]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / Scalar / LoopUnrollPass.cpp
1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements a simple loop unroller.  It works best when loops have
11 // been canonicalized by the -indvars pass, allowing it to determine the trip
12 // counts of loops easily.
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Transforms/Scalar/LoopUnrollPass.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseMapInfo.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/AssumptionCache.h"
27 #include "llvm/Analysis/CodeMetrics.h"
28 #include "llvm/Analysis/LoopAnalysisManager.h"
29 #include "llvm/Analysis/LoopInfo.h"
30 #include "llvm/Analysis/LoopPass.h"
31 #include "llvm/Analysis/LoopUnrollAnalyzer.h"
32 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33 #include "llvm/Analysis/ProfileSummaryInfo.h"
34 #include "llvm/Analysis/ScalarEvolution.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DiagnosticInfo.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Metadata.h"
47 #include "llvm/IR/PassManager.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Transforms/Scalar.h"
55 #include "llvm/Transforms/Scalar/LoopPassManager.h"
56 #include "llvm/Transforms/Utils.h"
57 #include "llvm/Transforms/Utils/LoopSimplify.h"
58 #include "llvm/Transforms/Utils/LoopUtils.h"
59 #include "llvm/Transforms/Utils/UnrollLoop.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <cstdint>
63 #include <limits>
64 #include <string>
65 #include <tuple>
66 #include <utility>
67
68 using namespace llvm;
69
70 #define DEBUG_TYPE "loop-unroll"
71
72 static cl::opt<unsigned>
73     UnrollThreshold("unroll-threshold", cl::Hidden,
74                     cl::desc("The cost threshold for loop unrolling"));
75
76 static cl::opt<unsigned> UnrollPartialThreshold(
77     "unroll-partial-threshold", cl::Hidden,
78     cl::desc("The cost threshold for partial loop unrolling"));
79
80 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost(
81     "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden,
82     cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied "
83              "to the threshold when aggressively unrolling a loop due to the "
84              "dynamic cost savings. If completely unrolling a loop will reduce "
85              "the total runtime from X to Y, we boost the loop unroll "
86              "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, "
87              "X/Y). This limit avoids excessive code bloat."));
88
89 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
90     "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden,
91     cl::desc("Don't allow loop unrolling to simulate more than this number of"
92              "iterations when checking full unroll profitability"));
93
94 static cl::opt<unsigned> UnrollCount(
95     "unroll-count", cl::Hidden,
96     cl::desc("Use this unroll count for all loops including those with "
97              "unroll_count pragma values, for testing purposes"));
98
99 static cl::opt<unsigned> UnrollMaxCount(
100     "unroll-max-count", cl::Hidden,
101     cl::desc("Set the max unroll count for partial and runtime unrolling, for"
102              "testing purposes"));
103
104 static cl::opt<unsigned> UnrollFullMaxCount(
105     "unroll-full-max-count", cl::Hidden,
106     cl::desc(
107         "Set the max unroll count for full unrolling, for testing purposes"));
108
109 static cl::opt<unsigned> UnrollPeelCount(
110     "unroll-peel-count", cl::Hidden,
111     cl::desc("Set the unroll peeling count, for testing purposes"));
112
113 static cl::opt<bool>
114     UnrollAllowPartial("unroll-allow-partial", cl::Hidden,
115                        cl::desc("Allows loops to be partially unrolled until "
116                                 "-unroll-threshold loop size is reached."));
117
118 static cl::opt<bool> UnrollAllowRemainder(
119     "unroll-allow-remainder", cl::Hidden,
120     cl::desc("Allow generation of a loop remainder (extra iterations) "
121              "when unrolling a loop."));
122
123 static cl::opt<bool>
124     UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden,
125                   cl::desc("Unroll loops with run-time trip counts"));
126
127 static cl::opt<unsigned> UnrollMaxUpperBound(
128     "unroll-max-upperbound", cl::init(8), cl::Hidden,
129     cl::desc(
130         "The max of trip count upper bound that is considered in unrolling"));
131
132 static cl::opt<unsigned> PragmaUnrollThreshold(
133     "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
134     cl::desc("Unrolled size limit for loops with an unroll(full) or "
135              "unroll_count pragma."));
136
137 static cl::opt<unsigned> FlatLoopTripCountThreshold(
138     "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden,
139     cl::desc("If the runtime tripcount for the loop is lower than the "
140              "threshold, the loop is considered as flat and will be less "
141              "aggressively unrolled."));
142
143 static cl::opt<bool>
144     UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden,
145                        cl::desc("Allows loops to be peeled when the dynamic "
146                                 "trip count is known to be low."));
147
148 static cl::opt<bool> UnrollUnrollRemainder(
149   "unroll-remainder", cl::Hidden,
150   cl::desc("Allow the loop remainder to be unrolled."));
151
152 // This option isn't ever intended to be enabled, it serves to allow
153 // experiments to check the assumptions about when this kind of revisit is
154 // necessary.
155 static cl::opt<bool> UnrollRevisitChildLoops(
156     "unroll-revisit-child-loops", cl::Hidden,
157     cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. "
158              "This shouldn't typically be needed as child loops (or their "
159              "clones) were already visited."));
160
161 /// A magic value for use with the Threshold parameter to indicate
162 /// that the loop unroll should be performed regardless of how much
163 /// code expansion would result.
164 static const unsigned NoThreshold = std::numeric_limits<unsigned>::max();
165
166 /// Gather the various unrolling parameters based on the defaults, compiler
167 /// flags, TTI overrides and user specified parameters.
