]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp
Upgrade to OpenSSH 7.5p1.
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / Scalar / LoopIdiomRecognize.cpp
1 //===-- LoopIdiomRecognize.cpp - Loop idiom recognition -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements an idiom recognizer that transforms simple loops into a
11 // non-loop form.  In cases that this kicks in, it can be a significant
12 // performance win.
13 //
14 // If compiling for code size we avoid idiom recognition if the resulting
15 // code could be larger than the code for the original loop. One way this could
16 // happen is if the loop is not removable after idiom recognition due to the
17 // presence of non-idiom instructions. The initial implementation of the
18 // heuristics applies to idioms in multi-block loops.
19 //
20 //===----------------------------------------------------------------------===//
21 //
22 // TODO List:
23 //
24 // Future loop memory idioms to recognize:
25 //   memcmp, memmove, strlen, etc.
26 // Future floating point idioms to recognize in -ffast-math mode:
27 //   fpowi
28 // Future integer operation idioms to recognize:
29 //   ctpop, ctlz, cttz
30 //
31 // Beware that isel's default lowering for ctpop is highly inefficient for
32 // i64 and larger types when i64 is legal and the value has few bits set.  It
33 // would be good to enhance isel to emit a loop for ctpop in this case.
34 //
35 // This could recognize common matrix multiplies and dot product idioms and
36 // replace them with calls to BLAS (if linked in??).
37 //
38 //===----------------------------------------------------------------------===//
39
40 #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h"
41 #include "llvm/ADT/MapVector.h"
42 #include "llvm/ADT/SetVector.h"
43 #include "llvm/ADT/Statistic.h"
44 #include "llvm/Analysis/AliasAnalysis.h"
45 #include "llvm/Analysis/BasicAliasAnalysis.h"
46 #include "llvm/Analysis/GlobalsModRef.h"
47 #include "llvm/Analysis/LoopAccessAnalysis.h"
48 #include "llvm/Analysis/LoopPass.h"
49 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
50 #include "llvm/Analysis/ScalarEvolutionExpander.h"
51 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
52 #include "llvm/Analysis/TargetLibraryInfo.h"
53 #include "llvm/Analysis/TargetTransformInfo.h"
54 #include "llvm/Analysis/ValueTracking.h"
55 #include "llvm/IR/DataLayout.h"
56 #include "llvm/IR/Dominators.h"
57 #include "llvm/IR/IRBuilder.h"
58 #include "llvm/IR/IntrinsicInst.h"
59 #include "llvm/IR/Module.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include "llvm/Transforms/Scalar.h"
63 #include "llvm/Transforms/Scalar/LoopPassManager.h"
64 #include "llvm/Transforms/Utils/BuildLibCalls.h"
65 #include "llvm/Transforms/Utils/Local.h"
66 #include "llvm/Transforms/Utils/LoopUtils.h"
67 using namespace llvm;
68
69 #define DEBUG_TYPE "loop-idiom"
70
71 STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
72 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
73
74 static cl::opt<bool> UseLIRCodeSizeHeurs(
75     "use-lir-code-size-heurs",
76     cl::desc("Use loop idiom recognition code size heuristics when compiling"
77              "with -Os/-Oz"),
78     cl::init(true), cl::Hidden);
79
80 namespace {
81
82 class LoopIdiomRecognize {
83   Loop *CurLoop;
84   AliasAnalysis *AA;
85   DominatorTree *DT;
86   LoopInfo *LI;
87   ScalarEvolution *SE;
88   TargetLibraryInfo *TLI;
89   const TargetTransformInfo *TTI;
90   const DataLayout *DL;
91   bool ApplyCodeSizeHeuristics;
92
93 public:
94   explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT,
95                               LoopInfo *LI, ScalarEvolution *SE,
96                               TargetLibraryInfo *TLI,
97                               const TargetTransformInfo *TTI,
98                               const DataLayout *DL)
99       : CurLoop(nullptr), AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI),
100         DL(DL) {}
101
102   bool runOnLoop(Loop *L);
103
104 private:
105   typedef SmallVector<StoreInst *, 8> StoreList;
106   typedef MapVector<Value *, StoreList> StoreListMap;
107   StoreListMap StoreRefsForMemset;
108   StoreListMap StoreRefsForMemsetPattern;
109   StoreList StoreRefsForMemcpy;
110   bool HasMemset;
111   bool HasMemsetPattern;
112   bool HasMemcpy;
113   /// Return code for isLegalStore()
114   enum LegalStoreKind {
115     None = 0,
116     Memset,
117     MemsetPattern,
118     Memcpy,
119     UnorderedAtomicMemcpy,
120     DontUse // Dummy retval never to be used. Allows catching errors in retval
121             // handling.
122   };
123
124   /// \name Countable Loop Idiom Handling
125   /// @{
126
127   bool runOnCountableLoop();
128   bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
129                       SmallVectorImpl<BasicBlock *> &ExitBlocks);
130
131   void collectStores(BasicBlock *BB);
132   LegalStoreKind isLegalStore(StoreInst *SI);
133   bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount,
134                          bool ForMemset);
135   bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);
136
137   bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
138                                unsigned StoreAlignment, Value *StoredVal,
139                                Instruction *TheStore,
140                                SmallPtrSetImpl<Instruction *> &Stores,
141                                const SCEVAddRecExpr *Ev, const SCEV *BECount,
142                                bool NegStride, bool IsLoopMemset = false);
143   bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount);
144   bool avoidLIRForMultiBlockLoop(bool IsMemset = false,
145                                  bool IsLoopMemset = false);
146
147   /// @}
148   /// \name Noncountable Loop Idiom Handling
149   /// @{
150
151   bool runOnNoncountableLoop();
152
153   bool recognizePopcount();
154   void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst,
155                                PHINode *CntPhi, Value *Var);
156   bool recognizeAndInsertCTLZ();
157   void transformLoopToCountable(BasicBlock *PreCondBB, Instruction *CntInst,
158                                 PHINode *CntPhi, Value *Var, const DebugLoc DL,
159                                 bool ZeroCheck, bool IsCntPhiUsedOutsideLoop);
160
161   /// @}
162 };
163
164 class LoopIdiomRecognizeLegacyPass : public LoopPass {
165 public:
166   static char ID;
167   explicit LoopIdiomRecognizeLegacyPass() : LoopPass(ID) {
168     initializeLoopIdiomRecognizeLegacyPassPass(
169         *PassRegistry::getPassRegistry());
170   }
171
172   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
173     if (skipLoop(L))
174       return false;
175
176     AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
177     DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
178     LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
179     ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
180     TargetLibraryInfo *TLI =
181         &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
182     const TargetTransformInfo *TTI =
183         &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
184             *L->getHeader()->getParent());
185     const DataLayout *DL = &L->getHeader()->getModule()->getDataLayout();
186
187     LoopIdiomRecognize LIR(AA, DT, LI, SE, TLI, TTI, DL);
188     return LIR.runOnLoop(L);
189   }
190
191   /// This transformation requires natural loop information & requires that
192   /// loop preheaders be inserted into the CFG.
193   ///
194   void getAnalysisUsage(AnalysisUsage &AU) const override {
195     AU.addRequired<TargetLibraryInfoWrapperPass>();
196     AU.addRequired<TargetTransformInfoWrapperPass>();
197     getLoopAnalysisUsage(AU);
198   }
199 };
200 } // End anonymous namespace.
201
202 PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM,
203                                               LoopStandardAnalysisResults &AR,
204                                               LPMUpdater &) {
205   const auto *DL = &L.getHeader()->getModule()->getDataLayout();
206
207   LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI, DL);
208   if (!LIR.runOnLoop(&L))
209     return PreservedAnalyses::all();
210
211   return getLoopPassPreservedAnalyses();
212 }
213
214 char LoopIdiomRecognizeLegacyPass::ID = 0;
215 INITIALIZE_PASS_BEGIN(LoopIdiomRecognizeLegacyPass, "loop-idiom",
216                       "Recognize loop idioms", false, false)
217 INITIALIZE_PASS_DEPENDENCY(LoopPass)
218 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
219 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
220 INITIALIZE_PASS_END(LoopIdiomRecognizeLegacyPass, "loop-idiom",
221                     "Recognize loop idioms", false, false)
222
223 Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognizeLegacyPass(); }
224
225 static void deleteDeadInstruction(Instruction *I) {
226   I->replaceAllUsesWith(UndefValue::get(I->getType()));
227   I->eraseFromParent();
228 }
229
230 //===----------------------------------------------------------------------===//
231 //
232 //          Implementation of LoopIdiomRecognize
233 //
234 //===----------------------------------------------------------------------===//
235
236 bool LoopIdiomRecognize::runOnLoop(Loop *L) {
237   CurLoop = L;
238   // If the loop could not be converted to canonical form, it must have an
239   // indirectbr in it, just give up.
