]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/Scalar/LoopLoadElimination.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / Scalar / LoopLoadElimination.cpp
1 //===- LoopLoadElimination.cpp - Loop Load Elimination Pass ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implement a loop-aware load elimination pass.
10 //
11 // It uses LoopAccessAnalysis to identify loop-carried dependences with a
12 // distance of one between stores and loads.  These form the candidates for the
13 // transformation.  The source value of each store then propagated to the user
14 // of the corresponding load.  This makes the load dead.
15 //
16 // The pass can also version the loop and add memchecks in order to prove that
17 // may-aliasing stores can't change the value in memory before it's read by the
18 // load.
19 //
20 //===----------------------------------------------------------------------===//
21
22 #include "llvm/Transforms/Scalar/LoopLoadElimination.h"
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/DepthFirstIterator.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/Analysis/AliasAnalysis.h"
31 #include "llvm/Analysis/AssumptionCache.h"
32 #include "llvm/Analysis/BlockFrequencyInfo.h"
33 #include "llvm/Analysis/GlobalsModRef.h"
34 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
35 #include "llvm/Analysis/LoopAccessAnalysis.h"
36 #include "llvm/Analysis/LoopAnalysisManager.h"
37 #include "llvm/Analysis/LoopInfo.h"
38 #include "llvm/Analysis/MemorySSA.h"
39 #include "llvm/Analysis/ProfileSummaryInfo.h"
40 #include "llvm/Analysis/ScalarEvolution.h"
41 #include "llvm/Analysis/ScalarEvolutionExpander.h"
42 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
43 #include "llvm/Analysis/TargetLibraryInfo.h"
44 #include "llvm/Analysis/TargetTransformInfo.h"
45 #include "llvm/IR/DataLayout.h"
46 #include "llvm/IR/Dominators.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/IR/PassManager.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Transforms/Scalar.h"
58 #include "llvm/Transforms/Utils.h"
59 #include "llvm/Transforms/Utils/LoopVersioning.h"
60 #include "llvm/Transforms/Utils/SizeOpts.h"
61 #include <algorithm>
62 #include <cassert>
63 #include <forward_list>
64 #include <set>
65 #include <tuple>
66 #include <utility>
67
68 using namespace llvm;
69
70 #define LLE_OPTION "loop-load-elim"
71 #define DEBUG_TYPE LLE_OPTION
72
73 static cl::opt<unsigned> CheckPerElim(
74     "runtime-check-per-loop-load-elim", cl::Hidden,
75     cl::desc("Max number of memchecks allowed per eliminated load on average"),
76     cl::init(1));
77
78 static cl::opt<unsigned> LoadElimSCEVCheckThreshold(
79     "loop-load-elimination-scev-check-threshold", cl::init(8), cl::Hidden,
80     cl::desc("The maximum number of SCEV checks allowed for Loop "
81              "Load Elimination"));
82
83 STATISTIC(NumLoopLoadEliminted, "Number of loads eliminated by LLE");
84
85 namespace {
86
87 /// Represent a store-to-forwarding candidate.
88 struct StoreToLoadForwardingCandidate {
89   LoadInst *Load;
90   StoreInst *Store;
91
92   StoreToLoadForwardingCandidate(LoadInst *Load, StoreInst *Store)
93       : Load(Load), Store(Store) {}
94
95   /// Return true if the dependence from the store to the load has a
96   /// distance of one.  E.g. A[i+1] = A[i]
97   bool isDependenceDistanceOfOne(PredicatedScalarEvolution &PSE,
98                                  Loop *L) const {
99     Value *LoadPtr = Load->getPointerOperand();
100     Value *StorePtr = Store->getPointerOperand();
101     Type *LoadPtrType = LoadPtr->getType();
102     Type *LoadType = LoadPtrType->getPointerElementType();
103
104     assert(LoadPtrType->getPointerAddressSpace() ==
105                StorePtr->getType()->getPointerAddressSpace() &&
106            LoadType == StorePtr->getType()->getPointerElementType() &&
107            "Should be a known dependence");
108
109     // Currently we only support accesses with unit stride.  FIXME: we should be
110     // able to handle non unit stirde as well as long as the stride is equal to
111     // the dependence distance.
