]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/Scalar/LoopInterchange.cpp
MFV: r313101
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / Scalar / LoopInterchange.cpp
1 //===- LoopInterchange.cpp - Loop interchange pass------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This Pass handles loop interchange transform.
11 // This pass interchanges loops to provide a more cache-friendly memory access
12 // patterns.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/BlockFrequencyInfo.h"
20 #include "llvm/Analysis/CodeMetrics.h"
21 #include "llvm/Analysis/DependenceAnalysis.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/Analysis/LoopIterator.h"
24 #include "llvm/Analysis/LoopPass.h"
25 #include "llvm/Analysis/ScalarEvolution.h"
26 #include "llvm/Analysis/ScalarEvolutionExpander.h"
27 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
28 #include "llvm/Analysis/TargetTransformInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/IR/InstIterator.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/Module.h"
36 #include "llvm/Pass.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "llvm/Transforms/Scalar.h"
40 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
41 #include "llvm/Transforms/Utils/LoopUtils.h"
42 #include "llvm/Transforms/Utils/SSAUpdater.h"
43 using namespace llvm;
44
45 #define DEBUG_TYPE "loop-interchange"
46
47 namespace {
48
49 typedef SmallVector<Loop *, 8> LoopVector;
50
51 // TODO: Check if we can use a sparse matrix here.
52 typedef std::vector<std::vector<char>> CharMatrix;
53
54 // Maximum number of dependencies that can be handled in the dependency matrix.
55 static const unsigned MaxMemInstrCount = 100;
56
57 // Maximum loop depth supported.
58 static const unsigned MaxLoopNestDepth = 10;
59
60 struct LoopInterchange;
61
62 #ifdef DUMP_DEP_MATRICIES
63 void printDepMatrix(CharMatrix &DepMatrix) {
64   for (auto I = DepMatrix.begin(), E = DepMatrix.end(); I != E; ++I) {
65     std::vector<char> Vec = *I;
66     for (auto II = Vec.begin(), EE = Vec.end(); II != EE; ++II)
67       DEBUG(dbgs() << *II << " ");
68     DEBUG(dbgs() << "\n");
69   }
70 }
71 #endif
72
73 static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level,
74                                      Loop *L, DependenceInfo *DI) {
75   typedef SmallVector<Value *, 16> ValueVector;
76   ValueVector MemInstr;
77
78   if (Level > MaxLoopNestDepth) {
79     DEBUG(dbgs() << "Cannot handle loops of depth greater than "
80                  << MaxLoopNestDepth << "\n");
81     return false;
82   }
83
84   // For each block.
85   for (Loop::block_iterator BB = L->block_begin(), BE = L->block_end();
86        BB != BE; ++BB) {
87     // Scan the BB and collect legal loads and stores.
88     for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E;
89          ++I) {
90       Instruction *Ins = dyn_cast<Instruction>(I);
91       if (!Ins)
92         return false;
93       LoadInst *Ld = dyn_cast<LoadInst>(I);
94       StoreInst *St = dyn_cast<StoreInst>(I);
95       if (!St && !Ld)
96         continue;
97       if (Ld && !Ld->isSimple())
98         return false;
99       if (St && !St->isSimple())
100         return false;
101       MemInstr.push_back(&*I);
102     }
103   }
104
105   DEBUG(dbgs() << "Found " << MemInstr.size()
106                << " Loads and Stores to analyze\n");
107
108   ValueVector::iterator I, IE, J, JE;
109
110   for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) {
111     for (J = I, JE = MemInstr.end(); J != JE; ++J) {
112       std::vector<char> Dep;
113       Instruction *Src = dyn_cast<Instruction>(*I);
114       Instruction *Des = dyn_cast<Instruction>(*J);
115       if (Src == Des)
116         continue;
117       if (isa<LoadInst>(Src) && isa<LoadInst>(Des))
118         continue;
119       if (auto D = DI->depends(Src, Des, true)) {
120         DEBUG(dbgs() << "Found Dependency between Src=" << Src << " Des=" << Des
121                      << "\n");
122         if (D->isFlow()) {
123           // TODO: Handle Flow dependence.Check if it is sufficient to populate
124           // the Dependence Matrix with the direction reversed.
125           DEBUG(dbgs() << "Flow dependence not handled");
126           return false;
127         }
128         if (D->isAnti()) {
129           DEBUG(dbgs() << "Found Anti dependence \n");
130           unsigned Levels = D->getLevels();
131           char Direction;
132           for (unsigned II = 1; II <= Levels; ++II) {
133             const SCEV *Distance = D->getDistance(II);
134             const SCEVConstant *SCEVConst =
135                 dyn_cast_or_null<SCEVConstant>(Distance);
136             if (SCEVConst) {
137               const ConstantInt *CI = SCEVConst->getValue();
138               if (CI->isNegative())
139                 Direction = '<';
140               else if (CI->isZero())
141                 Direction = '=';
142               else
143                 Direction = '>';
144               Dep.push_back(Direction);
145             } else if (D->isScalar(II)) {
146               Direction = 'S';
147               Dep.push_back(Direction);
148             } else {
149               unsigned Dir = D->getDirection(II);
150               if (Dir == Dependence::DVEntry::LT ||
151                   Dir == Dependence::DVEntry::LE)
152                 Direction = '<';
153               else if (Dir == Dependence::DVEntry::GT ||
154                        Dir == Dependence::DVEntry::GE)
155                 Direction = '>';
156               else if (Dir == Dependence::DVEntry::EQ)
157                 Direction = '=';
158               else
159                 Direction = '*';
160               Dep.push_back(Direction);
161             }
162           }
163           while (Dep.size() != Level) {
164             Dep.push_back('I');
165           }
166
167           DepMatrix.push_back(Dep);
168           if (DepMatrix.size() > MaxMemInstrCount) {
169             DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount
170                          << " dependencies inside loop\n");
171             return false;
172           }
173         }
174       }
175     }
176   }
177
178   // We don't have a DepMatrix to check legality return false.