240   if (!L->getLoopPreheader())
241     return false;
242
243   // Disable loop idiom recognition if the function's name is a common idiom.
244   StringRef Name = L->getHeader()->getParent()->getName();
245   if (Name == "memset" || Name == "memcpy")
246     return false;
247
248   // Determine if code size heuristics need to be applied.
249   ApplyCodeSizeHeuristics =
250       L->getHeader()->getParent()->optForSize() && UseLIRCodeSizeHeurs;
251
252   HasMemset = TLI->has(LibFunc_memset);
253   HasMemsetPattern = TLI->has(LibFunc_memset_pattern16);
254   HasMemcpy = TLI->has(LibFunc_memcpy);
255
256   if (HasMemset || HasMemsetPattern || HasMemcpy)
257     if (SE->hasLoopInvariantBackedgeTakenCount(L))
258       return runOnCountableLoop();
259
260   return runOnNoncountableLoop();
261 }
262
263 bool LoopIdiomRecognize::runOnCountableLoop() {
264   const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop);
265   assert(!isa<SCEVCouldNotCompute>(BECount) &&
266          "runOnCountableLoop() called on a loop without a predictable"
267          "backedge-taken count");
268
269   // If this loop executes exactly one time, then it should be peeled, not
270   // optimized by this pass.
271   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
272     if (BECst->getAPInt() == 0)
273       return false;
274
275   SmallVector<BasicBlock *, 8> ExitBlocks;
276   CurLoop->getUniqueExitBlocks(ExitBlocks);
277
278   DEBUG(dbgs() << "loop-idiom Scanning: F["
279                << CurLoop->getHeader()->getParent()->getName() << "] Loop %"
280                << CurLoop->getHeader()->getName() << "\n");
281
282   bool MadeChange = false;
283
284   // The following transforms hoist stores/memsets into the loop pre-header.
285   // Give up if the loop has instructions may throw.
286   LoopSafetyInfo SafetyInfo;
287   computeLoopSafetyInfo(&SafetyInfo, CurLoop);
288   if (SafetyInfo.MayThrow)
289     return MadeChange;
290
291   // Scan all the blocks in the loop that are not in subloops.
292   for (auto *BB : CurLoop->getBlocks()) {
293     // Ignore blocks in subloops.
294     if (LI->getLoopFor(BB) != CurLoop)
295       continue;
296
297     MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks);
298   }
299   return MadeChange;
300 }
301
302 static unsigned getStoreSizeInBytes(StoreInst *SI, const DataLayout *DL) {
303   uint64_t SizeInBits = DL->getTypeSizeInBits(SI->getValueOperand()->getType());
304   assert(((SizeInBits & 7) || (SizeInBits >> 32) == 0) &&
305          "Don't overflow unsigned.");
306   return (unsigned)SizeInBits >> 3;
307 }
308
309 static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) {
310   const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1));
311   return ConstStride->getAPInt();
312 }
313
314 /// getMemSetPatternValue - If a strided store of the specified value is safe to
315 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
316 /// be passed in.  Otherwise, return null.
317 ///
318 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these
319 /// just replicate their input array and then pass on to memset_pattern16.
320 static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) {
321   // If the value isn't a constant, we can't promote it to being in a constant
322   // array.  We could theoretically do a store to an alloca or something, but
323   // that doesn't seem worthwhile.
324   Constant *C = dyn_cast<Constant>(V);
325   if (!C)
326     return nullptr;
327
328   // Only handle simple values that are a power of two bytes in size.
329   uint64_t Size = DL->getTypeSizeInBits(V->getType());
330   if (Size == 0 || (Size & 7) || (Size & (Size - 1)))
331     return nullptr;
332
333   // Don't care enough about darwin/ppc to implement this.
334   if (DL->isBigEndian())
335     return nullptr;
336
337   // Convert to size in bytes.
338   Size /= 8;
339
340   // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
341   // if the top and bottom are the same (e.g. for vectors and large integers).
342   if (Size > 16)
343     return nullptr;
344
345   // If the constant is exactly 16 bytes, just use it.
346   if (Size == 16)
347     return C;
348
349   // Otherwise, we'll use an array of the constants.
350   unsigned ArraySize = 16 / Size;
351   ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
352   return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C));
353 }
354
355 LoopIdiomRecognize::LegalStoreKind
356 LoopIdiomRecognize::isLegalStore(StoreInst *SI) {
357
358   // Don't touch volatile stores.
359   if (SI->isVolatile())
360     return LegalStoreKind::None;
361   // We only want simple or unordered-atomic stores.
362   if (!SI->isUnordered())
363     return LegalStoreKind::None;
364
365   // Don't convert stores of non-integral pointer types to memsets (which stores
366   // integers).
367   if (DL->isNonIntegralPointerType(SI->getValueOperand()->getType()))
368     return LegalStoreKind::None;
369
370   // Avoid merging nontemporal stores.
371   if (SI->getMetadata(LLVMContext::MD_nontemporal))
372     return LegalStoreKind::None;
373
374   Value *StoredVal = SI->getValueOperand();
375   Value *StorePtr = SI->getPointerOperand();
376
377   // Reject stores that are so large that they overflow an unsigned.
378   uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
379   if ((SizeInBits & 7) || (SizeInBits >> 32) != 0)
380     return LegalStoreKind::None;
381
382   // See if the pointer expression is an AddRec like {base,+,1} on the current
383   // loop, which indicates a strided store.  If we have something else, it's a
384   // random store we can't handle.
385   const SCEVAddRecExpr *StoreEv =
386       dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
387   if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
388     return LegalStoreKind::None;
389
390   // Check to see if we have a constant stride.
391   if (!isa<SCEVConstant>(StoreEv->getOperand(1)))
392     return LegalStoreKind::None;
393
394   // See if the store can be turned into a memset.
395
396   // If the stored value is a byte-wise value (like i32 -1), then it may be
397   // turned into a memset of i8 -1, assuming that all the consecutive bytes
398   // are stored.  A store of i32 0x01020304 can never be turned into a memset,
399   // but it can be turned into memset_pattern if the target supports it.
400   Value *SplatValue = isBytewiseValue(StoredVal);
401   Constant *PatternValue = nullptr;
402
403   // Note: memset and memset_pattern on unordered-atomic is yet not supported
404   bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple();
405
406   // If we're allowed to form a memset, and the stored value would be
407   // acceptable for memset, use it.
408   if (!UnorderedAtomic && HasMemset && SplatValue &&
409       // Verify that the stored value is loop invariant.  If not, we can't
410       // promote the memset.
411       CurLoop->isLoopInvariant(SplatValue)) {
412     // It looks like we can use SplatValue.
413     return LegalStoreKind::Memset;
414   } else if (!UnorderedAtomic && HasMemsetPattern &&
415              // Don't create memset_pattern16s with address spaces.
416              StorePtr->getType()->getPointerAddressSpace() == 0 &&
417              (PatternValue = getMemSetPatternValue(StoredVal, DL))) {
418     // It looks like we can use PatternValue!
419     return LegalStoreKind::MemsetPattern;
420   }
421
422   // Otherwise, see if the store can be turned into a memcpy.
423   if (HasMemcpy) {
424     // Check to see if the stride matches the size of the store.  If so, then we
425     // know that every byte is touched in the loop.
426     APInt Stride = getStoreStride(StoreEv);
427     unsigned StoreSize = getStoreSizeInBytes(SI, DL);
428     if (StoreSize != Stride && StoreSize != -Stride)
429       return LegalStoreKind::None;
430
431     // The store must be feeding a non-volatile load.
