]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp
Merge libc++ trunk r338150, and resolve conflicts.
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / Scalar / LoopIdiomRecognize.cpp
1 //===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements an idiom recognizer that transforms simple loops into a
11 // non-loop form.  In cases that this kicks in, it can be a significant
12 // performance win.
13 //
14 // If compiling for code size we avoid idiom recognition if the resulting
15 // code could be larger than the code for the original loop. One way this could
16 // happen is if the loop is not removable after idiom recognition due to the
17 // presence of non-idiom instructions. The initial implementation of the
18 // heuristics applies to idioms in multi-block loops.
19 //
20 //===----------------------------------------------------------------------===//
21 //
22 // TODO List:
23 //
24 // Future loop memory idioms to recognize:
25 //   memcmp, memmove, strlen, etc.
26 // Future floating point idioms to recognize in -ffast-math mode:
27 //   fpowi
28 // Future integer operation idioms to recognize:
29 //   ctpop, ctlz, cttz
30 //
31 // Beware that isel's default lowering for ctpop is highly inefficient for
32 // i64 and larger types when i64 is legal and the value has few bits set.  It
33 // would be good to enhance isel to emit a loop for ctpop in this case.
34 //
35 // This could recognize common matrix multiplies and dot product idioms and
36 // replace them with calls to BLAS (if linked in??).
37 //
38 //===----------------------------------------------------------------------===//
39
40 #include "llvm/ADT/APInt.h"
41 #include "llvm/ADT/ArrayRef.h"
42 #include "llvm/ADT/DenseMap.h"
43 #include "llvm/ADT/MapVector.h"
44 #include "llvm/ADT/SetVector.h"
45 #include "llvm/ADT/SmallPtrSet.h"
46 #include "llvm/ADT/SmallVector.h"
47 #include "llvm/ADT/Statistic.h"
48 #include "llvm/ADT/StringRef.h"
49 #include "llvm/Analysis/AliasAnalysis.h"
50 #include "llvm/Analysis/LoopAccessAnalysis.h"
51 #include "llvm/Analysis/LoopInfo.h"
52 #include "llvm/Analysis/LoopPass.h"
53 #include "llvm/Analysis/MemoryLocation.h"
54 #include "llvm/Analysis/ScalarEvolution.h"
55 #include "llvm/Analysis/ScalarEvolutionExpander.h"
56 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
57 #include "llvm/Analysis/TargetLibraryInfo.h"
58 #include "llvm/Analysis/TargetTransformInfo.h"
59 #include "llvm/Transforms/Utils/Local.h"
60 #include "llvm/Analysis/ValueTracking.h"
61 #include "llvm/IR/Attributes.h"
62 #include "llvm/IR/BasicBlock.h"
63 #include "llvm/IR/Constant.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/IR/DataLayout.h"
66 #include "llvm/IR/DebugLoc.h"
67 #include "llvm/IR/DerivedTypes.h"
68 #include "llvm/IR/Dominators.h"
69 #include "llvm/IR/GlobalValue.h"
70 #include "llvm/IR/GlobalVariable.h"
71 #include "llvm/IR/IRBuilder.h"
72 #include "llvm/IR/InstrTypes.h"
73 #include "llvm/IR/Instruction.h"
74 #include "llvm/IR/Instructions.h"
75 #include "llvm/IR/IntrinsicInst.h"
76 #include "llvm/IR/Intrinsics.h"
77 #include "llvm/IR/LLVMContext.h"
78 #include "llvm/IR/Module.h"
79 #include "llvm/IR/PassManager.h"
80 #include "llvm/IR/Type.h"
81 #include "llvm/IR/User.h"
82 #include "llvm/IR/Value.h"
83 #include "llvm/IR/ValueHandle.h"
84 #include "llvm/Pass.h"
85 #include "llvm/Support/Casting.h"
86 #include "llvm/Support/CommandLine.h"
87 #include "llvm/Support/Debug.h"
88 #include "llvm/Support/raw_ostream.h"
89 #include "llvm/Transforms/Scalar.h"
90 #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h"
91 #include "llvm/Transforms/Utils/BuildLibCalls.h"
92 #include "llvm/Transforms/Utils/LoopUtils.h"
93 #include <algorithm>
94 #include <cassert>
95 #include <cstdint>
96 #include <utility>
97 #include <vector>
98
99 using namespace llvm;
100
101 #define DEBUG_TYPE "loop-idiom"
102
103 STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
104 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
105
106 static cl::opt<bool> UseLIRCodeSizeHeurs(
107     "use-lir-code-size-heurs",
108     cl::desc("Use loop idiom recognition code size heuristics when compiling"
109              "with -Os/-Oz"),
110     cl::init(true), cl::Hidden);
111
112 namespace {
113
114 class LoopIdiomRecognize {
115   Loop *CurLoop = nullptr;
116   AliasAnalysis *AA;
117   DominatorTree *DT;
118   LoopInfo *LI;
119   ScalarEvolution *SE;
120   TargetLibraryInfo *TLI;
121   const TargetTransformInfo *TTI;
122   const DataLayout *DL;
123   bool ApplyCodeSizeHeuristics;
124
125 public:
126   explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT,
127                               LoopInfo *LI, ScalarEvolution *SE,
128                               TargetLibraryInfo *TLI,
129                               const TargetTransformInfo *TTI,
130                               const DataLayout *DL)
131       : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL) {}
132
133   bool runOnLoop(Loop *L);
134
135 private:
136   using StoreList = SmallVector<StoreInst *, 8>;
137   using StoreListMap = MapVector<Value *, StoreList>;
138
139   StoreListMap StoreRefsForMemset;
140   StoreListMap StoreRefsForMemsetPattern;
141   StoreList StoreRefsForMemcpy;
142   bool HasMemset;
143   bool HasMemsetPattern;
144   bool HasMemcpy;
145
146   /// Return code for isLegalStore()
147   enum LegalStoreKind {
148     None = 0,
149     Memset,
150     MemsetPattern,
151     Memcpy,
152     UnorderedAtomicMemcpy,
153     DontUse // Dummy retval never to be used. Allows catching errors in retval
154             // handling.
155   };
156
157   /// \name Countable Loop Idiom Handling
158   /// @{
159
160   bool runOnCountableLoop();
161   bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
162                       SmallVectorImpl<BasicBlock *> &ExitBlocks);
163
164   void collectStores(BasicBlock *BB);
165   LegalStoreKind isLegalStore(StoreInst *SI);
166   bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount,
167                          bool ForMemset);
168   bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);
169
170   bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
171                                unsigned StoreAlignment, Value *StoredVal,
172                                Instruction *TheStore,
173                                SmallPtrSetImpl<Instruction *> &Stores,
174                                const SCEVAddRecExpr *Ev, const SCEV *BECount,
175                                bool NegStride, bool IsLoopMemset = false);
176   bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount);
177   bool avoidLIRForMultiBlockLoop(bool IsMemset = false,
178                                  bool IsLoopMemset = false);
179
180   /// @}
181   /// \name Noncountable Loop Idiom Handling
182   /// @{
183
184   bool runOnNoncountableLoop();
185
186   bool recognizePopcount();
187   void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst,
188                                PHINode *CntPhi, Value *Var);
189   bool recognizeAndInsertCTLZ();
190   void transformLoopToCountable(BasicBlock *PreCondBB, Instruction *CntInst,
191                                 PHINode *CntPhi, Value *Var, Instruction *DefX,
192                                 const DebugLoc &DL, bool ZeroCheck,
193                                 bool IsCntPhiUsedOutsideLoop);
194
195   /// @}
196 };
197
198 class LoopIdiomRecognizeLegacyPass : public LoopPass {
199 public:
200   static char ID;
201
202   explicit LoopIdiomRecognizeLegacyPass() : LoopPass(ID) {
203     initializeLoopIdiomRecognizeLegacyPassPass(
204         *PassRegistry::getPassRegistry());
205   }
206
207   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
208     if (skipLoop(L))
209       return false;
210
211     AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
212     DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
213     LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
214     ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
215     TargetLibraryInfo *TLI =
216         &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
217     const TargetTransformInfo *TTI =
218         &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
219             *L->getHeader()->getParent());
220     const DataLayout *DL = &L->getHeader()->getModule()->getDataLayout();
221
222     LoopIdiomRecognize LIR(AA, DT, LI, SE, TLI, TTI, DL);
223     return LIR.runOnLoop(L);
224   }
225
226   /// This transformation requires natural loop information & requires that
227   /// loop preheaders be inserted into the CFG.
