]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/Scalar/LoopLoadElimination.cpp
Merge bmake-20161212
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / Scalar / LoopLoadElimination.cpp
1 //===- LoopLoadElimination.cpp - Loop Load Elimination Pass ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implement a loop-aware load elimination pass.
11 //
12 // It uses LoopAccessAnalysis to identify loop-carried dependences with a
13 // distance of one between stores and loads.  These form the candidates for the
14 // transformation.  The source value of each store then propagated to the user
15 // of the corresponding load.  This makes the load dead.
16 //
17 // The pass can also version the loop and add memchecks in order to prove that
18 // may-aliasing stores can't change the value in memory before it's read by the
19 // load.
20 //
21 //===----------------------------------------------------------------------===//
22
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/LoopAccessAnalysis.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/ScalarEvolutionExpander.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/Module.h"
29 #include "llvm/Pass.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Transforms/Scalar.h"
32 #include "llvm/Transforms/Utils/LoopVersioning.h"
33 #include <forward_list>
34
35 #define LLE_OPTION "loop-load-elim"
36 #define DEBUG_TYPE LLE_OPTION
37
38 using namespace llvm;
39
40 static cl::opt<unsigned> CheckPerElim(
41     "runtime-check-per-loop-load-elim", cl::Hidden,
42     cl::desc("Max number of memchecks allowed per eliminated load on average"),
43     cl::init(1));
44
45 static cl::opt<unsigned> LoadElimSCEVCheckThreshold(
46     "loop-load-elimination-scev-check-threshold", cl::init(8), cl::Hidden,
47     cl::desc("The maximum number of SCEV checks allowed for Loop "
48              "Load Elimination"));
49
50
51 STATISTIC(NumLoopLoadEliminted, "Number of loads eliminated by LLE");
52
53 namespace {
54
55 /// \brief Represent a store-to-forwarding candidate.
56 struct StoreToLoadForwardingCandidate {
57   LoadInst *Load;
58   StoreInst *Store;
59
60   StoreToLoadForwardingCandidate(LoadInst *Load, StoreInst *Store)
61       : Load(Load), Store(Store) {}
62
63   /// \brief Return true if the dependence from the store to the load has a
64   /// distance of one.  E.g. A[i+1] = A[i]
65   bool isDependenceDistanceOfOne(PredicatedScalarEvolution &PSE,
66                                  Loop *L) const {
67     Value *LoadPtr = Load->getPointerOperand();
68     Value *StorePtr = Store->getPointerOperand();
69     Type *LoadPtrType = LoadPtr->getType();
70     Type *LoadType = LoadPtrType->getPointerElementType();
71
72     assert(LoadPtrType->getPointerAddressSpace() ==
73                StorePtr->getType()->getPointerAddressSpace() &&
74            LoadType == StorePtr->getType()->getPointerElementType() &&
75            "Should be a known dependence");
76
77     // Currently we only support accesses with unit stride.  FIXME: we should be
78     // able to handle non unit stirde as well as long as the stride is equal to
79     // the dependence distance.
80     if (getPtrStride(PSE, LoadPtr, L) != 1 ||
81         getPtrStride(PSE, StorePtr, L) != 1)
82       return false;
83
84     auto &DL = Load->getParent()->getModule()->getDataLayout();
85     unsigned TypeByteSize = DL.getTypeAllocSize(const_cast<Type *>(LoadType));
86
87     auto *LoadPtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(LoadPtr));
88     auto *StorePtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(StorePtr));
89
90     // We don't need to check non-wrapping here because forward/backward
91     // dependence wouldn't be valid if these weren't monotonic accesses.
92     auto *Dist = cast<SCEVConstant>(
93         PSE.getSE()->getMinusSCEV(StorePtrSCEV, LoadPtrSCEV));
94     const APInt &Val = Dist->getAPInt();
95     return Val == TypeByteSize;
96   }
97
98   Value *getLoadPtr() const { return Load->getPointerOperand(); }
99
100 #ifndef NDEBUG
101   friend raw_ostream &operator<<(raw_ostream &OS,
102                                  const StoreToLoadForwardingCandidate &Cand) {
103     OS << *Cand.Store << " -->\n";
104     OS.indent(2) << *Cand.Load << "\n";
105     return OS;
106   }
107 #endif
108 };
109
110 /// \brief Check if the store dominates all latches, so as long as there is no
111 /// intervening store this value will be loaded in the next iteration.