432     LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
433
434     // Only allow non-volatile loads
435     if (!LI || LI->isVolatile())
436       return LegalStoreKind::None;
437     // Only allow simple or unordered-atomic loads
438     if (!LI->isUnordered())
439       return LegalStoreKind::None;
440
441     // See if the pointer expression is an AddRec like {base,+,1} on the current
442     // loop, which indicates a strided load.  If we have something else, it's a
443     // random load we can't handle.
444     const SCEVAddRecExpr *LoadEv =
445         dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
446     if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
447       return LegalStoreKind::None;
448
449     // The store and load must share the same stride.
450     if (StoreEv->getOperand(1) != LoadEv->getOperand(1))
451       return LegalStoreKind::None;
452
453     // Success.  This store can be converted into a memcpy.
454     UnorderedAtomic = UnorderedAtomic || LI->isAtomic();
455     return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy
456                            : LegalStoreKind::Memcpy;
457   }
458   // This store can't be transformed into a memset/memcpy.
459   return LegalStoreKind::None;
460 }
461
462 void LoopIdiomRecognize::collectStores(BasicBlock *BB) {
463   StoreRefsForMemset.clear();
464   StoreRefsForMemsetPattern.clear();
465   StoreRefsForMemcpy.clear();
466   for (Instruction &I : *BB) {
467     StoreInst *SI = dyn_cast<StoreInst>(&I);
468     if (!SI)
469       continue;
470
471     // Make sure this is a strided store with a constant stride.
472     switch (isLegalStore(SI)) {
473     case LegalStoreKind::None:
474       // Nothing to do
475       break;
476     case LegalStoreKind::Memset: {
477       // Find the base pointer.
478       Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL);
479       StoreRefsForMemset[Ptr].push_back(SI);
480     } break;
481     case LegalStoreKind::MemsetPattern: {
482       // Find the base pointer.
483       Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL);
484       StoreRefsForMemsetPattern[Ptr].push_back(SI);
485     } break;
486     case LegalStoreKind::Memcpy:
487     case LegalStoreKind::UnorderedAtomicMemcpy:
488       StoreRefsForMemcpy.push_back(SI);
489       break;
490     default:
491       assert(false && "unhandled return value");
492       break;
493     }
494   }
495 }
496
497 /// runOnLoopBlock - Process the specified block, which lives in a counted loop
498 /// with the specified backedge count.  This block is known to be in the current
499 /// loop and not in any subloops.
500 bool LoopIdiomRecognize::runOnLoopBlock(
501     BasicBlock *BB, const SCEV *BECount,
502     SmallVectorImpl<BasicBlock *> &ExitBlocks) {
503   // We can only promote stores in this block if they are unconditionally
504   // executed in the loop.  For a block to be unconditionally executed, it has
505   // to dominate all the exit blocks of the loop.  Verify this now.
506   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
507     if (!DT->dominates(BB, ExitBlocks[i]))
508       return false;
509
510   bool MadeChange = false;
511   // Look for store instructions, which may be optimized to memset/memcpy.
512   collectStores(BB);
513
514   // Look for a single store or sets of stores with a common base, which can be
515   // optimized into a memset (memset_pattern).  The latter most commonly happens
516   // with structs and handunrolled loops.
517   for (auto &SL : StoreRefsForMemset)
518     MadeChange |= processLoopStores(SL.second, BECount, true);
519
520   for (auto &SL : StoreRefsForMemsetPattern)
521     MadeChange |= processLoopStores(SL.second, BECount, false);
522
523   // Optimize the store into a memcpy, if it feeds an similarly strided load.
524   for (auto &SI : StoreRefsForMemcpy)
525     MadeChange |= processLoopStoreOfLoopLoad(SI, BECount);
526
527   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
528     Instruction *Inst = &*I++;
529     // Look for memset instructions, which may be optimized to a larger memset.
530     if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst)) {
531       WeakTrackingVH InstPtr(&*I);
532       if (!processLoopMemSet(MSI, BECount))
533         continue;
534       MadeChange = true;
535
536       // If processing the memset invalidated our iterator, start over from the
537       // top of the block.
538       if (!InstPtr)
539         I = BB->begin();
540       continue;
541     }
542   }
543
544   return MadeChange;
545 }
546
547 /// processLoopStores - See if this store(s) can be promoted to a memset.
548 bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL,
549                                            const SCEV *BECount,
550                                            bool ForMemset) {
551   // Try to find consecutive stores that can be transformed into memsets.
552   SetVector<StoreInst *> Heads, Tails;
553   SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
554
555   // Do a quadratic search on all of the given stores and find
556   // all of the pairs of stores that follow each other.
557   SmallVector<unsigned, 16> IndexQueue;
558   for (unsigned i = 0, e = SL.size(); i < e; ++i) {
559     assert(SL[i]->isSimple() && "Expected only non-volatile stores.");
560
561     Value *FirstStoredVal = SL[i]->getValueOperand();
562     Value *FirstStorePtr = SL[i]->getPointerOperand();
563     const SCEVAddRecExpr *FirstStoreEv =
564         cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr));
565     APInt FirstStride = getStoreStride(FirstStoreEv);
566     unsigned FirstStoreSize = getStoreSizeInBytes(SL[i], DL);
567
568     // See if we can optimize just this store in isolation.
569     if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) {
570       Heads.insert(SL[i]);
571       continue;
572     }
573
574     Value *FirstSplatValue = nullptr;
575     Constant *FirstPatternValue = nullptr;
576
577     if (ForMemset)
578       FirstSplatValue = isBytewiseValue(FirstStoredVal);
579     else
580       FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL);
581
582     assert((FirstSplatValue || FirstPatternValue) &&
583            "Expected either splat value or pattern value.");
584
585     IndexQueue.clear();
586     // If a store has multiple consecutive store candidates, search Stores
587     // array according to the sequence: from i+1 to e, then from i-1 to 0.
588     // This is because usually pairing with immediate succeeding or preceding
589     // candidate create the best chance to find memset opportunity.
590     unsigned j = 0;
591     for (j = i + 1; j < e; ++j)
592       IndexQueue.push_back(j);
593     for (j = i; j > 0; --j)
594       IndexQueue.push_back(j - 1);
595
596     for (auto &k : IndexQueue) {
597       assert(SL[k]->isSimple() && "Expected only non-volatile stores.");
598       Value *SecondStorePtr = SL[k]->getPointerOperand();
599       const SCEVAddRecExpr *SecondStoreEv =
600           cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr));
601       APInt SecondStride = getStoreStride(SecondStoreEv);
602
603       if (FirstStride != SecondStride)
604         continue;
605
606       Value *SecondStoredVal = SL[k]->getValueOperand();
607       Value *SecondSplatValue = nullptr;
608       Constant *SecondPatternValue = nullptr;
609
610       if (ForMemset)
611         SecondSplatValue = isBytewiseValue(SecondStoredVal);
612       else
613         SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL);
614
615       assert((SecondSplatValue || SecondPatternValue) &&
616              "Expected either splat value or pattern value.");
617
618       if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) {
619         if (ForMemset) {
620           if (FirstSplatValue != SecondSplatValue)
621             continue;
622         } else {
623           if (FirstPatternValue != SecondPatternValue)
624             continue;
625         }
626         Tails.insert(SL[k]);
627         Heads.insert(SL[i]);
628         ConsecutiveChain[SL[i]] = SL[k];
629         break;
630       }
631     }
632   }
633
634   // We may run into multiple chains that merge into a single chain. We mark the
635   // stores that we transformed so that we don't visit the same store twice.
636   SmallPtrSet<Value *, 16> TransformedStores;
637   bool Changed = false;
638
639   // For stores that start but don't end a link in the chain:
640   for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end();
641        it != e; ++it) {
642     if (Tails.count(*it))
643       continue;
644
645     // We found a store instr that starts a chain. Now follow the chain and try
646     // to transform it.
647     SmallPtrSet<Instruction *, 8> AdjacentStores;
648     StoreInst *I = *it;
649
650     StoreInst *HeadStore = I;
651     unsigned StoreSize = 0;
652
653     // Collect the chain into a list.
654     while (Tails.count(I) || Heads.count(I)) {
655       if (TransformedStores.count(I))
656         break;
657       AdjacentStores.insert(I);
658
659       StoreSize += getStoreSizeInBytes(I, DL);
660       // Move to the next value in the chain.