228   void getAnalysisUsage(AnalysisUsage &AU) const override {
229     AU.addRequired<TargetLibraryInfoWrapperPass>();
230     AU.addRequired<TargetTransformInfoWrapperPass>();
231     getLoopAnalysisUsage(AU);
232   }
233 };
234
235 } // end anonymous namespace
236
237 char LoopIdiomRecognizeLegacyPass::ID = 0;
238
239 PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM,
240                                               LoopStandardAnalysisResults &AR,
241                                               LPMUpdater &) {
242   const auto *DL = &L.getHeader()->getModule()->getDataLayout();
243
244   LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI, DL);
245   if (!LIR.runOnLoop(&L))
246     return PreservedAnalyses::all();
247
248   return getLoopPassPreservedAnalyses();
249 }
250
251 INITIALIZE_PASS_BEGIN(LoopIdiomRecognizeLegacyPass, "loop-idiom",
252                       "Recognize loop idioms", false, false)
253 INITIALIZE_PASS_DEPENDENCY(LoopPass)
254 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
255 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
256 INITIALIZE_PASS_END(LoopIdiomRecognizeLegacyPass, "loop-idiom",
257                     "Recognize loop idioms", false, false)
258
259 Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognizeLegacyPass(); }
260
261 static void deleteDeadInstruction(Instruction *I) {
262   I->replaceAllUsesWith(UndefValue::get(I->getType()));
263   I->eraseFromParent();
264 }
265
266 //===----------------------------------------------------------------------===//
267 //
268 //          Implementation of LoopIdiomRecognize
269 //
270 //===----------------------------------------------------------------------===//
271
272 bool LoopIdiomRecognize::runOnLoop(Loop *L) {
273   CurLoop = L;
274   // If the loop could not be converted to canonical form, it must have an
275   // indirectbr in it, just give up.
276   if (!L->getLoopPreheader())
277     return false;
278
279   // Disable loop idiom recognition if the function's name is a common idiom.
280   StringRef Name = L->getHeader()->getParent()->getName();
281   if (Name == "memset" || Name == "memcpy")
282     return false;
283
284   // Determine if code size heuristics need to be applied.
285   ApplyCodeSizeHeuristics =
286       L->getHeader()->getParent()->optForSize() && UseLIRCodeSizeHeurs;
287
288   HasMemset = TLI->has(LibFunc_memset);
289   HasMemsetPattern = TLI->has(LibFunc_memset_pattern16);
290   HasMemcpy = TLI->has(LibFunc_memcpy);
291
292   if (HasMemset || HasMemsetPattern || HasMemcpy)
293     if (SE->hasLoopInvariantBackedgeTakenCount(L))
294       return runOnCountableLoop();
295
296   return runOnNoncountableLoop();
297 }
298
299 bool LoopIdiomRecognize::runOnCountableLoop() {
300   const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop);
301   assert(!isa<SCEVCouldNotCompute>(BECount) &&
302          "runOnCountableLoop() called on a loop without a predictable"
303          "backedge-taken count");
304
305   // If this loop executes exactly one time, then it should be peeled, not
306   // optimized by this pass.
307   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
308     if (BECst->getAPInt() == 0)
309       return false;
310
311   SmallVector<BasicBlock *, 8> ExitBlocks;
312   CurLoop->getUniqueExitBlocks(ExitBlocks);
313
314   LLVM_DEBUG(dbgs() << "loop-idiom Scanning: F["
315                     << CurLoop->getHeader()->getParent()->getName()
316                     << "] Loop %" << CurLoop->getHeader()->getName() << "\n");
317
318   bool MadeChange = false;
319
320   // The following transforms hoist stores/memsets into the loop pre-header.
321   // Give up if the loop has instructions may throw.
322   LoopSafetyInfo SafetyInfo;
323   computeLoopSafetyInfo(&SafetyInfo, CurLoop);
324   if (SafetyInfo.MayThrow)
325     return MadeChange;
326
327   // Scan all the blocks in the loop that are not in subloops.
328   for (auto *BB : CurLoop->getBlocks()) {
329     // Ignore blocks in subloops.
330     if (LI->getLoopFor(BB) != CurLoop)
331       continue;
332
333     MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks);
334   }
335   return MadeChange;
336 }
337
338 static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) {
339   const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1));
340   return ConstStride->getAPInt();
341 }
342
343 /// getMemSetPatternValue - If a strided store of the specified value is safe to
344 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
345 /// be passed in.  Otherwise, return null.
346 ///
347 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these
348 /// just replicate their input array and then pass on to memset_pattern16.
349 static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) {
350   // If the value isn't a constant, we can't promote it to being in a constant
351   // array.  We could theoretically do a store to an alloca or something, but
352   // that doesn't seem worthwhile.
353   Constant *C = dyn_cast<Constant>(V);
354   if (!C)
355     return nullptr;
356
357   // Only handle simple values that are a power of two bytes in size.
358   uint64_t Size = DL->getTypeSizeInBits(V->getType());
359   if (Size == 0 || (Size & 7) || (Size & (Size - 1)))
360     return nullptr;
361
362   // Don't care enough about darwin/ppc to implement this.
363   if (DL->isBigEndian())
364     return nullptr;
365
366   // Convert to size in bytes.
367   Size /= 8;
368
369   // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
370   // if the top and bottom are the same (e.g. for vectors and large integers).
371   if (Size > 16)
372     return nullptr;
373
374   // If the constant is exactly 16 bytes, just use it.
375   if (Size == 16)
376     return C;
377
378   // Otherwise, we'll use an array of the constants.
379   unsigned ArraySize = 16 / Size;
380   ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
381   return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C));
382 }
383
384 LoopIdiomRecognize::LegalStoreKind
385 LoopIdiomRecognize::isLegalStore(StoreInst *SI) {
386   // Don't touch volatile stores.
387   if (SI->isVolatile())
388     return LegalStoreKind::None;
389   // We only want simple or unordered-atomic stores.
390   if (!SI->isUnordered())
391     return LegalStoreKind::None;
392
393   // Don't convert stores of non-integral pointer types to memsets (which stores
394   // integers).
395   if (DL->isNonIntegralPointerType(SI->getValueOperand()->getType()))
396     return LegalStoreKind::None;
397
398   // Avoid merging nontemporal stores.
399   if (SI->getMetadata(LLVMContext::MD_nontemporal))
400     return LegalStoreKind::None;
401
402   Value *StoredVal = SI->getValueOperand();
403   Value *StorePtr = SI->getPointerOperand();
404
405   // Reject stores that are so large that they overflow an unsigned.
406   uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
407   if ((SizeInBits & 7) || (SizeInBits >> 32) != 0)
408     return LegalStoreKind::None;
409
410   // See if the pointer expression is an AddRec like {base,+,1} on the current
411   // loop, which indicates a strided store.  If we have something else, it's a
412   // random store we can't handle.
413   const SCEVAddRecExpr *StoreEv =
414       dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
415   if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
416     return LegalStoreKind::None;
417
418   // Check to see if we have a constant stride.
419   if (!isa<SCEVConstant>(StoreEv->getOperand(1)))
420     return LegalStoreKind::None;
421
422   // See if the store can be turned into a memset.
423
424   // If the stored value is a byte-wise value (like i32 -1), then it may be
425   // turned into a memset of i8 -1, assuming that all the consecutive bytes
426   // are stored.  A store of i32 0x01020304 can never be turned into a memset,
427   // but it can be turned into memset_pattern if the target supports it.
428   Value *SplatValue = isBytewiseValue(StoredVal);
429   Constant *PatternValue = nullptr;
430
431   // Note: memset and memset_pattern on unordered-atomic is yet not supported
432   bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple();
433
434   // If we're allowed to form a memset, and the stored value would be
435   // acceptable for memset, use it.
436   if (!UnorderedAtomic && HasMemset && SplatValue &&
437       // Verify that the stored value is loop invariant.  If not, we can't
438       // promote the memset.
439       CurLoop->isLoopInvariant(SplatValue)) {
440     // It looks like we can use SplatValue.
441     return LegalStoreKind::Memset;
442   } else if (!UnorderedAtomic && HasMemsetPattern &&
443              // Don't create memset_pattern16s with address spaces.
444              StorePtr->getType()->getPointerAddressSpace() == 0 &&
445              (PatternValue = getMemSetPatternValue(StoredVal, DL))) {
446     // It looks like we can use PatternValue!
447     return LegalStoreKind::MemsetPattern;
448   }
449
450   // Otherwise, see if the store can be turned into a memcpy.
