]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/Scalar/Reassociate.cpp
Merge ^/head r318560 through r318657.
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / Scalar / Reassociate.cpp
1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass reassociates commutative expressions in an order that is designed
11 // to promote better constant propagation, GCSE, LICM, PRE, etc.
12 //
13 // For example: 4 + (x + 5) -> x + (4 + 5)
14 //
15 // In the implementation of this algorithm, constants are assigned rank = 0,
16 // function arguments are rank = 1, and other values are assigned ranks
17 // corresponding to the reverse post order traversal of current function
18 // (starting at 2), which effectively gives values in deep loops higher rank
19 // than values not in loops.
20 //
21 //===----------------------------------------------------------------------===//
22
23 #include "llvm/Transforms/Scalar/Reassociate.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/PostOrderIterator.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SetVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/Analysis/GlobalsModRef.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/CFG.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/IR/IRBuilder.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/IntrinsicInst.h"
38 #include "llvm/IR/ValueHandle.h"
39 #include "llvm/Pass.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Transforms/Scalar.h"
43 #include "llvm/Transforms/Utils/Local.h"
44 #include <algorithm>
45 using namespace llvm;
46 using namespace reassociate;
47
48 #define DEBUG_TYPE "reassociate"
49
50 STATISTIC(NumChanged, "Number of insts reassociated");
51 STATISTIC(NumAnnihil, "Number of expr tree annihilated");
52 STATISTIC(NumFactor , "Number of multiplies factored");
53
54 #ifndef NDEBUG
55 /// Print out the expression identified in the Ops list.
56 ///
57 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
58   Module *M = I->getModule();
59   dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
60        << *Ops[0].Op->getType() << '\t';
61   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
62     dbgs() << "[ ";
63     Ops[i].Op->printAsOperand(dbgs(), false, M);
64     dbgs() << ", #" << Ops[i].Rank << "] ";
65   }
66 }
67 #endif
68
69 /// Utility class representing a non-constant Xor-operand. We classify
70 /// non-constant Xor-Operands into two categories:
71 ///  C1) The operand is in the form "X & C", where C is a constant and C != ~0
72 ///  C2)
73 ///    C2.1) The operand is in the form of "X | C", where C is a non-zero
74 ///          constant.
75 ///    C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
76 ///          operand as "E | 0"
77 class llvm::reassociate::XorOpnd {
78 public:
79   XorOpnd(Value *V);
80
81   bool isInvalid() const { return SymbolicPart == nullptr; }
82   bool isOrExpr() const { return isOr; }
83   Value *getValue() const { return OrigVal; }
84   Value *getSymbolicPart() const { return SymbolicPart; }
85   unsigned getSymbolicRank() const { return SymbolicRank; }
86   const APInt &getConstPart() const { return ConstPart; }
87
88   void Invalidate() { SymbolicPart = OrigVal = nullptr; }
89   void setSymbolicRank(unsigned R) { SymbolicRank = R; }
90
91 private:
92   Value *OrigVal;
93   Value *SymbolicPart;
94   APInt ConstPart;
95   unsigned SymbolicRank;
96   bool isOr;
97 };
98
99 XorOpnd::XorOpnd(Value *V) {
100   assert(!isa<ConstantInt>(V) && "No ConstantInt");
101   OrigVal = V;
102   Instruction *I = dyn_cast<Instruction>(V);
103   SymbolicRank = 0;
104
105   if (I && (I->getOpcode() == Instruction::Or ||
106             I->getOpcode() == Instruction::And)) {
107     Value *V0 = I->getOperand(0);
108     Value *V1 = I->getOperand(1);
109     if (isa<ConstantInt>(V0))
110       std::swap(V0, V1);
111
112     if (ConstantInt *C = dyn_cast<ConstantInt>(V1)) {
113       ConstPart = C->getValue();
114       SymbolicPart = V0;
115       isOr = (I->getOpcode() == Instruction::Or);
116       return;
117     }
118   }
119
120   // view the operand as "V | 0"
121   SymbolicPart = V;
122   ConstPart = APInt::getNullValue(V->getType()->getIntegerBitWidth());
123   isOr = true;
124 }
125
126 /// Return true if V is an instruction of the specified opcode and if it
127 /// only has one use.
128 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
129   if (V->hasOneUse() && isa<Instruction>(V) &&
130       cast<Instruction>(V)->getOpcode() == Opcode &&
131       (!isa<FPMathOperator>(V) ||
132        cast<Instruction>(V)->hasUnsafeAlgebra()))
133     return cast<BinaryOperator>(V);
134   return nullptr;
135 }
136
137 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
138                                         unsigned Opcode2) {
139   if (V->hasOneUse() && isa<Instruction>(V) &&
140       (cast<Instruction>(V)->getOpcode() == Opcode1 ||
141        cast<Instruction>(V)->getOpcode() == Opcode2) &&
142       (!isa<FPMathOperator>(V) ||
143        cast<Instruction>(V)->hasUnsafeAlgebra()))
144     return cast<BinaryOperator>(V);
145   return nullptr;
146 }
147
148 void ReassociatePass::BuildRankMap(Function &F,
149                                    ReversePostOrderTraversal<Function*> &RPOT) {
150   unsigned i = 2;
151
152   // Assign distinct ranks to function arguments.
153   for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
154     ValueRankMap[&*I] = ++i;
155     DEBUG(dbgs() << "Calculated Rank[" << I->getName() << "] = " << i << "\n");
156   }
157
158   // Traverse basic blocks in ReversePostOrder
159   for (BasicBlock *BB : RPOT) {
160     unsigned BBRank = RankMap[BB] = ++i << 16;
161
162     // Walk the basic block, adding precomputed ranks for any instructions that
163     // we cannot move.  This ensures that the ranks for these instructions are
164     // all different in the block.