661       I = ConsecutiveChain[I];
662     }
663
664     Value *StoredVal = HeadStore->getValueOperand();
665     Value *StorePtr = HeadStore->getPointerOperand();
666     const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
667     APInt Stride = getStoreStride(StoreEv);
668
669     // Check to see if the stride matches the size of the stores.  If so, then
670     // we know that every byte is touched in the loop.
671     if (StoreSize != Stride && StoreSize != -Stride)
672       continue;
673
674     bool NegStride = StoreSize == -Stride;
675
676     if (processLoopStridedStore(StorePtr, StoreSize, HeadStore->getAlignment(),
677                                 StoredVal, HeadStore, AdjacentStores, StoreEv,
678                                 BECount, NegStride)) {
679       TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end());
680       Changed = true;
681     }
682   }
683
684   return Changed;
685 }
686
687 /// processLoopMemSet - See if this memset can be promoted to a large memset.
688 bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI,
689                                            const SCEV *BECount) {
690   // We can only handle non-volatile memsets with a constant size.
691   if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength()))
692     return false;
693
694   // If we're not allowed to hack on memset, we fail.
695   if (!HasMemset)
696     return false;
697
698   Value *Pointer = MSI->getDest();
699
700   // See if the pointer expression is an AddRec like {base,+,1} on the current
701   // loop, which indicates a strided store.  If we have something else, it's a
702   // random store we can't handle.
703   const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer));
704   if (!Ev || Ev->getLoop() != CurLoop || !Ev->isAffine())
705     return false;
706
707   // Reject memsets that are so large that they overflow an unsigned.
708   uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
709   if ((SizeInBytes >> 32) != 0)
710     return false;
711
712   // Check to see if the stride matches the size of the memset.  If so, then we
713   // know that every byte is touched in the loop.
714   const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1));
715   if (!ConstStride)
716     return false;
717
718   APInt Stride = ConstStride->getAPInt();
719   if (SizeInBytes != Stride && SizeInBytes != -Stride)
720     return false;
721
722   // Verify that the memset value is loop invariant.  If not, we can't promote
723   // the memset.
724   Value *SplatValue = MSI->getValue();
725   if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue))
726     return false;
727
728   SmallPtrSet<Instruction *, 1> MSIs;
729   MSIs.insert(MSI);
730   bool NegStride = SizeInBytes == -Stride;
731   return processLoopStridedStore(Pointer, (unsigned)SizeInBytes,
732                                  MSI->getAlignment(), SplatValue, MSI, MSIs, Ev,
733                                  BECount, NegStride, /*IsLoopMemset=*/true);
734 }
735
736 /// mayLoopAccessLocation - Return true if the specified loop might access the
737 /// specified pointer location, which is a loop-strided access.  The 'Access'
738 /// argument specifies what the verboten forms of access are (read or write).
739 static bool
740 mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L,
741                       const SCEV *BECount, unsigned StoreSize,
742                       AliasAnalysis &AA,
743                       SmallPtrSetImpl<Instruction *> &IgnoredStores) {
744   // Get the location that may be stored across the loop.  Since the access is
745   // strided positively through memory, we say that the modified location starts
746   // at the pointer and has infinite size.
747   uint64_t AccessSize = MemoryLocation::UnknownSize;
748
749   // If the loop iterates a fixed number of times, we can refine the access size
750   // to be exactly the size of the memset, which is (BECount+1)*StoreSize
751   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
752     AccessSize = (BECst->getValue()->getZExtValue() + 1) * StoreSize;
753
754   // TODO: For this to be really effective, we have to dive into the pointer
755   // operand in the store.  Store to &A[i] of 100 will always return may alias
756   // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
757   // which will then no-alias a store to &A[100].
758   MemoryLocation StoreLoc(Ptr, AccessSize);
759
760   for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
761        ++BI)
762     for (Instruction &I : **BI)
763       if (IgnoredStores.count(&I) == 0 &&
764           (AA.getModRefInfo(&I, StoreLoc) & Access))
765         return true;
766
767   return false;
768 }
769
770 // If we have a negative stride, Start refers to the end of the memory location
771 // we're trying to memset.  Therefore, we need to recompute the base pointer,
772 // which is just Start - BECount*Size.
773 static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount,
774                                         Type *IntPtr, unsigned StoreSize,
775                                         ScalarEvolution *SE) {
776   const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr);
777   if (StoreSize != 1)
778     Index = SE->getMulExpr(Index, SE->getConstant(IntPtr, StoreSize),
779                            SCEV::FlagNUW);
780   return SE->getMinusSCEV(Start, Index);
781 }
782
783 /// processLoopStridedStore - We see a strided store of some value.  If we can
784 /// transform this into a memset or memset_pattern in the loop preheader, do so.
785 bool LoopIdiomRecognize::processLoopStridedStore(
786     Value *DestPtr, unsigned StoreSize, unsigned StoreAlignment,
787     Value *StoredVal, Instruction *TheStore,
788     SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev,
789     const SCEV *BECount, bool NegStride, bool IsLoopMemset) {
790   Value *SplatValue = isBytewiseValue(StoredVal);
791   Constant *PatternValue = nullptr;
792
793   if (!SplatValue)
794     PatternValue = getMemSetPatternValue(StoredVal, DL);
795
796   assert((SplatValue || PatternValue) &&
797          "Expected either splat value or pattern value.");
798
799   // The trip count of the loop and the base pointer of the addrec SCEV is
800   // guaranteed to be loop invariant, which means that it should dominate the
801   // header.  This allows us to insert code for it in the preheader.
802   unsigned DestAS = DestPtr->getType()->getPointerAddressSpace();
803   BasicBlock *Preheader = CurLoop->getLoopPreheader();
804   IRBuilder<> Builder(Preheader->getTerminator());
805   SCEVExpander Expander(*SE, *DL, "loop-idiom");
806
807   Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS);
808   Type *IntPtr = Builder.getIntPtrTy(*DL, DestAS);
809
810   const SCEV *Start = Ev->getStart();
811   // Handle negative strided loops.
812   if (NegStride)
813     Start = getStartForNegStride(Start, BECount, IntPtr, StoreSize, SE);
814
815   // TODO: ideally we should still be able to generate memset if SCEV expander
816   // is taught to generate the dependencies at the latest point.
817   if (!isSafeToExpand(Start, *SE))
818     return false;
819
820   // Okay, we have a strided store "p[i]" of a splattable value.  We can turn
821   // this into a memset in the loop preheader now if we want.  However, this
822   // would be unsafe to do if there is anything else in the loop that may read
823   // or write to the aliased location.  Check for any overlap by generating the
824   // base pointer and checking the region.
825   Value *BasePtr =
826       Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator());
827   if (mayLoopAccessLocation(BasePtr, MRI_ModRef, CurLoop, BECount, StoreSize,
828                             *AA, Stores)) {
829     Expander.clear();
830     // If we generated new code for the base pointer, clean up.
831     RecursivelyDeleteTriviallyDeadInstructions(BasePtr, TLI);
832     return false;
833   }
834
835   if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset))
836     return false;
837
838   // Okay, everything looks good, insert the memset.
839
840   // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to
841   // pointer size if it isn't already.
842   BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr);
843
844   const SCEV *NumBytesS =
845       SE->getAddExpr(BECount, SE->getOne(IntPtr), SCEV::FlagNUW);
846   if (StoreSize != 1) {
847     NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize),
848                                SCEV::FlagNUW);
849   }
850
851   // TODO: ideally we should still be able to generate memset if SCEV expander
852   // is taught to generate the dependencies at the latest point.
853   if (!isSafeToExpand(NumBytesS, *SE))
854     return false;
855
856   Value *NumBytes =
857       Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator());
858
859   CallInst *NewCall;
860   if (SplatValue) {
861     NewCall =
862         Builder.CreateMemSet(BasePtr, SplatValue, NumBytes, StoreAlignment);
863   } else {
864     // Everything is emitted in default address space
865     Type *Int8PtrTy = DestInt8PtrTy;
866
867     Module *M = TheStore->getModule();
868     Value *MSP =
869         M->getOrInsertFunction("memset_pattern16", Builder.getVoidTy(),
870                                Int8PtrTy, Int8PtrTy, IntPtr);
871     inferLibFuncAttributes(*M->getFunction("memset_pattern16"), *TLI);
872
873     // Otherwise we should form a memset_pattern16.  PatternValue is known to be
874     // an constant array of 16-bytes.  Plop the value into a mergable global.