168 TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences(
169     Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, int OptLevel,
170     Optional<unsigned> UserThreshold, Optional<unsigned> UserCount,
171     Optional<bool> UserAllowPartial, Optional<bool> UserRuntime,
172     Optional<bool> UserUpperBound, Optional<bool> UserAllowPeeling) {
173   TargetTransformInfo::UnrollingPreferences UP;
174
175   // Set up the defaults
176   UP.Threshold = OptLevel > 2 ? 300 : 150;
177   UP.MaxPercentThresholdBoost = 400;
178   UP.OptSizeThreshold = 0;
179   UP.PartialThreshold = 150;
180   UP.PartialOptSizeThreshold = 0;
181   UP.Count = 0;
182   UP.PeelCount = 0;
183   UP.DefaultUnrollRuntimeCount = 8;
184   UP.MaxCount = std::numeric_limits<unsigned>::max();
185   UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max();
186   UP.BEInsns = 2;
187   UP.Partial = false;
188   UP.Runtime = false;
189   UP.AllowRemainder = true;
190   UP.UnrollRemainder = false;
191   UP.AllowExpensiveTripCount = false;
192   UP.Force = false;
193   UP.UpperBound = false;
194   UP.AllowPeeling = true;
195   UP.UnrollAndJam = false;
196   UP.UnrollAndJamInnerLoopThreshold = 60;
197
198   // Override with any target specific settings
199   TTI.getUnrollingPreferences(L, SE, UP);
200
201   // Apply size attributes
202   if (L->getHeader()->getParent()->optForSize()) {
203     UP.Threshold = UP.OptSizeThreshold;
204     UP.PartialThreshold = UP.PartialOptSizeThreshold;
205   }
206
207   // Apply any user values specified by cl::opt
208   if (UnrollThreshold.getNumOccurrences() > 0)
209     UP.Threshold = UnrollThreshold;
210   if (UnrollPartialThreshold.getNumOccurrences() > 0)
211     UP.PartialThreshold = UnrollPartialThreshold;
212   if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0)
213     UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost;
214   if (UnrollMaxCount.getNumOccurrences() > 0)
215     UP.MaxCount = UnrollMaxCount;
216   if (UnrollFullMaxCount.getNumOccurrences() > 0)
217     UP.FullUnrollMaxCount = UnrollFullMaxCount;
218   if (UnrollPeelCount.getNumOccurrences() > 0)
219     UP.PeelCount = UnrollPeelCount;
220   if (UnrollAllowPartial.getNumOccurrences() > 0)
221     UP.Partial = UnrollAllowPartial;
222   if (UnrollAllowRemainder.getNumOccurrences() > 0)
223     UP.AllowRemainder = UnrollAllowRemainder;
224   if (UnrollRuntime.getNumOccurrences() > 0)
225     UP.Runtime = UnrollRuntime;
226   if (UnrollMaxUpperBound == 0)
227     UP.UpperBound = false;
228   if (UnrollAllowPeeling.getNumOccurrences() > 0)
229     UP.AllowPeeling = UnrollAllowPeeling;
230   if (UnrollUnrollRemainder.getNumOccurrences() > 0)
231     UP.UnrollRemainder = UnrollUnrollRemainder;
232
233   // Apply user values provided by argument
234   if (UserThreshold.hasValue()) {
235     UP.Threshold = *UserThreshold;
236     UP.PartialThreshold = *UserThreshold;
237   }
238   if (UserCount.hasValue())
239     UP.Count = *UserCount;
240   if (UserAllowPartial.hasValue())
241     UP.Partial = *UserAllowPartial;
242   if (UserRuntime.hasValue())
243     UP.Runtime = *UserRuntime;
244   if (UserUpperBound.hasValue())
245     UP.UpperBound = *UserUpperBound;
246   if (UserAllowPeeling.hasValue())
247     UP.AllowPeeling = *UserAllowPeeling;
248
249   return UP;
250 }
251
252 namespace {
253
254 /// A struct to densely store the state of an instruction after unrolling at
255 /// each iteration.
256 ///
257 /// This is designed to work like a tuple of <Instruction *, int> for the
258 /// purposes of hashing and lookup, but to be able to associate two boolean
259 /// states with each key.
260 struct UnrolledInstState {
261   Instruction *I;
262   int Iteration : 30;
263   unsigned IsFree : 1;
264   unsigned IsCounted : 1;
265 };
266
267 /// Hashing and equality testing for a set of the instruction states.
268 struct UnrolledInstStateKeyInfo {
269   using PtrInfo = DenseMapInfo<Instruction *>;
270   using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>;
271
272   static inline UnrolledInstState getEmptyKey() {
273     return {PtrInfo::getEmptyKey(), 0, 0, 0};
274   }
275
276   static inline UnrolledInstState getTombstoneKey() {
277     return {PtrInfo::getTombstoneKey(), 0, 0, 0};
278   }
279
280   static inline unsigned getHashValue(const UnrolledInstState &S) {
281     return PairInfo::getHashValue({S.I, S.Iteration});
282   }
283
284   static inline bool isEqual(const UnrolledInstState &LHS,
285                              const UnrolledInstState &RHS) {
286     return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration});
287   }
288 };
289
290 struct EstimatedUnrollCost {
291   /// The estimated cost after unrolling.
292   unsigned UnrolledCost;
293
294   /// The estimated dynamic cost of executing the instructions in the
295   /// rolled form.
296   unsigned RolledDynamicCost;
297 };
298
299 } // end anonymous namespace
300
301 /// Figure out if the loop is worth full unrolling.
302 ///
303 /// Complete loop unrolling can make some loads constant, and we need to know
304 /// if that would expose any further optimization opportunities.  This routine
305 /// estimates this optimization.  It computes cost of unrolled loop
306 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
307 /// dynamic cost we mean that we won't count costs of blocks that are known not
308 /// to be executed (i.e. if we have a branch in the loop and we know that at the
309 /// given iteration its condition would be resolved to true, we won't add up the
310 /// cost of the 'false'-block).
311 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
312 /// the analysis failed (no benefits expected from the unrolling, or the loop is
313 /// too big to analyze), the returned value is None.
314 static Optional<EstimatedUnrollCost> analyzeLoopUnrollCost(
315     const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE,
316     const SmallPtrSetImpl<const Value *> &EphValues,
317     const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize) {
318   // We want to be able to scale offsets by the trip count and add more offsets
319   // to them without checking for overflows, and we already don't want to
320   // analyze *massive* trip counts, so we force the max to be reasonably small.
321   assert(UnrollMaxIterationsCountToAnalyze <
322              (unsigned)(std::numeric_limits<int>::max() / 2) &&
323          "The unroll iterations max is too large!");
324
325   // Only analyze inner loops. We can't properly estimate cost of nested loops
326   // and we won't visit inner loops again anyway.
327   if (!L->empty())
328     return None;
329
330   // Don't simulate loops with a big or unknown tripcount
331   if (!UnrollMaxIterationsCountToAnalyze || !TripCount ||
332       TripCount > UnrollMaxIterationsCountToAnalyze)
333     return None;
334
335   SmallSetVector<BasicBlock *, 16> BBWorklist;
336   SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist;
337   DenseMap<Value *, Constant *> SimplifiedValues;
338   SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues;
339
340   // The estimated cost of the unrolled form of the loop. We try to estimate
341   // this by simplifying as much as we can while computing the estimate.
342   unsigned UnrolledCost = 0;
343
344   // We also track the estimated dynamic (that is, actually executed) cost in
345   // the rolled form. This helps identify cases when the savings from unrolling
346   // aren't just exposing dead control flows, but actual reduced dynamic
347   // instructions due to the simplifications which we expect to occur after
348   // unrolling.
349   unsigned RolledDynamicCost = 0;
350
351   // We track the simplification of each instruction in each iteration. We use
352   // this to recursively merge costs into the unrolled cost on-demand so that
353   // we don't count the cost of any dead code. This is essentially a map from
354   // <instruction, int> to <bool, bool>, but stored as a densely packed struct.
355   DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap;
356
357   // A small worklist used to accumulate cost of instructions from each
358   // observable and reached root in the loop.
359   SmallVector<Instruction *, 16> CostWorklist;
360
361   // PHI-used worklist used between iterations while accumulating cost.
362   SmallVector<Instruction *, 4> PHIUsedList;
363
364   // Helper function to accumulate cost for instructions in the loop.
