]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp
MVF: 313876
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / Scalar / LoopIdiomRecognize.cpp
1 //===-- LoopIdiomRecognize.cpp - Loop idiom recognition -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements an idiom recognizer that transforms simple loops into a
11 // non-loop form.  In cases that this kicks in, it can be a significant
12 // performance win.
13 //
14 //===----------------------------------------------------------------------===//
15 //
16 // TODO List:
17 //
18 // Future loop memory idioms to recognize:
19 //   memcmp, memmove, strlen, etc.
20 // Future floating point idioms to recognize in -ffast-math mode:
21 //   fpowi
22 // Future integer operation idioms to recognize:
23 //   ctpop, ctlz, cttz
24 //
25 // Beware that isel's default lowering for ctpop is highly inefficient for
26 // i64 and larger types when i64 is legal and the value has few bits set.  It
27 // would be good to enhance isel to emit a loop for ctpop in this case.
28 //
29 // This could recognize common matrix multiplies and dot product idioms and
30 // replace them with calls to BLAS (if linked in??).
31 //
32 //===----------------------------------------------------------------------===//
33
34 #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h"
35 #include "llvm/ADT/MapVector.h"
36 #include "llvm/ADT/SetVector.h"
37 #include "llvm/ADT/Statistic.h"
38 #include "llvm/Analysis/AliasAnalysis.h"
39 #include "llvm/Analysis/BasicAliasAnalysis.h"
40 #include "llvm/Analysis/GlobalsModRef.h"
41 #include "llvm/Analysis/LoopAccessAnalysis.h"
42 #include "llvm/Analysis/LoopPass.h"
43 #include "llvm/Analysis/LoopPassManager.h"
44 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
45 #include "llvm/Analysis/ScalarEvolutionExpander.h"
46 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
47 #include "llvm/Analysis/TargetLibraryInfo.h"
48 #include "llvm/Analysis/TargetTransformInfo.h"
49 #include "llvm/Analysis/ValueTracking.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/Dominators.h"
52 #include "llvm/IR/IRBuilder.h"
53 #include "llvm/IR/IntrinsicInst.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Transforms/Scalar.h"
58 #include "llvm/Transforms/Utils/BuildLibCalls.h"
59 #include "llvm/Transforms/Utils/Local.h"
60 #include "llvm/Transforms/Utils/LoopUtils.h"
61 using namespace llvm;
62
63 #define DEBUG_TYPE "loop-idiom"
64
65 STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
66 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
67
68 namespace {
69
70 class LoopIdiomRecognize {
71   Loop *CurLoop;
72   AliasAnalysis *AA;
73   DominatorTree *DT;
74   LoopInfo *LI;
75   ScalarEvolution *SE;
76   TargetLibraryInfo *TLI;
77   const TargetTransformInfo *TTI;
78   const DataLayout *DL;
79
80 public:
81   explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT,
82                               LoopInfo *LI, ScalarEvolution *SE,
83                               TargetLibraryInfo *TLI,
84                               const TargetTransformInfo *TTI,
85                               const DataLayout *DL)
86       : CurLoop(nullptr), AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI),
87         DL(DL) {}
88
89   bool runOnLoop(Loop *L);
90
91 private:
92   typedef SmallVector<StoreInst *, 8> StoreList;
93   typedef MapVector<Value *, StoreList> StoreListMap;
94   StoreListMap StoreRefsForMemset;
95   StoreListMap StoreRefsForMemsetPattern;
96   StoreList StoreRefsForMemcpy;
97   bool HasMemset;
98   bool HasMemsetPattern;
99   bool HasMemcpy;
100
101   /// \name Countable Loop Idiom Handling
102   /// @{
103
104   bool runOnCountableLoop();
105   bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
106                       SmallVectorImpl<BasicBlock *> &ExitBlocks);
107
108   void collectStores(BasicBlock *BB);
109   bool isLegalStore(StoreInst *SI, bool &ForMemset, bool &ForMemsetPattern,
110                     bool &ForMemcpy);
111   bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount,
112                          bool ForMemset);
113   bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);
114
115   bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
116                                unsigned StoreAlignment, Value *StoredVal,
117                                Instruction *TheStore,
118                                SmallPtrSetImpl<Instruction *> &Stores,
119                                const SCEVAddRecExpr *Ev, const SCEV *BECount,
120                                bool NegStride);
121   bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount);
122
123   /// @}
124   /// \name Noncountable Loop Idiom Handling
125   /// @{
126
127   bool runOnNoncountableLoop();
128
129   bool recognizePopcount();
130   void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst,
131                                PHINode *CntPhi, Value *Var);
132
133   /// @}
134 };
135
136 class LoopIdiomRecognizeLegacyPass : public LoopPass {
137 public:
138   static char ID;
139   explicit LoopIdiomRecognizeLegacyPass() : LoopPass(ID) {
140     initializeLoopIdiomRecognizeLegacyPassPass(
141         *PassRegistry::getPassRegistry());
142   }
143
144   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
145     if (skipLoop(L))
146       return false;
147
148     AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
149     DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
150     LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
151     ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
152     TargetLibraryInfo *TLI =
153         &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
154     const TargetTransformInfo *TTI =
155         &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
156             *L->getHeader()->getParent());
157     const DataLayout *DL = &L->getHeader()->getModule()->getDataLayout();
158
159     LoopIdiomRecognize LIR(AA, DT, LI, SE, TLI, TTI, DL);
160     return LIR.runOnLoop(L);
161   }
162
163   /// This transformation requires natural loop information & requires that
164   /// loop preheaders be inserted into the CFG.
165   ///
166   void getAnalysisUsage(AnalysisUsage &AU) const override {
167     AU.addRequired<TargetLibraryInfoWrapperPass>();
168     AU.addRequired<TargetTransformInfoWrapperPass>();
169     getLoopAnalysisUsage(AU);
170   }
171 };
172 } // End anonymous namespace.
173
174 PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L,
175                                               AnalysisManager<Loop> &AM) {
176   const auto &FAM =
177       AM.getResult<FunctionAnalysisManagerLoopProxy>(L).getManager();
178   Function *F = L.getHeader()->getParent();
179
180   // Use getCachedResult because Loop pass cannot trigger a function analysis.