179   if (DepMatrix.size() == 0)
180     return false;
181   return true;
182 }
183
184 // A loop is moved from index 'from' to an index 'to'. Update the Dependence
185 // matrix by exchanging the two columns.
186 static void interChangeDepedencies(CharMatrix &DepMatrix, unsigned FromIndx,
187                                    unsigned ToIndx) {
188   unsigned numRows = DepMatrix.size();
189   for (unsigned i = 0; i < numRows; ++i) {
190     char TmpVal = DepMatrix[i][ToIndx];
191     DepMatrix[i][ToIndx] = DepMatrix[i][FromIndx];
192     DepMatrix[i][FromIndx] = TmpVal;
193   }
194 }
195
196 // Checks if outermost non '=','S'or'I' dependence in the dependence matrix is
197 // '>'
198 static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row,
199                                    unsigned Column) {
200   for (unsigned i = 0; i <= Column; ++i) {
201     if (DepMatrix[Row][i] == '<')
202       return false;
203     if (DepMatrix[Row][i] == '>')
204       return true;
205   }
206   // All dependencies were '=','S' or 'I'
207   return false;
208 }
209
210 // Checks if no dependence exist in the dependency matrix in Row before Column.
211 static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row,
212                                  unsigned Column) {
213   for (unsigned i = 0; i < Column; ++i) {
214     if (DepMatrix[Row][i] != '=' || DepMatrix[Row][i] != 'S' ||
215         DepMatrix[Row][i] != 'I')
216       return false;
217   }
218   return true;
219 }
220
221 static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row,
222                                 unsigned OuterLoopId, char InnerDep,
223                                 char OuterDep) {
224
225   if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId))
226     return false;
227
228   if (InnerDep == OuterDep)
229     return true;
230
231   // It is legal to interchange if and only if after interchange no row has a
232   // '>' direction as the leftmost non-'='.
233
234   if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I')
235     return true;
236
237   if (InnerDep == '<')
238     return true;
239
240   if (InnerDep == '>') {
241     // If OuterLoopId represents outermost loop then interchanging will make the
242     // 1st dependency as '>'
243     if (OuterLoopId == 0)
244       return false;
245
246     // If all dependencies before OuterloopId are '=','S'or 'I'. Then
247     // interchanging will result in this row having an outermost non '='
248     // dependency of '>'
249     if (!containsNoDependence(DepMatrix, Row, OuterLoopId))
250       return true;
251   }
252
253   return false;
254 }
255
256 // Checks if it is legal to interchange 2 loops.
257 // [Theorem] A permutation of the loops in a perfect nest is legal if and only
258 // if
259 // the direction matrix, after the same permutation is applied to its columns,
260 // has no ">" direction as the leftmost non-"=" direction in any row.
261 static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix,
262                                       unsigned InnerLoopId,
263                                       unsigned OuterLoopId) {
264
265   unsigned NumRows = DepMatrix.size();
266   // For each row check if it is valid to interchange.
267   for (unsigned Row = 0; Row < NumRows; ++Row) {
268     char InnerDep = DepMatrix[Row][InnerLoopId];
269     char OuterDep = DepMatrix[Row][OuterLoopId];
270     if (InnerDep == '*' || OuterDep == '*')
271       return false;
272     else if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep,
273                                   OuterDep))
274       return false;
275   }
276   return true;
277 }
278
279 static void populateWorklist(Loop &L, SmallVector<LoopVector, 8> &V) {
280
281   DEBUG(dbgs() << "Calling populateWorklist called\n");
282   LoopVector LoopList;
283   Loop *CurrentLoop = &L;
284   const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops();
285   while (!Vec->empty()) {
286     // The current loop has multiple subloops in it hence it is not tightly
287     // nested.
288     // Discard all loops above it added into Worklist.
289     if (Vec->size() != 1) {
290       LoopList.clear();
291       return;
292     }
293     LoopList.push_back(CurrentLoop);
294     CurrentLoop = Vec->front();
295     Vec = &CurrentLoop->getSubLoops();
296   }
297   LoopList.push_back(CurrentLoop);
298   V.push_back(std::move(LoopList));
299 }
300
301 static PHINode *getInductionVariable(Loop *L, ScalarEvolution *SE) {
302   PHINode *InnerIndexVar = L->getCanonicalInductionVariable();
303   if (InnerIndexVar)
304     return InnerIndexVar;
305   if (L->getLoopLatch() == nullptr || L->getLoopPredecessor() == nullptr)
306     return nullptr;
307   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
308     PHINode *PhiVar = cast<PHINode>(I);
309     Type *PhiTy = PhiVar->getType();
310     if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
311         !PhiTy->isPointerTy())
312       return nullptr;
313     const SCEVAddRecExpr *AddRec =
314         dyn_cast<SCEVAddRecExpr>(SE->getSCEV(PhiVar));
315     if (!AddRec || !AddRec->isAffine())
316       continue;
317     const SCEV *Step = AddRec->getStepRecurrence(*SE);
318     const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
319     if (!C)
320       continue;
321     // Found the induction variable.
322     // FIXME: Handle loops with more than one induction variable. Note that,
323     // currently, legality makes sure we have only one induction variable.
324     return PhiVar;
325   }
326   return nullptr;
327 }
328
329 /// LoopInterchangeLegality checks if it is legal to interchange the loop.
330 class LoopInterchangeLegality {
331 public:
332   LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
333                           LoopInfo *LI, DominatorTree *DT, bool PreserveLCSSA)
334       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT),
335         PreserveLCSSA(PreserveLCSSA), InnerLoopHasReduction(false) {}
336
337   /// Check if the loops can be interchanged.
338   bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId,
339                            CharMatrix &DepMatrix);
340   /// Check if the loop structure is understood. We do not handle triangular
341   /// loops for now.