112     if (getPtrStride(PSE, LoadPtr, L) != 1 ||
113         getPtrStride(PSE, StorePtr, L) != 1)
114       return false;
115
116     auto &DL = Load->getParent()->getModule()->getDataLayout();
117     unsigned TypeByteSize = DL.getTypeAllocSize(const_cast<Type *>(LoadType));
118
119     auto *LoadPtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(LoadPtr));
120     auto *StorePtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(StorePtr));
121
122     // We don't need to check non-wrapping here because forward/backward
123     // dependence wouldn't be valid if these weren't monotonic accesses.
124     auto *Dist = cast<SCEVConstant>(
125         PSE.getSE()->getMinusSCEV(StorePtrSCEV, LoadPtrSCEV));
126     const APInt &Val = Dist->getAPInt();
127     return Val == TypeByteSize;
128   }
129
130   Value *getLoadPtr() const { return Load->getPointerOperand(); }
131
132 #ifndef NDEBUG
133   friend raw_ostream &operator<<(raw_ostream &OS,
134                                  const StoreToLoadForwardingCandidate &Cand) {
135     OS << *Cand.Store << " -->\n";
136     OS.indent(2) << *Cand.Load << "\n";
137     return OS;
138   }
139 #endif
140 };
141
142 } // end anonymous namespace
143
144 /// Check if the store dominates all latches, so as long as there is no
145 /// intervening store this value will be loaded in the next iteration.
146 static bool doesStoreDominatesAllLatches(BasicBlock *StoreBlock, Loop *L,
147                                          DominatorTree *DT) {
148   SmallVector<BasicBlock *, 8> Latches;
149   L->getLoopLatches(Latches);
150   return llvm::all_of(Latches, [&](const BasicBlock *Latch) {
151     return DT->dominates(StoreBlock, Latch);
152   });
153 }
154
155 /// Return true if the load is not executed on all paths in the loop.
156 static bool isLoadConditional(LoadInst *Load, Loop *L) {
157   return Load->getParent() != L->getHeader();
158 }
159
160 namespace {
161
162 /// The per-loop class that does most of the work.
163 class LoadEliminationForLoop {
164 public:
165   LoadEliminationForLoop(Loop *L, LoopInfo *LI, const LoopAccessInfo &LAI,
166                          DominatorTree *DT, BlockFrequencyInfo *BFI,
167                          ProfileSummaryInfo* PSI)
168       : L(L), LI(LI), LAI(LAI), DT(DT), BFI(BFI), PSI(PSI), PSE(LAI.getPSE()) {}
169
170   /// Look through the loop-carried and loop-independent dependences in
171   /// this loop and find store->load dependences.
172   ///
173   /// Note that no candidate is returned if LAA has failed to analyze the loop
174   /// (e.g. if it's not bottom-tested, contains volatile memops, etc.)
175   std::forward_list<StoreToLoadForwardingCandidate>
176   findStoreToLoadDependences(const LoopAccessInfo &LAI) {
177     std::forward_list<StoreToLoadForwardingCandidate> Candidates;
178
179     const auto *Deps = LAI.getDepChecker().getDependences();
180     if (!Deps)
181       return Candidates;
182
183     // Find store->load dependences (consequently true dep).  Both lexically
184     // forward and backward dependences qualify.  Disqualify loads that have
185     // other unknown dependences.
186
187     SmallPtrSet<Instruction *, 4> LoadsWithUnknownDepedence;
188
189     for (const auto &Dep : *Deps) {
190       Instruction *Source = Dep.getSource(LAI);
191       Instruction *Destination = Dep.getDestination(LAI);
192
193       if (Dep.Type == MemoryDepChecker::Dependence::Unknown) {
194         if (isa<LoadInst>(Source))
195           LoadsWithUnknownDepedence.insert(Source);
196         if (isa<LoadInst>(Destination))
197           LoadsWithUnknownDepedence.insert(Destination);
198         continue;
199       }
200
201       if (Dep.isBackward())
202         // Note that the designations source and destination follow the program
203         // order, i.e. source is always first.  (The direction is given by the
204         // DepType.)