181   auto *AA = FAM.getCachedResult<AAManager>(*F);
182   auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(*F);
183   auto *LI = FAM.getCachedResult<LoopAnalysis>(*F);
184   auto *SE = FAM.getCachedResult<ScalarEvolutionAnalysis>(*F);
185   auto *TLI = FAM.getCachedResult<TargetLibraryAnalysis>(*F);
186   const auto *TTI = FAM.getCachedResult<TargetIRAnalysis>(*F);
187   const auto *DL = &L.getHeader()->getModule()->getDataLayout();
188   assert((AA && DT && LI && SE && TLI && TTI && DL) &&
189          "Analyses for Loop Idiom Recognition not available");
190
191   LoopIdiomRecognize LIR(AA, DT, LI, SE, TLI, TTI, DL);
192   if (!LIR.runOnLoop(&L))
193     return PreservedAnalyses::all();
194
195   return getLoopPassPreservedAnalyses();
196 }
197
198 char LoopIdiomRecognizeLegacyPass::ID = 0;
199 INITIALIZE_PASS_BEGIN(LoopIdiomRecognizeLegacyPass, "loop-idiom",
200                       "Recognize loop idioms", false, false)
201 INITIALIZE_PASS_DEPENDENCY(LoopPass)
202 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
203 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
204 INITIALIZE_PASS_END(LoopIdiomRecognizeLegacyPass, "loop-idiom",
205                     "Recognize loop idioms", false, false)
206
207 Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognizeLegacyPass(); }
208
209 static void deleteDeadInstruction(Instruction *I) {
210   I->replaceAllUsesWith(UndefValue::get(I->getType()));
211   I->eraseFromParent();
212 }
213
214 //===----------------------------------------------------------------------===//
215 //
216 //          Implementation of LoopIdiomRecognize
217 //
218 //===----------------------------------------------------------------------===//
219
220 bool LoopIdiomRecognize::runOnLoop(Loop *L) {
221   CurLoop = L;
222   // If the loop could not be converted to canonical form, it must have an
223   // indirectbr in it, just give up.
224   if (!L->getLoopPreheader())
225     return false;
226
227   // Disable loop idiom recognition if the function's name is a common idiom.
228   StringRef Name = L->getHeader()->getParent()->getName();
229   if (Name == "memset" || Name == "memcpy")
230     return false;
231
232   HasMemset = TLI->has(LibFunc::memset);
233   HasMemsetPattern = TLI->has(LibFunc::memset_pattern16);
234   HasMemcpy = TLI->has(LibFunc::memcpy);
235
236   if (HasMemset || HasMemsetPattern || HasMemcpy)
237     if (SE->hasLoopInvariantBackedgeTakenCount(L))
238       return runOnCountableLoop();
239
240   return runOnNoncountableLoop();
241 }
242
243 bool LoopIdiomRecognize::runOnCountableLoop() {
244   const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop);
245   assert(!isa<SCEVCouldNotCompute>(BECount) &&
246          "runOnCountableLoop() called on a loop without a predictable"
247          "backedge-taken count");
248
249   // If this loop executes exactly one time, then it should be peeled, not
250   // optimized by this pass.
251   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
252     if (BECst->getAPInt() == 0)
253       return false;
254
255   SmallVector<BasicBlock *, 8> ExitBlocks;
256   CurLoop->getUniqueExitBlocks(ExitBlocks);
257
258   DEBUG(dbgs() << "loop-idiom Scanning: F["
259                << CurLoop->getHeader()->getParent()->getName() << "] Loop %"
260                << CurLoop->getHeader()->getName() << "\n");
261
262   bool MadeChange = false;
263
264   // The following transforms hoist stores/memsets into the loop pre-header.
265   // Give up if the loop has instructions may throw.
266   LoopSafetyInfo SafetyInfo;
267   computeLoopSafetyInfo(&SafetyInfo, CurLoop);
268   if (SafetyInfo.MayThrow)
269     return MadeChange;
270
271   // Scan all the blocks in the loop that are not in subloops.
272   for (auto *BB : CurLoop->getBlocks()) {
273     // Ignore blocks in subloops.
274     if (LI->getLoopFor(BB) != CurLoop)
275       continue;
276
277     MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks);
278   }
279   return MadeChange;
280 }
281
282 static unsigned getStoreSizeInBytes(StoreInst *SI, const DataLayout *DL) {
283   uint64_t SizeInBits = DL->getTypeSizeInBits(SI->getValueOperand()->getType());
284   assert(((SizeInBits & 7) || (SizeInBits >> 32) == 0) &&
285          "Don't overflow unsigned.");
286   return (unsigned)SizeInBits >> 3;
287 }
288
289 static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) {
290   const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1));
291   return ConstStride->getAPInt();
292 }
293
294 /// getMemSetPatternValue - If a strided store of the specified value is safe to
295 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
296 /// be passed in.  Otherwise, return null.
297 ///
298 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these
299 /// just replicate their input array and then pass on to memset_pattern16.
300 static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) {
301   // If the value isn't a constant, we can't promote it to being in a constant
302   // array.  We could theoretically do a store to an alloca or something, but
303   // that doesn't seem worthwhile.
304   Constant *C = dyn_cast<Constant>(V);
305   if (!C)
306     return nullptr;
307
308   // Only handle simple values that are a power of two bytes in size.
309   uint64_t Size = DL->getTypeSizeInBits(V->getType());
310   if (Size == 0 || (Size & 7) || (Size & (Size - 1)))
311     return nullptr;
312
313   // Don't care enough about darwin/ppc to implement this.
314   if (DL->isBigEndian())
315     return nullptr;
316
317   // Convert to size in bytes.
318   Size /= 8;
319
320   // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
321   // if the top and bottom are the same (e.g. for vectors and large integers).
322   if (Size > 16)
323     return nullptr;
324
325   // If the constant is exactly 16 bytes, just use it.