342   bool isLoopStructureUnderstood(PHINode *InnerInductionVar);
343
344   bool currentLimitations();
345
346   bool hasInnerLoopReduction() { return InnerLoopHasReduction; }
347
348 private:
349   bool tightlyNested(Loop *Outer, Loop *Inner);
350   bool containsUnsafeInstructionsInHeader(BasicBlock *BB);
351   bool areAllUsesReductions(Instruction *Ins, Loop *L);
352   bool containsUnsafeInstructionsInLatch(BasicBlock *BB);
353   bool findInductionAndReductions(Loop *L,
354                                   SmallVector<PHINode *, 8> &Inductions,
355                                   SmallVector<PHINode *, 8> &Reductions);
356   Loop *OuterLoop;
357   Loop *InnerLoop;
358
359   ScalarEvolution *SE;
360   LoopInfo *LI;
361   DominatorTree *DT;
362   bool PreserveLCSSA;
363
364   bool InnerLoopHasReduction;
365 };
366
367 /// LoopInterchangeProfitability checks if it is profitable to interchange the
368 /// loop.
369 class LoopInterchangeProfitability {
370 public:
371   LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE)
372       : OuterLoop(Outer), InnerLoop(Inner), SE(SE) {}
373
374   /// Check if the loop interchange is profitable.
375   bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId,
376                     CharMatrix &DepMatrix);
377
378 private:
379   int getInstrOrderCost();
380
381   Loop *OuterLoop;
382   Loop *InnerLoop;
383
384   /// Scev analysis.
385   ScalarEvolution *SE;
386 };
387
388 /// LoopInterchangeTransform interchanges the loop.
389 class LoopInterchangeTransform {
390 public:
391   LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
392                            LoopInfo *LI, DominatorTree *DT,
393                            BasicBlock *LoopNestExit,
394                            bool InnerLoopContainsReductions)
395       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT),
396         LoopExit(LoopNestExit),
397         InnerLoopHasReduction(InnerLoopContainsReductions) {}
398
399   /// Interchange OuterLoop and InnerLoop.
400   bool transform();
401   void restructureLoops(Loop *InnerLoop, Loop *OuterLoop);
402   void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop);
403
404 private:
405   void splitInnerLoopLatch(Instruction *);
406   void splitInnerLoopHeader();
407   bool adjustLoopLinks();
408   void adjustLoopPreheaders();
409   bool adjustLoopBranches();
410   void updateIncomingBlock(BasicBlock *CurrBlock, BasicBlock *OldPred,
411                            BasicBlock *NewPred);
412
413   Loop *OuterLoop;
414   Loop *InnerLoop;
415
416   /// Scev analysis.
417   ScalarEvolution *SE;
418   LoopInfo *LI;
419   DominatorTree *DT;
420   BasicBlock *LoopExit;
421   bool InnerLoopHasReduction;
422 };
423
424 // Main LoopInterchange Pass.
425 struct LoopInterchange : public FunctionPass {
426   static char ID;
427   ScalarEvolution *SE;
428   LoopInfo *LI;
429   DependenceInfo *DI;
430   DominatorTree *DT;
431   bool PreserveLCSSA;
432   LoopInterchange()
433       : FunctionPass(ID), SE(nullptr), LI(nullptr), DI(nullptr), DT(nullptr) {
434     initializeLoopInterchangePass(*PassRegistry::getPassRegistry());
435   }
436
437   void getAnalysisUsage(AnalysisUsage &AU) const override {
438     AU.addRequired<ScalarEvolutionWrapperPass>();
439     AU.addRequired<AAResultsWrapperPass>();
440     AU.addRequired<DominatorTreeWrapperPass>();
441     AU.addRequired<LoopInfoWrapperPass>();
442     AU.addRequired<DependenceAnalysisWrapperPass>();
443     AU.addRequiredID(LoopSimplifyID);
444     AU.addRequiredID(LCSSAID);
445   }
446
447   bool runOnFunction(Function &F) override {
448     if (skipFunction(F))
449       return false;
450
451     SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
452     LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
453     DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI();
454     auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
455     DT = DTWP ? &DTWP->getDomTree() : nullptr;
456     PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
457
458     // Build up a worklist of loop pairs to analyze.
459     SmallVector<LoopVector, 8> Worklist;
460
461     for (Loop *L : *LI)
462       populateWorklist(*L, Worklist);
463
464     DEBUG(dbgs() << "Worklist size = " << Worklist.size() << "\n");
465     bool Changed = true;
466     while (!Worklist.empty()) {
467       LoopVector LoopList = Worklist.pop_back_val();
468       Changed = processLoopList(LoopList, F);
469     }
470     return Changed;
471   }
472
473   bool isComputableLoopNest(LoopVector LoopList) {
474     for (Loop *L : LoopList) {
475       const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L);
476       if (ExitCountOuter == SE->getCouldNotCompute()) {
477         DEBUG(dbgs() << "Couldn't compute Backedge count\n");
478         return false;
479       }
480       if (L->getNumBackEdges() != 1) {
481         DEBUG(dbgs() << "NumBackEdges is not equal to 1\n");
482         return false;
483       }
484       if (!L->getExitingBlock()) {
485         DEBUG(dbgs() << "Loop Doesn't have unique exit block\n");
486         return false;
487       }
488     }
489     return true;
490   }
491
492   unsigned selectLoopForInterchange(const LoopVector &LoopList) {
493     // TODO: Add a better heuristic to select the loop to be interchanged based
494     // on the dependence matrix. Currently we select the innermost loop.
495     return LoopList.size() - 1;
496   }
497
498   bool processLoopList(LoopVector LoopList, Function &F) {
499
500     bool Changed = false;
501     CharMatrix DependencyMatrix;
502     if (LoopList.size() < 2) {
503       DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n");
504       return false;
505     }
506     if (!isComputableLoopNest(LoopList)) {
507       DEBUG(dbgs() << "Not vaild loop candidate for interchange\n");
508       return false;
509     }
510     Loop *OuterMostLoop = *(LoopList.begin());
511
512     DEBUG(dbgs() << "Processing LoopList of size = " << LoopList.size()
513                  << "\n");
514
515     if (!populateDependencyMatrix(DependencyMatrix, LoopList.size(),
516                                   OuterMostLoop, DI)) {
517       DEBUG(dbgs() << "Populating Dependency matrix failed\n");
518       return false;
519     }
520 #ifdef DUMP_DEP_MATRICIES
521     DEBUG(dbgs() << "Dependence before inter change \n");
522     printDepMatrix(DependencyMatrix);
523 #endif
524
525     BasicBlock *OuterMostLoopLatch = OuterMostLoop->getLoopLatch();
526     BranchInst *OuterMostLoopLatchBI =
527         dyn_cast<BranchInst>(OuterMostLoopLatch->getTerminator());
528     if (!OuterMostLoopLatchBI)
529       return false;
530
531     // Since we currently do not handle LCSSA PHI's any failure in loop
532     // condition will now branch to LoopNestExit.
