;
266
267   /// The blocks of ClonedLoop including the preheader.  If this
268   /// partition is mapped to the original loop, this is empty.
269   SmallVector<BasicBlock *, 8> ClonedLoopBlocks;
270
271   /// These gets populated once the set of instructions have been
272   /// finalized. If this partition is mapped to the original loop, these are not
273   /// set.
274   ValueToValueMapTy VMap;
275 };
276
277 /// Holds the set of Partitions.  It populates them, merges them and then
278 /// clones the loops.
279 class InstPartitionContainer {
280   using InstToPartitionIdT = DenseMap<Instruction *, int>;
281
282 public:
283   InstPartitionContainer(Loop *L, LoopInfo *LI, DominatorTree *DT)
284       : L(L), LI(LI), DT(DT) {}
285
286   /// Returns the number of partitions.
287   unsigned getSize() const { return PartitionContainer.size(); }
288
289   /// Adds \p Inst into the current partition if that is marked to
290   /// contain cycles.  Otherwise start a new partition for it.
291   void addToCyclicPartition(Instruction *Inst) {
292     // If the current partition is non-cyclic.  Start a new one.
293     if (PartitionContainer.empty() || !PartitionContainer.back().hasDepCycle())
294       PartitionContainer.emplace_back(Inst, L, /*DepCycle=*/true);
295     else
296       PartitionContainer.back().add(Inst);
297   }
298
299   /// Adds \p Inst into a partition that is not marked to contain
300   /// dependence cycles.
301   ///
302   //  Initially we isolate memory instructions into as many partitions as
303   //  possible, then later we may merge them back together.
304   void addToNewNonCyclicPartition(Instruction *Inst) {
305     PartitionContainer.emplace_back(Inst, L);
306   }
307
308   /// Merges adjacent non-cyclic partitions.
309   ///
310   /// The idea is that we currently only want to isolate the non-vectorizable
311   /// partition.  We could later allow more distribution among these partition
312   /// too.
313   void mergeAdjacentNonCyclic() {
314     mergeAdjacentPartitionsIf(
315         [](const InstPartition *P) { return !P->hasDepCycle(); });
316   }
317
318   /// If a partition contains only conditional stores, we won't vectorize
319   /// it.  Try to merge it with a previous cyclic partition.
320   void mergeNonIfConvertible() {
321     mergeAdjacentPartitionsIf([&](const InstPartition *Partition) {
322       if (Partition->hasDepCycle())
323         return true;
324
325       // Now, check if all stores are conditional in this partition.
326       bool seenStore = false;
327
328       for (auto *Inst : *Partition)
329         if (isa<StoreInst>(Inst)) {
330           seenStore = true;
331           if (!LoopAccessInfo::blockNeedsPredication(Inst->getParent(), L, DT))
332             return false;
333         }
334       return seenStore;
335     });
336   }
337
338   /// Merges the partitions according to various heuristics.
339   void mergeBeforePopulating() {
340     mergeAdjacentNonCyclic();
341     if (!DistributeNonIfConvertible)
342       mergeNonIfConvertible();
343   }
344
345   /// Merges partitions in order to ensure that no loads are duplicated.
346   ///
347   /// We can't duplicate loads because that could potentially reorder them.
348   /// LoopAccessAnalysis provides dependency information with the context that
349   /// the order of memory operation is preserved.
350   ///
351   /// Return if any partitions were merged.
352   bool mergeToAvoidDuplicatedLoads() {
353     using LoadToPartitionT = DenseMap<Instruction *, InstPartition *>;
354     using ToBeMergedT = EquivalenceClasses<InstPartition *>;
355
356     LoadToPartitionT LoadToPartition;
357     ToBeMergedT ToBeMerged;
358
359     // Step through the partitions and create equivalence between partitions
360     // that contain the same load.  Also put partitions in between them in the
361     // same equivalence class to avoid reordering of memory operations.
362     for (PartitionContainerT::iterator I = PartitionContainer.begin(),
363                                        E = PartitionContainer.end();
364          I != E; ++I) {
365       auto *PartI = &*I;
366
367       // If a load occurs in two partitions PartI and PartJ, merge all
368       // partitions (PartI, PartJ] into PartI.