112 bool doesStoreDominatesAllLatches(BasicBlock *StoreBlock, Loop *L,
113                                   DominatorTree *DT) {
114   SmallVector<BasicBlock *, 8> Latches;
115   L->getLoopLatches(Latches);
116   return std::all_of(Latches.begin(), Latches.end(),
117                      [&](const BasicBlock *Latch) {
118                        return DT->dominates(StoreBlock, Latch);
119                      });
120 }
121
122 /// \brief Return true if the load is not executed on all paths in the loop.
123 static bool isLoadConditional(LoadInst *Load, Loop *L) {
124   return Load->getParent() != L->getHeader();
125 }
126
127 /// \brief The per-loop class that does most of the work.
128 class LoadEliminationForLoop {
129 public:
130   LoadEliminationForLoop(Loop *L, LoopInfo *LI, const LoopAccessInfo &LAI,
131                          DominatorTree *DT)
132       : L(L), LI(LI), LAI(LAI), DT(DT), PSE(LAI.getPSE()) {}
133
134   /// \brief Look through the loop-carried and loop-independent dependences in
135   /// this loop and find store->load dependences.
136   ///
137   /// Note that no candidate is returned if LAA has failed to analyze the loop
138   /// (e.g. if it's not bottom-tested, contains volatile memops, etc.)
139   std::forward_list<StoreToLoadForwardingCandidate>
140   findStoreToLoadDependences(const LoopAccessInfo &LAI) {
141     std::forward_list<StoreToLoadForwardingCandidate> Candidates;
142
143     const auto *Deps = LAI.getDepChecker().getDependences();
144     if (!Deps)
145       return Candidates;
146
147     // Find store->load dependences (consequently true dep).  Both lexically
148     // forward and backward dependences qualify.  Disqualify loads that have
149     // other unknown dependences.
150
151     SmallSet<Instruction *, 4> LoadsWithUnknownDepedence;
152
153     for (const auto &Dep : *Deps) {
154       Instruction *Source = Dep.getSource(LAI);
155       Instruction *Destination = Dep.getDestination(LAI);
156
157       if (Dep.Type == MemoryDepChecker::Dependence::Unknown) {
158         if (isa<LoadInst>(Source))
159           LoadsWithUnknownDepedence.insert(Source);
160         if (isa<LoadInst>(Destination))
161           LoadsWithUnknownDepedence.insert(Destination);
162         continue;
163       }
164
165       if (Dep.isBackward())
166         // Note that the designations source and destination follow the program
167         // order, i.e. source is always first.  (The direction is given by the
168         // DepType.)
169         std::swap(Source, Destination);
170       else
171         assert(Dep.isForward() && "Needs to be a forward dependence");
172
173       auto *Store = dyn_cast<StoreInst>(Source);
174       if (!Store)
175         continue;
176       auto *Load = dyn_cast<LoadInst>(Destination);
177       if (!Load)
178         continue;
179
180       // Only progagate the value if they are of the same type.
181       if (Store->getPointerOperand()->getType() !=
182           Load->getPointerOperand()->getType())
183         continue;
184
185       Candidates.emplace_front(Load, Store);
186     }
187
188     if (!LoadsWithUnknownDepedence.empty())
189       Candidates.remove_if([&](const StoreToLoadForwardingCandidate &C) {
190         return LoadsWithUnknownDepedence.count(C.Load);
191       });
192
193     return Candidates;
194   }
195
196   /// \brief Return the index of the instruction according to program order.
197   unsigned getInstrIndex(Instruction *Inst) {
198     auto I = InstOrder.find(Inst);
199     assert(I != InstOrder.end() && "No index for instruction");
200     return I->second;
201   }
202
203   /// \brief If a load has multiple candidates associated (i.e. different
204   /// stores), it means that it could be forwarding from multiple stores
205   /// depending on control flow.  Remove these candidates.