533     // TODO: This should be removed once we handle LCSSA PHI nodes.
534
535     // Get the Outermost loop exit.
536     BasicBlock *LoopNestExit;
537     if (OuterMostLoopLatchBI->getSuccessor(0) == OuterMostLoop->getHeader())
538       LoopNestExit = OuterMostLoopLatchBI->getSuccessor(1);
539     else
540       LoopNestExit = OuterMostLoopLatchBI->getSuccessor(0);
541
542     if (isa<PHINode>(LoopNestExit->begin())) {
543       DEBUG(dbgs() << "PHI Nodes in loop nest exit is not handled for now "
544                       "since on failure all loops branch to loop nest exit.\n");
545       return false;
546     }
547
548     unsigned SelecLoopId = selectLoopForInterchange(LoopList);
549     // Move the selected loop outwards to the best possible position.
550     for (unsigned i = SelecLoopId; i > 0; i--) {
551       bool Interchanged =
552           processLoop(LoopList, i, i - 1, LoopNestExit, DependencyMatrix);
553       if (!Interchanged)
554         return Changed;
555       // Loops interchanged reflect the same in LoopList
556       std::swap(LoopList[i - 1], LoopList[i]);
557
558       // Update the DependencyMatrix
559       interChangeDepedencies(DependencyMatrix, i, i - 1);
560       DT->recalculate(F);
561 #ifdef DUMP_DEP_MATRICIES
562       DEBUG(dbgs() << "Dependence after inter change \n");
563       printDepMatrix(DependencyMatrix);
564 #endif
565       Changed |= Interchanged;
566     }
567     return Changed;
568   }
569
570   bool processLoop(LoopVector LoopList, unsigned InnerLoopId,
571                    unsigned OuterLoopId, BasicBlock *LoopNestExit,
572                    std::vector<std::vector<char>> &DependencyMatrix) {
573
574     DEBUG(dbgs() << "Processing Innder Loop Id = " << InnerLoopId
575                  << " and OuterLoopId = " << OuterLoopId << "\n");
576     Loop *InnerLoop = LoopList[InnerLoopId];
577     Loop *OuterLoop = LoopList[OuterLoopId];
578
579     LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, LI, DT,
580                                 PreserveLCSSA);
581     if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) {
582       DEBUG(dbgs() << "Not interchanging Loops. Cannot prove legality\n");
583       return false;
584     }
585     DEBUG(dbgs() << "Loops are legal to interchange\n");
586     LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE);
587     if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) {
588       DEBUG(dbgs() << "Interchanging Loops not profitable\n");
589       return false;
590     }
591
592     LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT,
593                                  LoopNestExit, LIL.hasInnerLoopReduction());
594     LIT.transform();
595     DEBUG(dbgs() << "Loops interchanged\n");
596     return true;
597   }
598 };
599
600 } // end of namespace
601 bool LoopInterchangeLegality::areAllUsesReductions(Instruction *Ins, Loop *L) {
602   return !std::any_of(Ins->user_begin(), Ins->user_end(), [=](User *U) -> bool {
603     PHINode *UserIns = dyn_cast<PHINode>(U);
604     RecurrenceDescriptor RD;
605     return !UserIns || !RecurrenceDescriptor::isReductionPHI(UserIns, L, RD);
606   });
607 }
608
609 bool LoopInterchangeLegality::containsUnsafeInstructionsInHeader(
610     BasicBlock *BB) {
611   for (auto I = BB->begin(), E = BB->end(); I != E; ++I) {
612     // Load corresponding to reduction PHI's are safe while concluding if
613     // tightly nested.
614     if (LoadInst *L = dyn_cast<LoadInst>(I)) {
615       if (!areAllUsesReductions(L, InnerLoop))
616         return true;
617     } else if (I->mayHaveSideEffects() || I->mayReadFromMemory())
618       return true;
619   }
620   return false;
621 }
622
623 bool LoopInterchangeLegality::containsUnsafeInstructionsInLatch(
624     BasicBlock *BB) {
625   for (auto I = BB->begin(), E = BB->end(); I != E; ++I) {
626     // Stores corresponding to reductions are safe while concluding if tightly
627     // nested.
628     if (StoreInst *L = dyn_cast<StoreInst>(I)) {
629       PHINode *PHI = dyn_cast<PHINode>(L->getOperand(0));
630       if (!PHI)
631         return true;
632     } else if (I->mayHaveSideEffects() || I->mayReadFromMemory())
633       return true;
634   }
635   return false;
636 }
637
638 bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) {
639   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
640   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
641   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
642
643   DEBUG(dbgs() << "Checking if Loops are Tightly Nested\n");
644
645   // A perfectly nested loop will not have any branch in between the outer and
646   // inner block i.e. outer header will branch to either inner preheader and
647   // outerloop latch.
648   BranchInst *outerLoopHeaderBI =
649       dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
650   if (!outerLoopHeaderBI)
651     return false;
652   unsigned num = outerLoopHeaderBI->getNumSuccessors();
653   for (unsigned i = 0; i < num; i++) {
654     if (outerLoopHeaderBI->getSuccessor(i) != InnerLoopPreHeader &&
655         outerLoopHeaderBI->getSuccessor(i) != OuterLoopLatch)
656       return false;
657   }
658
659   DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch \n");
660   // We do not have any basic block in between now make sure the outer header
661   // and outer loop latch doesn't contain any unsafe instructions.
662   if (containsUnsafeInstructionsInHeader(OuterLoopHeader) ||
663       containsUnsafeInstructionsInLatch(OuterLoopLatch))
664     return false;
665
666   DEBUG(dbgs() << "Loops are perfectly nested \n");
667   // We have a perfect loop nest.