205         std::swap(Source, Destination);
206       else
207         assert(Dep.isForward() && "Needs to be a forward dependence");
208
209       auto *Store = dyn_cast<StoreInst>(Source);
210       if (!Store)
211         continue;
212       auto *Load = dyn_cast<LoadInst>(Destination);
213       if (!Load)
214         continue;
215
216       // Only progagate the value if they are of the same type.
217       if (Store->getPointerOperandType() != Load->getPointerOperandType())
218         continue;
219
220       Candidates.emplace_front(Load, Store);
221     }
222
223     if (!LoadsWithUnknownDepedence.empty())
224       Candidates.remove_if([&](const StoreToLoadForwardingCandidate &C) {
225         return LoadsWithUnknownDepedence.count(C.Load);
226       });
227
228     return Candidates;
229   }
230
231   /// Return the index of the instruction according to program order.
232   unsigned getInstrIndex(Instruction *Inst) {
233     auto I = InstOrder.find(Inst);
234     assert(I != InstOrder.end() && "No index for instruction");
235     return I->second;
236   }
237
238   /// If a load has multiple candidates associated (i.e. different
239   /// stores), it means that it could be forwarding from multiple stores
240   /// depending on control flow.  Remove these candidates.
241   ///
242   /// Here, we rely on LAA to include the relevant loop-independent dependences.
243   /// LAA is known to omit these in the very simple case when the read and the
244   /// write within an alias set always takes place using the *same* pointer.
245   ///
246   /// However, we know that this is not the case here, i.e. we can rely on LAA
247   /// to provide us with loop-independent dependences for the cases we're
248   /// interested.  Consider the case for example where a loop-independent
249   /// dependece S1->S2 invalidates the forwarding S3->S2.
250   ///
251   ///         A[i]   = ...   (S1)
252   ///         ...    = A[i]  (S2)
253   ///         A[i+1] = ...   (S3)
254   ///
255   /// LAA will perform dependence analysis here because there are two
256   /// *different* pointers involved in the same alias set (&A[i] and &A[i+1]).
257   void removeDependencesFromMultipleStores(
258       std::forward_list<StoreToLoadForwardingCandidate> &Candidates) {
259     // If Store is nullptr it means that we have multiple stores forwarding to
260     // this store.
261     using LoadToSingleCandT =
262         DenseMap<LoadInst *, const StoreToLoadForwardingCandidate *>;
263     LoadToSingleCandT LoadToSingleCand;
264
265     for (const auto &Cand : Candidates) {
266       bool NewElt;
267       LoadToSingleCandT::iterator Iter;
268
269       std::tie(Iter, NewElt) =
270           LoadToSingleCand.insert(std::make_pair(Cand.Load, &Cand));
271       if (!NewElt) {
272         const StoreToLoadForwardingCandidate *&OtherCand = Iter->second;
273         // Already multiple stores forward to this load.
274         if (OtherCand == nullptr)
275           continue;
276
277         // Handle the very basic case when the two stores are in the same block
278         // so deciding which one forwards is easy.  The later one forwards as
279         // long as they both have a dependence distance of one to the load.
280         if (Cand.Store->getParent() == OtherCand->Store->getParent() &&
281             Cand.isDependenceDistanceOfOne(PSE, L) &&
282             OtherCand->isDependenceDistanceOfOne(PSE, L)) {
283           // They are in the same block, the later one will forward to the load.
284           if (getInstrIndex(OtherCand->Store) < getInstrIndex(Cand.Store))
285             OtherCand = &Cand;
286         } else
287           OtherCand = nullptr;
288       }
289     }
290
291     Candidates.remove_if([&](const StoreToLoadForwardingCandidate &Cand) {
292       if (LoadToSingleCand[Cand.Load] != &Cand) {
293         LLVM_DEBUG(
294             dbgs() << "Removing from candidates: \n"
295                    << Cand
296                    << "  The load may have multiple stores forwarding to "
297                    << "it\n");
298         return true;
299       }
300       return false;
301     });
302   }
303
304   /// Given two pointers operations by their RuntimePointerChecking
305   /// indices, return true if they require an alias check.