875     GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true,
876                                             GlobalValue::PrivateLinkage,
877                                             PatternValue, ".memset_pattern");
878     GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these.
879     GV->setAlignment(16);
880     Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy);
881     NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes});
882   }
883
884   DEBUG(dbgs() << "  Formed memset: " << *NewCall << "\n"
885                << "    from store to: " << *Ev << " at: " << *TheStore << "\n");
886   NewCall->setDebugLoc(TheStore->getDebugLoc());
887
888   // Okay, the memset has been formed.  Zap the original store and anything that
889   // feeds into it.
890   for (auto *I : Stores)
891     deleteDeadInstruction(I);
892   ++NumMemSet;
893   return true;
894 }
895
896 /// If the stored value is a strided load in the same loop with the same stride
897 /// this may be transformable into a memcpy.  This kicks in for stuff like
898 /// for (i) A[i] = B[i];
899 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI,
900                                                     const SCEV *BECount) {
901   assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores.");
902
903   Value *StorePtr = SI->getPointerOperand();
904   const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
905   APInt Stride = getStoreStride(StoreEv);
906   unsigned StoreSize = getStoreSizeInBytes(SI, DL);
907   bool NegStride = StoreSize == -Stride;
908
909   // The store must be feeding a non-volatile load.
910   LoadInst *LI = cast<LoadInst>(SI->getValueOperand());
911   assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads.");
912
913   // See if the pointer expression is an AddRec like {base,+,1} on the current
914   // loop, which indicates a strided load.  If we have something else, it's a
915   // random load we can't handle.
916   const SCEVAddRecExpr *LoadEv =
917       cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
918
919   // The trip count of the loop and the base pointer of the addrec SCEV is
920   // guaranteed to be loop invariant, which means that it should dominate the
921   // header.  This allows us to insert code for it in the preheader.
922   BasicBlock *Preheader = CurLoop->getLoopPreheader();
923   IRBuilder<> Builder(Preheader->getTerminator());
924   SCEVExpander Expander(*SE, *DL, "loop-idiom");
925
926   const SCEV *StrStart = StoreEv->getStart();
927   unsigned StrAS = SI->getPointerAddressSpace();
928   Type *IntPtrTy = Builder.getIntPtrTy(*DL, StrAS);
929
930   // Handle negative strided loops.
931   if (NegStride)
932     StrStart = getStartForNegStride(StrStart, BECount, IntPtrTy, StoreSize, SE);
933
934   // Okay, we have a strided store "p[i]" of a loaded value.  We can turn
935   // this into a memcpy in the loop preheader now if we want.  However, this
936   // would be unsafe to do if there is anything else in the loop that may read
937   // or write the memory region we're storing to.  This includes the load that
938   // feeds the stores.  Check for an alias by generating the base address and
939   // checking everything.
940   Value *StoreBasePtr = Expander.expandCodeFor(
941       StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator());
942
943   SmallPtrSet<Instruction *, 1> Stores;
944   Stores.insert(SI);
945   if (mayLoopAccessLocation(StoreBasePtr, MRI_ModRef, CurLoop, BECount,
946                             StoreSize, *AA, Stores)) {
947     Expander.clear();
948     // If we generated new code for the base pointer, clean up.
949     RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
950     return false;
951   }
952
953   const SCEV *LdStart = LoadEv->getStart();
954   unsigned LdAS = LI->getPointerAddressSpace();
955
956   // Handle negative strided loops.
957   if (NegStride)
958     LdStart = getStartForNegStride(LdStart, BECount, IntPtrTy, StoreSize, SE);
959
960   // For a memcpy, we have to make sure that the input array is not being
961   // mutated by the loop.
962   Value *LoadBasePtr = Expander.expandCodeFor(
963       LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator());
964
965   if (mayLoopAccessLocation(LoadBasePtr, MRI_Mod, CurLoop, BECount, StoreSize,
966                             *AA, Stores)) {
967     Expander.clear();
968     // If we generated new code for the base pointer, clean up.
969     RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI);
970     RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
971     return false;
972   }
973
974   if (avoidLIRForMultiBlockLoop())
975     return false;
976
977   // Okay, everything is safe, we can transform this!
978
979   // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to
980   // pointer size if it isn't already.
981   BECount = SE->getTruncateOrZeroExtend(BECount, IntPtrTy);
982
983   const SCEV *NumBytesS =
984       SE->getAddExpr(BECount, SE->getOne(IntPtrTy), SCEV::FlagNUW);
985
986   if (StoreSize != 1)
987     NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtrTy, StoreSize),
988                                SCEV::FlagNUW);
989
990   Value *NumBytes =
991       Expander.expandCodeFor(NumBytesS, IntPtrTy, Preheader->getTerminator());
992
993   unsigned Align = std::min(SI->getAlignment(), LI->getAlignment());
994   CallInst *NewCall = nullptr;
995   // Check whether to generate an unordered atomic memcpy:
996   //  If the load or store are atomic, then they must neccessarily be unordered
997   //  by previous checks.
998   if (!SI->isAtomic() && !LI->isAtomic())
999     NewCall = Builder.CreateMemCpy(StoreBasePtr, LoadBasePtr, NumBytes, Align);
1000   else {
1001     // We cannot allow unaligned ops for unordered load/store, so reject
1002     // anything where the alignment isn't at least the element size.
1003     if (Align < StoreSize)
1004       return false;
1005
1006     // If the element.atomic memcpy is not lowered into explicit
1007     // loads/stores later, then it will be lowered into an element-size
1008     // specific lib call. If the lib call doesn't exist for our store size, then
1009     // we shouldn't generate the memcpy.
1010     if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize())
1011       return false;
1012
1013     NewCall = Builder.CreateElementUnorderedAtomicMemCpy(
1014         StoreBasePtr, LoadBasePtr, NumBytes, StoreSize);
1015
1016     // Propagate alignment info onto the pointer args. Note that unordered
1017     // atomic loads/stores are *required* by the spec to have an alignment
1018     // but non-atomic loads/stores may not.
1019     NewCall->addParamAttr(0, Attribute::getWithAlignment(NewCall->getContext(),
1020                                                          SI->getAlignment()));
1021     NewCall->addParamAttr(1, Attribute::getWithAlignment(NewCall->getContext(),
1022                                                          LI->getAlignment()));
1023   }
1024   NewCall->setDebugLoc(SI->getDebugLoc());
1025
1026   DEBUG(dbgs() << "  Formed memcpy: " << *NewCall << "\n"
1027                << "    from load ptr=" << *LoadEv << " at: " << *LI << "\n"
1028                << "    from store ptr=" << *StoreEv << " at: " << *SI << "\n");
1029
1030   // Okay, the memcpy has been formed.  Zap the original store and anything that
1031   // feeds into it.
1032   deleteDeadInstruction(SI);
1033   ++NumMemCpy;
1034   return true;
1035 }
1036
1037 // When compiling for codesize we avoid idiom recognition for a multi-block loop
1038 // unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop.
1039 //
1040 bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset,
1041                                                    bool IsLoopMemset) {
1042   if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) {
1043     if (!CurLoop->getParentLoop() && (!IsMemset || !IsLoopMemset)) {
1044       DEBUG(dbgs() << "  " << CurLoop->getHeader()->getParent()->getName()
1045                    << " : LIR " << (IsMemset ? "Memset" : "Memcpy")
1046                    << " avoided: multi-block top-level loop\n");
1047       return true;
1048     }
1049   }
1050
1051   return false;
1052 }
1053
1054 bool LoopIdiomRecognize::runOnNoncountableLoop() {
1055   return recognizePopcount() || recognizeAndInsertCTLZ();
1056 }
1057
1058 /// Check if the given conditional branch is based on the comparison between
1059 /// a variable and zero, and if the variable is non-zero, the control yields to
1060 /// the loop entry. If the branch matches the behavior, the variable involved
1061 /// in the comparison is returned. This function will be called to see if the
1062 /// precondition and postcondition of the loop are in desirable form.