668   return true;
669 }
670
671
672 bool LoopInterchangeLegality::isLoopStructureUnderstood(
673     PHINode *InnerInduction) {
674
675   unsigned Num = InnerInduction->getNumOperands();
676   BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader();
677   for (unsigned i = 0; i < Num; ++i) {
678     Value *Val = InnerInduction->getOperand(i);
679     if (isa<Constant>(Val))
680       continue;
681     Instruction *I = dyn_cast<Instruction>(Val);
682     if (!I)
683       return false;
684     // TODO: Handle triangular loops.
685     // e.g. for(int i=0;i<N;i++)
686     //        for(int j=i;j<N;j++)
687     unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i);
688     if (InnerInduction->getIncomingBlock(IncomBlockIndx) ==
689             InnerLoopPreheader &&
690         !OuterLoop->isLoopInvariant(I)) {
691       return false;
692     }
693   }
694   return true;
695 }
696
697 bool LoopInterchangeLegality::findInductionAndReductions(
698     Loop *L, SmallVector<PHINode *, 8> &Inductions,
699     SmallVector<PHINode *, 8> &Reductions) {
700   if (!L->getLoopLatch() || !L->getLoopPredecessor())
701     return false;
702   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
703     RecurrenceDescriptor RD;
704     InductionDescriptor ID;
705     PHINode *PHI = cast<PHINode>(I);
706     if (InductionDescriptor::isInductionPHI(PHI, SE, ID))
707       Inductions.push_back(PHI);
708     else if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD))
709       Reductions.push_back(PHI);
710     else {
711       DEBUG(
712           dbgs() << "Failed to recognize PHI as an induction or reduction.\n");
713       return false;
714     }
715   }
716   return true;
717 }
718
719 static bool containsSafePHI(BasicBlock *Block, bool isOuterLoopExitBlock) {
720   for (auto I = Block->begin(); isa<PHINode>(I); ++I) {
721     PHINode *PHI = cast<PHINode>(I);
722     // Reduction lcssa phi will have only 1 incoming block that from loop latch.
723     if (PHI->getNumIncomingValues() > 1)
724       return false;
725     Instruction *Ins = dyn_cast<Instruction>(PHI->getIncomingValue(0));
726     if (!Ins)
727       return false;
728     // Incoming value for lcssa phi's in outer loop exit can only be inner loop
729     // exits lcssa phi else it would not be tightly nested.
730     if (!isa<PHINode>(Ins) && isOuterLoopExitBlock)
731       return false;
732   }
733   return true;
734 }
735
736 static BasicBlock *getLoopLatchExitBlock(BasicBlock *LatchBlock,
737                                          BasicBlock *LoopHeader) {
738   if (BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator())) {
739     unsigned Num = BI->getNumSuccessors();
740     assert(Num == 2);
741     for (unsigned i = 0; i < Num; ++i) {
742       if (BI->getSuccessor(i) == LoopHeader)
743         continue;
744       return BI->getSuccessor(i);
745     }
746   }
747   return nullptr;
748 }
749
750 // This function indicates the current limitations in the transform as a result
751 // of which we do not proceed.
752 bool LoopInterchangeLegality::currentLimitations() {
753
754   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
755   BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
756   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
757   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
758   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
759
760   PHINode *InnerInductionVar;
761   SmallVector<PHINode *, 8> Inductions;
762   SmallVector<PHINode *, 8> Reductions;
763   if (!findInductionAndReductions(InnerLoop, Inductions, Reductions))
764     return true;
765
766   // TODO: Currently we handle only loops with 1 induction variable.
767   if (Inductions.size() != 1) {
768     DEBUG(dbgs() << "We currently only support loops with 1 induction variable."
769                  << "Failed to interchange due to current limitation\n");
770     return true;
771   }
772   if (Reductions.size() > 0)
773     InnerLoopHasReduction = true;
774
775   InnerInductionVar = Inductions.pop_back_val();
776   Reductions.clear();
777   if (!findInductionAndReductions(OuterLoop, Inductions, Reductions))
778     return true;
779
780   // Outer loop cannot have reduction because then loops will not be tightly
781   // nested.
782   if (!Reductions.empty())
783     return true;
784   // TODO: Currently we handle only loops with 1 induction variable.
785   if (Inductions.size() != 1)
786     return true;
787
788   // TODO: Triangular loops are not handled for now.
789   if (!isLoopStructureUnderstood(InnerInductionVar)) {
790     DEBUG(dbgs() << "Loop structure not understood by pass\n");
791     return true;
792   }
793
794   // TODO: We only handle LCSSA PHI's corresponding to reduction for now.
795   BasicBlock *LoopExitBlock =
796       getLoopLatchExitBlock(OuterLoopLatch, OuterLoopHeader);
797   if (!LoopExitBlock || !containsSafePHI(LoopExitBlock, true))
798     return true;
799
800   LoopExitBlock = getLoopLatchExitBlock(InnerLoopLatch, InnerLoopHeader);
801   if (!LoopExitBlock || !containsSafePHI(LoopExitBlock, false))
802     return true;
803
804   // TODO: Current limitation: Since we split the inner loop latch at the point
805   // were induction variable is incremented (induction.next); We cannot have
806   // more than 1 user of induction.next since it would result in broken code
807   // after split.
808   // e.g.
809   // for(i=0;i<N;i++) {
810   //    for(j = 0;j<M;j++) {
811   //      A[j+1][i+2] = A[j][i]+k;
812   //  }
813   // }
814   Instruction *InnerIndexVarInc = nullptr;
815   if (InnerInductionVar->getIncomingBlock(0) == InnerLoopPreHeader)
816     InnerIndexVarInc =
817         dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(1));
818   else
819     InnerIndexVarInc =
820         dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(0));
821
822   if (!InnerIndexVarInc)
823     return true;
824
825   // Since we split the inner loop latch on this induction variable. Make sure
826   // we do not have any instruction between the induction variable and branch
827   // instruction.