165     for (Instruction &I : *BB)
166       if (mayBeMemoryDependent(I))
167         ValueRankMap[&I] = ++BBRank;
168   }
169 }
170
171 unsigned ReassociatePass::getRank(Value *V) {
172   Instruction *I = dyn_cast<Instruction>(V);
173   if (!I) {
174     if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
175     return 0;  // Otherwise it's a global or constant, rank 0.
176   }
177
178   if (unsigned Rank = ValueRankMap[I])
179     return Rank;    // Rank already known?
180
181   // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
182   // we can reassociate expressions for code motion!  Since we do not recurse
183   // for PHI nodes, we cannot have infinite recursion here, because there
184   // cannot be loops in the value graph that do not go through PHI nodes.
185   unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
186   for (unsigned i = 0, e = I->getNumOperands();
187        i != e && Rank != MaxRank; ++i)
188     Rank = std::max(Rank, getRank(I->getOperand(i)));
189
190   // If this is a not or neg instruction, do not count it for rank.  This
191   // assures us that X and ~X will have the same rank.
192   if  (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) &&
193        !BinaryOperator::isFNeg(I))
194     ++Rank;
195
196   DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank << "\n");
197
198   return ValueRankMap[I] = Rank;
199 }
200
201 // Canonicalize constants to RHS.  Otherwise, sort the operands by rank.
202 void ReassociatePass::canonicalizeOperands(Instruction *I) {
203   assert(isa<BinaryOperator>(I) && "Expected binary operator.");
204   assert(I->isCommutative() && "Expected commutative operator.");
205
206   Value *LHS = I->getOperand(0);
207   Value *RHS = I->getOperand(1);
208   unsigned LHSRank = getRank(LHS);
209   unsigned RHSRank = getRank(RHS);
210
211   if (isa<Constant>(RHS))
212     return;
213
214   if (isa<Constant>(LHS) || RHSRank < LHSRank)
215     cast<BinaryOperator>(I)->swapOperands();
216 }
217
218 static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
219                                  Instruction *InsertBefore, Value *FlagsOp) {
220   if (S1->getType()->isIntOrIntVectorTy())
221     return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
222   else {
223     BinaryOperator *Res =
224         BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
225     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
226     return Res;
227   }
228 }
229
230 static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
231                                  Instruction *InsertBefore, Value *FlagsOp) {
232   if (S1->getType()->isIntOrIntVectorTy())
233     return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
234   else {
235     BinaryOperator *Res =
236       BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
237     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
238     return Res;
239   }
240 }
241
242 static BinaryOperator *CreateNeg(Value *S1, const Twine &Name,
243                                  Instruction *InsertBefore, Value *FlagsOp) {
244   if (S1->getType()->isIntOrIntVectorTy())
245     return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
246   else {
247     BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore);
248     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
249     return Res;
250   }
251 }
252
253 /// Replace 0-X with X*-1.
254 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
255   Type *Ty = Neg->getType();
256   Constant *NegOne = Ty->isIntOrIntVectorTy() ?
257     ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0);
258
259   BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg);
260   Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op.
261   Res->takeName(Neg);
262   Neg->replaceAllUsesWith(Res);
263   Res->setDebugLoc(Neg->getDebugLoc());
264   return Res;
265 }
266
267 /// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael
268 /// function. This means that x^(2^k) === 1 mod 2^Bitwidth for
269 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
270 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
271 /// even x in Bitwidth-bit arithmetic.
272 static unsigned CarmichaelShift(unsigned Bitwidth) {
273   if (Bitwidth < 3)
274     return Bitwidth - 1;
275   return Bitwidth - 2;
276 }
277
278 /// Add the extra weight 'RHS' to the existing weight 'LHS',
279 /// reducing the combined weight using any special properties of the operation.
280 /// The existing weight LHS represents the computation X op X op ... op X where
281 /// X occurs LHS times.  The combined weight represents  X op X op ... op X with
282 /// X occurring LHS + RHS times.  If op is "Xor" for example then the combined
283 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
284 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
285 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
286   // If we were working with infinite precision arithmetic then the combined
287   // weight would be LHS + RHS.  But we are using finite precision arithmetic,
288   // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
289   // for nilpotent operations and addition, but not for idempotent operations
290   // and multiplication), so it is important to correctly reduce the combined
291   // weight back into range if wrapping would be wrong.
292
293   // If RHS is zero then the weight didn't change.
294   if (RHS.isMinValue())
295     return;
296   // If LHS is zero then the combined weight is RHS.
297   if (LHS.isMinValue()) {
298     LHS = RHS;
299     return;
300   }
301   // From this point on we know that neither LHS nor RHS is zero.
302
303   if (Instruction::isIdempotent(Opcode)) {
304     // Idempotent means X op X === X, so any non-zero weight is equivalent to a
305     // weight of 1.  Keeping weights at zero or one also means that wrapping is
306     // not a problem.
307     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
308     return; // Return a weight of 1.
309   }
310   if (Instruction::isNilpotent(Opcode)) {
311     // Nilpotent means X op X === 0, so reduce weights modulo 2.
312     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
313     LHS = 0; // 1 + 1 === 0 modulo 2.
314     return;
315   }
316   if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
317     // TODO: Reduce the weight by exploiting nsw/nuw?