206   ///
207   /// Here, we rely on LAA to include the relevant loop-independent dependences.
208   /// LAA is known to omit these in the very simple case when the read and the
209   /// write within an alias set always takes place using the *same* pointer.
210   ///
211   /// However, we know that this is not the case here, i.e. we can rely on LAA
212   /// to provide us with loop-independent dependences for the cases we're
213   /// interested.  Consider the case for example where a loop-independent
214   /// dependece S1->S2 invalidates the forwarding S3->S2.
215   ///
216   ///         A[i]   = ...   (S1)
217   ///         ...    = A[i]  (S2)
218   ///         A[i+1] = ...   (S3)
219   ///
220   /// LAA will perform dependence analysis here because there are two
221   /// *different* pointers involved in the same alias set (&A[i] and &A[i+1]).
222   void removeDependencesFromMultipleStores(
223       std::forward_list<StoreToLoadForwardingCandidate> &Candidates) {
224     // If Store is nullptr it means that we have multiple stores forwarding to
225     // this store.
226     typedef DenseMap<LoadInst *, const StoreToLoadForwardingCandidate *>
227         LoadToSingleCandT;
228     LoadToSingleCandT LoadToSingleCand;
229
230     for (const auto &Cand : Candidates) {
231       bool NewElt;
232       LoadToSingleCandT::iterator Iter;
233
234       std::tie(Iter, NewElt) =
235           LoadToSingleCand.insert(std::make_pair(Cand.Load, &Cand));
236       if (!NewElt) {
237         const StoreToLoadForwardingCandidate *&OtherCand = Iter->second;
238         // Already multiple stores forward to this load.
239         if (OtherCand == nullptr)
240           continue;
241
242         // Handle the very basic case when the two stores are in the same block
243         // so deciding which one forwards is easy.  The later one forwards as
244         // long as they both have a dependence distance of one to the load.
245         if (Cand.Store->getParent() == OtherCand->Store->getParent() &&
246             Cand.isDependenceDistanceOfOne(PSE, L) &&
247             OtherCand->isDependenceDistanceOfOne(PSE, L)) {
248           // They are in the same block, the later one will forward to the load.
249           if (getInstrIndex(OtherCand->Store) < getInstrIndex(Cand.Store))
250             OtherCand = &Cand;
251         } else
252           OtherCand = nullptr;
253       }
254     }
255
256     Candidates.remove_if([&](const StoreToLoadForwardingCandidate &Cand) {
257       if (LoadToSingleCand[Cand.Load] != &Cand) {
258         DEBUG(dbgs() << "Removing from candidates: \n" << Cand
259                      << "  The load may have multiple stores forwarding to "
260                      << "it\n");
261         return true;
262       }
263       return false;
264     });
265   }
266
267   /// \brief Given two pointers operations by their RuntimePointerChecking
268   /// indices, return true if they require an alias check.
269   ///
270   /// We need a check if one is a pointer for a candidate load and the other is
271   /// a pointer for a possibly intervening store.
272   bool needsChecking(unsigned PtrIdx1, unsigned PtrIdx2,
273                      const SmallSet<Value *, 4> &PtrsWrittenOnFwdingPath,
274                      const std::set<Value *> &CandLoadPtrs) {
275     Value *Ptr1 =
276         LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx1).PointerValue;
277     Value *Ptr2 =
278         LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx2).PointerValue;
279     return ((PtrsWrittenOnFwdingPath.count(Ptr1) && CandLoadPtrs.count(Ptr2)) ||
280             (PtrsWrittenOnFwdingPath.count(Ptr2) && CandLoadPtrs.count(Ptr1)));
281   }
282
283   /// \brief Return pointers that are possibly written to on the path from a
284   /// forwarding store to a load.
285   ///
286   /// These pointers need to be alias-checked against the forwarding candidates.
287   SmallSet<Value *, 4> findPointersWrittenOnForwardingPath(
288       const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
289     // From FirstStore to LastLoad neither of the elimination candidate loads
290     // should overlap with any of the stores.