828
829   bool FoundInduction = false;
830   for (const Instruction &I : reverse(*InnerLoopLatch)) {
831     if (isa<BranchInst>(I) || isa<CmpInst>(I) || isa<TruncInst>(I))
832       continue;
833     // We found an instruction. If this is not induction variable then it is not
834     // safe to split this loop latch.
835     if (!I.isIdenticalTo(InnerIndexVarInc))
836       return true;
837
838     FoundInduction = true;
839     break;
840   }
841   // The loop latch ended and we didn't find the induction variable return as
842   // current limitation.
843   if (!FoundInduction)
844     return true;
845
846   return false;
847 }
848
849 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId,
850                                                   unsigned OuterLoopId,
851                                                   CharMatrix &DepMatrix) {
852
853   if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) {
854     DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId
855                  << "and OuterLoopId = " << OuterLoopId
856                  << "due to dependence\n");
857     return false;
858   }
859
860   // Create unique Preheaders if we already do not have one.
861   BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
862   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
863
864   // Create  a unique outer preheader -
865   // 1) If OuterLoop preheader is not present.
866   // 2) If OuterLoop Preheader is same as OuterLoop Header
867   // 3) If OuterLoop Preheader is same as Header of the previous loop.
868   // 4) If OuterLoop Preheader is Entry node.
869   if (!OuterLoopPreHeader || OuterLoopPreHeader == OuterLoop->getHeader() ||
870       isa<PHINode>(OuterLoopPreHeader->begin()) ||
871       !OuterLoopPreHeader->getUniquePredecessor()) {
872     OuterLoopPreHeader =
873         InsertPreheaderForLoop(OuterLoop, DT, LI, PreserveLCSSA);
874   }
875
876   if (!InnerLoopPreHeader || InnerLoopPreHeader == InnerLoop->getHeader() ||
877       InnerLoopPreHeader == OuterLoop->getHeader()) {
878     InnerLoopPreHeader =
879         InsertPreheaderForLoop(InnerLoop, DT, LI, PreserveLCSSA);
880   }
881
882   // TODO: The loops could not be interchanged due to current limitations in the
883   // transform module.
884   if (currentLimitations()) {
885     DEBUG(dbgs() << "Not legal because of current transform limitation\n");
886     return false;
887   }
888
889   // Check if the loops are tightly nested.
890   if (!tightlyNested(OuterLoop, InnerLoop)) {
891     DEBUG(dbgs() << "Loops not tightly nested\n");
892     return false;
893   }
894
895   return true;
896 }
897
898 int LoopInterchangeProfitability::getInstrOrderCost() {
899   unsigned GoodOrder, BadOrder;
900   BadOrder = GoodOrder = 0;
901   for (auto BI = InnerLoop->block_begin(), BE = InnerLoop->block_end();
902        BI != BE; ++BI) {
903     for (Instruction &Ins : **BI) {
904       if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) {
905         unsigned NumOp = GEP->getNumOperands();
906         bool FoundInnerInduction = false;
907         bool FoundOuterInduction = false;
908         for (unsigned i = 0; i < NumOp; ++i) {
909           const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i));
910           const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal);
911           if (!AR)
912             continue;
913
914           // If we find the inner induction after an outer induction e.g.
915           // for(int i=0;i<N;i++)
916           //   for(int j=0;j<N;j++)
917           //     A[i][j] = A[i-1][j-1]+k;
918           // then it is a good order.
919           if (AR->getLoop() == InnerLoop) {
920             // We found an InnerLoop induction after OuterLoop induction. It is
921             // a good order.
922             FoundInnerInduction = true;
923             if (FoundOuterInduction) {
924               GoodOrder++;
925               break;
926             }
927           }
928           // If we find the outer induction after an inner induction e.g.
929           // for(int i=0;i<N;i++)
930           //   for(int j=0;j<N;j++)
931           //     A[j][i] = A[j-1][i-1]+k;
932           // then it is a bad order.
933           if (AR->getLoop() == OuterLoop) {
934             // We found an OuterLoop induction after InnerLoop induction. It is
935             // a bad order.
936             FoundOuterInduction = true;
937             if (FoundInnerInduction) {
938               BadOrder++;
939               break;
940             }
941           }
942         }
943       }
944     }
945   }
946   return GoodOrder - BadOrder;
947 }
948
949 static bool isProfitabileForVectorization(unsigned InnerLoopId,
950                                           unsigned OuterLoopId,
951                                           CharMatrix &DepMatrix) {
952   // TODO: Improve this heuristic to catch more cases.
953   // If the inner loop is loop independent or doesn't carry any dependency it is
954   // profitable to move this to outer position.
955   unsigned Row = DepMatrix.size();
956   for (unsigned i = 0; i < Row; ++i) {
957     if (DepMatrix[i][InnerLoopId] != 'S' && DepMatrix[i][InnerLoopId] != 'I')
958       return false;
959     // TODO: We need to improve this heuristic.
960     if (DepMatrix[i][OuterLoopId] != '=')
961       return false;
962   }
963   // If outer loop has dependence and inner loop is loop independent then it is
964   // profitable to interchange to enable parallelism.
965   return true;
966 }
967
968 bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId,
969                                                 unsigned OuterLoopId,
970                                                 CharMatrix &DepMatrix) {
971
972   // TODO: Add better profitability checks.
973   // e.g
974   // 1) Construct dependency matrix and move the one with no loop carried dep
975   //    inside to enable vectorization.
976
977   // This is rough cost estimation algorithm. It counts the good and bad order
978   // of induction variables in the instruction and allows reordering if number
979   // of bad orders is more than good.
980   int Cost = 0;
981   Cost += getInstrOrderCost();
982   DEBUG(dbgs() << "Cost = " << Cost << "\n");
983   if (Cost < 0)
984     return true;
985
986   // It is not profitable as per current cache profitability model. But check if
987   // we can move this loop outside to improve parallelism.