1063 static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry) {
1064   if (!BI || !BI->isConditional())
1065     return nullptr;
1066
1067   ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1068   if (!Cond)
1069     return nullptr;
1070
1071   ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1));
1072   if (!CmpZero || !CmpZero->isZero())
1073     return nullptr;
1074
1075   ICmpInst::Predicate Pred = Cond->getPredicate();
1076   if ((Pred == ICmpInst::ICMP_NE && BI->getSuccessor(0) == LoopEntry) ||
1077       (Pred == ICmpInst::ICMP_EQ && BI->getSuccessor(1) == LoopEntry))
1078     return Cond->getOperand(0);
1079
1080   return nullptr;
1081 }
1082
1083 // Check if the recurrence variable `VarX` is in the right form to create
1084 // the idiom. Returns the value coerced to a PHINode if so.
1085 static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX,
1086                                  BasicBlock *LoopEntry) {
1087   auto *PhiX = dyn_cast<PHINode>(VarX);
1088   if (PhiX && PhiX->getParent() == LoopEntry &&
1089       (PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX))
1090     return PhiX;
1091   return nullptr;
1092 }
1093
1094 /// Return true iff the idiom is detected in the loop.
1095 ///
1096 /// Additionally:
1097 /// 1) \p CntInst is set to the instruction counting the population bit.
1098 /// 2) \p CntPhi is set to the corresponding phi node.
1099 /// 3) \p Var is set to the value whose population bits are being counted.
1100 ///
1101 /// The core idiom we are trying to detect is:
1102 /// \code
1103 ///    if (x0 != 0)
1104 ///      goto loop-exit // the precondition of the loop
1105 ///    cnt0 = init-val;
1106 ///    do {
1107 ///       x1 = phi (x0, x2);
1108 ///       cnt1 = phi(cnt0, cnt2);
1109 ///
1110 ///       cnt2 = cnt1 + 1;
1111 ///        ...
1112 ///       x2 = x1 & (x1 - 1);
1113 ///        ...
1114 ///    } while(x != 0);
1115 ///
1116 /// loop-exit:
1117 /// \endcode
1118 static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB,
1119                                 Instruction *&CntInst, PHINode *&CntPhi,
1120                                 Value *&Var) {
1121   // step 1: Check to see if the look-back branch match this pattern:
1122   //    "if (a!=0) goto loop-entry".
1123   BasicBlock *LoopEntry;
1124   Instruction *DefX2, *CountInst;
1125   Value *VarX1, *VarX0;
1126   PHINode *PhiX, *CountPhi;
1127
1128   DefX2 = CountInst = nullptr;
1129   VarX1 = VarX0 = nullptr;
1130   PhiX = CountPhi = nullptr;
1131   LoopEntry = *(CurLoop->block_begin());
1132
1133   // step 1: Check if the loop-back branch is in desirable form.
1134   {
1135     if (Value *T = matchCondition(
1136             dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
1137       DefX2 = dyn_cast<Instruction>(T);
1138     else
1139       return false;
1140   }
1141
1142   // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
1143   {
1144     if (!DefX2 || DefX2->getOpcode() != Instruction::And)
1145       return false;
1146
1147     BinaryOperator *SubOneOp;
1148
1149     if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0))))
1150       VarX1 = DefX2->getOperand(1);
1151     else {
1152       VarX1 = DefX2->getOperand(0);
1153       SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1));
1154     }
1155     if (!SubOneOp)
1156       return false;
1157
1158     Instruction *SubInst = cast<Instruction>(SubOneOp);
1159     ConstantInt *Dec = dyn_cast<ConstantInt>(SubInst->getOperand(1));
1160     if (!Dec ||
1161         !((SubInst->getOpcode() == Instruction::Sub && Dec->isOne()) ||
1162           (SubInst->getOpcode() == Instruction::Add &&
1163            Dec->isMinusOne()))) {
1164       return false;
1165     }
1166   }
1167
1168   // step 3: Check the recurrence of variable X
1169   PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry);
1170   if (!PhiX)
1171     return false;
1172
1173   // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1
1174   {
1175     CountInst = nullptr;
1176     for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(),
1177                               IterE = LoopEntry->end();
1178          Iter != IterE; Iter++) {
1179       Instruction *Inst = &*Iter;
1180       if (Inst->getOpcode() != Instruction::Add)
1181         continue;
1182
1183       ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
1184       if (!Inc || !Inc->isOne())
1185         continue;
1186
1187       PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry);
1188       if (!Phi)
1189         continue;
1190
1191       // Check if the result of the instruction is live of the loop.
1192       bool LiveOutLoop = false;
1193       for (User *U : Inst->users()) {
1194         if ((cast<Instruction>(U))->getParent() != LoopEntry) {
1195           LiveOutLoop = true;
1196           break;
1197         }
1198       }
1199
1200       if (LiveOutLoop) {
1201         CountInst = Inst;
1202         CountPhi = Phi;
1203         break;
1204       }
1205     }
1206
1207     if (!CountInst)
1208       return false;
1209   }
1210
1211   // step 5: check if the precondition is in this form:
1212   //   "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;"
1213   {
1214     auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1215     Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader());
1216     if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1))
1217       return false;
1218
1219     CntInst = CountInst;
1220     CntPhi = CountPhi;
1221     Var = T;
1222   }
1223
1224   return true;
1225 }
1226
1227 /// Return true if the idiom is detected in the loop.
1228 ///
1229 /// Additionally:
1230 /// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ)
1231 ///       or nullptr if there is no such.
1232 /// 2) \p CntPhi is set to the corresponding phi node
1233 ///       or nullptr if there is no such.
1234 /// 3) \p Var is set to the value whose CTLZ could be used.
1235 /// 4) \p DefX is set to the instruction calculating Loop exit condition.
1236 ///
1237 /// The core idiom we are trying to detect is:
1238 /// \code
1239 ///    if (x0 == 0)
1240 ///      goto loop-exit // the precondition of the loop
1241 ///    cnt0 = init-val;
1242 ///    do {
1243 ///       x = phi (x0, x.next);   //PhiX
1244 ///       cnt = phi(cnt0, cnt.next);
1245 ///
1246 ///       cnt.next = cnt + 1;
1247 ///        ...
1248 ///       x.next = x >> 1;   // DefX
1249 ///        ...
1250 ///    } while(x.next != 0);
1251 ///
1252 /// loop-exit:
1253 /// \endcode
1254 static bool detectCTLZIdiom(Loop *CurLoop, PHINode *&PhiX,
1255                             Instruction *&CntInst, PHINode *&CntPhi,
1256                             Instruction *&DefX) {
1257   BasicBlock *LoopEntry;
1258   Value *VarX = nullptr;
1259
1260   DefX = nullptr;
1261   PhiX = nullptr;
1262   CntInst = nullptr;
1263   CntPhi = nullptr;
1264   LoopEntry = *(CurLoop->block_begin());
1265
1266   // step 1: Check if the loop-back branch is in desirable form.
1267   if (Value *T = matchCondition(
1268           dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
1269     DefX = dyn_cast<Instruction>(T);
1270   else
1271     return false;
1272
1273   // step 2: detect instructions corresponding to "x.next = x >> 1"
1274   if (!DefX || DefX->getOpcode() != Instruction::AShr)
1275     return false;
1276   if (ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1)))
1277     if (!Shft || !Shft->isOne())
1278       return false;
1279   VarX = DefX->getOperand(0);
1280
1281   // step 3: Check the recurrence of variable X
1282   PhiX = getRecurrenceVar(VarX, DefX, LoopEntry);
1283   if (!PhiX)
1284     return false;
1285
1286   // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1
1287   // TODO: We can skip the step. If loop trip count is known (CTLZ),
1288   //       then all uses of "cnt.next" could be optimized to the trip count
1289   //       plus "cnt0". Currently it is not optimized.