318     LHS += RHS;
319     return;
320   }
321
322   assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
323          "Unknown associative operation!");
324   unsigned Bitwidth = LHS.getBitWidth();
325   // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
326   // can be replaced with W-CM.  That's because x^W=x^(W-CM) for every Bitwidth
327   // bit number x, since either x is odd in which case x^CM = 1, or x is even in
328   // which case both x^W and x^(W - CM) are zero.  By subtracting off multiples
329   // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
330   // which by a happy accident means that they can always be represented using
331   // Bitwidth bits.
332   // TODO: Reduce the weight by exploiting nsw/nuw?  (Could do much better than
333   // the Carmichael number).
334   if (Bitwidth > 3) {
335     /// CM - The value of Carmichael's lambda function.
336     APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
337     // Any weight W >= Threshold can be replaced with W - CM.
338     APInt Threshold = CM + Bitwidth;
339     assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
340     // For Bitwidth 4 or more the following sum does not overflow.
341     LHS += RHS;
342     while (LHS.uge(Threshold))
343       LHS -= CM;
344   } else {
345     // To avoid problems with overflow do everything the same as above but using
346     // a larger type.
347     unsigned CM = 1U << CarmichaelShift(Bitwidth);
348     unsigned Threshold = CM + Bitwidth;
349     assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
350            "Weights not reduced!");
351     unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
352     while (Total >= Threshold)
353       Total -= CM;
354     LHS = Total;
355   }
356 }
357
358 typedef std::pair<Value*, APInt> RepeatedValue;
359
360 /// Given an associative binary expression, return the leaf
361 /// nodes in Ops along with their weights (how many times the leaf occurs).  The
362 /// original expression is the same as
363 ///   (Ops[0].first op Ops[0].first op ... Ops[0].first)  <- Ops[0].second times
364 /// op
365 ///   (Ops[1].first op Ops[1].first op ... Ops[1].first)  <- Ops[1].second times
366 /// op
367 ///   ...
368 /// op
369 ///   (Ops[N].first op Ops[N].first op ... Ops[N].first)  <- Ops[N].second times
370 ///
371 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
372 ///
373 /// This routine may modify the function, in which case it returns 'true'.  The
374 /// changes it makes may well be destructive, changing the value computed by 'I'
375 /// to something completely different.  Thus if the routine returns 'true' then
376 /// you MUST either replace I with a new expression computed from the Ops array,
377 /// or use RewriteExprTree to put the values back in.
378 ///
379 /// A leaf node is either not a binary operation of the same kind as the root
380 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different
381 /// opcode), or is the same kind of binary operator but has a use which either
382 /// does not belong to the expression, or does belong to the expression but is
383 /// a leaf node.  Every leaf node has at least one use that is a non-leaf node
384 /// of the expression, while for non-leaf nodes (except for the root 'I') every
385 /// use is a non-leaf node of the expression.
386 ///
387 /// For example:
388 ///           expression graph        node names
389 ///
390 ///                     +        |        I
391 ///                    / \       |
392 ///                   +   +      |      A,  B
393 ///                  / \ / \     |
394 ///                 *   +   *    |    C,  D,  E
395 ///                / \ / \ / \   |
396 ///                   +   *      |      F,  G
397 ///
398 /// The leaf nodes are C, E, F and G.  The Ops array will contain (maybe not in
399 /// that order) (C, 1), (E, 1), (F, 2), (G, 2).
400 ///
401 /// The expression is maximal: if some instruction is a binary operator of the
402 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
403 /// then the instruction also belongs to the expression, is not a leaf node of
404 /// it, and its operands also belong to the expression (but may be leaf nodes).
405 ///
406 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
407 /// order to ensure that every non-root node in the expression has *exactly one*
408 /// use by a non-leaf node of the expression.  This destruction means that the
409 /// caller MUST either replace 'I' with a new expression or use something like
410 /// RewriteExprTree to put the values back in if the routine indicates that it
411 /// made a change by returning 'true'.
412 ///
413 /// In the above example either the right operand of A or the left operand of B
414 /// will be replaced by undef.  If it is B's operand then this gives:
415 ///
416 ///                     +        |        I
417 ///                    / \       |
418 ///                   +   +      |      A,  B - operand of B replaced with undef
419 ///                  / \   \     |
420 ///                 *   +   *    |    C,  D,  E
421 ///                / \ / \ / \   |
422 ///                   +   *      |      F,  G
423 ///
424 /// Note that such undef operands can only be reached by passing through 'I'.
425 /// For example, if you visit operands recursively starting from a leaf node
426 /// then you will never see such an undef operand unless you get back to 'I',
427 /// which requires passing through a phi node.
428 ///
429 /// Note that this routine may also mutate binary operators of the wrong type
430 /// that have all uses inside the expression (i.e. only used by non-leaf nodes
431 /// of the expression) if it can turn them into binary operators of the right
432 /// type and thus make the expression bigger.
433
434 static bool LinearizeExprTree(BinaryOperator *I,
435                               SmallVectorImpl<RepeatedValue> &Ops) {
436   DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
437   unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
438   unsigned Opcode = I->getOpcode();
439   assert(I->isAssociative() && I->isCommutative() &&
440          "Expected an associative and commutative operation!");
441
442   // Visit all operands of the expression, keeping track of their weight (the
443   // number of paths from the expression root to the operand, or if you like
444   // the number of times that operand occurs in the linearized expression).
445   // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
446   // while A has weight two.
447
448   // Worklist of non-leaf nodes (their operands are in the expression too) along
449   // with their weights, representing a certain number of paths to the operator.
450   // If an operator occurs in the worklist multiple times then we found multiple
451   // ways to get to it.