451   if (HasMemcpy) {
452     // Check to see if the stride matches the size of the store.  If so, then we
453     // know that every byte is touched in the loop.
454     APInt Stride = getStoreStride(StoreEv);
455     unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
456     if (StoreSize != Stride && StoreSize != -Stride)
457       return LegalStoreKind::None;
458
459     // The store must be feeding a non-volatile load.
460     LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
461
462     // Only allow non-volatile loads
463     if (!LI || LI->isVolatile())
464       return LegalStoreKind::None;
465     // Only allow simple or unordered-atomic loads
466     if (!LI->isUnordered())
467       return LegalStoreKind::None;
468
469     // See if the pointer expression is an AddRec like {base,+,1} on the current
470     // loop, which indicates a strided load.  If we have something else, it's a
471     // random load we can't handle.
472     const SCEVAddRecExpr *LoadEv =
473         dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
474     if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
475       return LegalStoreKind::None;
476
477     // The store and load must share the same stride.
478     if (StoreEv->getOperand(1) != LoadEv->getOperand(1))
479       return LegalStoreKind::None;
480
481     // Success.  This store can be converted into a memcpy.
482     UnorderedAtomic = UnorderedAtomic || LI->isAtomic();
483     return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy
484                            : LegalStoreKind::Memcpy;
485   }
486   // This store can't be transformed into a memset/memcpy.
487   return LegalStoreKind::None;
488 }
489
490 void LoopIdiomRecognize::collectStores(BasicBlock *BB) {
491   StoreRefsForMemset.clear();
492   StoreRefsForMemsetPattern.clear();
493   StoreRefsForMemcpy.clear();
494   for (Instruction &I : *BB) {
495     StoreInst *SI = dyn_cast<StoreInst>(&I);
496     if (!SI)
497       continue;
498
499     // Make sure this is a strided store with a constant stride.
500     switch (isLegalStore(SI)) {
501     case LegalStoreKind::None:
502       // Nothing to do
503       break;
504     case LegalStoreKind::Memset: {
505       // Find the base pointer.
506       Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL);
507       StoreRefsForMemset[Ptr].push_back(SI);
508     } break;
509     case LegalStoreKind::MemsetPattern: {
510       // Find the base pointer.
511       Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL);
512       StoreRefsForMemsetPattern[Ptr].push_back(SI);
513     } break;
514     case LegalStoreKind::Memcpy:
515     case LegalStoreKind::UnorderedAtomicMemcpy:
516       StoreRefsForMemcpy.push_back(SI);
517       break;
518     default:
519       assert(false && "unhandled return value");
520       break;
521     }
522   }
523 }
524
525 /// runOnLoopBlock - Process the specified block, which lives in a counted loop
526 /// with the specified backedge count.  This block is known to be in the current
527 /// loop and not in any subloops.
528 bool LoopIdiomRecognize::runOnLoopBlock(
529     BasicBlock *BB, const SCEV *BECount,
530     SmallVectorImpl<BasicBlock *> &ExitBlocks) {
531   // We can only promote stores in this block if they are unconditionally
532   // executed in the loop.  For a block to be unconditionally executed, it has
533   // to dominate all the exit blocks of the loop.  Verify this now.
534   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
535     if (!DT->dominates(BB, ExitBlocks[i]))
536       return false;
537
538   bool MadeChange = false;
539   // Look for store instructions, which may be optimized to memset/memcpy.
540   collectStores(BB);
541
542   // Look for a single store or sets of stores with a common base, which can be
543   // optimized into a memset (memset_pattern).  The latter most commonly happens
544   // with structs and handunrolled loops.
545   for (auto &SL : StoreRefsForMemset)
546     MadeChange |= processLoopStores(SL.second, BECount, true);
547
548   for (auto &SL : StoreRefsForMemsetPattern)
549     MadeChange |= processLoopStores(SL.second, BECount, false);
550
551   // Optimize the store into a memcpy, if it feeds an similarly strided load.
552   for (auto &SI : StoreRefsForMemcpy)
553     MadeChange |= processLoopStoreOfLoopLoad(SI, BECount);
554
555   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
556     Instruction *Inst = &*I++;
557     // Look for memset instructions, which may be optimized to a larger memset.
558     if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst)) {
559       WeakTrackingVH InstPtr(&*I);
560       if (!processLoopMemSet(MSI, BECount))
561         continue;
562       MadeChange = true;
563
564       // If processing the memset invalidated our iterator, start over from the
565       // top of the block.
566       if (!InstPtr)
567         I = BB->begin();
568       continue;
569     }
570   }
571
572   return MadeChange;
573 }
574
575 /// processLoopStores - See if this store(s) can be promoted to a memset.
576 bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL,
577                                            const SCEV *BECount,
578                                            bool ForMemset) {
579   // Try to find consecutive stores that can be transformed into memsets.
580   SetVector<StoreInst *> Heads, Tails;
581   SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
582
583   // Do a quadratic search on all of the given stores and find
584   // all of the pairs of stores that follow each other.
585   SmallVector<unsigned, 16> IndexQueue;
586   for (unsigned i = 0, e = SL.size(); i < e; ++i) {
587     assert(SL[i]->isSimple() && "Expected only non-volatile stores.");
588
589     Value *FirstStoredVal = SL[i]->getValueOperand();
590     Value *FirstStorePtr = SL[i]->getPointerOperand();
591     const SCEVAddRecExpr *FirstStoreEv =
592         cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr));
593     APInt FirstStride = getStoreStride(FirstStoreEv);
594     unsigned FirstStoreSize = DL->getTypeStoreSize(SL[i]->getValueOperand()->getType());
595
596     // See if we can optimize just this store in isolation.
597     if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) {
598       Heads.insert(SL[i]);
599       continue;
600     }
601
602     Value *FirstSplatValue = nullptr;
603     Constant *FirstPatternValue = nullptr;
604
605     if (ForMemset)
606       FirstSplatValue = isBytewiseValue(FirstStoredVal);
607     else
608       FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL);
609
610     assert((FirstSplatValue || FirstPatternValue) &&
611            "Expected either splat value or pattern value.");
612
613     IndexQueue.clear();
614     // If a store has multiple consecutive store candidates, search Stores
615     // array according to the sequence: from i+1 to e, then from i-1 to 0.
616     // This is because usually pairing with immediate succeeding or preceding
617     // candidate create the best chance to find memset opportunity.
618     unsigned j = 0;
619     for (j = i + 1; j < e; ++j)
620       IndexQueue.push_back(j);
621     for (j = i; j > 0; --j)
622       IndexQueue.push_back(j - 1);
623
624     for (auto &k : IndexQueue) {
625       assert(SL[k]->isSimple() && "Expected only non-volatile stores.");
626       Value *SecondStorePtr = SL[k]->getPointerOperand();
627       const SCEVAddRecExpr *SecondStoreEv =
628           cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr));
629       APInt SecondStride = getStoreStride(SecondStoreEv);
630
631       if (FirstStride != SecondStride)
632         continue;
633
634       Value *SecondStoredVal = SL[k]->getValueOperand();
635       Value *SecondSplatValue = nullptr;
636       Constant *SecondPatternValue = nullptr;
637
638       if (ForMemset)
639         SecondSplatValue = isBytewiseValue(SecondStoredVal);
640       else
641         SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL);
642
643       assert((SecondSplatValue || SecondPatternValue) &&
644              "Expected either splat value or pattern value.");
645
646       if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) {
647         if (ForMemset) {
648           if (FirstSplatValue != SecondSplatValue)
649             continue;
650         } else {
651           if (FirstPatternValue != SecondPatternValue)
652             continue;
653         }
654         Tails.insert(SL[k]);
655         Heads.insert(SL[i]);
656         ConsecutiveChain[SL[i]] = SL[k];
657         break;
658       }
659     }
660   }
661
662   // We may run into multiple chains that merge into a single chain. We mark the
663   // stores that we transformed so that we don't visit the same store twice.
664   SmallPtrSet<Value *, 16> TransformedStores;
665   bool Changed = false;
666
667   // For stores that start but don't end a link in the chain:
668   for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end();
669        it != e; ++it) {
670     if (Tails.count(*it))
671       continue;
672
673     // We found a store instr that starts a chain. Now follow the chain and try
674     // to transform it.
675     SmallPtrSet<Instruction *, 8> AdjacentStores;
676     StoreInst *I = *it;
677
678     StoreInst *HeadStore = I;
679     unsigned StoreSize = 0;
680
681     // Collect the chain into a list.