369       for (Instruction *Inst : *PartI)
370         if (isa<LoadInst>(Inst)) {
371           bool NewElt;
372           LoadToPartitionT::iterator LoadToPart;
373
374           std::tie(LoadToPart, NewElt) =
375               LoadToPartition.insert(std::make_pair(Inst, PartI));
376           if (!NewElt) {
377             LLVM_DEBUG(dbgs()
378                        << "Merging partitions due to this load in multiple "
379                        << "partitions: " << PartI << ", " << LoadToPart->second
380                        << "\n"
381                        << *Inst << "\n");
382
383             auto PartJ = I;
384             do {
385               --PartJ;
386               ToBeMerged.unionSets(PartI, &*PartJ);
387             } while (&*PartJ != LoadToPart->second);
388           }
389         }
390     }
391     if (ToBeMerged.empty())
392       return false;
393
394     // Merge the member of an equivalence class into its class leader.  This
395     // makes the members empty.
396     for (ToBeMergedT::iterator I = ToBeMerged.begin(), E = ToBeMerged.end();
397          I != E; ++I) {
398       if (!I->isLeader())
399         continue;
400
401       auto PartI = I->getData();
402       for (auto PartJ : make_range(std::next(ToBeMerged.member_begin(I)),
403                                    ToBeMerged.member_end())) {
404         PartJ->moveTo(*PartI);
405       }
406     }
407
408     // Remove the empty partitions.
409     PartitionContainer.remove_if(
410         [](const InstPartition &P) { return P.empty(); });
411
412     return true;
413   }
414
415   /// Sets up the mapping between instructions to partitions.  If the
416   /// instruction is duplicated across multiple partitions, set the entry to -1.
417   void setupPartitionIdOnInstructions() {
418     int PartitionID = 0;
419     for (const auto &Partition : PartitionContainer) {
420       for (Instruction *Inst : Partition) {
421         bool NewElt;
422         InstToPartitionIdT::iterator Iter;
423
424         std::tie(Iter, NewElt) =
425             InstToPartitionId.insert(std::make_pair(Inst, PartitionID));
426         if (!NewElt)
427           Iter->second = -1;
428       }
429       ++PartitionID;
430     }
431   }
432
433   /// Populates the partition with everything that the seeding
434   /// instructions require.
435   void populateUsedSet() {
436     for (auto &P : PartitionContainer)
437       P.populateUsedSet();
438   }
439
440   /// This performs the main chunk of the work of cloning the loops for
441   /// the partitions.
442   void cloneLoops() {
443     BasicBlock *OrigPH = L->getLoopPreheader();
444     // At this point the predecessor of the preheader is either the memcheck
445     // block or the top part of the original preheader.
446     BasicBlock *Pred = OrigPH->getSinglePredecessor();
447     assert(Pred && "Preheader does not have a single predecessor");
448     BasicBlock *ExitBlock = L->getExitBlock();
449     assert(ExitBlock && "No single exit block");
450     Loop *NewLoop;
451
452     assert(!PartitionContainer.empty() && "at least two partitions expected");
453     // We're cloning the preheader along with the loop so we already made sure
454     // it was empty.
455     assert(&*OrigPH->begin() == OrigPH->getTerminator() &&
456            "preheader not empty");
457
458     // Preserve the original loop ID for use after the transformation.
459     MDNode *OrigLoopID = L->getLoopID();
460
461     // Create a loop for each partition except the last.  Clone the original
462     // loop before PH along with adding a preheader for the cloned loop.  Then
463     // update PH to point to the newly added preheader.
464     BasicBlock *TopPH = OrigPH;
465     unsigned Index = getSize() - 1;
466     for (auto I = std::next(PartitionContainer.rbegin()),
467               E = PartitionContainer.rend();
468          I != E; ++I, --Index, TopPH = NewLoop->getLoopPreheader()) {
469       auto *Part = &*I;
470
471       NewLoop = Part->cloneLoopWithPreheader(TopPH, Pred, Index, LI, DT);
472
473       Part->getVMap()[ExitBlock] = TopPH;
474       Part->remapInstructions();
475       setNewLoopID(OrigLoopID, Part);
476     }
477     Pred->getTerminator()->replaceUsesOfWith(OrigPH, TopPH);
478
479     // Also set a new loop ID for the last loop.