452   SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
453   Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
454   bool Changed = false;
455
456   // Leaves of the expression are values that either aren't the right kind of
457   // operation (eg: a constant, or a multiply in an add tree), or are, but have
458   // some uses that are not inside the expression.  For example, in I = X + X,
459   // X = A + B, the value X has two uses (by I) that are in the expression.  If
460   // X has any other uses, for example in a return instruction, then we consider
461   // X to be a leaf, and won't analyze it further.  When we first visit a value,
462   // if it has more than one use then at first we conservatively consider it to
463   // be a leaf.  Later, as the expression is explored, we may discover some more
464   // uses of the value from inside the expression.  If all uses turn out to be
465   // from within the expression (and the value is a binary operator of the right
466   // kind) then the value is no longer considered to be a leaf, and its operands
467   // are explored.
468
469   // Leaves - Keeps track of the set of putative leaves as well as the number of
470   // paths to each leaf seen so far.
471   typedef DenseMap<Value*, APInt> LeafMap;
472   LeafMap Leaves; // Leaf -> Total weight so far.
473   SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.
474
475 #ifndef NDEBUG
476   SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
477 #endif
478   while (!Worklist.empty()) {
479     std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
480     I = P.first; // We examine the operands of this binary operator.
481
482     for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
483       Value *Op = I->getOperand(OpIdx);
484       APInt Weight = P.second; // Number of paths to this operand.
485       DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
486       assert(!Op->use_empty() && "No uses, so how did we get to it?!");
487
488       // If this is a binary operation of the right kind with only one use then
489       // add its operands to the expression.
490       if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
491         assert(Visited.insert(Op).second && "Not first visit!");
492         DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
493         Worklist.push_back(std::make_pair(BO, Weight));
494         continue;
495       }
496
497       // Appears to be a leaf.  Is the operand already in the set of leaves?
498       LeafMap::iterator It = Leaves.find(Op);
499       if (It == Leaves.end()) {
500         // Not in the leaf map.  Must be the first time we saw this operand.
501         assert(Visited.insert(Op).second && "Not first visit!");
502         if (!Op->hasOneUse()) {
503           // This value has uses not accounted for by the expression, so it is
504           // not safe to modify.  Mark it as being a leaf.
505           DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
506           LeafOrder.push_back(Op);
507           Leaves[Op] = Weight;
508           continue;
509         }
510         // No uses outside the expression, try morphing it.
511       } else {
512         // Already in the leaf map.
513         assert(It != Leaves.end() && Visited.count(Op) &&
514                "In leaf map but not visited!");
515
516         // Update the number of paths to the leaf.
517         IncorporateWeight(It->second, Weight, Opcode);
518
519 #if 0   // TODO: Re-enable once PR13021 is fixed.
520         // The leaf already has one use from inside the expression.  As we want
521         // exactly one such use, drop this new use of the leaf.
522         assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
523         I->setOperand(OpIdx, UndefValue::get(I->getType()));
524         Changed = true;
525
526         // If the leaf is a binary operation of the right kind and we now see
527         // that its multiple original uses were in fact all by nodes belonging
528         // to the expression, then no longer consider it to be a leaf and add
529         // its operands to the expression.
530         if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
531           DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
532           Worklist.push_back(std::make_pair(BO, It->second));
533           Leaves.erase(It);
534           continue;
535         }
536 #endif
537
538         // If we still have uses that are not accounted for by the expression
539         // then it is not safe to modify the value.
540         if (!Op->hasOneUse())
541           continue;
542
543         // No uses outside the expression, try morphing it.
544         Weight = It->second;
545         Leaves.erase(It); // Since the value may be morphed below.
546       }
547
548       // At this point we have a value which, first of all, is not a binary
549       // expression of the right kind, and secondly, is only used inside the
550       // expression.  This means that it can safely be modified.  See if we
551       // can usefully morph it into an expression of the right kind.
552       assert((!isa<Instruction>(Op) ||
553               cast<Instruction>(Op)->getOpcode() != Opcode
554               || (isa<FPMathOperator>(Op) &&
555                   !cast<Instruction>(Op)->hasUnsafeAlgebra())) &&
556              "Should have been handled above!");
557       assert(Op->hasOneUse() && "Has uses outside the expression tree!");
558
559       // If this is a multiply expression, turn any internal negations into
560       // multiplies by -1 so they can be reassociated.
561       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op))
562         if ((Opcode == Instruction::Mul && BinaryOperator::isNeg(BO)) ||
563             (Opcode == Instruction::FMul && BinaryOperator::isFNeg(BO))) {
564           DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
565           BO = LowerNegateToMultiply(BO);
566           DEBUG(dbgs() << *BO << '\n');
567           Worklist.push_back(std::make_pair(BO, Weight));
568           Changed = true;
569           continue;
570         }
571
572       // Failed to morph into an expression of the right type.  This really is
573       // a leaf.
574       DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
575       assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
576       LeafOrder.push_back(Op);
577       Leaves[Op] = Weight;
578     }
579   }
580
581   // The leaves, repeated according to their weights, represent the linearized
582   // form of the expression.
583   for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
584     Value *V = LeafOrder[i];
585     LeafMap::iterator It = Leaves.find(V);
586     if (It == Leaves.end())
587       // Node initially thought to be a leaf wasn't.
588       continue;
589     assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
590     APInt Weight = It->second;
591     if (Weight.isMinValue())
592       // Leaf already output or weight reduction eliminated it.
593       continue;
594     // Ensure the leaf is only output once.
595     It->second = 0;
596     Ops.push_back(std::make_pair(V, Weight));
597   }
598
599   // For nilpotent operations or addition there may be no operands, for example
600   // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
601   // in both cases the weight reduces to 0 causing the value to be skipped.