306   ///
307   /// We need a check if one is a pointer for a candidate load and the other is
308   /// a pointer for a possibly intervening store.
309   bool needsChecking(unsigned PtrIdx1, unsigned PtrIdx2,
310                      const SmallPtrSet<Value *, 4> &PtrsWrittenOnFwdingPath,
311                      const std::set<Value *> &CandLoadPtrs) {
312     Value *Ptr1 =
313         LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx1).PointerValue;
314     Value *Ptr2 =
315         LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx2).PointerValue;
316     return ((PtrsWrittenOnFwdingPath.count(Ptr1) && CandLoadPtrs.count(Ptr2)) ||
317             (PtrsWrittenOnFwdingPath.count(Ptr2) && CandLoadPtrs.count(Ptr1)));
318   }
319
320   /// Return pointers that are possibly written to on the path from a
321   /// forwarding store to a load.
322   ///
323   /// These pointers need to be alias-checked against the forwarding candidates.
324   SmallPtrSet<Value *, 4> findPointersWrittenOnForwardingPath(
325       const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
326     // From FirstStore to LastLoad neither of the elimination candidate loads
327     // should overlap with any of the stores.
328     //
329     // E.g.:
330     //
331     // st1 C[i]
332     // ld1 B[i] <-------,
333     // ld0 A[i] <----,  |              * LastLoad
334     // ...           |  |
335     // st2 E[i]      |  |
336     // st3 B[i+1] -- | -'              * FirstStore
337     // st0 A[i+1] ---'
338     // st4 D[i]
339     //
340     // st0 forwards to ld0 if the accesses in st4 and st1 don't overlap with
341     // ld0.
342
343     LoadInst *LastLoad =
344         std::max_element(Candidates.begin(), Candidates.end(),
345                          [&](const StoreToLoadForwardingCandidate &A,
346                              const StoreToLoadForwardingCandidate &B) {
347                            return getInstrIndex(A.Load) < getInstrIndex(B.Load);
348                          })
349             ->Load;
350     StoreInst *FirstStore =
351         std::min_element(Candidates.begin(), Candidates.end(),
352                          [&](const StoreToLoadForwardingCandidate &A,
353                              const StoreToLoadForwardingCandidate &B) {
354                            return getInstrIndex(A.Store) <
355                                   getInstrIndex(B.Store);
356                          })
357             ->Store;
358
359     // We're looking for stores after the first forwarding store until the end
360     // of the loop, then from the beginning of the loop until the last
361     // forwarded-to load.  Collect the pointer for the stores.
362     SmallPtrSet<Value *, 4> PtrsWrittenOnFwdingPath;
363
364     auto InsertStorePtr = [&](Instruction *I) {
365       if (auto *S = dyn_cast<StoreInst>(I))
366         PtrsWrittenOnFwdingPath.insert(S->getPointerOperand());
367     };
368     const auto &MemInstrs = LAI.getDepChecker().getMemoryInstructions();
369     std::for_each(MemInstrs.begin() + getInstrIndex(FirstStore) + 1,
370                   MemInstrs.end(), InsertStorePtr);
371     std::for_each(MemInstrs.begin(), &MemInstrs[getInstrIndex(LastLoad)],
372                   InsertStorePtr);
373
374     return PtrsWrittenOnFwdingPath;
375   }
376
377   /// Determine the pointer alias checks to prove that there are no
378   /// intervening stores.
379   SmallVector<RuntimePointerChecking::PointerCheck, 4> collectMemchecks(
380       const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
381
382     SmallPtrSet<Value *, 4> PtrsWrittenOnFwdingPath =
383         findPointersWrittenOnForwardingPath(Candidates);
384
385     // Collect the pointers of the candidate loads.
386     // FIXME: SmallPtrSet does not work with std::inserter.