682     while (Tails.count(I) || Heads.count(I)) {
683       if (TransformedStores.count(I))
684         break;
685       AdjacentStores.insert(I);
686
687       StoreSize += DL->getTypeStoreSize(I->getValueOperand()->getType());
688       // Move to the next value in the chain.
689       I = ConsecutiveChain[I];
690     }
691
692     Value *StoredVal = HeadStore->getValueOperand();
693     Value *StorePtr = HeadStore->getPointerOperand();
694     const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
695     APInt Stride = getStoreStride(StoreEv);
696
697     // Check to see if the stride matches the size of the stores.  If so, then
698     // we know that every byte is touched in the loop.
699     if (StoreSize != Stride && StoreSize != -Stride)
700       continue;
701
702     bool NegStride = StoreSize == -Stride;
703
704     if (processLoopStridedStore(StorePtr, StoreSize, HeadStore->getAlignment(),
705                                 StoredVal, HeadStore, AdjacentStores, StoreEv,
706                                 BECount, NegStride)) {
707       TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end());
708       Changed = true;
709     }
710   }
711
712   return Changed;
713 }
714
715 /// processLoopMemSet - See if this memset can be promoted to a large memset.
716 bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI,
717                                            const SCEV *BECount) {
718   // We can only handle non-volatile memsets with a constant size.
719   if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength()))
720     return false;
721
722   // If we're not allowed to hack on memset, we fail.
723   if (!HasMemset)
724     return false;
725
726   Value *Pointer = MSI->getDest();
727
728   // See if the pointer expression is an AddRec like {base,+,1} on the current
729   // loop, which indicates a strided store.  If we have something else, it's a
730   // random store we can't handle.
731   const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer));
732   if (!Ev || Ev->getLoop() != CurLoop || !Ev->isAffine())
733     return false;
734
735   // Reject memsets that are so large that they overflow an unsigned.
736   uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
737   if ((SizeInBytes >> 32) != 0)
738     return false;
739
740   // Check to see if the stride matches the size of the memset.  If so, then we
741   // know that every byte is touched in the loop.
742   const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1));
743   if (!ConstStride)
744     return false;
745
746   APInt Stride = ConstStride->getAPInt();
747   if (SizeInBytes != Stride && SizeInBytes != -Stride)
748     return false;
749
750   // Verify that the memset value is loop invariant.  If not, we can't promote
751   // the memset.
752   Value *SplatValue = MSI->getValue();
753   if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue))
754     return false;
755
756   SmallPtrSet<Instruction *, 1> MSIs;
757   MSIs.insert(MSI);
758   bool NegStride = SizeInBytes == -Stride;
759   return processLoopStridedStore(Pointer, (unsigned)SizeInBytes,
760                                  MSI->getDestAlignment(), SplatValue, MSI, MSIs,
761                                  Ev, BECount, NegStride, /*IsLoopMemset=*/true);
762 }
763
764 /// mayLoopAccessLocation - Return true if the specified loop might access the
765 /// specified pointer location, which is a loop-strided access.  The 'Access'
766 /// argument specifies what the verboten forms of access are (read or write).
767 static bool
768 mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L,
769                       const SCEV *BECount, unsigned StoreSize,
770                       AliasAnalysis &AA,
771                       SmallPtrSetImpl<Instruction *> &IgnoredStores) {
772   // Get the location that may be stored across the loop.  Since the access is
773   // strided positively through memory, we say that the modified location starts
774   // at the pointer and has infinite size.
775   uint64_t AccessSize = MemoryLocation::UnknownSize;
776
777   // If the loop iterates a fixed number of times, we can refine the access size
778   // to be exactly the size of the memset, which is (BECount+1)*StoreSize
779   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
780     AccessSize = (BECst->getValue()->getZExtValue() + 1) * StoreSize;
781
782   // TODO: For this to be really effective, we have to dive into the pointer
783   // operand in the store.  Store to &A[i] of 100 will always return may alias
784   // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
785   // which will then no-alias a store to &A[100].
786   MemoryLocation StoreLoc(Ptr, AccessSize);
787
788   for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
789        ++BI)
790     for (Instruction &I : **BI)
791       if (IgnoredStores.count(&I) == 0 &&
792           isModOrRefSet(
793               intersectModRef(AA.getModRefInfo(&I, StoreLoc), Access)))
794         return true;
795
796   return false;
797 }
798
799 // If we have a negative stride, Start refers to the end of the memory location
800 // we're trying to memset.  Therefore, we need to recompute the base pointer,
801 // which is just Start - BECount*Size.
802 static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount,
803                                         Type *IntPtr, unsigned StoreSize,
804                                         ScalarEvolution *SE) {
805   const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr);
806   if (StoreSize != 1)
807     Index = SE->getMulExpr(Index, SE->getConstant(IntPtr, StoreSize),
808                            SCEV::FlagNUW);
809   return SE->getMinusSCEV(Start, Index);
810 }
811
812 /// Compute the number of bytes as a SCEV from the backedge taken count.
813 ///
814 /// This also maps the SCEV into the provided type and tries to handle the
815 /// computation in a way that will fold cleanly.
816 static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr,
817                                unsigned StoreSize, Loop *CurLoop,
818                                const DataLayout *DL, ScalarEvolution *SE) {
819   const SCEV *NumBytesS;
820   // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to
821   // pointer size if it isn't already.
822   //
823   // If we're going to need to zero extend the BE count, check if we can add
824   // one to it prior to zero extending without overflow. Provided this is safe,
825   // it allows better simplification of the +1.
826   if (DL->getTypeSizeInBits(BECount->getType()) <
827           DL->getTypeSizeInBits(IntPtr) &&
828       SE->isLoopEntryGuardedByCond(
829           CurLoop, ICmpInst::ICMP_NE, BECount,
830           SE->getNegativeSCEV(SE->getOne(BECount->getType())))) {
831     NumBytesS = SE->getZeroExtendExpr(
832         SE->getAddExpr(BECount, SE->getOne(BECount->getType()), SCEV::FlagNUW),
833         IntPtr);
834   } else {
835     NumBytesS = SE->getAddExpr(SE->getTruncateOrZeroExtend(BECount, IntPtr),
836                                SE->getOne(IntPtr), SCEV::FlagNUW);
837   }
838
839   // And scale it based on the store size.
840   if (StoreSize != 1) {
841     NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize),
842                                SCEV::FlagNUW);
843   }
844   return NumBytesS;
845 }
846
847 /// processLoopStridedStore - We see a strided store of some value.  If we can
848 /// transform this into a memset or memset_pattern in the loop preheader, do so.
849 bool LoopIdiomRecognize::processLoopStridedStore(
850     Value *DestPtr, unsigned StoreSize, unsigned StoreAlignment,
851     Value *StoredVal, Instruction *TheStore,
852     SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev,
853     const SCEV *BECount, bool NegStride, bool IsLoopMemset) {
854   Value *SplatValue = isBytewiseValue(StoredVal);
855   Constant *PatternValue = nullptr;
856
857   if (!SplatValue)
858     PatternValue = getMemSetPatternValue(StoredVal, DL);
859
860   assert((SplatValue || PatternValue) &&
861          "Expected either splat value or pattern value.");
862
863   // The trip count of the loop and the base pointer of the addrec SCEV is
864   // guaranteed to be loop invariant, which means that it should dominate the
865   // header.  This allows us to insert code for it in the preheader.
866   unsigned DestAS = DestPtr->getType()->getPointerAddressSpace();
867   BasicBlock *Preheader = CurLoop->getLoopPreheader();
868   IRBuilder<> Builder(Preheader->getTerminator());
869   SCEVExpander Expander(*SE, *DL, "loop-idiom");
870
871   Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS);
872   Type *IntPtr = Builder.getIntPtrTy(*DL, DestAS);
873
874   const SCEV *Start = Ev->getStart();
875   // Handle negative strided loops.
876   if (NegStride)
877     Start = getStartForNegStride(Start, BECount, IntPtr, StoreSize, SE);
878
879   // TODO: ideally we should still be able to generate memset if SCEV expander
880   // is taught to generate the dependencies at the latest point.
881   if (!isSafeToExpand(Start, *SE))
882     return false;
883
884   // Okay, we have a strided store "p[i]" of a splattable value.  We can turn
885   // this into a memset in the loop preheader now if we want.  However, this
886   // would be unsafe to do if there is anything else in the loop that may read
887   // or write to the aliased location.  Check for any overlap by generating the
888   // base pointer and checking the region.