602   if (Ops.empty()) {
603     Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
604     assert(Identity && "Associative operation without identity!");
605     Ops.emplace_back(Identity, APInt(Bitwidth, 1));
606   }
607
608   return Changed;
609 }
610
611 /// Now that the operands for this expression tree are
612 /// linearized and optimized, emit them in-order.
613 void ReassociatePass::RewriteExprTree(BinaryOperator *I,
614                                       SmallVectorImpl<ValueEntry> &Ops) {
615   assert(Ops.size() > 1 && "Single values should be used directly!");
616
617   // Since our optimizations should never increase the number of operations, the
618   // new expression can usually be written reusing the existing binary operators
619   // from the original expression tree, without creating any new instructions,
620   // though the rewritten expression may have a completely different topology.
621   // We take care to not change anything if the new expression will be the same
622   // as the original.  If more than trivial changes (like commuting operands)
623   // were made then we are obliged to clear out any optional subclass data like
624   // nsw flags.
625
626   /// NodesToRewrite - Nodes from the original expression available for writing
627   /// the new expression into.
628   SmallVector<BinaryOperator*, 8> NodesToRewrite;
629   unsigned Opcode = I->getOpcode();
630   BinaryOperator *Op = I;
631
632   /// NotRewritable - The operands being written will be the leaves of the new
633   /// expression and must not be used as inner nodes (via NodesToRewrite) by
634   /// mistake.  Inner nodes are always reassociable, and usually leaves are not
635   /// (if they were they would have been incorporated into the expression and so
636   /// would not be leaves), so most of the time there is no danger of this.  But
637   /// in rare cases a leaf may become reassociable if an optimization kills uses
638   /// of it, or it may momentarily become reassociable during rewriting (below)
639   /// due it being removed as an operand of one of its uses.  Ensure that misuse
640   /// of leaf nodes as inner nodes cannot occur by remembering all of the future
641   /// leaves and refusing to reuse any of them as inner nodes.
642   SmallPtrSet<Value*, 8> NotRewritable;
643   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
644     NotRewritable.insert(Ops[i].Op);
645
646   // ExpressionChanged - Non-null if the rewritten expression differs from the
647   // original in some non-trivial way, requiring the clearing of optional flags.
648   // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
649   BinaryOperator *ExpressionChanged = nullptr;
650   for (unsigned i = 0; ; ++i) {
651     // The last operation (which comes earliest in the IR) is special as both
652     // operands will come from Ops, rather than just one with the other being
653     // a subexpression.
654     if (i+2 == Ops.size()) {
655       Value *NewLHS = Ops[i].Op;
656       Value *NewRHS = Ops[i+1].Op;
657       Value *OldLHS = Op->getOperand(0);
658       Value *OldRHS = Op->getOperand(1);
659
660       if (NewLHS == OldLHS && NewRHS == OldRHS)
661         // Nothing changed, leave it alone.
662         break;
663
664       if (NewLHS == OldRHS && NewRHS == OldLHS) {
665         // The order of the operands was reversed.  Swap them.
666         DEBUG(dbgs() << "RA: " << *Op << '\n');
667         Op->swapOperands();
668         DEBUG(dbgs() << "TO: " << *Op << '\n');
669         MadeChange = true;
670         ++NumChanged;
671         break;
672       }
673
674       // The new operation differs non-trivially from the original. Overwrite
675       // the old operands with the new ones.
676       DEBUG(dbgs() << "RA: " << *Op << '\n');
677       if (NewLHS != OldLHS) {
678         BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
679         if (BO && !NotRewritable.count(BO))
680           NodesToRewrite.push_back(BO);
681         Op->setOperand(0, NewLHS);
682       }
683       if (NewRHS != OldRHS) {
684         BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
685         if (BO && !NotRewritable.count(BO))
686           NodesToRewrite.push_back(BO);
687         Op->setOperand(1, NewRHS);
688       }
689       DEBUG(dbgs() << "TO: " << *Op << '\n');
690
691       ExpressionChanged = Op;
692       MadeChange = true;
693       ++NumChanged;
694
695       break;
696     }
697
698     // Not the last operation.  The left-hand side will be a sub-expression
699     // while the right-hand side will be the current element of Ops.
700     Value *NewRHS = Ops[i].Op;
701     if (NewRHS != Op->getOperand(1)) {
702       DEBUG(dbgs() << "RA: " << *Op << '\n');
703       if (NewRHS == Op->getOperand(0)) {
704         // The new right-hand side was already present as the left operand.  If
705         // we are lucky then swapping the operands will sort out both of them.
706         Op->swapOperands();
707       } else {
708         // Overwrite with the new right-hand side.
709         BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
710         if (BO && !NotRewritable.count(BO))
711           NodesToRewrite.push_back(BO);
712         Op->setOperand(1, NewRHS);
713         ExpressionChanged = Op;
714       }
715       DEBUG(dbgs() << "TO: " << *Op << '\n');
716       MadeChange = true;
717       ++NumChanged;
718     }
719
720     // Now deal with the left-hand side.  If this is already an operation node
721     // from the original expression then just rewrite the rest of the expression
722     // into it.
723     BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
724     if (BO && !NotRewritable.count(BO)) {
725       Op = BO;
726       continue;
727     }
728
729     // Otherwise, grab a spare node from the original expression and use that as
730     // the left-hand side.  If there are no nodes left then the optimizers made
731     // an expression with more nodes than the original!  This usually means that
732     // they did something stupid but it might mean that the problem was just too
733     // hard (finding the mimimal number of multiplications needed to realize a
734     // multiplication expression is NP-complete).  Whatever the reason, smart or
735     // stupid, create a new node if there are none left.