365   auto AddCostRecursively = [&](Instruction &RootI, int Iteration) {
366     assert(Iteration >= 0 && "Cannot have a negative iteration!");
367     assert(CostWorklist.empty() && "Must start with an empty cost list");
368     assert(PHIUsedList.empty() && "Must start with an empty phi used list");
369     CostWorklist.push_back(&RootI);
370     for (;; --Iteration) {
371       do {
372         Instruction *I = CostWorklist.pop_back_val();
373
374         // InstCostMap only uses I and Iteration as a key, the other two values
375         // don't matter here.
376         auto CostIter = InstCostMap.find({I, Iteration, 0, 0});
377         if (CostIter == InstCostMap.end())
378           // If an input to a PHI node comes from a dead path through the loop
379           // we may have no cost data for it here. What that actually means is
380           // that it is free.
381           continue;
382         auto &Cost = *CostIter;
383         if (Cost.IsCounted)
384           // Already counted this instruction.
385           continue;
386
387         // Mark that we are counting the cost of this instruction now.
388         Cost.IsCounted = true;
389
390         // If this is a PHI node in the loop header, just add it to the PHI set.
391         if (auto *PhiI = dyn_cast<PHINode>(I))
392           if (PhiI->getParent() == L->getHeader()) {
393             assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they "
394                                   "inherently simplify during unrolling.");
395             if (Iteration == 0)
396               continue;
397
398             // Push the incoming value from the backedge into the PHI used list
399             // if it is an in-loop instruction. We'll use this to populate the
400             // cost worklist for the next iteration (as we count backwards).
401             if (auto *OpI = dyn_cast<Instruction>(
402                     PhiI->getIncomingValueForBlock(L->getLoopLatch())))
403               if (L->contains(OpI))
404                 PHIUsedList.push_back(OpI);
405             continue;
406           }
407
408         // First accumulate the cost of this instruction.
409         if (!Cost.IsFree) {
410           UnrolledCost += TTI.getUserCost(I);
411           LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration "
412                             << Iteration << "): ");
413           LLVM_DEBUG(I->dump());
414         }
415
416         // We must count the cost of every operand which is not free,
417         // recursively. If we reach a loop PHI node, simply add it to the set
418         // to be considered on the next iteration (backwards!).
419         for (Value *Op : I->operands()) {
420           // Check whether this operand is free due to being a constant or
421           // outside the loop.
422           auto *OpI = dyn_cast<Instruction>(Op);
423           if (!OpI || !L->contains(OpI))
424             continue;
425
426           // Otherwise accumulate its cost.
427           CostWorklist.push_back(OpI);
428         }
429       } while (!CostWorklist.empty());
430
431       if (PHIUsedList.empty())
432         // We've exhausted the search.
433         break;
434
435       assert(Iteration > 0 &&
436              "Cannot track PHI-used values past the first iteration!");
437       CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end());
438       PHIUsedList.clear();
439     }
440   };
441
442   // Ensure that we don't violate the loop structure invariants relied on by
443   // this analysis.
444   assert(L->isLoopSimplifyForm() && "Must put loop into normal form first.");
445   assert(L->isLCSSAForm(DT) &&
446          "Must have loops in LCSSA form to track live-out values.");
447
448   LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");
449
450   // Simulate execution of each iteration of the loop counting instructions,
451   // which would be simplified.
452   // Since the same load will take different values on different iterations,
453   // we literally have to go through all loop's iterations.
454   for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
455     LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n");
456
457     // Prepare for the iteration by collecting any simplified entry or backedge
458     // inputs.
459     for (Instruction &I : *L->getHeader()) {
460       auto *PHI = dyn_cast<PHINode>(&I);
461       if (!PHI)
462         break;
463
464       // The loop header PHI nodes must have exactly two input: one from the
465       // loop preheader and one from the loop latch.
466       assert(
467           PHI->getNumIncomingValues() == 2 &&
468           "Must have an incoming value only for the preheader and the latch.");
469
470       Value *V = PHI->getIncomingValueForBlock(
471           Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch());
472       Constant *C = dyn_cast<Constant>(V);
473       if (Iteration != 0 && !C)
474         C = SimplifiedValues.lookup(V);
475       if (C)
476         SimplifiedInputValues.push_back({PHI, C});
477     }
478
479     // Now clear and re-populate the map for the next iteration.
480     SimplifiedValues.clear();
481     while (!SimplifiedInputValues.empty())
482       SimplifiedValues.insert(SimplifiedInputValues.pop_back_val());
483
484     UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L);
485
486     BBWorklist.clear();
487     BBWorklist.insert(L->getHeader());
488     // Note that we *must not* cache the size, this loop grows the worklist.
489     for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
490       BasicBlock *BB = BBWorklist[Idx];
491
492       // Visit all instructions in the given basic block and try to simplify
493       // it.  We don't change the actual IR, just count optimization
494       // opportunities.
495       for (Instruction &I : *BB) {
496         // These won't get into the final code - don't even try calculating the
497         // cost for them.
498         if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I))
499           continue;
500
501         // Track this instruction's expected baseline cost when executing the
502         // rolled loop form.
503         RolledDynamicCost += TTI.getUserCost(&I);
504
505         // Visit the instruction to analyze its loop cost after unrolling,
506         // and if the visitor returns true, mark the instruction as free after
507         // unrolling and continue.
508         bool IsFree = Analyzer.visit(I);
509         bool Inserted = InstCostMap.insert({&I, (int)Iteration,
510                                            (unsigned)IsFree,
511                                            /*IsCounted*/ false}).second;
512         (void)Inserted;
513         assert(Inserted && "Cannot have a state for an unvisited instruction!");
514
515         if (IsFree)
516           continue;
517
518         // Can't properly model a cost of a call.
519         // FIXME: With a proper cost model we should be able to do it.
520         if (auto *CI = dyn_cast<CallInst>(&I)) {
521           const Function *Callee = CI->getCalledFunction();
522           if (!Callee || TTI.isLoweredToCall(Callee)) {
523             LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n");
524             return None;
525           }
526         }
527
528         // If the instruction might have a side-effect recursively account for
529         // the cost of it and all the instructions leading up to it.
530         if (I.mayHaveSideEffects())
531           AddCostRecursively(I, Iteration);
532
533         // If unrolled body turns out to be too big, bail out.
534         if (UnrolledCost > MaxUnrolledLoopSize) {
535           LLVM_DEBUG(dbgs() << "  Exceeded threshold.. exiting.\n"
536                             << "  UnrolledCost: " << UnrolledCost
537                             << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
538                             << "\n");
539           return None;
540         }
541       }
542
543       Instruction *TI = BB->getTerminator();
544
545       // Add in the live successors by first checking whether we have terminator
546       // that may be simplified based on the values simplified by this call.