889   Value *BasePtr =
890       Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator());
891   if (mayLoopAccessLocation(BasePtr, ModRefInfo::ModRef, CurLoop, BECount,
892                             StoreSize, *AA, Stores)) {
893     Expander.clear();
894     // If we generated new code for the base pointer, clean up.
895     RecursivelyDeleteTriviallyDeadInstructions(BasePtr, TLI);
896     return false;
897   }
898
899   if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset))
900     return false;
901
902   // Okay, everything looks good, insert the memset.
903
904   const SCEV *NumBytesS =
905       getNumBytes(BECount, IntPtr, StoreSize, CurLoop, DL, SE);
906
907   // TODO: ideally we should still be able to generate memset if SCEV expander
908   // is taught to generate the dependencies at the latest point.
909   if (!isSafeToExpand(NumBytesS, *SE))
910     return false;
911
912   Value *NumBytes =
913       Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator());
914
915   CallInst *NewCall;
916   if (SplatValue) {
917     NewCall =
918         Builder.CreateMemSet(BasePtr, SplatValue, NumBytes, StoreAlignment);
919   } else {
920     // Everything is emitted in default address space
921     Type *Int8PtrTy = DestInt8PtrTy;
922
923     Module *M = TheStore->getModule();
924     Value *MSP =
925         M->getOrInsertFunction("memset_pattern16", Builder.getVoidTy(),
926                                Int8PtrTy, Int8PtrTy, IntPtr);
927     inferLibFuncAttributes(*M->getFunction("memset_pattern16"), *TLI);
928
929     // Otherwise we should form a memset_pattern16.  PatternValue is known to be
930     // an constant array of 16-bytes.  Plop the value into a mergable global.
931     GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true,
932                                             GlobalValue::PrivateLinkage,
933                                             PatternValue, ".memset_pattern");
934     GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these.
935     GV->setAlignment(16);
936     Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy);
937     NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes});
938   }
939
940   LLVM_DEBUG(dbgs() << "  Formed memset: " << *NewCall << "\n"
941                     << "    from store to: " << *Ev << " at: " << *TheStore
942                     << "\n");
943   NewCall->setDebugLoc(TheStore->getDebugLoc());
944
945   // Okay, the memset has been formed.  Zap the original store and anything that
946   // feeds into it.
947   for (auto *I : Stores)
948     deleteDeadInstruction(I);
949   ++NumMemSet;
950   return true;
951 }
952
953 /// If the stored value is a strided load in the same loop with the same stride
954 /// this may be transformable into a memcpy.  This kicks in for stuff like
955 /// for (i) A[i] = B[i];
956 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI,
957                                                     const SCEV *BECount) {
958   assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores.");
959
960   Value *StorePtr = SI->getPointerOperand();
961   const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
962   APInt Stride = getStoreStride(StoreEv);
963   unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
964   bool NegStride = StoreSize == -Stride;
965
966   // The store must be feeding a non-volatile load.
967   LoadInst *LI = cast<LoadInst>(SI->getValueOperand());
968   assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads.");
969
970   // See if the pointer expression is an AddRec like {base,+,1} on the current
971   // loop, which indicates a strided load.  If we have something else, it's a
972   // random load we can't handle.
973   const SCEVAddRecExpr *LoadEv =
974       cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
975
976   // The trip count of the loop and the base pointer of the addrec SCEV is
977   // guaranteed to be loop invariant, which means that it should dominate the
978   // header.  This allows us to insert code for it in the preheader.
979   BasicBlock *Preheader = CurLoop->getLoopPreheader();
980   IRBuilder<> Builder(Preheader->getTerminator());
981   SCEVExpander Expander(*SE, *DL, "loop-idiom");
982
983   const SCEV *StrStart = StoreEv->getStart();
984   unsigned StrAS = SI->getPointerAddressSpace();
985   Type *IntPtrTy = Builder.getIntPtrTy(*DL, StrAS);
986
987   // Handle negative strided loops.
988   if (NegStride)
989     StrStart = getStartForNegStride(StrStart, BECount, IntPtrTy, StoreSize, SE);
990
991   // Okay, we have a strided store "p[i]" of a loaded value.  We can turn
992   // this into a memcpy in the loop preheader now if we want.  However, this
993   // would be unsafe to do if there is anything else in the loop that may read
994   // or write the memory region we're storing to.  This includes the load that
995   // feeds the stores.  Check for an alias by generating the base address and
996   // checking everything.
997   Value *StoreBasePtr = Expander.expandCodeFor(
998       StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator());
999
1000   SmallPtrSet<Instruction *, 1> Stores;
1001   Stores.insert(SI);
1002   if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount,
1003                             StoreSize, *AA, Stores)) {
1004     Expander.clear();
1005     // If we generated new code for the base pointer, clean up.
1006     RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
1007     return false;
1008   }
1009
1010   const SCEV *LdStart = LoadEv->getStart();
1011   unsigned LdAS = LI->getPointerAddressSpace();
1012
1013   // Handle negative strided loops.
1014   if (NegStride)
1015     LdStart = getStartForNegStride(LdStart, BECount, IntPtrTy, StoreSize, SE);
1016
1017   // For a memcpy, we have to make sure that the input array is not being
1018   // mutated by the loop.
1019   Value *LoadBasePtr = Expander.expandCodeFor(
1020       LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator());
1021
1022   if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount,
1023                             StoreSize, *AA, Stores)) {
1024     Expander.clear();
1025     // If we generated new code for the base pointer, clean up.
1026     RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI);
1027     RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
1028     return false;
1029   }
1030
1031   if (avoidLIRForMultiBlockLoop())
1032     return false;
1033
1034   // Okay, everything is safe, we can transform this!
1035
1036   const SCEV *NumBytesS =
1037       getNumBytes(BECount, IntPtrTy, StoreSize, CurLoop, DL, SE);
1038
1039   Value *NumBytes =
1040       Expander.expandCodeFor(NumBytesS, IntPtrTy, Preheader->getTerminator());
1041
1042   CallInst *NewCall = nullptr;
1043   // Check whether to generate an unordered atomic memcpy:
1044   //  If the load or store are atomic, then they must necessarily be unordered
1045   //  by previous checks.
1046   if (!SI->isAtomic() && !LI->isAtomic())
1047     NewCall = Builder.CreateMemCpy(StoreBasePtr, SI->getAlignment(),
1048                                    LoadBasePtr, LI->getAlignment(), NumBytes);
1049   else {
1050     // We cannot allow unaligned ops for unordered load/store, so reject
1051     // anything where the alignment isn't at least the element size.
1052     unsigned Align = std::min(SI->getAlignment(), LI->getAlignment());
1053     if (Align < StoreSize)
1054       return false;
1055
1056     // If the element.atomic memcpy is not lowered into explicit
1057     // loads/stores later, then it will be lowered into an element-size
1058     // specific lib call. If the lib call doesn't exist for our store size, then
1059     // we shouldn't generate the memcpy.
1060     if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize())
1061       return false;
1062
1063     // Create the call.
1064     // Note that unordered atomic loads/stores are *required* by the spec to
1065     // have an alignment but non-atomic loads/stores may not.
1066     NewCall = Builder.CreateElementUnorderedAtomicMemCpy(
1067         StoreBasePtr, SI->getAlignment(), LoadBasePtr, LI->getAlignment(),
1068         NumBytes, StoreSize);
1069   }
1070   NewCall->setDebugLoc(SI->getDebugLoc());
1071
1072   LLVM_DEBUG(dbgs() << "  Formed memcpy: " << *NewCall << "\n"
1073                     << "    from load ptr=" << *LoadEv << " at: " << *LI << "\n"
1074                     << "    from store ptr=" << *StoreEv << " at: " << *SI
1075                     << "\n");
1076
1077   // Okay, the memcpy has been formed.  Zap the original store and anything that
1078   // feeds into it.
1079   deleteDeadInstruction(SI);
1080   ++NumMemCpy;
1081   return true;
1082 }
1083
1084 // When compiling for codesize we avoid idiom recognition for a multi-block loop
1085 // unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop.
1086 //
1087 bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset,
1088                                                    bool IsLoopMemset) {
1089   if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) {
1090     if (!CurLoop->getParentLoop() && (!IsMemset || !IsLoopMemset)) {
1091       LLVM_DEBUG(dbgs() << "  " << CurLoop->getHeader()->getParent()->getName()
1092                         << " : LIR " << (IsMemset ? "Memset" : "Memcpy")
1093                         << " avoided: multi-block top-level loop\n");
1094       return true;
1095     }
1096   }
1097
1098   return false;
1099 }
1100
1101 bool LoopIdiomRecognize::runOnNoncountableLoop() {
1102   return recognizePopcount() || recognizeAndInsertCTLZ();
1103 }
1104
1105 /// Check if the given conditional branch is based on the comparison between
1106 /// a variable and zero, and if the variable is non-zero, the control yields to
1107 /// the loop entry. If the branch matches the behavior, the variable involved
1108 /// in the comparison is returned. This function will be called to see if the
1109 /// precondition and postcondition of the loop are in desirable form.