326   if (Size == 16)
327     return C;
328
329   // Otherwise, we'll use an array of the constants.
330   unsigned ArraySize = 16 / Size;
331   ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
332   return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C));
333 }
334
335 bool LoopIdiomRecognize::isLegalStore(StoreInst *SI, bool &ForMemset,
336                                       bool &ForMemsetPattern, bool &ForMemcpy) {
337   // Don't touch volatile stores.
338   if (!SI->isSimple())
339     return false;
340
341   // Avoid merging nontemporal stores.
342   if (SI->getMetadata(LLVMContext::MD_nontemporal))
343     return false;
344
345   Value *StoredVal = SI->getValueOperand();
346   Value *StorePtr = SI->getPointerOperand();
347
348   // Reject stores that are so large that they overflow an unsigned.
349   uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
350   if ((SizeInBits & 7) || (SizeInBits >> 32) != 0)
351     return false;
352
353   // See if the pointer expression is an AddRec like {base,+,1} on the current
354   // loop, which indicates a strided store.  If we have something else, it's a
355   // random store we can't handle.
356   const SCEVAddRecExpr *StoreEv =
357       dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
358   if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
359     return false;
360
361   // Check to see if we have a constant stride.
362   if (!isa<SCEVConstant>(StoreEv->getOperand(1)))
363     return false;
364
365   // See if the store can be turned into a memset.
366
367   // If the stored value is a byte-wise value (like i32 -1), then it may be
368   // turned into a memset of i8 -1, assuming that all the consecutive bytes
369   // are stored.  A store of i32 0x01020304 can never be turned into a memset,
370   // but it can be turned into memset_pattern if the target supports it.
371   Value *SplatValue = isBytewiseValue(StoredVal);
372   Constant *PatternValue = nullptr;
373
374   // If we're allowed to form a memset, and the stored value would be
375   // acceptable for memset, use it.
376   if (HasMemset && SplatValue &&
377       // Verify that the stored value is loop invariant.  If not, we can't
378       // promote the memset.
379       CurLoop->isLoopInvariant(SplatValue)) {
380     // It looks like we can use SplatValue.
381     ForMemset = true;
382     return true;
383   } else if (HasMemsetPattern &&
384              // Don't create memset_pattern16s with address spaces.
385              StorePtr->getType()->getPointerAddressSpace() == 0 &&
386              (PatternValue = getMemSetPatternValue(StoredVal, DL))) {
387     // It looks like we can use PatternValue!
388     ForMemsetPattern = true;
389     return true;
390   }
391
392   // Otherwise, see if the store can be turned into a memcpy.
393   if (HasMemcpy) {
394     // Check to see if the stride matches the size of the store.  If so, then we
395     // know that every byte is touched in the loop.
396     APInt Stride = getStoreStride(StoreEv);
397     unsigned StoreSize = getStoreSizeInBytes(SI, DL);
398     if (StoreSize != Stride && StoreSize != -Stride)
399       return false;
400
401     // The store must be feeding a non-volatile load.
402     LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
403     if (!LI || !LI->isSimple())
404       return false;
405
406     // See if the pointer expression is an AddRec like {base,+,1} on the current
407     // loop, which indicates a strided load.  If we have something else, it's a
408     // random load we can't handle.
409     const SCEVAddRecExpr *LoadEv =
410         dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
411     if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
412       return false;
413
414     // The store and load must share the same stride.
415     if (StoreEv->getOperand(1) != LoadEv->getOperand(1))
416       return false;
417
418     // Success.  This store can be converted into a memcpy.
419     ForMemcpy = true;
420     return true;
421   }
422   // This store can't be transformed into a memset/memcpy.
423   return false;
424 }
425
426 void LoopIdiomRecognize::collectStores(BasicBlock *BB) {
427   StoreRefsForMemset.clear();
428   StoreRefsForMemsetPattern.clear();
429   StoreRefsForMemcpy.clear();
430   for (Instruction &I : *BB) {
431     StoreInst *SI = dyn_cast<StoreInst>(&I);
432     if (!SI)
433       continue;
434
435     bool ForMemset = false;
436     bool ForMemsetPattern = false;
437     bool ForMemcpy = false;
438     // Make sure this is a strided store with a constant stride.
439     if (!isLegalStore(SI, ForMemset, ForMemsetPattern, ForMemcpy))
440       continue;
441
442     // Save the store locations.
443     if (ForMemset) {
444       // Find the base pointer.
445       Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL);
446       StoreRefsForMemset[Ptr].push_back(SI);
447     } else if (ForMemsetPattern) {
448       // Find the base pointer.
449       Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL);
450       StoreRefsForMemsetPattern[Ptr].push_back(SI);
451     } else if (ForMemcpy)
452       StoreRefsForMemcpy.push_back(SI);
453   }
454 }
455
456 /// runOnLoopBlock - Process the specified block, which lives in a counted loop
457 /// with the specified backedge count.  This block is known to be in the current
458 /// loop and not in any subloops.
459 bool LoopIdiomRecognize::runOnLoopBlock(
460     BasicBlock *BB, const SCEV *BECount,
461     SmallVectorImpl<BasicBlock *> &ExitBlocks) {
462   // We can only promote stores in this block if they are unconditionally
463   // executed in the loop.  For a block to be unconditionally executed, it has
464   // to dominate all the exit blocks of the loop.  Verify this now.
465   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
466     if (!DT->dominates(BB, ExitBlocks[i]))
467       return false;
468
469   bool MadeChange = false;
470   // Look for store instructions, which may be optimized to memset/memcpy.
471   collectStores(BB);
472
473   // Look for a single store or sets of stores with a common base, which can be
474   // optimized into a memset (memset_pattern).  The latter most commonly happens
475   // with structs and handunrolled loops.
476   for (auto &SL : StoreRefsForMemset)
477     MadeChange |= processLoopStores(SL.second, BECount, true);
478
479   for (auto &SL : StoreRefsForMemsetPattern)
480     MadeChange |= processLoopStores(SL.second, BECount, false);
481
482   // Optimize the store into a memcpy, if it feeds an similarly strided load.