547       BasicBlock *KnownSucc = nullptr;
548       if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
549         if (BI->isConditional()) {
550           if (Constant *SimpleCond =
551                   SimplifiedValues.lookup(BI->getCondition())) {
552             // Just take the first successor if condition is undef
553             if (isa<UndefValue>(SimpleCond))
554               KnownSucc = BI->getSuccessor(0);
555             else if (ConstantInt *SimpleCondVal =
556                          dyn_cast<ConstantInt>(SimpleCond))
557               KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0);
558           }
559         }
560       } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
561         if (Constant *SimpleCond =
562                 SimplifiedValues.lookup(SI->getCondition())) {
563           // Just take the first successor if condition is undef
564           if (isa<UndefValue>(SimpleCond))
565             KnownSucc = SI->getSuccessor(0);
566           else if (ConstantInt *SimpleCondVal =
567                        dyn_cast<ConstantInt>(SimpleCond))
568             KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor();
569         }
570       }
571       if (KnownSucc) {
572         if (L->contains(KnownSucc))
573           BBWorklist.insert(KnownSucc);
574         else
575           ExitWorklist.insert({BB, KnownSucc});
576         continue;
577       }
578
579       // Add BB's successors to the worklist.
580       for (BasicBlock *Succ : successors(BB))
581         if (L->contains(Succ))
582           BBWorklist.insert(Succ);
583         else
584           ExitWorklist.insert({BB, Succ});
585       AddCostRecursively(*TI, Iteration);
586     }
587
588     // If we found no optimization opportunities on the first iteration, we
589     // won't find them on later ones too.
590     if (UnrolledCost == RolledDynamicCost) {
591       LLVM_DEBUG(dbgs() << "  No opportunities found.. exiting.\n"
592                         << "  UnrolledCost: " << UnrolledCost << "\n");
593       return None;
594     }
595   }
596
597   while (!ExitWorklist.empty()) {
598     BasicBlock *ExitingBB, *ExitBB;
599     std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val();
600
601     for (Instruction &I : *ExitBB) {
602       auto *PN = dyn_cast<PHINode>(&I);
603       if (!PN)
604         break;
605
606       Value *Op = PN->getIncomingValueForBlock(ExitingBB);
607       if (auto *OpI = dyn_cast<Instruction>(Op))
608         if (L->contains(OpI))
609           AddCostRecursively(*OpI, TripCount - 1);
610     }
611   }
612
613   LLVM_DEBUG(dbgs() << "Analysis finished:\n"
614                     << "UnrolledCost: " << UnrolledCost << ", "
615                     << "RolledDynamicCost: " << RolledDynamicCost << "\n");
616   return {{UnrolledCost, RolledDynamicCost}};
617 }
618
619 /// ApproximateLoopSize - Approximate the size of the loop.
620 unsigned llvm::ApproximateLoopSize(
621     const Loop *L, unsigned &NumCalls, bool &NotDuplicatable, bool &Convergent,
622     const TargetTransformInfo &TTI,
623     const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) {
624   CodeMetrics Metrics;
625   for (BasicBlock *BB : L->blocks())
626     Metrics.analyzeBasicBlock(BB, TTI, EphValues);
627   NumCalls = Metrics.NumInlineCandidates;
628   NotDuplicatable = Metrics.notDuplicatable;
629   Convergent = Metrics.convergent;
630
631   unsigned LoopSize = Metrics.NumInsts;
632
633   // Don't allow an estimate of size zero.  This would allows unrolling of loops
634   // with huge iteration counts, which is a compile time problem even if it's
635   // not a problem for code quality. Also, the code using this size may assume
636   // that each loop has at least three instructions (likely a conditional
637   // branch, a comparison feeding that branch, and some kind of loop increment
638   // feeding that comparison instruction).
639   LoopSize = std::max(LoopSize, BEInsns + 1);
640
641   return LoopSize;
642 }
643
644 // Returns the loop hint metadata node with the given name (for example,
645 // "llvm.loop.unroll.count").  If no such metadata node exists, then nullptr is
646 // returned.
647 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) {
648   if (MDNode *LoopID = L->getLoopID())
649     return GetUnrollMetadata(LoopID, Name);
650   return nullptr;
651 }
652
653 // Returns true if the loop has an unroll(full) pragma.
654 static bool HasUnrollFullPragma(const Loop *L) {
655   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
656 }
657
658 // Returns true if the loop has an unroll(enable) pragma. This metadata is used
659 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives.
660 static bool HasUnrollEnablePragma(const Loop *L) {
661   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable");
662 }
663
664 // Returns true if the loop has an runtime unroll(disable) pragma.
665 static bool HasRuntimeUnrollDisablePragma(const Loop *L) {
666   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
667 }
668
669 // If loop has an unroll_count pragma return the (necessarily
670 // positive) value from the pragma.  Otherwise return 0.
671 static unsigned UnrollCountPragmaValue(const Loop *L) {
672   MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
673   if (MD) {
674     assert(MD->getNumOperands() == 2 &&
675            "Unroll count hint metadata should have two operands.");
676     unsigned Count =
677         mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
678     assert(Count >= 1 && "Unroll count must be positive.");
679     return Count;
680   }
681   return 0;
682 }
683
684 // Computes the boosting factor for complete unrolling.
685 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would
686 // be beneficial to fully unroll the loop even if unrolledcost is large. We
687 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust
688 // the unroll threshold.
689 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost,
690                                             unsigned MaxPercentThresholdBoost) {
691   if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100)
692     return 100;
693   else if (Cost.UnrolledCost != 0)
694     // The boosting factor is RolledDynamicCost / UnrolledCost
695     return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost,
696                     MaxPercentThresholdBoost);
697   else
698     return MaxPercentThresholdBoost;
699 }
700
701 // Returns loop size estimation for unrolled loop.
702 static uint64_t getUnrolledLoopSize(
703     unsigned LoopSize,
704     TargetTransformInfo::UnrollingPreferences &UP) {
705   assert(LoopSize >= UP.BEInsns && "LoopSize should not be less than BEInsns!");
706   return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns;
707 }
708
709 // Returns true if unroll count was set explicitly.
710 // Calculates unroll count and writes it to UP.Count.
711 // Unless IgnoreUser is true, will also use metadata and command-line options
712 // that are specific to to the LoopUnroll pass (which, for instance, are
713 // irrelevant for the LoopUnrollAndJam pass).
714 // FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes
715 // many LoopUnroll-specific options. The shared functionality should be
716 // refactored into it own function.
717 bool llvm::computeUnrollCount(
718     Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI,
719     ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues,
720     OptimizationRemarkEmitter *ORE, unsigned &TripCount, unsigned MaxTripCount,
721     unsigned &TripMultiple, unsigned LoopSize,
722     TargetTransformInfo::UnrollingPreferences &UP, bool &UseUpperBound) {
723
724   // Check for explicit Count.
725   // 1st priority is unroll count set by "unroll-count" option.
726   bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0;
727   if (UserUnrollCount) {
728     UP.Count = UnrollCount;
729     UP.AllowExpensiveTripCount = true;
730     UP.Force = true;
731     if (UP.AllowRemainder && getUnrolledLoopSize(LoopSize, UP) < UP.Threshold)
732       return true;
733   }
734
735   // 2nd priority is unroll count set by pragma.