1110 static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry) {
1111   if (!BI || !BI->isConditional())
1112     return nullptr;
1113
1114   ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1115   if (!Cond)
1116     return nullptr;
1117
1118   ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1));
1119   if (!CmpZero || !CmpZero->isZero())
1120     return nullptr;
1121
1122   ICmpInst::Predicate Pred = Cond->getPredicate();
1123   if ((Pred == ICmpInst::ICMP_NE && BI->getSuccessor(0) == LoopEntry) ||
1124       (Pred == ICmpInst::ICMP_EQ && BI->getSuccessor(1) == LoopEntry))
1125     return Cond->getOperand(0);
1126
1127   return nullptr;
1128 }
1129
1130 // Check if the recurrence variable `VarX` is in the right form to create
1131 // the idiom. Returns the value coerced to a PHINode if so.
1132 static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX,
1133                                  BasicBlock *LoopEntry) {
1134   auto *PhiX = dyn_cast<PHINode>(VarX);
1135   if (PhiX && PhiX->getParent() == LoopEntry &&
1136       (PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX))
1137     return PhiX;
1138   return nullptr;
1139 }
1140
1141 /// Return true iff the idiom is detected in the loop.
1142 ///
1143 /// Additionally:
1144 /// 1) \p CntInst is set to the instruction counting the population bit.
1145 /// 2) \p CntPhi is set to the corresponding phi node.
1146 /// 3) \p Var is set to the value whose population bits are being counted.
1147 ///
1148 /// The core idiom we are trying to detect is:
1149 /// \code
1150 ///    if (x0 != 0)
1151 ///      goto loop-exit // the precondition of the loop
1152 ///    cnt0 = init-val;
1153 ///    do {
1154 ///       x1 = phi (x0, x2);
1155 ///       cnt1 = phi(cnt0, cnt2);
1156 ///
1157 ///       cnt2 = cnt1 + 1;
1158 ///        ...
1159 ///       x2 = x1 & (x1 - 1);
1160 ///        ...
1161 ///    } while(x != 0);
1162 ///
1163 /// loop-exit:
1164 /// \endcode
1165 static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB,
1166                                 Instruction *&CntInst, PHINode *&CntPhi,
1167                                 Value *&Var) {
1168   // step 1: Check to see if the look-back branch match this pattern:
1169   //    "if (a!=0) goto loop-entry".
1170   BasicBlock *LoopEntry;
1171   Instruction *DefX2, *CountInst;
1172   Value *VarX1, *VarX0;
1173   PHINode *PhiX, *CountPhi;
1174
1175   DefX2 = CountInst = nullptr;
1176   VarX1 = VarX0 = nullptr;
1177   PhiX = CountPhi = nullptr;
1178   LoopEntry = *(CurLoop->block_begin());
1179
1180   // step 1: Check if the loop-back branch is in desirable form.
1181   {
1182     if (Value *T = matchCondition(
1183             dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
1184       DefX2 = dyn_cast<Instruction>(T);
1185     else
1186       return false;
1187   }
1188
1189   // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
1190   {
1191     if (!DefX2 || DefX2->getOpcode() != Instruction::And)
1192       return false;
1193
1194     BinaryOperator *SubOneOp;
1195
1196     if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0))))
1197       VarX1 = DefX2->getOperand(1);
1198     else {
1199       VarX1 = DefX2->getOperand(0);
1200       SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1));
1201     }
1202     if (!SubOneOp || SubOneOp->getOperand(0) != VarX1)
1203       return false;
1204
1205     ConstantInt *Dec = dyn_cast<ConstantInt>(SubOneOp->getOperand(1));
1206     if (!Dec ||
1207         !((SubOneOp->getOpcode() == Instruction::Sub && Dec->isOne()) ||
1208           (SubOneOp->getOpcode() == Instruction::Add &&
1209            Dec->isMinusOne()))) {
1210       return false;
1211     }
1212   }
1213
1214   // step 3: Check the recurrence of variable X
1215   PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry);
1216   if (!PhiX)
1217     return false;
1218
1219   // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1
1220   {
1221     CountInst = nullptr;
1222     for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(),
1223                               IterE = LoopEntry->end();
1224          Iter != IterE; Iter++) {
1225       Instruction *Inst = &*Iter;
1226       if (Inst->getOpcode() != Instruction::Add)
1227         continue;
1228
1229       ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
1230       if (!Inc || !Inc->isOne())
1231         continue;
1232
1233       PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry);
1234       if (!Phi)
1235         continue;
1236
1237       // Check if the result of the instruction is live of the loop.
1238       bool LiveOutLoop = false;
1239       for (User *U : Inst->users()) {
1240         if ((cast<Instruction>(U))->getParent() != LoopEntry) {
1241           LiveOutLoop = true;
1242           break;
1243         }
1244       }
1245
1246       if (LiveOutLoop) {
1247         CountInst = Inst;
1248         CountPhi = Phi;
1249         break;
1250       }
1251     }
1252
1253     if (!CountInst)
1254       return false;
1255   }
1256
1257   // step 5: check if the precondition is in this form:
1258   //   "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;"
1259   {
1260     auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1261     Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader());
1262     if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1))
1263       return false;
1264
1265     CntInst = CountInst;
1266     CntPhi = CountPhi;
1267     Var = T;
1268   }
1269
1270   return true;
1271 }
1272
1273 /// Return true if the idiom is detected in the loop.
1274 ///
1275 /// Additionally:
1276 /// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ)
1277 ///       or nullptr if there is no such.
1278 /// 2) \p CntPhi is set to the corresponding phi node
1279 ///       or nullptr if there is no such.
1280 /// 3) \p Var is set to the value whose CTLZ could be used.
1281 /// 4) \p DefX is set to the instruction calculating Loop exit condition.
1282 ///
1283 /// The core idiom we are trying to detect is:
1284 /// \code
1285 ///    if (x0 == 0)
1286 ///      goto loop-exit // the precondition of the loop
1287 ///    cnt0 = init-val;
1288 ///    do {
1289 ///       x = phi (x0, x.next);   //PhiX
1290 ///       cnt = phi(cnt0, cnt.next);
1291 ///
1292 ///       cnt.next = cnt + 1;
1293 ///        ...
1294 ///       x.next = x >> 1;   // DefX
1295 ///        ...
1296 ///    } while(x.next != 0);
1297 ///
1298 /// loop-exit:
1299 /// \endcode
1300 static bool detectCTLZIdiom(Loop *CurLoop, PHINode *&PhiX,
1301                             Instruction *&CntInst, PHINode *&CntPhi,
1302                             Instruction *&DefX) {
1303   BasicBlock *LoopEntry;
1304   Value *VarX = nullptr;
1305
1306   DefX = nullptr;
1307   PhiX = nullptr;
1308   CntInst = nullptr;
1309   CntPhi = nullptr;
1310   LoopEntry = *(CurLoop->block_begin());
1311
1312   // step 1: Check if the loop-back branch is in desirable form.
1313   if (Value *T = matchCondition(
1314           dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
1315     DefX = dyn_cast<Instruction>(T);
1316   else
1317     return false;
1318
1319   // step 2: detect instructions corresponding to "x.next = x >> 1"
1320   if (!DefX || (DefX->getOpcode() != Instruction::AShr &&
1321                 DefX->getOpcode() != Instruction::LShr))
1322     return false;
1323   ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1));
1324   if (!Shft || !Shft->isOne())
1325     return false;
1326   VarX = DefX->getOperand(0);
1327
1328   // step 3: Check the recurrence of variable X
1329   PhiX = getRecurrenceVar(VarX, DefX, LoopEntry);
1330   if (!PhiX)
1331     return false;
1332
1333   // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1
1334   // TODO: We can skip the step. If loop trip count is known (CTLZ),
1335   //       then all uses of "cnt.next" could be optimized to the trip count
1336   //       plus "cnt0". Currently it is not optimized.