483   for (auto &SI : StoreRefsForMemcpy)
484     MadeChange |= processLoopStoreOfLoopLoad(SI, BECount);
485
486   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
487     Instruction *Inst = &*I++;
488     // Look for memset instructions, which may be optimized to a larger memset.
489     if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst)) {
490       WeakVH InstPtr(&*I);
491       if (!processLoopMemSet(MSI, BECount))
492         continue;
493       MadeChange = true;
494
495       // If processing the memset invalidated our iterator, start over from the
496       // top of the block.
497       if (!InstPtr)
498         I = BB->begin();
499       continue;
500     }
501   }
502
503   return MadeChange;
504 }
505
506 /// processLoopStores - See if this store(s) can be promoted to a memset.
507 bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL,
508                                            const SCEV *BECount,
509                                            bool ForMemset) {
510   // Try to find consecutive stores that can be transformed into memsets.
511   SetVector<StoreInst *> Heads, Tails;
512   SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
513
514   // Do a quadratic search on all of the given stores and find
515   // all of the pairs of stores that follow each other.
516   SmallVector<unsigned, 16> IndexQueue;
517   for (unsigned i = 0, e = SL.size(); i < e; ++i) {
518     assert(SL[i]->isSimple() && "Expected only non-volatile stores.");
519
520     Value *FirstStoredVal = SL[i]->getValueOperand();
521     Value *FirstStorePtr = SL[i]->getPointerOperand();
522     const SCEVAddRecExpr *FirstStoreEv =
523         cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr));
524     APInt FirstStride = getStoreStride(FirstStoreEv);
525     unsigned FirstStoreSize = getStoreSizeInBytes(SL[i], DL);
526
527     // See if we can optimize just this store in isolation.
528     if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) {
529       Heads.insert(SL[i]);
530       continue;
531     }
532
533     Value *FirstSplatValue = nullptr;
534     Constant *FirstPatternValue = nullptr;
535
536     if (ForMemset)
537       FirstSplatValue = isBytewiseValue(FirstStoredVal);
538     else
539       FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL);
540
541     assert((FirstSplatValue || FirstPatternValue) &&
542            "Expected either splat value or pattern value.");
543
544     IndexQueue.clear();
545     // If a store has multiple consecutive store candidates, search Stores
546     // array according to the sequence: from i+1 to e, then from i-1 to 0.
547     // This is because usually pairing with immediate succeeding or preceding
548     // candidate create the best chance to find memset opportunity.
549     unsigned j = 0;
550     for (j = i + 1; j < e; ++j)
551       IndexQueue.push_back(j);
552     for (j = i; j > 0; --j)
553       IndexQueue.push_back(j - 1);
554
555     for (auto &k : IndexQueue) {
556       assert(SL[k]->isSimple() && "Expected only non-volatile stores.");
557       Value *SecondStorePtr = SL[k]->getPointerOperand();
558       const SCEVAddRecExpr *SecondStoreEv =
559           cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr));
560       APInt SecondStride = getStoreStride(SecondStoreEv);
561
562       if (FirstStride != SecondStride)
563         continue;
564
565       Value *SecondStoredVal = SL[k]->getValueOperand();
566       Value *SecondSplatValue = nullptr;
567       Constant *SecondPatternValue = nullptr;
568
569       if (ForMemset)
570         SecondSplatValue = isBytewiseValue(SecondStoredVal);
571       else
572         SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL);
573
574       assert((SecondSplatValue || SecondPatternValue) &&
575              "Expected either splat value or pattern value.");
576
577       if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) {
578         if (ForMemset) {
579           if (FirstSplatValue != SecondSplatValue)
580             continue;
581         } else {
582           if (FirstPatternValue != SecondPatternValue)
583             continue;
584         }
585         Tails.insert(SL[k]);
586         Heads.insert(SL[i]);
587         ConsecutiveChain[SL[i]] = SL[k];
588         break;
589       }
590     }
591   }
592
593   // We may run into multiple chains that merge into a single chain. We mark the
594   // stores that we transformed so that we don't visit the same store twice.
595   SmallPtrSet<Value *, 16> TransformedStores;
596   bool Changed = false;
597
598   // For stores that start but don't end a link in the chain:
599   for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end();
600        it != e; ++it) {
601     if (Tails.count(*it))
602       continue;
603
604     // We found a store instr that starts a chain. Now follow the chain and try
605     // to transform it.
606     SmallPtrSet<Instruction *, 8> AdjacentStores;
607     StoreInst *I = *it;
608
609     StoreInst *HeadStore = I;
610     unsigned StoreSize = 0;
611
612     // Collect the chain into a list.
613     while (Tails.count(I) || Heads.count(I)) {
614       if (TransformedStores.count(I))
615         break;
616       AdjacentStores.insert(I);
617
618       StoreSize += getStoreSizeInBytes(I, DL);
619       // Move to the next value in the chain.
620       I = ConsecutiveChain[I];
621     }
622
623     Value *StoredVal = HeadStore->getValueOperand();
624     Value *StorePtr = HeadStore->getPointerOperand();
625     const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
626     APInt Stride = getStoreStride(StoreEv);
627
628     // Check to see if the stride matches the size of the stores.  If so, then
629     // we know that every byte is touched in the loop.
630     if (StoreSize != Stride && StoreSize != -Stride)
631       continue;
632
633     bool NegStride = StoreSize == -Stride;
634
635     if (processLoopStridedStore(StorePtr, StoreSize, HeadStore->getAlignment(),
636                                 StoredVal, HeadStore, AdjacentStores, StoreEv,
637                                 BECount, NegStride)) {
638       TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end());
639       Changed = true;
640     }
641   }
642
643   return Changed;
644 }
645
646 /// processLoopMemSet - See if this memset can be promoted to a large memset.
647 bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI,
648                                            const SCEV *BECount) {
649   // We can only handle non-volatile memsets with a constant size.
650   if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength()))
651     return false;
652
653   // If we're not allowed to hack on memset, we fail.
654   if (!HasMemset)
655     return false;
656
657   Value *Pointer = MSI->getDest();
658
659   // See if the pointer expression is an AddRec like {base,+,1} on the current
660   // loop, which indicates a strided store.  If we have something else, it's a
661   // random store we can't handle.