736     BinaryOperator *NewOp;
737     if (NodesToRewrite.empty()) {
738       Constant *Undef = UndefValue::get(I->getType());
739       NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
740                                      Undef, Undef, "", I);
741       if (NewOp->getType()->isFPOrFPVectorTy())
742         NewOp->setFastMathFlags(I->getFastMathFlags());
743     } else {
744       NewOp = NodesToRewrite.pop_back_val();
745     }
746
747     DEBUG(dbgs() << "RA: " << *Op << '\n');
748     Op->setOperand(0, NewOp);
749     DEBUG(dbgs() << "TO: " << *Op << '\n');
750     ExpressionChanged = Op;
751     MadeChange = true;
752     ++NumChanged;
753     Op = NewOp;
754   }
755
756   // If the expression changed non-trivially then clear out all subclass data
757   // starting from the operator specified in ExpressionChanged, and compactify
758   // the operators to just before the expression root to guarantee that the
759   // expression tree is dominated by all of Ops.
760   if (ExpressionChanged)
761     do {
762       // Preserve FastMathFlags.
763       if (isa<FPMathOperator>(I)) {
764         FastMathFlags Flags = I->getFastMathFlags();
765         ExpressionChanged->clearSubclassOptionalData();
766         ExpressionChanged->setFastMathFlags(Flags);
767       } else
768         ExpressionChanged->clearSubclassOptionalData();
769
770       if (ExpressionChanged == I)
771         break;
772       ExpressionChanged->moveBefore(I);
773       ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
774     } while (1);
775
776   // Throw away any left over nodes from the original expression.
777   for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
778     RedoInsts.insert(NodesToRewrite[i]);
779 }
780
781 /// Insert instructions before the instruction pointed to by BI,
782 /// that computes the negative version of the value specified.  The negative
783 /// version of the value is returned, and BI is left pointing at the instruction
784 /// that should be processed next by the reassociation pass.
785 /// Also add intermediate instructions to the redo list that are modified while
786 /// pushing the negates through adds.  These will be revisited to see if
787 /// additional opportunities have been exposed.
788 static Value *NegateValue(Value *V, Instruction *BI,
789                           SetVector<AssertingVH<Instruction>> &ToRedo) {
790   if (Constant *C = dyn_cast<Constant>(V)) {
791     if (C->getType()->isFPOrFPVectorTy()) {
792       return ConstantExpr::getFNeg(C);
793     }
794     return ConstantExpr::getNeg(C);
795   }
796
797
798   // We are trying to expose opportunity for reassociation.  One of the things
799   // that we want to do to achieve this is to push a negation as deep into an
800   // expression chain as possible, to expose the add instructions.  In practice,
801   // this means that we turn this:
802   //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
803   // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
804   // the constants.  We assume that instcombine will clean up the mess later if
805   // we introduce tons of unnecessary negation instructions.
806   //
807   if (BinaryOperator *I =
808           isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
809     // Push the negates through the add.
810     I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo));
811     I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo));
812     if (I->getOpcode() == Instruction::Add) {
813       I->setHasNoUnsignedWrap(false);
814       I->setHasNoSignedWrap(false);
815     }
816
817     // We must move the add instruction here, because the neg instructions do
818     // not dominate the old add instruction in general.  By moving it, we are
819     // assured that the neg instructions we just inserted dominate the
820     // instruction we are about to insert after them.
821     //
822     I->moveBefore(BI);
823     I->setName(I->getName()+".neg");
824
825     // Add the intermediate negates to the redo list as processing them later
826     // could expose more reassociating opportunities.
827     ToRedo.insert(I);
828     return I;
829   }
830
831   // Okay, we need to materialize a negated version of V with an instruction.
832   // Scan the use lists of V to see if we have one already.
833   for (User *U : V->users()) {
834     if (!BinaryOperator::isNeg(U) && !BinaryOperator::isFNeg(U))
835       continue;
836
837     // We found one!  Now we have to make sure that the definition dominates
838     // this use.  We do this by moving it to the entry block (if it is a
839     // non-instruction value) or right after the definition.  These negates will
840     // be zapped by reassociate later, so we don't need much finesse here.
841     BinaryOperator *TheNeg = cast<BinaryOperator>(U);
842
843     // Verify that the negate is in this function, V might be a constant expr.
844     if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
845       continue;
846
847     BasicBlock::iterator InsertPt;
848     if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
849       if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
850         InsertPt = II->getNormalDest()->begin();
851       } else {
852         InsertPt = ++InstInput->getIterator();
853       }
854       while (isa<PHINode>(InsertPt)) ++InsertPt;
855     } else {
856       InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
857     }
858     TheNeg->moveBefore(&*InsertPt);
859     if (TheNeg->getOpcode() == Instruction::Sub) {
860       TheNeg->setHasNoUnsignedWrap(false);
861       TheNeg->setHasNoSignedWrap(false);
862     } else {
863       TheNeg->andIRFlags(BI);
864     }
865     ToRedo.insert(TheNeg);
866     return TheNeg;
867   }
868
869   // Insert a 'neg' instruction that subtracts the value from zero to get the
870   // negation.
871   BinaryOperator *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI);
872   ToRedo.insert(NewNeg);
873   return NewNeg;
874 }
875
876 /// Return true if we should break up this subtract of X-Y into (X + -Y).
877 static bool ShouldBreakUpSubtract(Instruction *Sub) {
878   // If this is a negation, we can't split it up!
879   if (BinaryOperator::isNeg(Sub) || BinaryOperator::isFNeg(Sub))
880     return false;
881
882   // Don't breakup X - undef.
883   if (isa<UndefValue>(Sub->getOperand(1)))
884     return false;
885
886   // Don't bother to break this up unless either the LHS is an associable add or
887   // subtract or if this is only used by one.