736   unsigned PragmaCount = UnrollCountPragmaValue(L);
737   if (PragmaCount > 0) {
738     UP.Count = PragmaCount;
739     UP.Runtime = true;
740     UP.AllowExpensiveTripCount = true;
741     UP.Force = true;
742     if ((UP.AllowRemainder || (TripMultiple % PragmaCount == 0)) &&
743         getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold)
744       return true;
745   }
746   bool PragmaFullUnroll = HasUnrollFullPragma(L);
747   if (PragmaFullUnroll && TripCount != 0) {
748     UP.Count = TripCount;
749     if (getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold)
750       return false;
751   }
752
753   bool PragmaEnableUnroll = HasUnrollEnablePragma(L);
754   bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll ||
755                         PragmaEnableUnroll || UserUnrollCount;
756
757   if (ExplicitUnroll && TripCount != 0) {
758     // If the loop has an unrolling pragma, we want to be more aggressive with
759     // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold
760     // value which is larger than the default limits.
761     UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold);
762     UP.PartialThreshold =
763         std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold);
764   }
765
766   // 3rd priority is full unroll count.
767   // Full unroll makes sense only when TripCount or its upper bound could be
768   // statically calculated.
769   // Also we need to check if we exceed FullUnrollMaxCount.
770   // If using the upper bound to unroll, TripMultiple should be set to 1 because
771   // we do not know when loop may exit.
772   // MaxTripCount and ExactTripCount cannot both be non zero since we only
773   // compute the former when the latter is zero.
774   unsigned ExactTripCount = TripCount;
775   assert((ExactTripCount == 0 || MaxTripCount == 0) &&
776          "ExtractTripCount and MaxTripCount cannot both be non zero.");
777   unsigned FullUnrollTripCount = ExactTripCount ? ExactTripCount : MaxTripCount;
778   UP.Count = FullUnrollTripCount;
779   if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) {
780     // When computing the unrolled size, note that BEInsns are not replicated
781     // like the rest of the loop body.
782     if (getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) {
783       UseUpperBound = (MaxTripCount == FullUnrollTripCount);
784       TripCount = FullUnrollTripCount;
785       TripMultiple = UP.UpperBound ? 1 : TripMultiple;
786       return ExplicitUnroll;
787     } else {
788       // The loop isn't that small, but we still can fully unroll it if that
789       // helps to remove a significant number of instructions.
790       // To check that, run additional analysis on the loop.
791       if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost(
792               L, FullUnrollTripCount, DT, SE, EphValues, TTI,
793               UP.Threshold * UP.MaxPercentThresholdBoost / 100)) {
794         unsigned Boost =
795             getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost);
796         if (Cost->UnrolledCost < UP.Threshold * Boost / 100) {
797           UseUpperBound = (MaxTripCount == FullUnrollTripCount);
798           TripCount = FullUnrollTripCount;
799           TripMultiple = UP.UpperBound ? 1 : TripMultiple;
800           return ExplicitUnroll;
801         }
802       }
803     }
804   }
805
806   // 4th priority is loop peeling.
807   computePeelCount(L, LoopSize, UP, TripCount, SE);
808   if (UP.PeelCount) {
809     UP.Runtime = false;
810     UP.Count = 1;
811     return ExplicitUnroll;
812   }
813
814   // 5th priority is partial unrolling.
815   // Try partial unroll only when TripCount could be statically calculated.
816   if (TripCount) {
817     UP.Partial |= ExplicitUnroll;
818     if (!UP.Partial) {
819       LLVM_DEBUG(dbgs() << "  will not try to unroll partially because "
820                         << "-unroll-allow-partial not given\n");
821       UP.Count = 0;
822       return false;
823     }
824     if (UP.Count == 0)
825       UP.Count = TripCount;
826     if (UP.PartialThreshold != NoThreshold) {
827       // Reduce unroll count to be modulo of TripCount for partial unrolling.
828       if (getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
829         UP.Count =
830             (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) /
831             (LoopSize - UP.BEInsns);
832       if (UP.Count > UP.MaxCount)
833         UP.Count = UP.MaxCount;
834       while (UP.Count != 0 && TripCount % UP.Count != 0)
835         UP.Count--;
836       if (UP.AllowRemainder && UP.Count <= 1) {
837         // If there is no Count that is modulo of TripCount, set Count to
838         // largest power-of-two factor that satisfies the threshold limit.
839         // As we'll create fixup loop, do the type of unrolling only if
840         // remainder loop is allowed.
841         UP.Count = UP.DefaultUnrollRuntimeCount;
842         while (UP.Count != 0 &&
843                getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
844           UP.Count >>= 1;
845       }
846       if (UP.Count < 2) {
847         if (PragmaEnableUnroll)
848           ORE->emit([&]() {
849             return OptimizationRemarkMissed(DEBUG_TYPE,
850                                             "UnrollAsDirectedTooLarge",
851                                             L->getStartLoc(), L->getHeader())
852                    << "Unable to unroll loop as directed by unroll(enable) "
853                       "pragma "
854                       "because unrolled size is too large.";
855           });
856         UP.Count = 0;
857       }
858     } else {
859       UP.Count = TripCount;
860     }
861     if (UP.Count > UP.MaxCount)
862       UP.Count = UP.MaxCount;
863     if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount &&
864         UP.Count != TripCount)
865       ORE->emit([&]() {
866         return OptimizationRemarkMissed(DEBUG_TYPE,
867                                         "FullUnrollAsDirectedTooLarge",
868                                         L->getStartLoc(), L->getHeader())
869                << "Unable to fully unroll loop as directed by unroll pragma "
870                   "because "
871                   "unrolled size is too large.";
872       });
873     return ExplicitUnroll;
874   }
875   assert(TripCount == 0 &&
876          "All cases when TripCount is constant should be covered here.");
877   if (PragmaFullUnroll)
878     ORE->emit([&]() {
879       return OptimizationRemarkMissed(
880                  DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount",
881                  L->getStartLoc(), L->getHeader())
882              << "Unable to fully unroll loop as directed by unroll(full) "
883                 "pragma "
884                 "because loop has a runtime trip count.";
885     });
886
887   // 6th priority is runtime unrolling.
888   // Don't unroll a runtime trip count loop when it is disabled.
889   if (HasRuntimeUnrollDisablePragma(L)) {
890     UP.Count = 0;
891     return false;
892   }
893
894   // Check if the runtime trip count is too small when profile is available.
895   if (L->getHeader()->getParent()->hasProfileData()) {
896     if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) {
897       if (*ProfileTripCount < FlatLoopTripCountThreshold)
898         return false;
899       else
900         UP.AllowExpensiveTripCount = true;
901     }
902   }
903
904   // Reduce count based on the type of unrolling and the threshold values.
905   UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount;
906   if (!UP.Runtime) {
907     LLVM_DEBUG(
908         dbgs() << "  will not try to unroll loop with runtime trip count "
909                << "-unroll-runtime not given\n");
910     UP.Count = 0;
911     return false;
912   }
913   if (UP.Count == 0)
914     UP.Count = UP.DefaultUnrollRuntimeCount;
915
916   // Reduce unroll count to be the largest power-of-two factor of
917   // the original count which satisfies the threshold limit.