480     setNewLoopID(OrigLoopID, &PartitionContainer.back());
481
482     // Now go in forward order and update the immediate dominator for the
483     // preheaders with the exiting block of the previous loop.  Dominance
484     // within the loop is updated in cloneLoopWithPreheader.
485     for (auto Curr = PartitionContainer.cbegin(),
486               Next = std::next(PartitionContainer.cbegin()),
487               E = PartitionContainer.cend();
488          Next != E; ++Curr, ++Next)
489       DT->changeImmediateDominator(
490           Next->getDistributedLoop()->getLoopPreheader(),
491           Curr->getDistributedLoop()->getExitingBlock());
492   }
493
494   /// Removes the dead instructions from the cloned loops.
495   void removeUnusedInsts() {
496     for (auto &Partition : PartitionContainer)
497       Partition.removeUnusedInsts();
498   }
499
500   /// For each memory pointer, it computes the partitionId the pointer is
501   /// used in.
502   ///
503   /// This returns an array of int where the I-th entry corresponds to I-th
504   /// entry in LAI.getRuntimePointerCheck().  If the pointer is used in multiple
505   /// partitions its entry is set to -1.
506   SmallVector<int, 8>
507   computePartitionSetForPointers(const LoopAccessInfo &LAI) {
508     const RuntimePointerChecking *RtPtrCheck = LAI.getRuntimePointerChecking();
509
510     unsigned N = RtPtrCheck->Pointers.size();
511     SmallVector<int, 8> PtrToPartitions(N);
512     for (unsigned I = 0; I < N; ++I) {
513       Value *Ptr = RtPtrCheck->Pointers[I].PointerValue;
514       auto Instructions =
515           LAI.getInstructionsForAccess(Ptr, RtPtrCheck->Pointers[I].IsWritePtr);
516
517       int &Partition = PtrToPartitions[I];
518       // First set it to uninitialized.
519       Partition = -2;
520       for (Instruction *Inst : Instructions) {
521         // Note that this could be -1 if Inst is duplicated across multiple
522         // partitions.
523         int ThisPartition = this->InstToPartitionId[Inst];
524         if (Partition == -2)
525           Partition = ThisPartition;
526         // -1 means belonging to multiple partitions.
527         else if (Partition == -1)
528           break;
529         else if (Partition != (int)ThisPartition)
530           Partition = -1;
531       }
532       assert(Partition != -2 && "Pointer not belonging to any partition");
533     }
534
535     return PtrToPartitions;
536   }
537
538   void print(raw_ostream &OS) const {
539     unsigned Index = 0;
540     for (const auto &P : PartitionContainer) {
541       OS << "Partition " << Index++ << " (" << &P << "):\n";
542       P.print();
543     }
544   }
545
546   void dump() const { print(dbgs()); }
547
548 #ifndef NDEBUG
549   friend raw_ostream &operator<<(raw_ostream &OS,
550                                  const InstPartitionContainer &Partitions) {
551     Partitions.print(OS);
552     return OS;
553   }
554 #endif
555
556   void printBlocks() const {
557     unsigned Index = 0;
558     for (const auto &P : PartitionContainer) {
559       dbgs() << "\nPartition " << Index++ << " (" << &P << "):\n";
560       P.printBlocks();
561     }
562   }
563
564 private:
565   using PartitionContainerT = std::list<InstPartition>;
566
567   /// List of partitions.
568   PartitionContainerT PartitionContainer;
569
570   /// Mapping from Instruction to partition Id.  If the instruction
571   /// belongs to multiple partitions the entry contains -1.
572   InstToPartitionIdT InstToPartitionId;
573
574   Loop *L;
575   LoopInfo *LI;
576   DominatorTree *DT;
577
578   /// The control structure to merge adjacent partitions if both satisfy
579   /// the \p Predicate.