291     //
292     // E.g.:
293     //
294     // st1 C[i]
295     // ld1 B[i] <-------,
296     // ld0 A[i] <----,  |              * LastLoad
297     // ...           |  |
298     // st2 E[i]      |  |
299     // st3 B[i+1] -- | -'              * FirstStore
300     // st0 A[i+1] ---'
301     // st4 D[i]
302     //
303     // st0 forwards to ld0 if the accesses in st4 and st1 don't overlap with
304     // ld0.
305
306     LoadInst *LastLoad =
307         std::max_element(Candidates.begin(), Candidates.end(),
308                          [&](const StoreToLoadForwardingCandidate &A,
309                              const StoreToLoadForwardingCandidate &B) {
310                            return getInstrIndex(A.Load) < getInstrIndex(B.Load);
311                          })
312             ->Load;
313     StoreInst *FirstStore =
314         std::min_element(Candidates.begin(), Candidates.end(),
315                          [&](const StoreToLoadForwardingCandidate &A,
316                              const StoreToLoadForwardingCandidate &B) {
317                            return getInstrIndex(A.Store) <
318                                   getInstrIndex(B.Store);
319                          })
320             ->Store;
321
322     // We're looking for stores after the first forwarding store until the end
323     // of the loop, then from the beginning of the loop until the last
324     // forwarded-to load.  Collect the pointer for the stores.
325     SmallSet<Value *, 4> PtrsWrittenOnFwdingPath;
326
327     auto InsertStorePtr = [&](Instruction *I) {
328       if (auto *S = dyn_cast<StoreInst>(I))
329         PtrsWrittenOnFwdingPath.insert(S->getPointerOperand());
330     };
331     const auto &MemInstrs = LAI.getDepChecker().getMemoryInstructions();
332     std::for_each(MemInstrs.begin() + getInstrIndex(FirstStore) + 1,
333                   MemInstrs.end(), InsertStorePtr);
334     std::for_each(MemInstrs.begin(), &MemInstrs[getInstrIndex(LastLoad)],
335                   InsertStorePtr);
336
337     return PtrsWrittenOnFwdingPath;
338   }
339
340   /// \brief Determine the pointer alias checks to prove that there are no
341   /// intervening stores.
342   SmallVector<RuntimePointerChecking::PointerCheck, 4> collectMemchecks(
343       const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
344
345     SmallSet<Value *, 4> PtrsWrittenOnFwdingPath =
346         findPointersWrittenOnForwardingPath(Candidates);
347
348     // Collect the pointers of the candidate loads.
349     // FIXME: SmallSet does not work with std::inserter.
350     std::set<Value *> CandLoadPtrs;
351     std::transform(Candidates.begin(), Candidates.end(),
352                    std::inserter(CandLoadPtrs, CandLoadPtrs.begin()),
353                    std::mem_fn(&StoreToLoadForwardingCandidate::getLoadPtr));
354
355     const auto &AllChecks = LAI.getRuntimePointerChecking()->getChecks();
356     SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks;
357
358     std::copy_if(AllChecks.begin(), AllChecks.end(), std::back_inserter(Checks),
359                  [&](const RuntimePointerChecking::PointerCheck &Check) {
360                    for (auto PtrIdx1 : Check.first->Members)
361                      for (auto PtrIdx2 : Check.second->Members)
362                        if (needsChecking(PtrIdx1, PtrIdx2,
363                                          PtrsWrittenOnFwdingPath, CandLoadPtrs))
364                          return true;
365                    return false;
366                  });
367
368     DEBUG(dbgs() << "\nPointer Checks (count: " << Checks.size() << "):\n");
369     DEBUG(LAI.getRuntimePointerChecking()->printChecks(dbgs(), Checks));
370
371     return Checks;
372   }
373
374   /// \brief Perform the transformation for a candidate.