1290   //       This step could be used to detect POPCNT instruction:
1291   //       cnt.next = cnt + (x.next & 1)
1292   for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(),
1293                             IterE = LoopEntry->end();
1294        Iter != IterE; Iter++) {
1295     Instruction *Inst = &*Iter;
1296     if (Inst->getOpcode() != Instruction::Add)
1297       continue;
1298
1299     ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
1300     if (!Inc || !Inc->isOne())
1301       continue;
1302
1303     PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry);
1304     if (!Phi)
1305       continue;
1306
1307     CntInst = Inst;
1308     CntPhi = Phi;
1309     break;
1310   }
1311   if (!CntInst)
1312     return false;
1313
1314   return true;
1315 }
1316
1317 /// Recognize CTLZ idiom in a non-countable loop and convert the loop
1318 /// to countable (with CTLZ trip count).
1319 /// If CTLZ inserted as a new trip count returns true; otherwise, returns false.
1320 bool LoopIdiomRecognize::recognizeAndInsertCTLZ() {
1321   // Give up if the loop has multiple blocks or multiple backedges.
1322   if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
1323     return false;
1324
1325   Instruction *CntInst, *DefX;
1326   PHINode *CntPhi, *PhiX;
1327   if (!detectCTLZIdiom(CurLoop, PhiX, CntInst, CntPhi, DefX))
1328     return false;
1329
1330   bool IsCntPhiUsedOutsideLoop = false;
1331   for (User *U : CntPhi->users())
1332     if (!CurLoop->contains(dyn_cast<Instruction>(U))) {
1333       IsCntPhiUsedOutsideLoop = true;
1334       break;
1335     }
1336   bool IsCntInstUsedOutsideLoop = false;
1337   for (User *U : CntInst->users())
1338     if (!CurLoop->contains(dyn_cast<Instruction>(U))) {
1339       IsCntInstUsedOutsideLoop = true;
1340       break;
1341     }
1342   // If both CntInst and CntPhi are used outside the loop the profitability
1343   // is questionable.
1344   if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop)
1345     return false;
1346
1347   // For some CPUs result of CTLZ(X) intrinsic is undefined
1348   // when X is 0. If we can not guarantee X != 0, we need to check this
1349   // when expand.
1350   bool ZeroCheck = false;
1351   // It is safe to assume Preheader exist as it was checked in
1352   // parent function RunOnLoop.
1353   BasicBlock *PH = CurLoop->getLoopPreheader();
1354   Value *InitX = PhiX->getIncomingValueForBlock(PH);
1355   // If we check X != 0 before entering the loop we don't need a zero
1356   // check in CTLZ intrinsic, but only if Cnt Phi is not used outside of the
1357   // loop (if it is used we count CTLZ(X >> 1)).
1358   if (!IsCntPhiUsedOutsideLoop)
1359     if (BasicBlock *PreCondBB = PH->getSinglePredecessor())
1360       if (BranchInst *PreCondBr =
1361           dyn_cast<BranchInst>(PreCondBB->getTerminator())) {
1362         if (matchCondition(PreCondBr, PH) == InitX)
1363           ZeroCheck = true;
1364       }
1365
1366   // Check if CTLZ intrinsic is profitable. Assume it is always profitable
1367   // if we delete the loop (the loop has only 6 instructions):
1368   //  %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ]
1369   //  %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ]
1370   //  %shr = ashr %n.addr.0, 1
1371   //  %tobool = icmp eq %shr, 0
1372   //  %inc = add nsw %i.0, 1
1373   //  br i1 %tobool
1374
1375   IRBuilder<> Builder(PH->getTerminator());
1376   SmallVector<const Value *, 2> Ops =
1377       {InitX, ZeroCheck ? Builder.getTrue() : Builder.getFalse()};
1378   ArrayRef<const Value *> Args(Ops);
1379   if (CurLoop->getHeader()->size() != 6 &&
1380       TTI->getIntrinsicCost(Intrinsic::ctlz, InitX->getType(), Args) >
1381           TargetTransformInfo::TCC_Basic)
1382     return false;
1383
1384   const DebugLoc DL = DefX->getDebugLoc();
1385   transformLoopToCountable(PH, CntInst, CntPhi, InitX, DL, ZeroCheck,
1386                            IsCntPhiUsedOutsideLoop);
1387   return true;
1388 }
1389
1390 /// Recognizes a population count idiom in a non-countable loop.
1391 ///
1392 /// If detected, transforms the relevant code to issue the popcount intrinsic
1393 /// function call, and returns true; otherwise, returns false.
1394 bool LoopIdiomRecognize::recognizePopcount() {
1395   if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware)
1396     return false;
1397
1398   // Counting population are usually conducted by few arithmetic instructions.
1399   // Such instructions can be easily "absorbed" by vacant slots in a
1400   // non-compact loop. Therefore, recognizing popcount idiom only makes sense
1401   // in a compact loop.
1402
1403   // Give up if the loop has multiple blocks or multiple backedges.
1404   if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
1405     return false;
1406
1407   BasicBlock *LoopBody = *(CurLoop->block_begin());
1408   if (LoopBody->size() >= 20) {
1409     // The loop is too big, bail out.
1410     return false;
1411   }
1412
1413   // It should have a preheader containing nothing but an unconditional branch.
1414   BasicBlock *PH = CurLoop->getLoopPreheader();
1415   if (!PH || &PH->front() != PH->getTerminator())
1416     return false;
1417   auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator());
1418   if (!EntryBI || EntryBI->isConditional())
1419     return false;
1420
1421   // It should have a precondition block where the generated popcount instrinsic
1422   // function can be inserted.
1423   auto *PreCondBB = PH->getSinglePredecessor();
1424   if (!PreCondBB)
1425     return false;
1426   auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1427   if (!PreCondBI || PreCondBI->isUnconditional())
1428     return false;
1429
1430   Instruction *CntInst;
1431   PHINode *CntPhi;
1432   Value *Val;
1433   if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val))
1434     return false;
1435
1436   transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val);
1437   return true;
1438 }
1439
1440 static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
1441                                        const DebugLoc &DL) {
1442   Value *Ops[] = {Val};
1443   Type *Tys[] = {Val->getType()};
1444
1445   Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
1446   Value *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys);
1447   CallInst *CI = IRBuilder.CreateCall(Func, Ops);
1448   CI->setDebugLoc(DL);
1449
1450   return CI;
1451 }
1452
1453 static CallInst *createCTLZIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
1454                                      const DebugLoc &DL, bool ZeroCheck) {
1455   Value *Ops[] = {Val, ZeroCheck ? IRBuilder.getTrue() : IRBuilder.getFalse()};
1456   Type *Tys[] = {Val->getType()};
1457
1458   Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
1459   Value *Func = Intrinsic::getDeclaration(M, Intrinsic::ctlz, Tys);
1460   CallInst *CI = IRBuilder.CreateCall(Func, Ops);
1461   CI->setDebugLoc(DL);
1462
1463   return CI;
1464 }
1465
1466 /// Transform the following loop:
1467 /// loop:
1468 ///   CntPhi = PHI [Cnt0, CntInst]
1469 ///   PhiX = PHI [InitX, DefX]
1470 ///   CntInst = CntPhi + 1
1471 ///   DefX = PhiX >> 1
1472 //    LOOP_BODY
1473 ///   Br: loop if (DefX != 0)
1474 /// Use(CntPhi) or Use(CntInst)
1475 ///
1476 /// Into:
1477 /// If CntPhi used outside the loop:
1478 ///   CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1)
1479 ///   Count = CountPrev + 1
1480 /// else
1481 ///   Count = BitWidth(InitX) - CTLZ(InitX)
1482 /// loop:
1483 ///   CntPhi = PHI [Cnt0, CntInst]
1484 ///   PhiX = PHI [InitX, DefX]
1485 ///   PhiCount = PHI [Count, Dec]
1486 ///   CntInst = CntPhi + 1
1487 ///   DefX = PhiX >> 1
1488 ///   Dec = PhiCount - 1
1489 ///   LOOP_BODY
1490 ///   Br: loop if (Dec != 0)
1491 /// Use(CountPrev + Cnt0) // Use(CntPhi)
1492 /// or
1493 /// Use(Count + Cnt0) // Use(CntInst)
1494 ///
1495 /// If LOOP_BODY is empty the loop will be deleted.
1496 /// If CntInst and DefX are not used in LOOP_BODY they will be removed.