662   const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer));
663   if (!Ev || Ev->getLoop() != CurLoop || !Ev->isAffine())
664     return false;
665
666   // Reject memsets that are so large that they overflow an unsigned.
667   uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
668   if ((SizeInBytes >> 32) != 0)
669     return false;
670
671   // Check to see if the stride matches the size of the memset.  If so, then we
672   // know that every byte is touched in the loop.
673   const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1));
674   if (!ConstStride)
675     return false;
676
677   APInt Stride = ConstStride->getAPInt();
678   if (SizeInBytes != Stride && SizeInBytes != -Stride)
679     return false;
680
681   // Verify that the memset value is loop invariant.  If not, we can't promote
682   // the memset.
683   Value *SplatValue = MSI->getValue();
684   if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue))
685     return false;
686
687   SmallPtrSet<Instruction *, 1> MSIs;
688   MSIs.insert(MSI);
689   bool NegStride = SizeInBytes == -Stride;
690   return processLoopStridedStore(Pointer, (unsigned)SizeInBytes,
691                                  MSI->getAlignment(), SplatValue, MSI, MSIs, Ev,
692                                  BECount, NegStride);
693 }
694
695 /// mayLoopAccessLocation - Return true if the specified loop might access the
696 /// specified pointer location, which is a loop-strided access.  The 'Access'
697 /// argument specifies what the verboten forms of access are (read or write).
698 static bool
699 mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L,
700                       const SCEV *BECount, unsigned StoreSize,
701                       AliasAnalysis &AA,
702                       SmallPtrSetImpl<Instruction *> &IgnoredStores) {
703   // Get the location that may be stored across the loop.  Since the access is
704   // strided positively through memory, we say that the modified location starts
705   // at the pointer and has infinite size.
706   uint64_t AccessSize = MemoryLocation::UnknownSize;
707
708   // If the loop iterates a fixed number of times, we can refine the access size
709   // to be exactly the size of the memset, which is (BECount+1)*StoreSize
710   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
711     AccessSize = (BECst->getValue()->getZExtValue() + 1) * StoreSize;
712
713   // TODO: For this to be really effective, we have to dive into the pointer
714   // operand in the store.  Store to &A[i] of 100 will always return may alias
715   // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
716   // which will then no-alias a store to &A[100].
717   MemoryLocation StoreLoc(Ptr, AccessSize);
718
719   for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
720        ++BI)
721     for (Instruction &I : **BI)
722       if (IgnoredStores.count(&I) == 0 &&
723           (AA.getModRefInfo(&I, StoreLoc) & Access))
724         return true;
725
726   return false;
727 }
728
729 // If we have a negative stride, Start refers to the end of the memory location
730 // we're trying to memset.  Therefore, we need to recompute the base pointer,
731 // which is just Start - BECount*Size.
732 static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount,
733                                         Type *IntPtr, unsigned StoreSize,
734                                         ScalarEvolution *SE) {
735   const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr);
736   if (StoreSize != 1)
737     Index = SE->getMulExpr(Index, SE->getConstant(IntPtr, StoreSize),
738                            SCEV::FlagNUW);
739   return SE->getMinusSCEV(Start, Index);
740 }
741
742 /// processLoopStridedStore - We see a strided store of some value.  If we can
743 /// transform this into a memset or memset_pattern in the loop preheader, do so.
744 bool LoopIdiomRecognize::processLoopStridedStore(
745     Value *DestPtr, unsigned StoreSize, unsigned StoreAlignment,
746     Value *StoredVal, Instruction *TheStore,
747     SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev,
748     const SCEV *BECount, bool NegStride) {
749   Value *SplatValue = isBytewiseValue(StoredVal);
750   Constant *PatternValue = nullptr;
751
752   if (!SplatValue)
753     PatternValue = getMemSetPatternValue(StoredVal, DL);
754
755   assert((SplatValue || PatternValue) &&
756          "Expected either splat value or pattern value.");
757
758   // The trip count of the loop and the base pointer of the addrec SCEV is
759   // guaranteed to be loop invariant, which means that it should dominate the
760   // header.  This allows us to insert code for it in the preheader.
761   unsigned DestAS = DestPtr->getType()->getPointerAddressSpace();
762   BasicBlock *Preheader = CurLoop->getLoopPreheader();
763   IRBuilder<> Builder(Preheader->getTerminator());
764   SCEVExpander Expander(*SE, *DL, "loop-idiom");
765
766   Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS);
767   Type *IntPtr = Builder.getIntPtrTy(*DL, DestAS);
768
769   const SCEV *Start = Ev->getStart();
770   // Handle negative strided loops.
771   if (NegStride)
772     Start = getStartForNegStride(Start, BECount, IntPtr, StoreSize, SE);
773
774   // Okay, we have a strided store "p[i]" of a splattable value.  We can turn
775   // this into a memset in the loop preheader now if we want.  However, this
776   // would be unsafe to do if there is anything else in the loop that may read
777   // or write to the aliased location.  Check for any overlap by generating the
778   // base pointer and checking the region.
779   Value *BasePtr =
780       Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator());
781   if (mayLoopAccessLocation(BasePtr, MRI_ModRef, CurLoop, BECount, StoreSize,
782                             *AA, Stores)) {
783     Expander.clear();
784     // If we generated new code for the base pointer, clean up.
785     RecursivelyDeleteTriviallyDeadInstructions(BasePtr, TLI);
786     return false;
787   }
788
789   // Okay, everything looks good, insert the memset.
790
791   // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to
792   // pointer size if it isn't already.