375   void
376   propagateStoredValueToLoadUsers(const StoreToLoadForwardingCandidate &Cand,
377                                   SCEVExpander &SEE) {
378     //
379     // loop:
380     //      %x = load %gep_i
381     //         = ... %x
382     //      store %y, %gep_i_plus_1
383     //
384     // =>
385     //
386     // ph:
387     //      %x.initial = load %gep_0
388     // loop:
389     //      %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
390     //      %x = load %gep_i            <---- now dead
391     //         = ... %x.storeforward
392     //      store %y, %gep_i_plus_1
393
394     Value *Ptr = Cand.Load->getPointerOperand();
395     auto *PtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(Ptr));
396     auto *PH = L->getLoopPreheader();
397     Value *InitialPtr = SEE.expandCodeFor(PtrSCEV->getStart(), Ptr->getType(),
398                                           PH->getTerminator());
399     Value *Initial =
400         new LoadInst(InitialPtr, "load_initial", PH->getTerminator());
401     PHINode *PHI = PHINode::Create(Initial->getType(), 2, "store_forwarded",
402                                    &L->getHeader()->front());
403     PHI->addIncoming(Initial, PH);
404     PHI->addIncoming(Cand.Store->getOperand(0), L->getLoopLatch());
405
406     Cand.Load->replaceAllUsesWith(PHI);
407   }
408
409   /// \brief Top-level driver for each loop: find store->load forwarding
410   /// candidates, add run-time checks and perform transformation.
411   bool processLoop() {
412     DEBUG(dbgs() << "\nIn \"" << L->getHeader()->getParent()->getName()
413                  << "\" checking " << *L << "\n");
414     // Look for store-to-load forwarding cases across the
415     // backedge. E.g.:
416     //
417     // loop:
418     //      %x = load %gep_i
419     //         = ... %x
420     //      store %y, %gep_i_plus_1
421     //
422     // =>
423     //
424     // ph:
425     //      %x.initial = load %gep_0
426     // loop:
427     //      %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
428     //      %x = load %gep_i            <---- now dead
429     //         = ... %x.storeforward
430     //      store %y, %gep_i_plus_1
431
432     // First start with store->load dependences.
433     auto StoreToLoadDependences = findStoreToLoadDependences(LAI);
434     if (StoreToLoadDependences.empty())
435       return false;
436
437     // Generate an index for each load and store according to the original
438     // program order.  This will be used later.
439     InstOrder = LAI.getDepChecker().generateInstructionOrderMap();
440
441     // To keep things simple for now, remove those where the load is potentially
442     // fed by multiple stores.
443     removeDependencesFromMultipleStores(StoreToLoadDependences);
444     if (StoreToLoadDependences.empty())
445       return false;
446
447     // Filter the candidates further.
448     SmallVector<StoreToLoadForwardingCandidate, 4> Candidates;
449     unsigned NumForwarding = 0;
450     for (const StoreToLoadForwardingCandidate Cand : StoreToLoadDependences) {
451       DEBUG(dbgs() << "Candidate " << Cand);
452
453       // Make sure that the stored values is available everywhere in the loop in
454       // the next iteration.
455       if (!doesStoreDominatesAllLatches(Cand.Store->getParent(), L, DT))
456         continue;
457
458       // If the load is conditional we can't hoist its 0-iteration instance to
459       // the preheader because that would make it unconditional.  Thus we would
460       // access a memory location that the original loop did not access.
461       if (isLoadConditional(Cand.Load, L))
462         continue;
463
464       // Check whether the SCEV difference is the same as the induction step,
465       // thus we load the value in the next iteration.
466       if (!Cand.isDependenceDistanceOfOne(PSE, L))
467         continue;
468
469       ++NumForwarding;
470       DEBUG(dbgs()
471             << NumForwarding
472             << ". Valid store-to-load forwarding across the loop backedge\n");
473       Candidates.push_back(Cand);
474     }
475     if (Candidates.empty())
476       return false;
477
478     // Check intervening may-alias stores.  These need runtime checks for alias
479     // disambiguation.
480     SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks =
481         collectMemchecks(Candidates);
482
483     // Too many checks are likely to outweigh the benefits of forwarding.