888   Value *V0 = Sub->getOperand(0);
889   if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
890       isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
891     return true;
892   Value *V1 = Sub->getOperand(1);
893   if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
894       isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
895     return true;
896   Value *VB = Sub->user_back();
897   if (Sub->hasOneUse() &&
898       (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
899        isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
900     return true;
901
902   return false;
903 }
904
905 /// If we have (X-Y), and if either X is an add, or if this is only used by an
906 /// add, transform this into (X+(0-Y)) to promote better reassociation.
907 static BinaryOperator *
908 BreakUpSubtract(Instruction *Sub, SetVector<AssertingVH<Instruction>> &ToRedo) {
909   // Convert a subtract into an add and a neg instruction. This allows sub
910   // instructions to be commuted with other add instructions.
911   //
912   // Calculate the negative value of Operand 1 of the sub instruction,
913   // and set it as the RHS of the add instruction we just made.
914   //
915   Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo);
916   BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
917   Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
918   Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
919   New->takeName(Sub);
920
921   // Everyone now refers to the add instruction.
922   Sub->replaceAllUsesWith(New);
923   New->setDebugLoc(Sub->getDebugLoc());
924
925   DEBUG(dbgs() << "Negated: " << *New << '\n');
926   return New;
927 }
928
929 /// If this is a shift of a reassociable multiply or is used by one, change
930 /// this into a multiply by a constant to assist with further reassociation.
931 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
932   Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
933   MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
934
935   BinaryOperator *Mul =
936     BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
937   Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
938   Mul->takeName(Shl);
939
940   // Everyone now refers to the mul instruction.
941   Shl->replaceAllUsesWith(Mul);
942   Mul->setDebugLoc(Shl->getDebugLoc());
943
944   // We can safely preserve the nuw flag in all cases.  It's also safe to turn a
945   // nuw nsw shl into a nuw nsw mul.  However, nsw in isolation requires special
946   // handling.
947   bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
948   bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
949   if (NSW && NUW)
950     Mul->setHasNoSignedWrap(true);
951   Mul->setHasNoUnsignedWrap(NUW);
952   return Mul;
953 }
954
955 /// Scan backwards and forwards among values with the same rank as element i
956 /// to see if X exists.  If X does not exist, return i.  This is useful when
957 /// scanning for 'x' when we see '-x' because they both get the same rank.
958 static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
959                                   Value *X) {
960   unsigned XRank = Ops[i].Rank;
961   unsigned e = Ops.size();
962   for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
963     if (Ops[j].Op == X)
964       return j;
965     if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
966       if (Instruction *I2 = dyn_cast<Instruction>(X))
967         if (I1->isIdenticalTo(I2))
968           return j;
969   }
970   // Scan backwards.
971   for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
972     if (Ops[j].Op == X)
973       return j;
974     if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
975       if (Instruction *I2 = dyn_cast<Instruction>(X))
976         if (I1->isIdenticalTo(I2))
977           return j;
978   }
979   return i;
980 }
981
982 /// Emit a tree of add instructions, summing Ops together
983 /// and returning the result.  Insert the tree before I.
984 static Value *EmitAddTreeOfValues(Instruction *I,
985                                   SmallVectorImpl<WeakTrackingVH> &Ops) {
986   if (Ops.size() == 1) return Ops.back();
987
988   Value *V1 = Ops.back();
989   Ops.pop_back();
990   Value *V2 = EmitAddTreeOfValues(I, Ops);
991   return CreateAdd(V2, V1, "tmp", I, I);
992 }
993
994 /// If V is an expression tree that is a multiplication sequence,
995 /// and if this sequence contains a multiply by Factor,
996 /// remove Factor from the tree and return the new tree.
997 Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) {
998   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
999   if (!BO)
1000     return nullptr;
1001
1002   SmallVector<RepeatedValue, 8> Tree;
1003   MadeChange |= LinearizeExprTree(BO, Tree);
1004   SmallVector<ValueEntry, 8> Factors;
1005   Factors.reserve(Tree.size());
1006   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1007     RepeatedValue E = Tree[i];
1008     Factors.append(E.second.getZExtValue(),
1009                    ValueEntry(getRank(E.first), E.first));
1010   }
1011
1012   bool FoundFactor = false;
1013   bool NeedsNegate = false;
1014   for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1015     if (Factors[i].Op == Factor) {
1016       FoundFactor = true;
1017       Factors.erase(Factors.begin()+i);
1018       break;
1019     }
1020
1021     // If this is a negative version of this factor, remove it.
1022     if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
1023       if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1024         if (FC1->getValue() == -FC2->getValue()) {
1025           FoundFactor = NeedsNegate = true;
1026           Factors.erase(Factors.begin()+i);
1027           break;
1028         }
1029     } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
1030       if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
1031         const APFloat &F1 = FC1->getValueAPF();
1032         APFloat F2(FC2->getValueAPF());
1033         F2.changeSign();
1034         if (F1.compare(F2) == APFloat::cmpEqual) {
1035           FoundFactor = NeedsNegate = true;
1036           Factors.erase(Factors.begin() + i);
1037           break;
1038         }
1039       }
1040     }
1041   }
1042
1043   if (!FoundFactor) {
1044     // Make sure to restore the operands to the expression tree.
1045     RewriteExprTree(BO, Factors);
1046     return nullptr;
1047   }
1048
1049   BasicBlock::iterator InsertPt = ++BO->getIterator();
1050
1051   // If this was just a single multiply, remove the multiply and return the only
1052   // remaining operand.