580   template <class UnaryPredicate>
581   void mergeAdjacentPartitionsIf(UnaryPredicate Predicate) {
582     InstPartition *PrevMatch = nullptr;
583     for (auto I = PartitionContainer.begin(); I != PartitionContainer.end();) {
584       auto DoesMatch = Predicate(&*I);
585       if (PrevMatch == nullptr && DoesMatch) {
586         PrevMatch = &*I;
587         ++I;
588       } else if (PrevMatch != nullptr && DoesMatch) {
589         I->moveTo(*PrevMatch);
590         I = PartitionContainer.erase(I);
591       } else {
592         PrevMatch = nullptr;
593         ++I;
594       }
595     }
596   }
597
598   /// Assign new LoopIDs for the partition's cloned loop.
599   void setNewLoopID(MDNode *OrigLoopID, InstPartition *Part) {
600     Optional<MDNode *> PartitionID = makeFollowupLoopID(
601         OrigLoopID,
602         {LLVMLoopDistributeFollowupAll,
603          Part->hasDepCycle() ? LLVMLoopDistributeFollowupSequential
604                              : LLVMLoopDistributeFollowupCoincident});
605     if (PartitionID.hasValue()) {
606       Loop *NewLoop = Part->getDistributedLoop();
607       NewLoop->setLoopID(PartitionID.getValue());
608     }
609   }
610 };
611
612 /// For each memory instruction, this class maintains difference of the
613 /// number of unsafe dependences that start out from this instruction minus
614 /// those that end here.
615 ///
616 /// By traversing the memory instructions in program order and accumulating this
617 /// number, we know whether any unsafe dependence crosses over a program point.
618 class MemoryInstructionDependences {
619   using Dependence = MemoryDepChecker::Dependence;
620
621 public:
622   struct Entry {
623     Instruction *Inst;
624     unsigned NumUnsafeDependencesStartOrEnd = 0;
625
626     Entry(Instruction *Inst) : Inst(Inst) {}
627   };
628
629   using AccessesType = SmallVector<Entry, 8>;
630
631   AccessesType::const_iterator begin() const { return Accesses.begin(); }
632   AccessesType::const_iterator end() const { return Accesses.end(); }
633
634   MemoryInstructionDependences(
635       const SmallVectorImpl<Instruction *> &Instructions,
636       const SmallVectorImpl<Dependence> &Dependences) {
637     Accesses.append(Instructions.begin(), Instructions.end());
638
639     LLVM_DEBUG(dbgs() << "Backward dependences:\n");
640     for (auto &Dep : Dependences)
641       if (Dep.isPossiblyBackward()) {
642         // Note that the designations source and destination follow the program
643         // order, i.e. source is always first.  (The direction is given by the
644         // DepType.)
645         ++Accesses[Dep.Source].NumUnsafeDependencesStartOrEnd;
646         --Accesses[Dep.Destination].NumUnsafeDependencesStartOrEnd;
647
648         LLVM_DEBUG(Dep.print(dbgs(), 2, Instructions));
649       }
650   }
651
652 private:
653   AccessesType Accesses;
654 };
655
656 /// The actual class performing the per-loop work.
657 class LoopDistributeForLoop {
658 public:
659   LoopDistributeForLoop(Loop *L, Function *F, LoopInfo *LI, DominatorTree *DT,
660                         ScalarEvolution *SE, OptimizationRemarkEmitter *ORE)
661       : L(L), F(F), LI(LI), DT(DT), SE(SE), ORE(ORE) {
662     setForced();
663   }
664
665   /// Try to distribute an inner-most loop.
666   bool processLoop(std::function<const LoopAccessInfo &(Loop &)> &GetLAA) {
667     assert(L->empty() && "Only process inner loops.");
668
669     LLVM_DEBUG(dbgs() << "\nLDist: In \""
670                       << L->getHeader()->getParent()->getName()
671                       << "\" checking " << *L << "\n");
672
673     if (!L->getExitBlock())
674       return fail("MultipleExitBlocks", "multiple exit blocks");
675     if (!L->isLoopSimplifyForm())
676       return fail("NotLoopSimplifyForm",
677                   "loop is not in loop-simplify form");
678
679     BasicBlock *PH = L->getLoopPreheader();
680
681     // LAA will check that we only have a single exiting block.
682     LAI = &GetLAA(*L);
683
684     // Currently, we only distribute to isolate the part of the loop with
685     // dependence cycles to enable partial vectorization.