387     std::set<Value *> CandLoadPtrs;
388     transform(Candidates,
389                    std::inserter(CandLoadPtrs, CandLoadPtrs.begin()),
390                    std::mem_fn(&StoreToLoadForwardingCandidate::getLoadPtr));
391
392     const auto &AllChecks = LAI.getRuntimePointerChecking()->getChecks();
393     SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks;
394
395     copy_if(AllChecks, std::back_inserter(Checks),
396             [&](const RuntimePointerChecking::PointerCheck &Check) {
397               for (auto PtrIdx1 : Check.first->Members)
398                 for (auto PtrIdx2 : Check.second->Members)
399                   if (needsChecking(PtrIdx1, PtrIdx2, PtrsWrittenOnFwdingPath,
400                                     CandLoadPtrs))
401                     return true;
402               return false;
403             });
404
405     LLVM_DEBUG(dbgs() << "\nPointer Checks (count: " << Checks.size()
406                       << "):\n");
407     LLVM_DEBUG(LAI.getRuntimePointerChecking()->printChecks(dbgs(), Checks));
408
409     return Checks;
410   }
411
412   /// Perform the transformation for a candidate.
413   void
414   propagateStoredValueToLoadUsers(const StoreToLoadForwardingCandidate &Cand,
415                                   SCEVExpander &SEE) {
416     // loop:
417     //      %x = load %gep_i
418     //         = ... %x
419     //      store %y, %gep_i_plus_1
420     //
421     // =>
422     //
423     // ph:
424     //      %x.initial = load %gep_0
425     // loop:
426     //      %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
427     //      %x = load %gep_i            <---- now dead
428     //         = ... %x.storeforward
429     //      store %y, %gep_i_plus_1
430
431     Value *Ptr = Cand.Load->getPointerOperand();
432     auto *PtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(Ptr));
433     auto *PH = L->getLoopPreheader();
434     Value *InitialPtr = SEE.expandCodeFor(PtrSCEV->getStart(), Ptr->getType(),
435                                           PH->getTerminator());
436     Value *Initial = new LoadInst(
437         Cand.Load->getType(), InitialPtr, "load_initial",
438         /* isVolatile */ false, Cand.Load->getAlignment(), PH->getTerminator());
439
440     PHINode *PHI = PHINode::Create(Initial->getType(), 2, "store_forwarded",
441                                    &L->getHeader()->front());
442     PHI->addIncoming(Initial, PH);
443     PHI->addIncoming(Cand.Store->getOperand(0), L->getLoopLatch());
444
445     Cand.Load->replaceAllUsesWith(PHI);
446   }
447
448   /// Top-level driver for each loop: find store->load forwarding
449   /// candidates, add run-time checks and perform transformation.
450   bool processLoop() {
451     LLVM_DEBUG(dbgs() << "\nIn \"" << L->getHeader()->getParent()->getName()
452                       << "\" checking " << *L << "\n");
453
454     // Look for store-to-load forwarding cases across the
455     // backedge. E.g.:
456     //
457     // loop:
458     //      %x = load %gep_i
459     //         = ... %x
460     //      store %y, %gep_i_plus_1
461     //
462     // =>
463     //
464     // ph:
465     //      %x.initial = load %gep_0
466     // loop:
467     //      %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
468     //      %x = load %gep_i            <---- now dead
469     //         = ... %x.storeforward
470     //      store %y, %gep_i_plus_1
471
472     // First start with store->load dependences.
473     auto StoreToLoadDependences = findStoreToLoadDependences(LAI);
474     if (StoreToLoadDependences.empty())
475       return false;
476
477     // Generate an index for each load and store according to the original
478     // program order.  This will be used later.
479     InstOrder = LAI.getDepChecker().generateInstructionOrderMap();
480
481     // To keep things simple for now, remove those where the load is potentially
482     // fed by multiple stores.
483     removeDependencesFromMultipleStores(StoreToLoadDependences);
484     if (StoreToLoadDependences.empty())
485       return false;
486
487     // Filter the candidates further.
488     SmallVector<StoreToLoadForwardingCandidate, 4> Candidates;
489     unsigned NumForwarding = 0;
490     for (const StoreToLoadForwardingCandidate Cand : StoreToLoadDependences) {
491       LLVM_DEBUG(dbgs() << "Candidate " << Cand);
492
493       // Make sure that the stored values is available everywhere in the loop in
494       // the next iteration.