988   bool ImprovesPar =
989       isProfitabileForVectorization(InnerLoopId, OuterLoopId, DepMatrix);
990   return ImprovesPar;
991 }
992
993 void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop,
994                                                Loop *InnerLoop) {
995   for (Loop::iterator I = OuterLoop->begin(), E = OuterLoop->end(); I != E;
996        ++I) {
997     if (*I == InnerLoop) {
998       OuterLoop->removeChildLoop(I);
999       return;
1000     }
1001   }
1002   llvm_unreachable("Couldn't find loop");
1003 }
1004
1005 void LoopInterchangeTransform::restructureLoops(Loop *InnerLoop,
1006                                                 Loop *OuterLoop) {
1007   Loop *OuterLoopParent = OuterLoop->getParentLoop();
1008   if (OuterLoopParent) {
1009     // Remove the loop from its parent loop.
1010     removeChildLoop(OuterLoopParent, OuterLoop);
1011     removeChildLoop(OuterLoop, InnerLoop);
1012     OuterLoopParent->addChildLoop(InnerLoop);
1013   } else {
1014     removeChildLoop(OuterLoop, InnerLoop);
1015     LI->changeTopLevelLoop(OuterLoop, InnerLoop);
1016   }
1017
1018   while (!InnerLoop->empty())
1019     OuterLoop->addChildLoop(InnerLoop->removeChildLoop(InnerLoop->begin()));
1020
1021   InnerLoop->addChildLoop(OuterLoop);
1022 }
1023
1024 bool LoopInterchangeTransform::transform() {
1025
1026   DEBUG(dbgs() << "transform\n");
1027   bool Transformed = false;
1028   Instruction *InnerIndexVar;
1029
1030   if (InnerLoop->getSubLoops().size() == 0) {
1031     BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1032     DEBUG(dbgs() << "Calling Split Inner Loop\n");
1033     PHINode *InductionPHI = getInductionVariable(InnerLoop, SE);
1034     if (!InductionPHI) {
1035       DEBUG(dbgs() << "Failed to find the point to split loop latch \n");
1036       return false;
1037     }
1038
1039     if (InductionPHI->getIncomingBlock(0) == InnerLoopPreHeader)
1040       InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(1));
1041     else
1042       InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(0));
1043
1044     //
1045     // Split at the place were the induction variable is
1046     // incremented/decremented.
1047     // TODO: This splitting logic may not work always. Fix this.
1048     splitInnerLoopLatch(InnerIndexVar);
1049     DEBUG(dbgs() << "splitInnerLoopLatch Done\n");
1050
1051     // Splits the inner loops phi nodes out into a separate basic block.
1052     splitInnerLoopHeader();
1053     DEBUG(dbgs() << "splitInnerLoopHeader Done\n");
1054   }
1055
1056   Transformed |= adjustLoopLinks();
1057   if (!Transformed) {
1058     DEBUG(dbgs() << "adjustLoopLinks Failed\n");
1059     return false;
1060   }
1061
1062   restructureLoops(InnerLoop, OuterLoop);
1063   return true;
1064 }
1065
1066 void LoopInterchangeTransform::splitInnerLoopLatch(Instruction *Inc) {
1067   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
1068   BasicBlock *InnerLoopLatchPred = InnerLoopLatch;
1069   InnerLoopLatch = SplitBlock(InnerLoopLatchPred, Inc, DT, LI);
1070 }
1071
1072 void LoopInterchangeTransform::splitInnerLoopHeader() {
1073
1074   // Split the inner loop header out. Here make sure that the reduction PHI's
1075   // stay in the innerloop body.
1076   BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1077   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1078   if (InnerLoopHasReduction) {
1079     // FIXME: Check if the induction PHI will always be the first PHI.
1080     BasicBlock *New = InnerLoopHeader->splitBasicBlock(
1081         ++(InnerLoopHeader->begin()), InnerLoopHeader->getName() + ".split");
1082     if (LI)
1083       if (Loop *L = LI->getLoopFor(InnerLoopHeader))
1084         L->addBasicBlockToLoop(New, *LI);
1085
1086     // Adjust Reduction PHI's in the block.
1087     SmallVector<PHINode *, 8> PHIVec;
1088     for (auto I = New->begin(); isa<PHINode>(I); ++I) {
1089       PHINode *PHI = dyn_cast<PHINode>(I);
1090       Value *V = PHI->getIncomingValueForBlock(InnerLoopPreHeader);
1091       PHI->replaceAllUsesWith(V);
1092       PHIVec.push_back((PHI));
1093     }
1094     for (PHINode *P : PHIVec) {
1095       P->eraseFromParent();
1096     }
1097   } else {
1098     SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI);
1099   }
1100
1101   DEBUG(dbgs() << "Output of splitInnerLoopHeader InnerLoopHeaderSucc & "
1102                   "InnerLoopHeader \n");
1103 }
1104
1105 /// \brief Move all instructions except the terminator from FromBB right before
1106 /// InsertBefore
1107 static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) {
1108   auto &ToList = InsertBefore->getParent()->getInstList();
1109   auto &FromList = FromBB->getInstList();
1110
1111   ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(),
1112                 FromBB->getTerminator()->getIterator());
1113 }
1114
1115 void LoopInterchangeTransform::updateIncomingBlock(BasicBlock *CurrBlock,
1116                                                    BasicBlock *OldPred,
1117                                                    BasicBlock *NewPred) {
1118   for (auto I = CurrBlock->begin(); isa<PHINode>(I); ++I) {
1119     PHINode *PHI = cast<PHINode>(I);
1120     unsigned Num = PHI->getNumIncomingValues();
1121     for (unsigned i = 0; i < Num; ++i) {
1122       if (PHI->getIncomingBlock(i) == OldPred)
1123         PHI->setIncomingBlock(i, NewPred);
1124     }
1125   }
1126 }
1127
1128 bool LoopInterchangeTransform::adjustLoopBranches() {
1129
1130   DEBUG(dbgs() << "adjustLoopBranches called\n");
1131   // Adjust the loop preheader
1132   BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1133   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1134   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
1135   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
1136   BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1137   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1138   BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor();
1139   BasicBlock *InnerLoopLatchPredecessor =
1140       InnerLoopLatch->getUniquePredecessor();
1141   BasicBlock *InnerLoopLatchSuccessor;