1337   //       This step could be used to detect POPCNT instruction:
1338   //       cnt.next = cnt + (x.next & 1)
1339   for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(),
1340                             IterE = LoopEntry->end();
1341        Iter != IterE; Iter++) {
1342     Instruction *Inst = &*Iter;
1343     if (Inst->getOpcode() != Instruction::Add)
1344       continue;
1345
1346     ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
1347     if (!Inc || !Inc->isOne())
1348       continue;
1349
1350     PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry);
1351     if (!Phi)
1352       continue;
1353
1354     CntInst = Inst;
1355     CntPhi = Phi;
1356     break;
1357   }
1358   if (!CntInst)
1359     return false;
1360
1361   return true;
1362 }
1363
1364 /// Recognize CTLZ idiom in a non-countable loop and convert the loop
1365 /// to countable (with CTLZ trip count).
1366 /// If CTLZ inserted as a new trip count returns true; otherwise, returns false.
1367 bool LoopIdiomRecognize::recognizeAndInsertCTLZ() {
1368   // Give up if the loop has multiple blocks or multiple backedges.
1369   if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
1370     return false;
1371
1372   Instruction *CntInst, *DefX;
1373   PHINode *CntPhi, *PhiX;
1374   if (!detectCTLZIdiom(CurLoop, PhiX, CntInst, CntPhi, DefX))
1375     return false;
1376
1377   bool IsCntPhiUsedOutsideLoop = false;
1378   for (User *U : CntPhi->users())
1379     if (!CurLoop->contains(cast<Instruction>(U))) {
1380       IsCntPhiUsedOutsideLoop = true;
1381       break;
1382     }
1383   bool IsCntInstUsedOutsideLoop = false;
1384   for (User *U : CntInst->users())
1385     if (!CurLoop->contains(cast<Instruction>(U))) {
1386       IsCntInstUsedOutsideLoop = true;
1387       break;
1388     }
1389   // If both CntInst and CntPhi are used outside the loop the profitability
1390   // is questionable.
1391   if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop)
1392     return false;
1393
1394   // For some CPUs result of CTLZ(X) intrinsic is undefined
1395   // when X is 0. If we can not guarantee X != 0, we need to check this
1396   // when expand.
1397   bool ZeroCheck = false;
1398   // It is safe to assume Preheader exist as it was checked in
1399   // parent function RunOnLoop.
1400   BasicBlock *PH = CurLoop->getLoopPreheader();
1401   Value *InitX = PhiX->getIncomingValueForBlock(PH);
1402
1403   // Make sure the initial value can't be negative otherwise the ashr in the
1404   // loop might never reach zero which would make the loop infinite.
1405   if (DefX->getOpcode() == Instruction::AShr && !isKnownNonNegative(InitX, *DL))
1406     return false;
1407
1408   // If we are using the count instruction outside the loop, make sure we
1409   // have a zero check as a precondition. Without the check the loop would run
1410   // one iteration for before any check of the input value. This means 0 and 1
1411   // would have identical behavior in the original loop and thus
1412   if (!IsCntPhiUsedOutsideLoop) {
1413     auto *PreCondBB = PH->getSinglePredecessor();
1414     if (!PreCondBB)
1415       return false;
1416     auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1417     if (!PreCondBI)
1418       return false;
1419     if (matchCondition(PreCondBI, PH) != InitX)
1420       return false;
1421     ZeroCheck = true;
1422   }
1423
1424   // Check if CTLZ intrinsic is profitable. Assume it is always profitable
1425   // if we delete the loop (the loop has only 6 instructions):
1426   //  %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ]
1427   //  %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ]
1428   //  %shr = ashr %n.addr.0, 1
1429   //  %tobool = icmp eq %shr, 0
1430   //  %inc = add nsw %i.0, 1
1431   //  br i1 %tobool
1432
1433   const Value *Args[] =
1434       {InitX, ZeroCheck ? ConstantInt::getTrue(InitX->getContext())
1435                         : ConstantInt::getFalse(InitX->getContext())};
1436   if (CurLoop->getHeader()->size() != 6 &&
1437       TTI->getIntrinsicCost(Intrinsic::ctlz, InitX->getType(), Args) >
1438           TargetTransformInfo::TCC_Basic)
1439     return false;
1440
1441   transformLoopToCountable(PH, CntInst, CntPhi, InitX, DefX,
1442                            DefX->getDebugLoc(), ZeroCheck,
1443                            IsCntPhiUsedOutsideLoop);
1444   return true;
1445 }
1446
1447 /// Recognizes a population count idiom in a non-countable loop.
1448 ///
1449 /// If detected, transforms the relevant code to issue the popcount intrinsic
1450 /// function call, and returns true; otherwise, returns false.
1451 bool LoopIdiomRecognize::recognizePopcount() {
1452   if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware)
1453     return false;
1454
1455   // Counting population are usually conducted by few arithmetic instructions.
1456   // Such instructions can be easily "absorbed" by vacant slots in a
1457   // non-compact loop. Therefore, recognizing popcount idiom only makes sense
1458   // in a compact loop.
1459
1460   // Give up if the loop has multiple blocks or multiple backedges.
1461   if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
1462     return false;
1463
1464   BasicBlock *LoopBody = *(CurLoop->block_begin());
1465   if (LoopBody->size() >= 20) {
1466     // The loop is too big, bail out.
1467     return false;
1468   }
1469
1470   // It should have a preheader containing nothing but an unconditional branch.
1471   BasicBlock *PH = CurLoop->getLoopPreheader();
1472   if (!PH || &PH->front() != PH->getTerminator())
1473     return false;
1474   auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator());
1475   if (!EntryBI || EntryBI->isConditional())
1476     return false;
1477
1478   // It should have a precondition block where the generated popcount intrinsic
1479   // function can be inserted.
1480   auto *PreCondBB = PH->getSinglePredecessor();
1481   if (!PreCondBB)
1482     return false;
1483   auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1484   if (!PreCondBI || PreCondBI->isUnconditional())
1485     return false;
1486
1487   Instruction *CntInst;
1488   PHINode *CntPhi;
1489   Value *Val;
1490   if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val))
1491     return false;
1492
1493   transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val);
1494   return true;
1495 }
1496
1497 static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
1498                                        const DebugLoc &DL) {
1499   Value *Ops[] = {Val};
1500   Type *Tys[] = {Val->getType()};
1501
1502   Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
1503   Value *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys);
1504   CallInst *CI = IRBuilder.CreateCall(Func, Ops);
1505   CI->setDebugLoc(DL);
1506
1507   return CI;
1508 }
1509
1510 static CallInst *createCTLZIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
1511                                      const DebugLoc &DL, bool ZeroCheck) {
1512   Value *Ops[] = {Val, ZeroCheck ? IRBuilder.getTrue() : IRBuilder.getFalse()};
1513   Type *Tys[] = {Val->getType()};
1514
1515   Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
1516   Value *Func = Intrinsic::getDeclaration(M, Intrinsic::ctlz, Tys);
1517   CallInst *CI = IRBuilder.CreateCall(Func, Ops);
1518   CI->setDebugLoc(DL);
1519
1520   return CI;
1521 }
1522
1523 /// Transform the following loop:
1524 /// loop:
1525 ///   CntPhi = PHI [Cnt0, CntInst]
1526 ///   PhiX = PHI [InitX, DefX]
1527 ///   CntInst = CntPhi + 1
1528 ///   DefX = PhiX >> 1
1529 ///   LOOP_BODY
1530 ///   Br: loop if (DefX != 0)
1531 /// Use(CntPhi) or Use(CntInst)
1532 ///
1533 /// Into:
1534 /// If CntPhi used outside the loop:
1535 ///   CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1)
1536 ///   Count = CountPrev + 1
1537 /// else
1538 ///   Count = BitWidth(InitX) - CTLZ(InitX)
1539 /// loop:
1540 ///   CntPhi = PHI [Cnt0, CntInst]
1541 ///   PhiX = PHI [InitX, DefX]
1542 ///   PhiCount = PHI [Count, Dec]
1543 ///   CntInst = CntPhi + 1
1544 ///   DefX = PhiX >> 1
1545 ///   Dec = PhiCount - 1
1546 ///   LOOP_BODY
1547 ///   Br: loop if (Dec != 0)
1548 /// Use(CountPrev + Cnt0) // Use(CntPhi)
1549 /// or
1550 /// Use(Count + Cnt0) // Use(CntInst)
1551 ///
1552 /// If LOOP_BODY is empty the loop will be deleted.
1553 /// If CntInst and DefX are not used in LOOP_BODY they will be removed.