495       if (!doesStoreDominatesAllLatches(Cand.Store->getParent(), L, DT))
496         continue;
497
498       // If the load is conditional we can't hoist its 0-iteration instance to
499       // the preheader because that would make it unconditional.  Thus we would
500       // access a memory location that the original loop did not access.
501       if (isLoadConditional(Cand.Load, L))
502         continue;
503
504       // Check whether the SCEV difference is the same as the induction step,
505       // thus we load the value in the next iteration.
506       if (!Cand.isDependenceDistanceOfOne(PSE, L))
507         continue;
508
509       ++NumForwarding;
510       LLVM_DEBUG(
511           dbgs()
512           << NumForwarding
513           << ". Valid store-to-load forwarding across the loop backedge\n");
514       Candidates.push_back(Cand);
515     }
516     if (Candidates.empty())
517       return false;
518
519     // Check intervening may-alias stores.  These need runtime checks for alias
520     // disambiguation.
521     SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks =
522         collectMemchecks(Candidates);
523
524     // Too many checks are likely to outweigh the benefits of forwarding.
525     if (Checks.size() > Candidates.size() * CheckPerElim) {
526       LLVM_DEBUG(dbgs() << "Too many run-time checks needed.\n");
527       return false;
528     }
529
530     if (LAI.getPSE().getUnionPredicate().getComplexity() >
531         LoadElimSCEVCheckThreshold) {
532       LLVM_DEBUG(dbgs() << "Too many SCEV run-time checks needed.\n");
533       return false;
534     }
535
536     if (!Checks.empty() || !LAI.getPSE().getUnionPredicate().isAlwaysTrue()) {
537       if (LAI.hasConvergentOp()) {
538         LLVM_DEBUG(dbgs() << "Versioning is needed but not allowed with "
539                              "convergent calls\n");
540         return false;
541       }
542
543       auto *HeaderBB = L->getHeader();
544       auto *F = HeaderBB->getParent();
545       bool OptForSize = F->hasOptSize() ||
546                         llvm::shouldOptimizeForSize(HeaderBB, PSI, BFI);
547       if (OptForSize) {
548         LLVM_DEBUG(
549             dbgs() << "Versioning is needed but not allowed when optimizing "
550                       "for size.\n");
551         return false;
552       }
553
554       if (!L->isLoopSimplifyForm()) {
555         LLVM_DEBUG(dbgs() << "Loop is not is loop-simplify form");
556         return false;
557       }
558
559       // Point of no-return, start the transformation.  First, version the loop
560       // if necessary.
561
562       LoopVersioning LV(LAI, L, LI, DT, PSE.getSE(), false);
563       LV.setAliasChecks(std::move(Checks));
564       LV.setSCEVChecks(LAI.getPSE().getUnionPredicate());
565       LV.versionLoop();
566     }
567
568     // Next, propagate the value stored by the store to the users of the load.
569     // Also for the first iteration, generate the initial value of the load.
570     SCEVExpander SEE(*PSE.getSE(), L->getHeader()->getModule()->getDataLayout(),
571                      "storeforward");
572     for (const auto &Cand : Candidates)
573       propagateStoredValueToLoadUsers(Cand, SEE);
574     NumLoopLoadEliminted += NumForwarding;
575
576     return true;
577   }
578
579 private:
580   Loop *L;
581
582   /// Maps the load/store instructions to their index according to
583   /// program order.
584   DenseMap<Instruction *, unsigned> InstOrder;
585
586   // Analyses used.
587   LoopInfo *LI;
588   const LoopAccessInfo &LAI;
589   DominatorTree *DT;
590   BlockFrequencyInfo *BFI;
591   ProfileSummaryInfo *PSI;
592   PredicatedScalarEvolution PSE;
593 };
594
595 } // end anonymous namespace
596
597 static bool
598 eliminateLoadsAcrossLoops(Function &F, LoopInfo &LI, DominatorTree &DT,
599                           BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
600                           function_ref<const LoopAccessInfo &(Loop &)> GetLAI) {
601   // Build up a worklist of inner-loops to transform to avoid iterator
602   // invalidation.