686     if (LAI->canVectorizeMemory())
687       return fail("MemOpsCanBeVectorized",
688                   "memory operations are safe for vectorization");
689
690     auto *Dependences = LAI->getDepChecker().getDependences();
691     if (!Dependences || Dependences->empty())
692       return fail("NoUnsafeDeps", "no unsafe dependences to isolate");
693
694     InstPartitionContainer Partitions(L, LI, DT);
695
696     // First, go through each memory operation and assign them to consecutive
697     // partitions (the order of partitions follows program order).  Put those
698     // with unsafe dependences into "cyclic" partition otherwise put each store
699     // in its own "non-cyclic" partition (we'll merge these later).
700     //
701     // Note that a memory operation (e.g. Load2 below) at a program point that
702     // has an unsafe dependence (Store3->Load1) spanning over it must be
703     // included in the same cyclic partition as the dependent operations.  This
704     // is to preserve the original program order after distribution.  E.g.:
705     //
706     //                NumUnsafeDependencesStartOrEnd  NumUnsafeDependencesActive
707     //  Load1   -.                     1                       0->1
708     //  Load2    | /Unsafe/            0                       1
709     //  Store3  -'                    -1                       1->0
710     //  Load4                          0                       0
711     //
712     // NumUnsafeDependencesActive > 0 indicates this situation and in this case
713     // we just keep assigning to the same cyclic partition until
714     // NumUnsafeDependencesActive reaches 0.
715     const MemoryDepChecker &DepChecker = LAI->getDepChecker();
716     MemoryInstructionDependences MID(DepChecker.getMemoryInstructions(),
717                                      *Dependences);
718
719     int NumUnsafeDependencesActive = 0;
720     for (auto &InstDep : MID) {
721       Instruction *I = InstDep.Inst;
722       // We update NumUnsafeDependencesActive post-instruction, catch the
723       // start of a dependence directly via NumUnsafeDependencesStartOrEnd.
724       if (NumUnsafeDependencesActive ||
725           InstDep.NumUnsafeDependencesStartOrEnd > 0)
726         Partitions.addToCyclicPartition(I);
727       else
728         Partitions.addToNewNonCyclicPartition(I);
729       NumUnsafeDependencesActive += InstDep.NumUnsafeDependencesStartOrEnd;
730       assert(NumUnsafeDependencesActive >= 0 &&
731              "Negative number of dependences active");
732     }
733
734     // Add partitions for values used outside.  These partitions can be out of
735     // order from the original program order.  This is OK because if the
736     // partition uses a load we will merge this partition with the original
737     // partition of the load that we set up in the previous loop (see
738     // mergeToAvoidDuplicatedLoads).
739     auto DefsUsedOutside = findDefsUsedOutsideOfLoop(L);
740     for (auto *Inst : DefsUsedOutside)
741       Partitions.addToNewNonCyclicPartition(Inst);
742
743     LLVM_DEBUG(dbgs() << "Seeded partitions:\n" << Partitions);
744     if (Partitions.getSize() < 2)
745       return fail("CantIsolateUnsafeDeps",
746                   "cannot isolate unsafe dependencies");
747
748     // Run the merge heuristics: Merge non-cyclic adjacent partitions since we
749     // should be able to vectorize these together.
750     Partitions.mergeBeforePopulating();
751     LLVM_DEBUG(dbgs() << "\nMerged partitions:\n" << Partitions);
752     if (Partitions.getSize() < 2)
753       return fail("CantIsolateUnsafeDeps",
754                   "cannot isolate unsafe dependencies");
755
756     // Now, populate the partitions with non-memory operations.
757     Partitions.populateUsedSet();
758     LLVM_DEBUG(dbgs() << "\nPopulated partitions:\n" << Partitions);
759
760     // In order to preserve original lexical order for loads, keep them in the
761     // partition that we set up in the MemoryInstructionDependences loop.
762     if (Partitions.mergeToAvoidDuplicatedLoads()) {
763       LLVM_DEBUG(dbgs() << "\nPartitions merged to ensure unique loads:\n"
764                         << Partitions);
765       if (Partitions.getSize() < 2)
766         return fail("CantIsolateUnsafeDeps",
767                     "cannot isolate unsafe dependencies");
768     }
769
770     // Don't distribute the loop if we need too many SCEV run-time checks.