1554 void LoopIdiomRecognize::transformLoopToCountable(
1555     BasicBlock *Preheader, Instruction *CntInst, PHINode *CntPhi, Value *InitX,
1556     Instruction *DefX, const DebugLoc &DL, bool ZeroCheck,
1557     bool IsCntPhiUsedOutsideLoop) {
1558   BranchInst *PreheaderBr = cast<BranchInst>(Preheader->getTerminator());
1559
1560   // Step 1: Insert the CTLZ instruction at the end of the preheader block
1561   //   Count = BitWidth - CTLZ(InitX);
1562   // If there are uses of CntPhi create:
1563   //   CountPrev = BitWidth - CTLZ(InitX >> 1);
1564   IRBuilder<> Builder(PreheaderBr);
1565   Builder.SetCurrentDebugLocation(DL);
1566   Value *CTLZ, *Count, *CountPrev, *NewCount, *InitXNext;
1567
1568   if (IsCntPhiUsedOutsideLoop) {
1569     if (DefX->getOpcode() == Instruction::AShr)
1570       InitXNext =
1571           Builder.CreateAShr(InitX, ConstantInt::get(InitX->getType(), 1));
1572     else if (DefX->getOpcode() == Instruction::LShr)
1573       InitXNext =
1574           Builder.CreateLShr(InitX, ConstantInt::get(InitX->getType(), 1));
1575     else
1576       llvm_unreachable("Unexpected opcode!");      
1577   } else
1578     InitXNext = InitX;
1579   CTLZ = createCTLZIntrinsic(Builder, InitXNext, DL, ZeroCheck);
1580   Count = Builder.CreateSub(
1581       ConstantInt::get(CTLZ->getType(),
1582                        CTLZ->getType()->getIntegerBitWidth()),
1583       CTLZ);
1584   if (IsCntPhiUsedOutsideLoop) {
1585     CountPrev = Count;
1586     Count = Builder.CreateAdd(
1587         CountPrev,
1588         ConstantInt::get(CountPrev->getType(), 1));
1589   }
1590   if (IsCntPhiUsedOutsideLoop)
1591     NewCount = Builder.CreateZExtOrTrunc(CountPrev,
1592         cast<IntegerType>(CntInst->getType()));
1593   else
1594     NewCount = Builder.CreateZExtOrTrunc(Count,
1595         cast<IntegerType>(CntInst->getType()));
1596
1597   // If the CTLZ counter's initial value is not zero, insert Add Inst.
1598   Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader);
1599   ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
1600   if (!InitConst || !InitConst->isZero())
1601     NewCount = Builder.CreateAdd(NewCount, CntInitVal);
1602
1603   // Step 2: Insert new IV and loop condition:
1604   // loop:
1605   //   ...
1606   //   PhiCount = PHI [Count, Dec]
1607   //   ...
1608   //   Dec = PhiCount - 1
1609   //   ...
1610   //   Br: loop if (Dec != 0)
1611   BasicBlock *Body = *(CurLoop->block_begin());
1612   auto *LbBr = cast<BranchInst>(Body->getTerminator());
1613   ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
1614   Type *Ty = Count->getType();
1615
1616   PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front());
1617
1618   Builder.SetInsertPoint(LbCond);
1619   Instruction *TcDec = cast<Instruction>(
1620       Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
1621                         "tcdec", false, true));
1622
1623   TcPhi->addIncoming(Count, Preheader);
1624   TcPhi->addIncoming(TcDec, Body);
1625
1626   CmpInst::Predicate Pred =
1627       (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
1628   LbCond->setPredicate(Pred);
1629   LbCond->setOperand(0, TcDec);
1630   LbCond->setOperand(1, ConstantInt::get(Ty, 0));
1631
1632   // Step 3: All the references to the original counter outside
1633   //  the loop are replaced with the NewCount -- the value returned from
1634   //  __builtin_ctlz(x).
1635   if (IsCntPhiUsedOutsideLoop)
1636     CntPhi->replaceUsesOutsideBlock(NewCount, Body);
1637   else
1638     CntInst->replaceUsesOutsideBlock(NewCount, Body);
1639
1640   // step 4: Forget the "non-computable" trip-count SCEV associated with the
1641   //   loop. The loop would otherwise not be deleted even if it becomes empty.
1642   SE->forgetLoop(CurLoop);
1643 }
1644
1645 void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB,
1646                                                  Instruction *CntInst,
1647                                                  PHINode *CntPhi, Value *Var) {
1648   BasicBlock *PreHead = CurLoop->getLoopPreheader();
1649   auto *PreCondBr = cast<BranchInst>(PreCondBB->getTerminator());
1650   const DebugLoc &DL = CntInst->getDebugLoc();
1651
1652   // Assuming before transformation, the loop is following:
1653   //  if (x) // the precondition
1654   //     do { cnt++; x &= x - 1; } while(x);
1655
1656   // Step 1: Insert the ctpop instruction at the end of the precondition block
1657   IRBuilder<> Builder(PreCondBr);
1658   Value *PopCnt, *PopCntZext, *NewCount, *TripCnt;
1659   {
1660     PopCnt = createPopcntIntrinsic(Builder, Var, DL);
1661     NewCount = PopCntZext =
1662         Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType()));
1663
1664     if (NewCount != PopCnt)
1665       (cast<Instruction>(NewCount))->setDebugLoc(DL);
1666
1667     // TripCnt is exactly the number of iterations the loop has
1668     TripCnt = NewCount;
1669
1670     // If the population counter's initial value is not zero, insert Add Inst.
1671     Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead);
1672     ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
1673     if (!InitConst || !InitConst->isZero()) {
1674       NewCount = Builder.CreateAdd(NewCount, CntInitVal);
1675       (cast<Instruction>(NewCount))->setDebugLoc(DL);
1676     }
1677   }
1678
1679   // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to
1680   //   "if (NewCount == 0) loop-exit". Without this change, the intrinsic
1681   //   function would be partial dead code, and downstream passes will drag
1682   //   it back from the precondition block to the preheader.
1683   {
1684     ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition());
1685
1686     Value *Opnd0 = PopCntZext;
1687     Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0);
1688     if (PreCond->getOperand(0) != Var)
1689       std::swap(Opnd0, Opnd1);
1690
1691     ICmpInst *NewPreCond = cast<ICmpInst>(
1692         Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1));
1693     PreCondBr->setCondition(NewPreCond);
1694
1695     RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI);
1696   }
1697
1698   // Step 3: Note that the population count is exactly the trip count of the
1699   // loop in question, which enable us to convert the loop from noncountable
1700   // loop into a countable one. The benefit is twofold:
1701   //
1702   //  - If the loop only counts population, the entire loop becomes dead after
1703   //    the transformation. It is a lot easier to prove a countable loop dead
1704   //    than to prove a noncountable one. (In some C dialects, an infinite loop
1705   //    isn't dead even if it computes nothing useful. In general, DCE needs
1706   //    to prove a noncountable loop finite before safely delete it.)
1707   //
1708   //  - If the loop also performs something else, it remains alive.
1709   //    Since it is transformed to countable form, it can be aggressively
1710   //    optimized by some optimizations which are in general not applicable
1711   //    to a noncountable loop.
1712   //
1713   // After this step, this loop (conceptually) would look like following:
1714   //   newcnt = __builtin_ctpop(x);
1715   //   t = newcnt;
1716   //   if (x)
1717   //     do { cnt++; x &= x-1; t--) } while (t > 0);
1718   BasicBlock *Body = *(CurLoop->block_begin());
1719   {
1720     auto *LbBr = cast<BranchInst>(Body->getTerminator());
1721     ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
1722     Type *Ty = TripCnt->getType();
1723
1724     PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front());
1725
1726     Builder.SetInsertPoint(LbCond);
1727     Instruction *TcDec = cast<Instruction>(
1728         Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
1729                           "tcdec", false, true));
1730
1731     TcPhi->addIncoming(TripCnt, PreHead);
1732     TcPhi->addIncoming(TcDec, Body);
1733
1734     CmpInst::Predicate Pred =
1735         (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE;
1736     LbCond->setPredicate(Pred);
1737     LbCond->setOperand(0, TcDec);
1738     LbCond->setOperand(1, ConstantInt::get(Ty, 0));
1739   }
1740
1741   // Step 4: All the references to the original population counter outside
1742   //  the loop are replaced with the NewCount -- the value returned from
1743   //  __builtin_ctpop().
1744   CntInst->replaceUsesOutsideBlock(NewCount, Body);
1745
1746   // step 5: Forget the "non-computable" trip-count SCEV associated with the
1747   //   loop. The loop would otherwise not be deleted even if it becomes empty.
1748   SE->forgetLoop(CurLoop);
1749 }