1142   BasicBlock *OuterLoopLatchSuccessor;
1143
1144   BranchInst *OuterLoopLatchBI =
1145       dyn_cast<BranchInst>(OuterLoopLatch->getTerminator());
1146   BranchInst *InnerLoopLatchBI =
1147       dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
1148   BranchInst *OuterLoopHeaderBI =
1149       dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
1150   BranchInst *InnerLoopHeaderBI =
1151       dyn_cast<BranchInst>(InnerLoopHeader->getTerminator());
1152
1153   if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor ||
1154       !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI ||
1155       !InnerLoopHeaderBI)
1156     return false;
1157
1158   BranchInst *InnerLoopLatchPredecessorBI =
1159       dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator());
1160   BranchInst *OuterLoopPredecessorBI =
1161       dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator());
1162
1163   if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI)
1164     return false;
1165   BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor();
1166   if (!InnerLoopHeaderSuccessor)
1167     return false;
1168
1169   // Adjust Loop Preheader and headers
1170
1171   unsigned NumSucc = OuterLoopPredecessorBI->getNumSuccessors();
1172   for (unsigned i = 0; i < NumSucc; ++i) {
1173     if (OuterLoopPredecessorBI->getSuccessor(i) == OuterLoopPreHeader)
1174       OuterLoopPredecessorBI->setSuccessor(i, InnerLoopPreHeader);
1175   }
1176
1177   NumSucc = OuterLoopHeaderBI->getNumSuccessors();
1178   for (unsigned i = 0; i < NumSucc; ++i) {
1179     if (OuterLoopHeaderBI->getSuccessor(i) == OuterLoopLatch)
1180       OuterLoopHeaderBI->setSuccessor(i, LoopExit);
1181     else if (OuterLoopHeaderBI->getSuccessor(i) == InnerLoopPreHeader)
1182       OuterLoopHeaderBI->setSuccessor(i, InnerLoopHeaderSuccessor);
1183   }
1184
1185   // Adjust reduction PHI's now that the incoming block has changed.
1186   updateIncomingBlock(InnerLoopHeaderSuccessor, InnerLoopHeader,
1187                       OuterLoopHeader);
1188
1189   BranchInst::Create(OuterLoopPreHeader, InnerLoopHeaderBI);
1190   InnerLoopHeaderBI->eraseFromParent();
1191
1192   // -------------Adjust loop latches-----------
1193   if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader)
1194     InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1);
1195   else
1196     InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0);
1197
1198   NumSucc = InnerLoopLatchPredecessorBI->getNumSuccessors();
1199   for (unsigned i = 0; i < NumSucc; ++i) {
1200     if (InnerLoopLatchPredecessorBI->getSuccessor(i) == InnerLoopLatch)
1201       InnerLoopLatchPredecessorBI->setSuccessor(i, InnerLoopLatchSuccessor);
1202   }
1203
1204   // Adjust PHI nodes in InnerLoopLatchSuccessor. Update all uses of PHI with
1205   // the value and remove this PHI node from inner loop.
1206   SmallVector<PHINode *, 8> LcssaVec;
1207   for (auto I = InnerLoopLatchSuccessor->begin(); isa<PHINode>(I); ++I) {
1208     PHINode *LcssaPhi = cast<PHINode>(I);
1209     LcssaVec.push_back(LcssaPhi);
1210   }
1211   for (PHINode *P : LcssaVec) {
1212     Value *Incoming = P->getIncomingValueForBlock(InnerLoopLatch);
1213     P->replaceAllUsesWith(Incoming);
1214     P->eraseFromParent();
1215   }
1216
1217   if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader)
1218     OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1);
1219   else
1220     OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0);
1221
1222   if (InnerLoopLatchBI->getSuccessor(1) == InnerLoopLatchSuccessor)
1223     InnerLoopLatchBI->setSuccessor(1, OuterLoopLatchSuccessor);
1224   else
1225     InnerLoopLatchBI->setSuccessor(0, OuterLoopLatchSuccessor);
1226
1227   updateIncomingBlock(OuterLoopLatchSuccessor, OuterLoopLatch, InnerLoopLatch);
1228
1229   if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopLatchSuccessor) {
1230     OuterLoopLatchBI->setSuccessor(0, InnerLoopLatch);
1231   } else {
1232     OuterLoopLatchBI->setSuccessor(1, InnerLoopLatch);
1233   }
1234
1235   return true;
1236 }
1237 void LoopInterchangeTransform::adjustLoopPreheaders() {
1238
1239   // We have interchanged the preheaders so we need to interchange the data in
1240   // the preheader as well.
1241   // This is because the content of inner preheader was previously executed
1242   // inside the outer loop.
1243   BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1244   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1245   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1246   BranchInst *InnerTermBI =
1247       cast<BranchInst>(InnerLoopPreHeader->getTerminator());
1248
1249   // These instructions should now be executed inside the loop.
1250   // Move instruction into a new block after outer header.
1251   moveBBContents(InnerLoopPreHeader, OuterLoopHeader->getTerminator());
1252   // These instructions were not executed previously in the loop so move them to
1253   // the older inner loop preheader.
1254   moveBBContents(OuterLoopPreHeader, InnerTermBI);
1255 }
1256
1257 bool LoopInterchangeTransform::adjustLoopLinks() {
1258
1259   // Adjust all branches in the inner and outer loop.
1260   bool Changed = adjustLoopBranches();
1261   if (Changed)
1262     adjustLoopPreheaders();
1263   return Changed;
1264 }
1265
1266 char LoopInterchange::ID = 0;
1267 INITIALIZE_PASS_BEGIN(LoopInterchange, "loop-interchange",
1268                       "Interchanges loops for cache reuse", false, false)
1269 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1270 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
1271 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1272 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
1273 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
1274 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
1275 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1276
1277 INITIALIZE_PASS_END(LoopInterchange, "loop-interchange",
1278                     "Interchanges loops for cache reuse", false, false)
1279
1280 Pass *llvm::createLoopInterchangePass() { return new LoopInterchange(); }