771     const SCEVUnionPredicate &Pred = LAI->getPSE().getUnionPredicate();
772     if (Pred.getComplexity() > (IsForced.getValueOr(false)
773                                     ? PragmaDistributeSCEVCheckThreshold
774                                     : DistributeSCEVCheckThreshold))
775       return fail("TooManySCEVRuntimeChecks",
776                   "too many SCEV run-time checks needed.\n");
777
778     if (!IsForced.getValueOr(false) && hasDisableAllTransformsHint(L))
779       return fail("HeuristicDisabled", "distribution heuristic disabled");
780
781     LLVM_DEBUG(dbgs() << "\nDistributing loop: " << *L << "\n");
782     // We're done forming the partitions set up the reverse mapping from
783     // instructions to partitions.
784     Partitions.setupPartitionIdOnInstructions();
785
786     // To keep things simple have an empty preheader before we version or clone
787     // the loop.  (Also split if this has no predecessor, i.e. entry, because we
788     // rely on PH having a predecessor.)
789     if (!PH->getSinglePredecessor() || &*PH->begin() != PH->getTerminator())
790       SplitBlock(PH, PH->getTerminator(), DT, LI);
791
792     // If we need run-time checks, version the loop now.
793     auto PtrToPartition = Partitions.computePartitionSetForPointers(*LAI);
794     const auto *RtPtrChecking = LAI->getRuntimePointerChecking();
795     const auto &AllChecks = RtPtrChecking->getChecks();
796     auto Checks = includeOnlyCrossPartitionChecks(AllChecks, PtrToPartition,
797                                                   RtPtrChecking);
798
799     if (!Pred.isAlwaysTrue() || !Checks.empty()) {
800       MDNode *OrigLoopID = L->getLoopID();
801
802       LLVM_DEBUG(dbgs() << "\nPointers:\n");
803       LLVM_DEBUG(LAI->getRuntimePointerChecking()->printChecks(dbgs(), Checks));
804       LoopVersioning LVer(*LAI, L, LI, DT, SE, false);
805       LVer.setAliasChecks(std::move(Checks));
806       LVer.setSCEVChecks(LAI->getPSE().getUnionPredicate());
807       LVer.versionLoop(DefsUsedOutside);
808       LVer.annotateLoopWithNoAlias();
809
810       // The unversioned loop will not be changed, so we inherit all attributes
811       // from the original loop, but remove the loop distribution metadata to
812       // avoid to distribute it again.
813       MDNode *UnversionedLoopID =
814           makeFollowupLoopID(OrigLoopID,
815                              {LLVMLoopDistributeFollowupAll,
816                               LLVMLoopDistributeFollowupFallback},
817                              "llvm.loop.distribute.", true)
818               .getValue();
819       LVer.getNonVersionedLoop()->setLoopID(UnversionedLoopID);
820     }
821
822     // Create identical copies of the original loop for each partition and hook
823     // them up sequentially.
824     Partitions.cloneLoops();
825
826     // Now, we remove the instruction from each loop that don't belong to that
827     // partition.
828     Partitions.removeUnusedInsts();
829     LLVM_DEBUG(dbgs() << "\nAfter removing unused Instrs:\n");
830     LLVM_DEBUG(Partitions.printBlocks());
831
832     if (LDistVerify) {
833       LI->verify(*DT);
834       assert(DT->verify(DominatorTree::VerificationLevel::Fast));
835     }
836
837     ++NumLoopsDistributed;
838     // Report the success.
839     ORE->emit([&]() {
840       return OptimizationRemark(LDIST_NAME, "Distribute", L->getStartLoc(),
841                                 L->getHeader())
842              << "distributed loop";
843     });
844     return true;
845   }
846
847   /// Provide diagnostics then \return with false.
848   bool fail(StringRef RemarkName, StringRef Message) {
849     LLVMContext &Ctx = F->getContext();
850     bool Forced = isForced().getValueOr(false);
851
852     LLVM_DEBUG(dbgs() << "Skipping; " << Message << "\n");
853
854     // With Rpass-missed report that distribution failed.