793   BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr);
794
795   const SCEV *NumBytesS =
796       SE->getAddExpr(BECount, SE->getOne(IntPtr), SCEV::FlagNUW);
797   if (StoreSize != 1) {
798     NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize),
799                                SCEV::FlagNUW);
800   }
801
802   Value *NumBytes =
803       Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator());
804
805   CallInst *NewCall;
806   if (SplatValue) {
807     NewCall =
808         Builder.CreateMemSet(BasePtr, SplatValue, NumBytes, StoreAlignment);
809   } else {
810     // Everything is emitted in default address space
811     Type *Int8PtrTy = DestInt8PtrTy;
812
813     Module *M = TheStore->getModule();
814     Value *MSP =
815         M->getOrInsertFunction("memset_pattern16", Builder.getVoidTy(),
816                                Int8PtrTy, Int8PtrTy, IntPtr, (void *)nullptr);
817     inferLibFuncAttributes(*M->getFunction("memset_pattern16"), *TLI);
818
819     // Otherwise we should form a memset_pattern16.  PatternValue is known to be
820     // an constant array of 16-bytes.  Plop the value into a mergable global.
821     GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true,
822                                             GlobalValue::PrivateLinkage,
823                                             PatternValue, ".memset_pattern");
824     GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these.
825     GV->setAlignment(16);
826     Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy);
827     NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes});
828   }
829
830   DEBUG(dbgs() << "  Formed memset: " << *NewCall << "\n"
831                << "    from store to: " << *Ev << " at: " << *TheStore << "\n");
832   NewCall->setDebugLoc(TheStore->getDebugLoc());
833
834   // Okay, the memset has been formed.  Zap the original store and anything that
835   // feeds into it.
836   for (auto *I : Stores)
837     deleteDeadInstruction(I);
838   ++NumMemSet;
839   return true;
840 }
841
842 /// If the stored value is a strided load in the same loop with the same stride
843 /// this may be transformable into a memcpy.  This kicks in for stuff like
844 ///   for (i) A[i] = B[i];
845 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI,
846                                                     const SCEV *BECount) {
847   assert(SI->isSimple() && "Expected only non-volatile stores.");
848
849   Value *StorePtr = SI->getPointerOperand();
850   const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
851   APInt Stride = getStoreStride(StoreEv);
852   unsigned StoreSize = getStoreSizeInBytes(SI, DL);
853   bool NegStride = StoreSize == -Stride;
854
855   // The store must be feeding a non-volatile load.
856   LoadInst *LI = cast<LoadInst>(SI->getValueOperand());
857   assert(LI->isSimple() && "Expected only non-volatile stores.");
858
859   // See if the pointer expression is an AddRec like {base,+,1} on the current
860   // loop, which indicates a strided load.  If we have something else, it's a
861   // random load we can't handle.
862   const SCEVAddRecExpr *LoadEv =
863       cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
864
865   // The trip count of the loop and the base pointer of the addrec SCEV is
866   // guaranteed to be loop invariant, which means that it should dominate the
867   // header.  This allows us to insert code for it in the preheader.
868   BasicBlock *Preheader = CurLoop->getLoopPreheader();
869   IRBuilder<> Builder(Preheader->getTerminator());
870   SCEVExpander Expander(*SE, *DL, "loop-idiom");
871
872   const SCEV *StrStart = StoreEv->getStart();
873   unsigned StrAS = SI->getPointerAddressSpace();
874   Type *IntPtrTy = Builder.getIntPtrTy(*DL, StrAS);
875
876   // Handle negative strided loops.
877   if (NegStride)
878     StrStart = getStartForNegStride(StrStart, BECount, IntPtrTy, StoreSize, SE);
879
880   // Okay, we have a strided store "p[i]" of a loaded value.  We can turn
881   // this into a memcpy in the loop preheader now if we want.  However, this
882   // would be unsafe to do if there is anything else in the loop that may read
883   // or write the memory region we're storing to.  This includes the load that
884   // feeds the stores.  Check for an alias by generating the base address and
885   // checking everything.
886   Value *StoreBasePtr = Expander.expandCodeFor(
887       StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator());
888
889   SmallPtrSet<Instruction *, 1> Stores;
890   Stores.insert(SI);
891   if (mayLoopAccessLocation(StoreBasePtr, MRI_ModRef, CurLoop, BECount,
892                             StoreSize, *AA, Stores)) {
893     Expander.clear();
894     // If we generated new code for the base pointer, clean up.
895     RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
896     return false;
897   }
898
899   const SCEV *LdStart = LoadEv->getStart();
900   unsigned LdAS = LI->getPointerAddressSpace();
901
902   // Handle negative strided loops.
903   if (NegStride)
904     LdStart = getStartForNegStride(LdStart, BECount, IntPtrTy, StoreSize, SE);
905
906   // For a memcpy, we have to make sure that the input array is not being
907   // mutated by the loop.
908   Value *LoadBasePtr = Expander.expandCodeFor(
909       LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator());
910
911   if (mayLoopAccessLocation(LoadBasePtr, MRI_Mod, CurLoop, BECount, StoreSize,
912                             *AA, Stores)) {
913     Expander.clear();
914     // If we generated new code for the base pointer, clean up.
915     RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI);
916     RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
917     return false;
918   }
919
920   // Okay, everything is safe, we can transform this!
921
922   // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to
923   // pointer size if it isn't already.
924   BECount = SE->getTruncateOrZeroExtend(BECount, IntPtrTy);
925
926   const SCEV *NumBytesS =
927       SE->getAddExpr(BECount, SE->getOne(IntPtrTy), SCEV::FlagNUW);
928   if (StoreSize != 1)
929     NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtrTy, StoreSize),
930                                SCEV::FlagNUW);
931
932   Value *NumBytes =
933       Expander.expandCodeFor(NumBytesS, IntPtrTy, Preheader->getTerminator());
934
935   CallInst *NewCall =
936       Builder.CreateMemCpy(StoreBasePtr, LoadBasePtr, NumBytes,
937                            std::min(SI->getAlignment(), LI->getAlignment()));
938   NewCall->setDebugLoc(SI->getDebugLoc());
939
940   DEBUG(dbgs() << "  Formed memcpy: " << *NewCall << "\n"
941                << "    from load ptr=" << *LoadEv << " at: " << *LI << "\n"
942                << "    from store ptr=" << *StoreEv << " at: " << *SI << "\n");
943
944   // Okay, the memcpy has been formed.  Zap the original store and anything that
945   // feeds into it.