918   while (UP.Count != 0 &&
919          getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
920     UP.Count >>= 1;
921
922 #ifndef NDEBUG
923   unsigned OrigCount = UP.Count;
924 #endif
925
926   if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) {
927     while (UP.Count != 0 && TripMultiple % UP.Count != 0)
928       UP.Count >>= 1;
929     LLVM_DEBUG(
930         dbgs() << "Remainder loop is restricted (that could architecture "
931                   "specific or because the loop contains a convergent "
932                   "instruction), so unroll count must divide the trip "
933                   "multiple, "
934                << TripMultiple << ".  Reducing unroll count from " << OrigCount
935                << " to " << UP.Count << ".\n");
936
937     using namespace ore;
938
939     if (PragmaCount > 0 && !UP.AllowRemainder)
940       ORE->emit([&]() {
941         return OptimizationRemarkMissed(DEBUG_TYPE,
942                                         "DifferentUnrollCountFromDirected",
943                                         L->getStartLoc(), L->getHeader())
944                << "Unable to unroll loop the number of times directed by "
945                   "unroll_count pragma because remainder loop is restricted "
946                   "(that could architecture specific or because the loop "
947                   "contains a convergent instruction) and so must have an "
948                   "unroll "
949                   "count that divides the loop trip multiple of "
950                << NV("TripMultiple", TripMultiple) << ".  Unrolling instead "
951                << NV("UnrollCount", UP.Count) << " time(s).";
952       });
953   }
954
955   if (UP.Count > UP.MaxCount)
956     UP.Count = UP.MaxCount;
957   LLVM_DEBUG(dbgs() << "  partially unrolling with count: " << UP.Count
958                     << "\n");
959   if (UP.Count < 2)
960     UP.Count = 0;
961   return ExplicitUnroll;
962 }
963
964 static LoopUnrollResult tryToUnrollLoop(
965     Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE,
966     const TargetTransformInfo &TTI, AssumptionCache &AC,
967     OptimizationRemarkEmitter &ORE, bool PreserveLCSSA, int OptLevel,
968     bool OnlyWhenForced, Optional<unsigned> ProvidedCount,
969     Optional<unsigned> ProvidedThreshold, Optional<bool> ProvidedAllowPartial,
970     Optional<bool> ProvidedRuntime, Optional<bool> ProvidedUpperBound,
971     Optional<bool> ProvidedAllowPeeling) {
972   LLVM_DEBUG(dbgs() << "Loop Unroll: F["
973                     << L->getHeader()->getParent()->getName() << "] Loop %"
974                     << L->getHeader()->getName() << "\n");
975   TransformationMode TM = hasUnrollTransformation(L);
976   if (TM & TM_Disable)
977     return LoopUnrollResult::Unmodified;
978   if (!L->isLoopSimplifyForm()) {
979     LLVM_DEBUG(
980         dbgs() << "  Not unrolling loop which is not in loop-simplify form.\n");
981     return LoopUnrollResult::Unmodified;
982   }
983
984   // When automtatic unrolling is disabled, do not unroll unless overridden for
985   // this loop.
986   if (OnlyWhenForced && !(TM & TM_Enable))
987     return LoopUnrollResult::Unmodified;
988
989   unsigned NumInlineCandidates;
990   bool NotDuplicatable;
991   bool Convergent;
992   TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences(
993       L, SE, TTI, OptLevel, ProvidedThreshold, ProvidedCount,
994       ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
995       ProvidedAllowPeeling);
996   // Exit early if unrolling is disabled.
997   if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0))
998     return LoopUnrollResult::Unmodified;
999
1000   SmallPtrSet<const Value *, 32> EphValues;
1001   CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
1002
1003   unsigned LoopSize =
1004       ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent,
1005                           TTI, EphValues, UP.BEInsns);
1006   LLVM_DEBUG(dbgs() << "  Loop Size = " << LoopSize << "\n");
1007   if (NotDuplicatable) {
1008     LLVM_DEBUG(dbgs() << "  Not unrolling loop which contains non-duplicatable"
1009                       << " instructions.\n");
1010     return LoopUnrollResult::Unmodified;
1011   }
1012   if (NumInlineCandidates != 0) {
1013     LLVM_DEBUG(dbgs() << "  Not unrolling loop with inlinable calls.\n");
1014     return LoopUnrollResult::Unmodified;
1015   }
1016
1017   // Find trip count and trip multiple if count is not available
1018   unsigned TripCount = 0;
1019   unsigned MaxTripCount = 0;
1020   unsigned TripMultiple = 1;
1021   // If there are multiple exiting blocks but one of them is the latch, use the
1022   // latch for the trip count estimation. Otherwise insist on a single exiting
1023   // block for the trip count estimation.
1024   BasicBlock *ExitingBlock = L->getLoopLatch();
1025   if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
1026     ExitingBlock = L->getExitingBlock();
1027   if (ExitingBlock) {
1028     TripCount = SE.getSmallConstantTripCount(L, ExitingBlock);
1029     TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock);
1030   }
1031
1032   // If the loop contains a convergent operation, the prelude we'd add
1033   // to do the first few instructions before we hit the unrolled loop
1034   // is unsafe -- it adds a control-flow dependency to the convergent
1035   // operation.  Therefore restrict remainder loop (try unrollig without).
1036   //
1037   // TODO: This is quite conservative.  In practice, convergent_op()
1038   // is likely to be called unconditionally in the loop.  In this
1039   // case, the program would be ill-formed (on most architectures)
1040   // unless n were the same on all threads in a thread group.
1041   // Assuming n is the same on all threads, any kind of unrolling is
1042   // safe.  But currently llvm's notion of convergence isn't powerful
1043   // enough to express this.
1044   if (Convergent)
1045     UP.AllowRemainder = false;
1046
1047   // Try to find the trip count upper bound if we cannot find the exact trip
1048   // count.
1049   bool MaxOrZero = false;
1050   if (!TripCount) {
1051     MaxTripCount = SE.getSmallConstantMaxTripCount(L);
1052     MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L);
1053     // We can unroll by the upper bound amount if it's generally allowed or if
1054     // we know that the loop is executed either the upper bound or zero times.
1055     // (MaxOrZero unrolling keeps only the first loop test, so the number of
1056     // loop tests remains the same compared to the non-unrolled version, whereas
1057     // the generic upper bound unrolling keeps all but the last loop test so the
1058     // number of loop tests goes up which may end up being worse on targets with
1059     // constrained branch predictor resources so is controlled by an option.)
1060     // In addition we only unroll small upper bounds.
1061     if (!(UP.UpperBound || MaxOrZero) || MaxTripCount > UnrollMaxUpperBound) {
1062       MaxTripCount = 0;
1063     }
1064   }
1065
1066   // computeUnrollCount() decides whether it is beneficial to use upper bound to
1067   // fully unroll the loop.
1068   bool UseUpperBound = false;
1069   bool IsCountSetExplicitly = computeUnrollCount(
1070       L, TTI, DT, LI, SE, EphValues, &ORE, TripCount, MaxTripCount,
1071       TripMultiple, LoopSize, UP, UseUpperBound);
1072   if (!UP.Count)
1073     return LoopUnrollResult::Unmodified;
1074   // Unroll factor (Count) must be less or equal to TripCount.