855     ORE->emit([&]() {
856       return OptimizationRemarkMissed(LDIST_NAME, "NotDistributed",
857                                       L->getStartLoc(), L->getHeader())
858              << "loop not distributed: use -Rpass-analysis=loop-distribute for "
859                 "more "
860                 "info";
861     });
862
863     // With Rpass-analysis report why.  This is on by default if distribution
864     // was requested explicitly.
865     ORE->emit(OptimizationRemarkAnalysis(
866                   Forced ? OptimizationRemarkAnalysis::AlwaysPrint : LDIST_NAME,
867                   RemarkName, L->getStartLoc(), L->getHeader())
868               << "loop not distributed: " << Message);
869
870     // Also issue a warning if distribution was requested explicitly but it
871     // failed.
872     if (Forced)
873       Ctx.diagnose(DiagnosticInfoOptimizationFailure(
874           *F, L->getStartLoc(), "loop not distributed: failed "
875                                 "explicitly specified loop distribution"));
876
877     return false;
878   }
879
880   /// Return if distribution forced to be enabled/disabled for the loop.
881   ///
882   /// If the optional has a value, it indicates whether distribution was forced
883   /// to be enabled (true) or disabled (false).  If the optional has no value
884   /// distribution was not forced either way.
885   const Optional<bool> &isForced() const { return IsForced; }
886
887 private:
888   /// Filter out checks between pointers from the same partition.
889   ///
890   /// \p PtrToPartition contains the partition number for pointers.  Partition
891   /// number -1 means that the pointer is used in multiple partitions.  In this
892   /// case we can't safely omit the check.
893   SmallVector<RuntimePointerChecking::PointerCheck, 4>
894   includeOnlyCrossPartitionChecks(
895       const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &AllChecks,
896       const SmallVectorImpl<int> &PtrToPartition,
897       const RuntimePointerChecking *RtPtrChecking) {
898     SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks;
899
900     copy_if(AllChecks, std::back_inserter(Checks),
901             [&](const RuntimePointerChecking::PointerCheck &Check) {
902               for (unsigned PtrIdx1 : Check.first->Members)
903                 for (unsigned PtrIdx2 : Check.second->Members)
904                   // Only include this check if there is a pair of pointers
905                   // that require checking and the pointers fall into
906                   // separate partitions.
907                   //
908                   // (Note that we already know at this point that the two
909                   // pointer groups need checking but it doesn't follow
910                   // that each pair of pointers within the two groups need
911                   // checking as well.
912                   //
913                   // In other words we don't want to include a check just
914                   // because there is a pair of pointers between the two
915                   // pointer groups that require checks and a different
916                   // pair whose pointers fall into different partitions.)
917                   if (RtPtrChecking->needsChecking(PtrIdx1, PtrIdx2) &&
918                       !RuntimePointerChecking::arePointersInSamePartition(
919                           PtrToPartition, PtrIdx1, PtrIdx2))
920                     return true;
921               return false;
922             });
923
924     return Checks;
925   }
926
927   /// Check whether the loop metadata is forcing distribution to be
928   /// enabled/disabled.
929   void setForced() {
930     Optional<const MDOperand *> Value =
931         findStringMetadataForLoop(L, "llvm.loop.distribute.enable");
932     if (!Value)
933       return;
934
935     const MDOperand *Op = *Value;
936     assert(Op && mdconst::hasa<ConstantInt>(*Op) && "invalid metadata");
937     IsForced = mdconst::extract<ConstantInt>(*Op)->getZExtValue();
938   }
939
940   Loop *L;
941   Function *F;
942
943   // Analyses used.
944   LoopInfo *LI;
945   const LoopAccessInfo *LAI = nullptr;
946   DominatorTree *DT;
947   ScalarEvolution *SE;
948   OptimizationRemarkEmitter *ORE;
949
950   /// Indicates whether distribution is forced to be enabled/disabled for
951   /// the loop.
952   ///
953   /// If the optional has a value, it indicates whether distribution was forced
954   /// to be enabled (true) or disabled (false).  If the optional has no value
955   /// distribution was not forced either way.
956   Optional<bool> IsForced;
957 };
958
959 } // end anonymous namespace
960
961 /// Shared implementation between new and old PMs.