946   deleteDeadInstruction(SI);
947   ++NumMemCpy;
948   return true;
949 }
950
951 bool LoopIdiomRecognize::runOnNoncountableLoop() {
952   return recognizePopcount();
953 }
954
955 /// Check if the given conditional branch is based on the comparison between
956 /// a variable and zero, and if the variable is non-zero, the control yields to
957 /// the loop entry. If the branch matches the behavior, the variable involved
958 /// in the comparion is returned. This function will be called to see if the
959 /// precondition and postcondition of the loop are in desirable form.
960 static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry) {
961   if (!BI || !BI->isConditional())
962     return nullptr;
963
964   ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
965   if (!Cond)
966     return nullptr;
967
968   ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1));
969   if (!CmpZero || !CmpZero->isZero())
970     return nullptr;
971
972   ICmpInst::Predicate Pred = Cond->getPredicate();
973   if ((Pred == ICmpInst::ICMP_NE && BI->getSuccessor(0) == LoopEntry) ||
974       (Pred == ICmpInst::ICMP_EQ && BI->getSuccessor(1) == LoopEntry))
975     return Cond->getOperand(0);
976
977   return nullptr;
978 }
979
980 /// Return true iff the idiom is detected in the loop.
981 ///
982 /// Additionally:
983 /// 1) \p CntInst is set to the instruction counting the population bit.
984 /// 2) \p CntPhi is set to the corresponding phi node.
985 /// 3) \p Var is set to the value whose population bits are being counted.
986 ///
987 /// The core idiom we are trying to detect is:
988 /// \code
989 ///    if (x0 != 0)
990 ///      goto loop-exit // the precondition of the loop
991 ///    cnt0 = init-val;
992 ///    do {
993 ///       x1 = phi (x0, x2);
994 ///       cnt1 = phi(cnt0, cnt2);
995 ///
996 ///       cnt2 = cnt1 + 1;
997 ///        ...
998 ///       x2 = x1 & (x1 - 1);
999 ///        ...
1000 ///    } while(x != 0);
1001 ///
1002 /// loop-exit:
1003 /// \endcode
1004 static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB,
1005                                 Instruction *&CntInst, PHINode *&CntPhi,
1006                                 Value *&Var) {
1007   // step 1: Check to see if the look-back branch match this pattern:
1008   //    "if (a!=0) goto loop-entry".
1009   BasicBlock *LoopEntry;
1010   Instruction *DefX2, *CountInst;
1011   Value *VarX1, *VarX0;
1012   PHINode *PhiX, *CountPhi;
1013
1014   DefX2 = CountInst = nullptr;
1015   VarX1 = VarX0 = nullptr;
1016   PhiX = CountPhi = nullptr;
1017   LoopEntry = *(CurLoop->block_begin());
1018
1019   // step 1: Check if the loop-back branch is in desirable form.
1020   {
1021     if (Value *T = matchCondition(
1022             dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
1023       DefX2 = dyn_cast<Instruction>(T);
1024     else
1025       return false;
1026   }
1027
1028   // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
1029   {
1030     if (!DefX2 || DefX2->getOpcode() != Instruction::And)
1031       return false;
1032
1033     BinaryOperator *SubOneOp;
1034
1035     if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0))))
1036       VarX1 = DefX2->getOperand(1);
1037     else {
1038       VarX1 = DefX2->getOperand(0);
1039       SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1));
1040     }
1041     if (!SubOneOp)
1042       return false;
1043
1044     Instruction *SubInst = cast<Instruction>(SubOneOp);
1045     ConstantInt *Dec = dyn_cast<ConstantInt>(SubInst->getOperand(1));
1046     if (!Dec ||
1047         !((SubInst->getOpcode() == Instruction::Sub && Dec->isOne()) ||
1048           (SubInst->getOpcode() == Instruction::Add &&
1049            Dec->isAllOnesValue()))) {
1050       return false;
1051     }
1052   }
1053
1054   // step 3: Check the recurrence of variable X
1055   {
1056     PhiX = dyn_cast<PHINode>(VarX1);
1057     if (!PhiX ||
1058         (PhiX->getOperand(0) != DefX2 && PhiX->getOperand(1) != DefX2)) {
1059       return false;
1060     }
1061   }
1062
1063   // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1
1064   {
1065     CountInst = nullptr;
1066     for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(),
1067                               IterE = LoopEntry->end();
1068          Iter != IterE; Iter++) {
1069       Instruction *Inst = &*Iter;
1070       if (Inst->getOpcode() != Instruction::Add)
1071         continue;
1072
1073       ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
1074       if (!Inc || !Inc->isOne())
1075         continue;
1076
1077       PHINode *Phi = dyn_cast<PHINode>(Inst->getOperand(0));
1078       if (!Phi || Phi->getParent() != LoopEntry)
1079         continue;
1080
1081       // Check if the result of the instruction is live of the loop.
1082       bool LiveOutLoop = false;
1083       for (User *U : Inst->users()) {
1084         if ((cast<Instruction>(U))->getParent() != LoopEntry) {
1085           LiveOutLoop = true;
1086           break;
1087         }
1088       }
1089
1090       if (LiveOutLoop) {
1091         CountInst = Inst;
1092         CountPhi = Phi;
1093         break;
1094       }
1095     }
1096
1097     if (!CountInst)
1098       return false;
1099   }
1100
1101   // step 5: check if the precondition is in this form:
1102   //   "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;"
1103   {
1104     auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1105     Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader());
1106     if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1))
1107       return false;
1108
1109     CntInst = CountInst;
1110     CntPhi = CountPhi;
1111     Var = T;
1112   }
1113
1114   return true;
1115 }
1116
1117 /// Recognizes a population count idiom in a non-countable loop.
1118 ///
1119 /// If detected, transforms the relevant code to issue the popcount intrinsic
1120 /// function call, and returns true; otherwise, returns false.
1121 bool LoopIdiomRecognize::recognizePopcount() {
1122   if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware)
1123     return false;
1124
1125   // Counting population are usually conducted by few arithmetic instructions.