1075   if (TripCount && UP.Count > TripCount)
1076     UP.Count = TripCount;
1077
1078   // Save loop properties before it is transformed.
1079   MDNode *OrigLoopID = L->getLoopID();
1080
1081   // Unroll the loop.
1082   Loop *RemainderLoop = nullptr;
1083   LoopUnrollResult UnrollResult = UnrollLoop(
1084       L, UP.Count, TripCount, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount,
1085       UseUpperBound, MaxOrZero, TripMultiple, UP.PeelCount, UP.UnrollRemainder,
1086       LI, &SE, &DT, &AC, &ORE, PreserveLCSSA, &RemainderLoop);
1087   if (UnrollResult == LoopUnrollResult::Unmodified)
1088     return LoopUnrollResult::Unmodified;
1089
1090   if (RemainderLoop) {
1091     Optional<MDNode *> RemainderLoopID =
1092         makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
1093                                         LLVMLoopUnrollFollowupRemainder});
1094     if (RemainderLoopID.hasValue())
1095       RemainderLoop->setLoopID(RemainderLoopID.getValue());
1096   }
1097
1098   if (UnrollResult != LoopUnrollResult::FullyUnrolled) {
1099     Optional<MDNode *> NewLoopID =
1100         makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
1101                                         LLVMLoopUnrollFollowupUnrolled});
1102     if (NewLoopID.hasValue()) {
1103       L->setLoopID(NewLoopID.getValue());
1104
1105       // Do not setLoopAlreadyUnrolled if loop attributes have been specified
1106       // explicitly.
1107       return UnrollResult;
1108     }
1109   }
1110
1111   // If loop has an unroll count pragma or unrolled by explicitly set count
1112   // mark loop as unrolled to prevent unrolling beyond that requested.
1113   // If the loop was peeled, we already "used up" the profile information
1114   // we had, so we don't want to unroll or peel again.
1115   if (UnrollResult != LoopUnrollResult::FullyUnrolled &&
1116       (IsCountSetExplicitly || UP.PeelCount))
1117     L->setLoopAlreadyUnrolled();
1118
1119   return UnrollResult;
1120 }
1121
1122 namespace {
1123
1124 class LoopUnroll : public LoopPass {
1125 public:
1126   static char ID; // Pass ID, replacement for typeid
1127
1128   int OptLevel;
1129
1130   /// If false, use a cost model to determine whether unrolling of a loop is
1131   /// profitable. If true, only loops that explicitly request unrolling via
1132   /// metadata are considered. All other loops are skipped.
1133   bool OnlyWhenForced;
1134
1135   Optional<unsigned> ProvidedCount;
1136   Optional<unsigned> ProvidedThreshold;
1137   Optional<bool> ProvidedAllowPartial;
1138   Optional<bool> ProvidedRuntime;
1139   Optional<bool> ProvidedUpperBound;
1140   Optional<bool> ProvidedAllowPeeling;
1141
1142   LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false,
1143              Optional<unsigned> Threshold = None,
1144              Optional<unsigned> Count = None,
1145              Optional<bool> AllowPartial = None, Optional<bool> Runtime = None,
1146              Optional<bool> UpperBound = None,
1147              Optional<bool> AllowPeeling = None)
1148       : LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced),
1149         ProvidedCount(std::move(Count)), ProvidedThreshold(Threshold),
1150         ProvidedAllowPartial(AllowPartial), ProvidedRuntime(Runtime),
1151         ProvidedUpperBound(UpperBound), ProvidedAllowPeeling(AllowPeeling) {
1152     initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
1153   }
1154
1155   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
1156     if (skipLoop(L))
1157       return false;
1158
1159     Function &F = *L->getHeader()->getParent();
1160
1161     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1162     LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1163     ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1164     const TargetTransformInfo &TTI =
1165         getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1166     auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1167     // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
1168     // pass.  Function analyses need to be preserved across loop transformations
1169     // but ORE cannot be preserved (see comment before the pass definition).
1170     OptimizationRemarkEmitter ORE(&F);
1171     bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
1172
1173     LoopUnrollResult Result = tryToUnrollLoop(
1174         L, DT, LI, SE, TTI, AC, ORE, PreserveLCSSA, OptLevel, OnlyWhenForced,
1175         ProvidedCount, ProvidedThreshold, ProvidedAllowPartial, ProvidedRuntime,
1176         ProvidedUpperBound, ProvidedAllowPeeling);
1177
1178     if (Result == LoopUnrollResult::FullyUnrolled)
1179       LPM.markLoopAsDeleted(*L);
1180
1181     return Result != LoopUnrollResult::Unmodified;
1182   }
1183
1184   /// This transformation requires natural loop information & requires that
1185   /// loop preheaders be inserted into the CFG...
1186   void getAnalysisUsage(AnalysisUsage &AU) const override {
1187     AU.addRequired<AssumptionCacheTracker>();
1188     AU.addRequired<TargetTransformInfoWrapperPass>();
1189     // FIXME: Loop passes are required to preserve domtree, and for now we just
1190     // recreate dom info if anything gets unrolled.
1191     getLoopAnalysisUsage(AU);
1192   }
1193 };
1194
1195 } // end anonymous namespace
1196
1197 char LoopUnroll::ID = 0;
1198
1199 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1200 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1201 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1202 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1203 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1204
1205 Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced,
1206                                  int Threshold, int Count, int AllowPartial,
1207                                  int Runtime, int UpperBound,
1208                                  int AllowPeeling) {
1209   // TODO: It would make more sense for this function to take the optionals
1210   // directly, but that's dangerous since it would silently break out of tree
1211   // callers.
1212   return new LoopUnroll(
1213       OptLevel, OnlyWhenForced,
1214       Threshold == -1 ? None : Optional<unsigned>(Threshold),
1215       Count == -1 ? None : Optional<unsigned>(Count),
1216       AllowPartial == -1 ? None : Optional<bool>(AllowPartial),
1217       Runtime == -1 ? None : Optional<bool>(Runtime),
1218       UpperBound == -1 ? None : Optional<bool>(UpperBound),
1219       AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling));
1220 }
1221
1222 Pass *llvm::createSimpleLoopUnrollPass(int OptLevel, bool OnlyWhenForced) {
1223   return createLoopUnrollPass(OptLevel, OnlyWhenForced, -1, -1, 0, 0, 0, 0);
1224 }
1225
1226 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM,
1227                                           LoopStandardAnalysisResults &AR,
1228                                           LPMUpdater &Updater) {
1229   const auto &FAM =
1230       AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
1231   Function *F = L.getHeader()->getParent();
1232
1233   auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F);
1234   // FIXME: This should probably be optional rather than required.
1235   if (!ORE)
1236     report_fatal_error(
1237         "LoopFullUnrollPass: OptimizationRemarkEmitterAnalysis not "
1238         "cached at a higher level");
1239
1240   // Keep track of the previous loop structure so we can identify new loops
1241   // created by unrolling.