1497 void LoopIdiomRecognize::transformLoopToCountable(
1498     BasicBlock *Preheader, Instruction *CntInst, PHINode *CntPhi, Value *InitX,
1499     const DebugLoc DL, bool ZeroCheck, bool IsCntPhiUsedOutsideLoop) {
1500   BranchInst *PreheaderBr = dyn_cast<BranchInst>(Preheader->getTerminator());
1501
1502   // Step 1: Insert the CTLZ instruction at the end of the preheader block
1503   //   Count = BitWidth - CTLZ(InitX);
1504   // If there are uses of CntPhi create:
1505   //   CountPrev = BitWidth - CTLZ(InitX >> 1);
1506   IRBuilder<> Builder(PreheaderBr);
1507   Builder.SetCurrentDebugLocation(DL);
1508   Value *CTLZ, *Count, *CountPrev, *NewCount, *InitXNext;
1509
1510   if (IsCntPhiUsedOutsideLoop)
1511     InitXNext = Builder.CreateAShr(InitX,
1512                                    ConstantInt::get(InitX->getType(), 1));
1513   else
1514     InitXNext = InitX;
1515   CTLZ = createCTLZIntrinsic(Builder, InitXNext, DL, ZeroCheck);
1516   Count = Builder.CreateSub(
1517       ConstantInt::get(CTLZ->getType(),
1518                        CTLZ->getType()->getIntegerBitWidth()),
1519       CTLZ);
1520   if (IsCntPhiUsedOutsideLoop) {
1521     CountPrev = Count;
1522     Count = Builder.CreateAdd(
1523         CountPrev,
1524         ConstantInt::get(CountPrev->getType(), 1));
1525   }
1526   if (IsCntPhiUsedOutsideLoop)
1527     NewCount = Builder.CreateZExtOrTrunc(CountPrev,
1528         cast<IntegerType>(CntInst->getType()));
1529   else
1530     NewCount = Builder.CreateZExtOrTrunc(Count,
1531         cast<IntegerType>(CntInst->getType()));
1532
1533   // If the CTLZ counter's initial value is not zero, insert Add Inst.
1534   Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader);
1535   ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
1536   if (!InitConst || !InitConst->isZero())
1537     NewCount = Builder.CreateAdd(NewCount, CntInitVal);
1538
1539   // Step 2: Insert new IV and loop condition:
1540   // loop:
1541   //   ...
1542   //   PhiCount = PHI [Count, Dec]
1543   //   ...
1544   //   Dec = PhiCount - 1
1545   //   ...
1546   //   Br: loop if (Dec != 0)
1547   BasicBlock *Body = *(CurLoop->block_begin());
1548   auto *LbBr = dyn_cast<BranchInst>(Body->getTerminator());
1549   ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
1550   Type *Ty = Count->getType();
1551
1552   PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front());
1553
1554   Builder.SetInsertPoint(LbCond);
1555   Instruction *TcDec = cast<Instruction>(
1556       Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
1557                         "tcdec", false, true));
1558
1559   TcPhi->addIncoming(Count, Preheader);
1560   TcPhi->addIncoming(TcDec, Body);
1561
1562   CmpInst::Predicate Pred =
1563       (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
1564   LbCond->setPredicate(Pred);
1565   LbCond->setOperand(0, TcDec);
1566   LbCond->setOperand(1, ConstantInt::get(Ty, 0));
1567
1568   // Step 3: All the references to the original counter outside
1569   //  the loop are replaced with the NewCount -- the value returned from
1570   //  __builtin_ctlz(x).
1571   if (IsCntPhiUsedOutsideLoop)
1572     CntPhi->replaceUsesOutsideBlock(NewCount, Body);
1573   else
1574     CntInst->replaceUsesOutsideBlock(NewCount, Body);
1575
1576   // step 4: Forget the "non-computable" trip-count SCEV associated with the
1577   //   loop. The loop would otherwise not be deleted even if it becomes empty.
1578   SE->forgetLoop(CurLoop);
1579 }
1580
1581 void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB,
1582                                                  Instruction *CntInst,
1583                                                  PHINode *CntPhi, Value *Var) {
1584   BasicBlock *PreHead = CurLoop->getLoopPreheader();
1585   auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1586   const DebugLoc DL = CntInst->getDebugLoc();
1587
1588   // Assuming before transformation, the loop is following:
1589   //  if (x) // the precondition
1590   //     do { cnt++; x &= x - 1; } while(x);
1591
1592   // Step 1: Insert the ctpop instruction at the end of the precondition block
1593   IRBuilder<> Builder(PreCondBr);
1594   Value *PopCnt, *PopCntZext, *NewCount, *TripCnt;
1595   {
1596     PopCnt = createPopcntIntrinsic(Builder, Var, DL);
1597     NewCount = PopCntZext =
1598         Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType()));
1599
1600     if (NewCount != PopCnt)
1601       (cast<Instruction>(NewCount))->setDebugLoc(DL);
1602
1603     // TripCnt is exactly the number of iterations the loop has
1604     TripCnt = NewCount;
1605
1606     // If the population counter's initial value is not zero, insert Add Inst.
1607     Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead);
1608     ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
1609     if (!InitConst || !InitConst->isZero()) {
1610       NewCount = Builder.CreateAdd(NewCount, CntInitVal);
1611       (cast<Instruction>(NewCount))->setDebugLoc(DL);
1612     }
1613   }
1614
1615   // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to
1616   //   "if (NewCount == 0) loop-exit". Without this change, the intrinsic
1617   //   function would be partial dead code, and downstream passes will drag
1618   //   it back from the precondition block to the preheader.
1619   {
1620     ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition());
1621
1622     Value *Opnd0 = PopCntZext;
1623     Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0);
1624     if (PreCond->getOperand(0) != Var)
1625       std::swap(Opnd0, Opnd1);
1626
1627     ICmpInst *NewPreCond = cast<ICmpInst>(
1628         Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1));
1629     PreCondBr->setCondition(NewPreCond);
1630
1631     RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI);
1632   }
1633
1634   // Step 3: Note that the population count is exactly the trip count of the
1635   // loop in question, which enable us to to convert the loop from noncountable
1636   // loop into a countable one. The benefit is twofold:
1637   //
1638   //  - If the loop only counts population, the entire loop becomes dead after
1639   //    the transformation. It is a lot easier to prove a countable loop dead
1640   //    than to prove a noncountable one. (In some C dialects, an infinite loop
1641   //    isn't dead even if it computes nothing useful. In general, DCE needs
1642   //    to prove a noncountable loop finite before safely delete it.)
1643   //
1644   //  - If the loop also performs something else, it remains alive.
1645   //    Since it is transformed to countable form, it can be aggressively
1646   //    optimized by some optimizations which are in general not applicable
1647   //    to a noncountable loop.
1648   //
1649   // After this step, this loop (conceptually) would look like following:
1650   //   newcnt = __builtin_ctpop(x);
1651   //   t = newcnt;
1652   //   if (x)
1653   //     do { cnt++; x &= x-1; t--) } while (t > 0);
1654   BasicBlock *Body = *(CurLoop->block_begin());
1655   {
1656     auto *LbBr = dyn_cast<BranchInst>(Body->getTerminator());
1657     ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
1658     Type *Ty = TripCnt->getType();
1659
1660     PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front());
1661
1662     Builder.SetInsertPoint(LbCond);
1663     Instruction *TcDec = cast<Instruction>(
1664         Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
1665                           "tcdec", false, true));
1666
1667     TcPhi->addIncoming(TripCnt, PreHead);
1668     TcPhi->addIncoming(TcDec, Body);
1669
1670     CmpInst::Predicate Pred =
1671         (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE;
1672     LbCond->setPredicate(Pred);
1673     LbCond->setOperand(0, TcDec);
1674     LbCond->setOperand(1, ConstantInt::get(Ty, 0));
1675   }
1676
1677   // Step 4: All the references to the original population counter outside
1678   //  the loop are replaced with the NewCount -- the value returned from
1679   //  __builtin_ctpop().
1680   CntInst->replaceUsesOutsideBlock(NewCount, Body);
1681
1682   // step 5: Forget the "non-computable" trip-count SCEV associated with the
1683   //   loop. The loop would otherwise not be deleted even if it becomes empty.
1684   SE->forgetLoop(CurLoop);
1685 }