603   // FIXME: This logic comes from other passes that actually change the loop
604   // nest structure. It isn't clear this is necessary (or useful) for a pass
605   // which merely optimizes the use of loads in a loop.
606   SmallVector<Loop *, 8> Worklist;
607
608   for (Loop *TopLevelLoop : LI)
609     for (Loop *L : depth_first(TopLevelLoop))
610       // We only handle inner-most loops.
611       if (L->empty())
612         Worklist.push_back(L);
613
614   // Now walk the identified inner loops.
615   bool Changed = false;
616   for (Loop *L : Worklist) {
617     // The actual work is performed by LoadEliminationForLoop.
618     LoadEliminationForLoop LEL(L, &LI, GetLAI(*L), &DT, BFI, PSI);
619     Changed |= LEL.processLoop();
620   }
621   return Changed;
622 }
623
624 namespace {
625
626 /// The pass.  Most of the work is delegated to the per-loop
627 /// LoadEliminationForLoop class.
628 class LoopLoadElimination : public FunctionPass {
629 public:
630   static char ID;
631
632   LoopLoadElimination() : FunctionPass(ID) {
633     initializeLoopLoadEliminationPass(*PassRegistry::getPassRegistry());
634   }
635
636   bool runOnFunction(Function &F) override {
637     if (skipFunction(F))
638       return false;
639
640     auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
641     auto &LAA = getAnalysis<LoopAccessLegacyAnalysis>();
642     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
643     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
644     auto *BFI = (PSI && PSI->hasProfileSummary()) ?
645                 &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
646                 nullptr;
647
648     // Process each loop nest in the function.
649     return eliminateLoadsAcrossLoops(
650         F, LI, DT, BFI, PSI,
651         [&LAA](Loop &L) -> const LoopAccessInfo & { return LAA.getInfo(&L); });
652   }
653
654   void getAnalysisUsage(AnalysisUsage &AU) const override {
655     AU.addRequiredID(LoopSimplifyID);
656     AU.addRequired<LoopInfoWrapperPass>();
657     AU.addPreserved<LoopInfoWrapperPass>();
658     AU.addRequired<LoopAccessLegacyAnalysis>();
659     AU.addRequired<ScalarEvolutionWrapperPass>();
660     AU.addRequired<DominatorTreeWrapperPass>();
661     AU.addPreserved<DominatorTreeWrapperPass>();
662     AU.addPreserved<GlobalsAAWrapperPass>();
663     AU.addRequired<ProfileSummaryInfoWrapperPass>();
664     LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
665   }
666 };
667
668 } // end anonymous namespace
669
670 char LoopLoadElimination::ID;
671
672 static const char LLE_name[] = "Loop Load Elimination";
673
674 INITIALIZE_PASS_BEGIN(LoopLoadElimination, LLE_OPTION, LLE_name, false, false)
675 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
676 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
677 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
678 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
679 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
680 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
681 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
682 INITIALIZE_PASS_END(LoopLoadElimination, LLE_OPTION, LLE_name, false, false)
683
684 FunctionPass *llvm::createLoopLoadEliminationPass() {
685   return new LoopLoadElimination();
686 }
687
688 PreservedAnalyses LoopLoadEliminationPass::run(Function &F,
689                                                FunctionAnalysisManager &AM) {
690   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
691   auto &LI = AM.getResult<LoopAnalysis>(F);
692   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
693   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
694   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
695   auto &AA = AM.getResult<AAManager>(F);
696   auto &AC = AM.getResult<AssumptionAnalysis>(F);
697   auto &MAM = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager();
698   auto *PSI = MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
699   auto *BFI = (PSI && PSI->hasProfileSummary()) ?
700       &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
701   MemorySSA *MSSA = EnableMSSALoopDependency
702                         ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA()
703                         : nullptr;
704
705   auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
706   bool Changed = eliminateLoadsAcrossLoops(
707       F, LI, DT, BFI, PSI, [&](Loop &L) -> const LoopAccessInfo & {
708         LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, MSSA};
709         return LAM.getResult<LoopAccessAnalysis>(L, AR);
710       });
711
712   if (!Changed)
713     return PreservedAnalyses::all();
714
715   PreservedAnalyses PA;
716   return PA;
717 }