1126   // Such instructions can be easily "absorbed" by vacant slots in a
1127   // non-compact loop. Therefore, recognizing popcount idiom only makes sense
1128   // in a compact loop.
1129
1130   // Give up if the loop has multiple blocks or multiple backedges.
1131   if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
1132     return false;
1133
1134   BasicBlock *LoopBody = *(CurLoop->block_begin());
1135   if (LoopBody->size() >= 20) {
1136     // The loop is too big, bail out.
1137     return false;
1138   }
1139
1140   // It should have a preheader containing nothing but an unconditional branch.
1141   BasicBlock *PH = CurLoop->getLoopPreheader();
1142   if (!PH)
1143     return false;
1144   if (&PH->front() != PH->getTerminator())
1145     return false;
1146   auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator());
1147   if (!EntryBI || EntryBI->isConditional())
1148     return false;
1149
1150   // It should have a precondition block where the generated popcount instrinsic
1151   // function can be inserted.
1152   auto *PreCondBB = PH->getSinglePredecessor();
1153   if (!PreCondBB)
1154     return false;
1155   auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1156   if (!PreCondBI || PreCondBI->isUnconditional())
1157     return false;
1158
1159   Instruction *CntInst;
1160   PHINode *CntPhi;
1161   Value *Val;
1162   if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val))
1163     return false;
1164
1165   transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val);
1166   return true;
1167 }
1168
1169 static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
1170                                        const DebugLoc &DL) {
1171   Value *Ops[] = {Val};
1172   Type *Tys[] = {Val->getType()};
1173
1174   Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
1175   Value *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys);
1176   CallInst *CI = IRBuilder.CreateCall(Func, Ops);
1177   CI->setDebugLoc(DL);
1178
1179   return CI;
1180 }
1181
1182 void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB,
1183                                                  Instruction *CntInst,
1184                                                  PHINode *CntPhi, Value *Var) {
1185   BasicBlock *PreHead = CurLoop->getLoopPreheader();
1186   auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1187   const DebugLoc DL = CntInst->getDebugLoc();
1188
1189   // Assuming before transformation, the loop is following:
1190   //  if (x) // the precondition
1191   //     do { cnt++; x &= x - 1; } while(x);
1192
1193   // Step 1: Insert the ctpop instruction at the end of the precondition block
1194   IRBuilder<> Builder(PreCondBr);
1195   Value *PopCnt, *PopCntZext, *NewCount, *TripCnt;
1196   {
1197     PopCnt = createPopcntIntrinsic(Builder, Var, DL);
1198     NewCount = PopCntZext =
1199         Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType()));
1200
1201     if (NewCount != PopCnt)
1202       (cast<Instruction>(NewCount))->setDebugLoc(DL);
1203
1204     // TripCnt is exactly the number of iterations the loop has
1205     TripCnt = NewCount;
1206
1207     // If the population counter's initial value is not zero, insert Add Inst.
1208     Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead);
1209     ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
1210     if (!InitConst || !InitConst->isZero()) {
1211       NewCount = Builder.CreateAdd(NewCount, CntInitVal);
1212       (cast<Instruction>(NewCount))->setDebugLoc(DL);
1213     }
1214   }
1215
1216   // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to
1217   //   "if (NewCount == 0) loop-exit". Without this change, the intrinsic
1218   //   function would be partial dead code, and downstream passes will drag
1219   //   it back from the precondition block to the preheader.
1220   {
1221     ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition());
1222
1223     Value *Opnd0 = PopCntZext;
1224     Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0);
1225     if (PreCond->getOperand(0) != Var)
1226       std::swap(Opnd0, Opnd1);
1227
1228     ICmpInst *NewPreCond = cast<ICmpInst>(
1229         Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1));
1230     PreCondBr->setCondition(NewPreCond);
1231
1232     RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI);
1233   }
1234
1235   // Step 3: Note that the population count is exactly the trip count of the
1236   // loop in question, which enable us to to convert the loop from noncountable
1237   // loop into a countable one. The benefit is twofold:
1238   //
1239   //  - If the loop only counts population, the entire loop becomes dead after
1240   //    the transformation. It is a lot easier to prove a countable loop dead
1241   //    than to prove a noncountable one. (In some C dialects, an infinite loop
1242   //    isn't dead even if it computes nothing useful. In general, DCE needs
1243   //    to prove a noncountable loop finite before safely delete it.)
1244   //
1245   //  - If the loop also performs something else, it remains alive.
1246   //    Since it is transformed to countable form, it can be aggressively
1247   //    optimized by some optimizations which are in general not applicable
1248   //    to a noncountable loop.
1249   //
1250   // After this step, this loop (conceptually) would look like following:
1251   //   newcnt = __builtin_ctpop(x);
1252   //   t = newcnt;
1253   //   if (x)
1254   //     do { cnt++; x &= x-1; t--) } while (t > 0);
1255   BasicBlock *Body = *(CurLoop->block_begin());
1256   {
1257     auto *LbBr = dyn_cast<BranchInst>(Body->getTerminator());
1258     ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
1259     Type *Ty = TripCnt->getType();
1260
1261     PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front());
1262
1263     Builder.SetInsertPoint(LbCond);
1264     Instruction *TcDec = cast<Instruction>(
1265         Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
1266                           "tcdec", false, true));
1267
1268     TcPhi->addIncoming(TripCnt, PreHead);
1269     TcPhi->addIncoming(TcDec, Body);
1270
1271     CmpInst::Predicate Pred =
1272         (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE;
1273     LbCond->setPredicate(Pred);
1274     LbCond->setOperand(0, TcDec);
1275     LbCond->setOperand(1, ConstantInt::get(Ty, 0));
1276   }
1277
1278   // Step 4: All the references to the original population counter outside
1279   //  the loop are replaced with the NewCount -- the value returned from
1280   //  __builtin_ctpop().
1281   CntInst->replaceUsesOutsideBlock(NewCount, Body);
1282
1283   // step 5: Forget the "non-computable" trip-count SCEV associated with the
1284   //   loop. The loop would otherwise not be deleted even if it becomes empty.
1285   SE->forgetLoop(CurLoop);
1286 }