1242   Loop *ParentL = L.getParentLoop();
1243   SmallPtrSet<Loop *, 4> OldLoops;
1244   if (ParentL)
1245     OldLoops.insert(ParentL->begin(), ParentL->end());
1246   else
1247     OldLoops.insert(AR.LI.begin(), AR.LI.end());
1248
1249   std::string LoopName = L.getName();
1250
1251   bool Changed =
1252       tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, *ORE,
1253                       /*PreserveLCSSA*/ true, OptLevel, OnlyWhenForced,
1254                       /*Count*/ None,
1255                       /*Threshold*/ None, /*AllowPartial*/ false,
1256                       /*Runtime*/ false, /*UpperBound*/ false,
1257                       /*AllowPeeling*/ false) != LoopUnrollResult::Unmodified;
1258   if (!Changed)
1259     return PreservedAnalyses::all();
1260
1261   // The parent must not be damaged by unrolling!
1262 #ifndef NDEBUG
1263   if (ParentL)
1264     ParentL->verifyLoop();
1265 #endif
1266
1267   // Unrolling can do several things to introduce new loops into a loop nest:
1268   // - Full unrolling clones child loops within the current loop but then
1269   //   removes the current loop making all of the children appear to be new
1270   //   sibling loops.
1271   //
1272   // When a new loop appears as a sibling loop after fully unrolling,
1273   // its nesting structure has fundamentally changed and we want to revisit
1274   // it to reflect that.
1275   //
1276   // When unrolling has removed the current loop, we need to tell the
1277   // infrastructure that it is gone.
1278   //
1279   // Finally, we support a debugging/testing mode where we revisit child loops
1280   // as well. These are not expected to require further optimizations as either
1281   // they or the loop they were cloned from have been directly visited already.
1282   // But the debugging mode allows us to check this assumption.
1283   bool IsCurrentLoopValid = false;
1284   SmallVector<Loop *, 4> SibLoops;
1285   if (ParentL)
1286     SibLoops.append(ParentL->begin(), ParentL->end());
1287   else
1288     SibLoops.append(AR.LI.begin(), AR.LI.end());
1289   erase_if(SibLoops, [&](Loop *SibLoop) {
1290     if (SibLoop == &L) {
1291       IsCurrentLoopValid = true;
1292       return true;
1293     }
1294
1295     // Otherwise erase the loop from the list if it was in the old loops.
1296     return OldLoops.count(SibLoop) != 0;
1297   });
1298   Updater.addSiblingLoops(SibLoops);
1299
1300   if (!IsCurrentLoopValid) {
1301     Updater.markLoopAsDeleted(L, LoopName);
1302   } else {
1303     // We can only walk child loops if the current loop remained valid.
1304     if (UnrollRevisitChildLoops) {
1305       // Walk *all* of the child loops.
1306       SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end());
1307       Updater.addChildLoops(ChildLoops);
1308     }
1309   }
1310
1311   return getLoopPassPreservedAnalyses();
1312 }
1313
1314 template <typename RangeT>
1315 static SmallVector<Loop *, 8> appendLoopsToWorklist(RangeT &&Loops) {
1316   SmallVector<Loop *, 8> Worklist;
1317   // We use an internal worklist to build up the preorder traversal without
1318   // recursion.
1319   SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist;
1320
1321   for (Loop *RootL : Loops) {
1322     assert(PreOrderLoops.empty() && "Must start with an empty preorder walk.");
1323     assert(PreOrderWorklist.empty() &&
1324            "Must start with an empty preorder walk worklist.");
1325     PreOrderWorklist.push_back(RootL);
1326     do {
1327       Loop *L = PreOrderWorklist.pop_back_val();
1328       PreOrderWorklist.append(L->begin(), L->end());
1329       PreOrderLoops.push_back(L);
1330     } while (!PreOrderWorklist.empty());
1331
1332     Worklist.append(PreOrderLoops.begin(), PreOrderLoops.end());
1333     PreOrderLoops.clear();
1334   }
1335   return Worklist;
1336 }
1337
1338 PreservedAnalyses LoopUnrollPass::run(Function &F,
1339                                       FunctionAnalysisManager &AM) {
1340   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1341   auto &LI = AM.getResult<LoopAnalysis>(F);
1342   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
1343   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1344   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1345   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1346
1347   LoopAnalysisManager *LAM = nullptr;
1348   if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F))
1349     LAM = &LAMProxy->getManager();
1350
1351   const ModuleAnalysisManager &MAM =
1352       AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager();
1353   ProfileSummaryInfo *PSI =
1354       MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
1355
1356   bool Changed = false;
1357
1358   // The unroller requires loops to be in simplified form, and also needs LCSSA.
1359   // Since simplification may add new inner loops, it has to run before the
1360   // legality and profitability checks. This means running the loop unroller
1361   // will simplify all loops, regardless of whether anything end up being
1362   // unrolled.
1363   for (auto &L : LI) {
1364     Changed |= simplifyLoop(L, &DT, &LI, &SE, &AC, false /* PreserveLCSSA */);
1365     Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
1366   }
1367
1368   SmallVector<Loop *, 8> Worklist = appendLoopsToWorklist(LI);
1369
1370   while (!Worklist.empty()) {
1371     // Because the LoopInfo stores the loops in RPO, we walk the worklist
1372     // from back to front so that we work forward across the CFG, which
1373     // for unrolling is only needed to get optimization remarks emitted in
1374     // a forward order.
1375     Loop &L = *Worklist.pop_back_val();
1376 #ifndef NDEBUG
1377     Loop *ParentL = L.getParentLoop();
1378 #endif
1379
1380     // Check if the profile summary indicates that the profiled application
1381     // has a huge working set size, in which case we disable peeling to avoid
1382     // bloating it further.
1383     Optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling;
1384     if (PSI && PSI->hasHugeWorkingSetSize())
1385       LocalAllowPeeling = false;
1386     std::string LoopName = L.getName();
1387     // The API here is quite complex to call and we allow to select some
1388     // flavors of unrolling during construction time (by setting UnrollOpts).
1389     LoopUnrollResult Result = tryToUnrollLoop(
1390         &L, DT, &LI, SE, TTI, AC, ORE,
1391         /*PreserveLCSSA*/ true, UnrollOpts.OptLevel, UnrollOpts.OnlyWhenForced,
1392         /*Count*/ None,
1393         /*Threshold*/ None, UnrollOpts.AllowPartial, UnrollOpts.AllowRuntime,
1394         UnrollOpts.AllowUpperBound, LocalAllowPeeling);
1395     Changed |= Result != LoopUnrollResult::Unmodified;
1396
1397     // The parent must not be damaged by unrolling!
1398 #ifndef NDEBUG
1399     if (Result != LoopUnrollResult::Unmodified && ParentL)
1400       ParentL->verifyLoop();
1401 #endif
1402
1403     // Clear any cached analysis results for L if we removed it completely.
1404     if (LAM && Result == LoopUnrollResult::FullyUnrolled)
1405       LAM->clear(L, LoopName);
1406   }
1407
1408   if (!Changed)
1409     return PreservedAnalyses::all();
1410
1411   return getLoopPassPreservedAnalyses();
1412 }