484     if (Checks.size() > Candidates.size() * CheckPerElim) {
485       DEBUG(dbgs() << "Too many run-time checks needed.\n");
486       return false;
487     }
488
489     if (LAI.getPSE().getUnionPredicate().getComplexity() >
490         LoadElimSCEVCheckThreshold) {
491       DEBUG(dbgs() << "Too many SCEV run-time checks needed.\n");
492       return false;
493     }
494
495     if (!Checks.empty() || !LAI.getPSE().getUnionPredicate().isAlwaysTrue()) {
496       if (L->getHeader()->getParent()->optForSize()) {
497         DEBUG(dbgs() << "Versioning is needed but not allowed when optimizing "
498                         "for size.\n");
499         return false;
500       }
501
502       // Point of no-return, start the transformation.  First, version the loop
503       // if necessary.
504
505       LoopVersioning LV(LAI, L, LI, DT, PSE.getSE(), false);
506       LV.setAliasChecks(std::move(Checks));
507       LV.setSCEVChecks(LAI.getPSE().getUnionPredicate());
508       LV.versionLoop();
509     }
510
511     // Next, propagate the value stored by the store to the users of the load.
512     // Also for the first iteration, generate the initial value of the load.
513     SCEVExpander SEE(*PSE.getSE(), L->getHeader()->getModule()->getDataLayout(),
514                      "storeforward");
515     for (const auto &Cand : Candidates)
516       propagateStoredValueToLoadUsers(Cand, SEE);
517     NumLoopLoadEliminted += NumForwarding;
518
519     return true;
520   }
521
522 private:
523   Loop *L;
524
525   /// \brief Maps the load/store instructions to their index according to
526   /// program order.
527   DenseMap<Instruction *, unsigned> InstOrder;
528
529   // Analyses used.
530   LoopInfo *LI;
531   const LoopAccessInfo &LAI;
532   DominatorTree *DT;
533   PredicatedScalarEvolution PSE;
534 };
535
536 /// \brief The pass.  Most of the work is delegated to the per-loop
537 /// LoadEliminationForLoop class.
538 class LoopLoadElimination : public FunctionPass {
539 public:
540   LoopLoadElimination() : FunctionPass(ID) {
541     initializeLoopLoadEliminationPass(*PassRegistry::getPassRegistry());
542   }
543
544   bool runOnFunction(Function &F) override {
545     if (skipFunction(F))
546       return false;
547
548     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
549     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
550     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
551
552     // Build up a worklist of inner-loops to vectorize. This is necessary as the
553     // act of distributing a loop creates new loops and can invalidate iterators
554     // across the loops.
555     SmallVector<Loop *, 8> Worklist;
556
557     for (Loop *TopLevelLoop : *LI)
558       for (Loop *L : depth_first(TopLevelLoop))
559         // We only handle inner-most loops.
560         if (L->empty())
561           Worklist.push_back(L);
562
563     // Now walk the identified inner loops.
564     bool Changed = false;
565     for (Loop *L : Worklist) {
566       const LoopAccessInfo &LAI = LAA->getInfo(L);
567       // The actual work is performed by LoadEliminationForLoop.
568       LoadEliminationForLoop LEL(L, LI, LAI, DT);
569       Changed |= LEL.processLoop();
570     }
571
572     // Process each loop nest in the function.
573     return Changed;
574   }
575
576   void getAnalysisUsage(AnalysisUsage &AU) const override {
577     AU.addRequiredID(LoopSimplifyID);
578     AU.addRequired<LoopInfoWrapperPass>();
579     AU.addPreserved<LoopInfoWrapperPass>();
580     AU.addRequired<LoopAccessLegacyAnalysis>();
581     AU.addRequired<ScalarEvolutionWrapperPass>();
582     AU.addRequired<DominatorTreeWrapperPass>();
583     AU.addPreserved<DominatorTreeWrapperPass>();
584   }
585
586   static char ID;
587 };
588 }
589
590 char LoopLoadElimination::ID;
591 static const char LLE_name[] = "Loop Load Elimination";
592
593 INITIALIZE_PASS_BEGIN(LoopLoadElimination, LLE_OPTION, LLE_name, false, false)
594 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
595 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
596 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
597 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
598 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
599 INITIALIZE_PASS_END(LoopLoadElimination, LLE_OPTION, LLE_name, false, false)
600
601 namespace llvm {
602 FunctionPass *createLoopLoadEliminationPass() {
603   return new LoopLoadElimination();
604 }
605 }