962 static bool runImpl(Function &F, LoopInfo *LI, DominatorTree *DT,
963                     ScalarEvolution *SE, OptimizationRemarkEmitter *ORE,
964                     std::function<const LoopAccessInfo &(Loop &)> &GetLAA) {
965   // Build up a worklist of inner-loops to vectorize. This is necessary as the
966   // act of distributing a loop creates new loops and can invalidate iterators
967   // across the loops.
968   SmallVector<Loop *, 8> Worklist;
969
970   for (Loop *TopLevelLoop : *LI)
971     for (Loop *L : depth_first(TopLevelLoop))
972       // We only handle inner-most loops.
973       if (L->empty())
974         Worklist.push_back(L);
975
976   // Now walk the identified inner loops.
977   bool Changed = false;
978   for (Loop *L : Worklist) {
979     LoopDistributeForLoop LDL(L, &F, LI, DT, SE, ORE);
980
981     // If distribution was forced for the specific loop to be
982     // enabled/disabled, follow that.  Otherwise use the global flag.
983     if (LDL.isForced().getValueOr(EnableLoopDistribute))
984       Changed |= LDL.processLoop(GetLAA);
985   }
986
987   // Process each loop nest in the function.
988   return Changed;
989 }
990
991 namespace {
992
993 /// The pass class.
994 class LoopDistributeLegacy : public FunctionPass {
995 public:
996   static char ID;
997
998   LoopDistributeLegacy() : FunctionPass(ID) {
999     // The default is set by the caller.
1000     initializeLoopDistributeLegacyPass(*PassRegistry::getPassRegistry());
1001   }
1002
1003   bool runOnFunction(Function &F) override {
1004     if (skipFunction(F))
1005       return false;
1006
1007     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1008     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
1009     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1010     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1011     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
1012     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
1013         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
1014
1015     return runImpl(F, LI, DT, SE, ORE, GetLAA);
1016   }
1017
1018   void getAnalysisUsage(AnalysisUsage &AU) const override {
1019     AU.addRequired<ScalarEvolutionWrapperPass>();
1020     AU.addRequired<LoopInfoWrapperPass>();
1021     AU.addPreserved<LoopInfoWrapperPass>();
1022     AU.addRequired<LoopAccessLegacyAnalysis>();
1023     AU.addRequired<DominatorTreeWrapperPass>();
1024     AU.addPreserved<DominatorTreeWrapperPass>();
1025     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
1026     AU.addPreserved<GlobalsAAWrapperPass>();
1027   }
1028 };
1029
1030 } // end anonymous namespace
1031
1032 PreservedAnalyses LoopDistributePass::run(Function &F,
1033                                           FunctionAnalysisManager &AM) {
1034   auto &LI = AM.getResult<LoopAnalysis>(F);
1035   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1036   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1037   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1038
1039   // We don't directly need these analyses but they're required for loop
1040   // analyses so provide them below.
1041   auto &AA = AM.getResult<AAManager>(F);
1042   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1043   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
1044   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1045
1046   auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
1047   std::function<const LoopAccessInfo &(Loop &)> GetLAA =
1048       [&](Loop &L) -> const LoopAccessInfo & {
1049     LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, nullptr};
1050     return LAM.getResult<LoopAccessAnalysis>(L, AR);
1051   };
1052
1053   bool Changed = runImpl(F, &LI, &DT, &SE, &ORE, GetLAA);
1054   if (!Changed)
1055     return PreservedAnalyses::all();
1056   PreservedAnalyses PA;
1057   PA.preserve<LoopAnalysis>();
1058   PA.preserve<DominatorTreeAnalysis>();
1059   PA.preserve<GlobalsAA>();
1060   return PA;
1061 }
1062
1063 char LoopDistributeLegacy::ID;
1064
1065 static const char ldist_name[] = "Loop Distribution";
1066
1067 INITIALIZE_PASS_BEGIN(LoopDistributeLegacy, LDIST_NAME, ldist_name, false,
1068                       false)
1069 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1070 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
1071 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1072 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
1073 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
1074 INITIALIZE_PASS_END(LoopDistributeLegacy, LDIST_NAME, ldist_name, false, false)
1075
1076 FunctionPass *llvm::createLoopDistributePass() { return new LoopDistributeLegacy(); }