1053   if (Factors.size() == 1) {
1054     RedoInsts.insert(BO);
1055     V = Factors[0].Op;
1056   } else {
1057     RewriteExprTree(BO, Factors);
1058     V = BO;
1059   }
1060
1061   if (NeedsNegate)
1062     V = CreateNeg(V, "neg", &*InsertPt, BO);
1063
1064   return V;
1065 }
1066
1067 /// If V is a single-use multiply, recursively add its operands as factors,
1068 /// otherwise add V to the list of factors.
1069 ///
1070 /// Ops is the top-level list of add operands we're trying to factor.
1071 static void FindSingleUseMultiplyFactors(Value *V,
1072                                          SmallVectorImpl<Value*> &Factors) {
1073   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1074   if (!BO) {
1075     Factors.push_back(V);
1076     return;
1077   }
1078
1079   // Otherwise, add the LHS and RHS to the list of factors.
1080   FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
1081   FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
1082 }
1083
1084 /// Optimize a series of operands to an 'and', 'or', or 'xor' instruction.
1085 /// This optimizes based on identities.  If it can be reduced to a single Value,
1086 /// it is returned, otherwise the Ops list is mutated as necessary.
1087 static Value *OptimizeAndOrXor(unsigned Opcode,
1088                                SmallVectorImpl<ValueEntry> &Ops) {
1089   // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1090   // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1091   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1092     // First, check for X and ~X in the operand list.
1093     assert(i < Ops.size());
1094     if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
1095       Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
1096       unsigned FoundX = FindInOperandList(Ops, i, X);
1097       if (FoundX != i) {
1098         if (Opcode == Instruction::And)   // ...&X&~X = 0
1099           return Constant::getNullValue(X->getType());
1100
1101         if (Opcode == Instruction::Or)    // ...|X|~X = -1
1102           return Constant::getAllOnesValue(X->getType());
1103       }
1104     }
1105
1106     // Next, check for duplicate pairs of values, which we assume are next to
1107     // each other, due to our sorting criteria.
1108     assert(i < Ops.size());
1109     if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1110       if (Opcode == Instruction::And || Opcode == Instruction::Or) {
1111         // Drop duplicate values for And and Or.
1112         Ops.erase(Ops.begin()+i);
1113         --i; --e;
1114         ++NumAnnihil;
1115         continue;
1116       }
1117
1118       // Drop pairs of values for Xor.
1119       assert(Opcode == Instruction::Xor);
1120       if (e == 2)
1121         return Constant::getNullValue(Ops[0].Op->getType());
1122
1123       // Y ^ X^X -> Y
1124       Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1125       i -= 1; e -= 2;
1126       ++NumAnnihil;
1127     }
1128   }
1129   return nullptr;
1130 }
1131
1132 /// Helper function of CombineXorOpnd(). It creates a bitwise-and
1133 /// instruction with the given two operands, and return the resulting
1134 /// instruction. There are two special cases: 1) if the constant operand is 0,
1135 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1136 /// be returned.
1137 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd, 
1138                              const APInt &ConstOpnd) {
1139   if (ConstOpnd != 0) {
1140     if (!ConstOpnd.isAllOnesValue()) {
1141       LLVMContext &Ctx = Opnd->getType()->getContext();
1142       Instruction *I;
1143       I = BinaryOperator::CreateAnd(Opnd, ConstantInt::get(Ctx, ConstOpnd),
1144                                     "and.ra", InsertBefore);
1145       I->setDebugLoc(InsertBefore->getDebugLoc());
1146       return I;
1147     }
1148     return Opnd;
1149   }
1150   return nullptr;
1151 }
1152
1153 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1154 // into "R ^ C", where C would be 0, and R is a symbolic value.
1155 //
1156 // If it was successful, true is returned, and the "R" and "C" is returned
1157 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1158 // and both "Res" and "ConstOpnd" remain unchanged.
1159 //
1160 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1161                                      APInt &ConstOpnd, Value *&Res) {
1162   // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2 
1163   //                       = ((x | c1) ^ c1) ^ (c1 ^ c2)
1164   //                       = (x & ~c1) ^ (c1 ^ c2)
1165   // It is useful only when c1 == c2.
1166   if (Opnd1->isOrExpr() && Opnd1->getConstPart() != 0) {
1167     if (!Opnd1->getValue()->hasOneUse())
1168       return false;
1169
1170     const APInt &C1 = Opnd1->getConstPart();
1171     if (C1 != ConstOpnd)
1172       return false;
1173
1174     Value *X = Opnd1->getSymbolicPart();
1175     Res = createAndInstr(I, X, ~C1);
1176     // ConstOpnd was C2, now C1 ^ C2.
1177     ConstOpnd ^= C1;
1178
1179     if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1180       RedoInsts.insert(T);
1181     return true;
1182   }
1183   return false;
1184 }
1185
1186                            
1187 // Helper function of OptimizeXor(). It tries to simplify
1188 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1189 // symbolic value. 
1190 // 
1191 // If it was successful, true is returned, and the "R" and "C" is returned 
1192 // via "Res" and "ConstOpnd", respectively (If the entire expression is
1193 // evaluated to a constant, the Res is set to NULL); otherwise, false is
1194 // returned, and both "Res" and "ConstOpnd" remain unchanged.
1195 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1196                                      XorOpnd *Opnd2, APInt &ConstOpnd,
1197                                      Value *&Res) {
1198   Value *X = Opnd1->getSymbolicPart();
1199   if (X != Opnd2->getSymbolicPart())
1200     return false;
1201
1202   // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1203   int DeadInstNum = 1;
1204   if (Opnd1->getValue()->hasOneUse())
1205     DeadInstNum++;
1206   if (Opnd2->getValue()->hasOneUse())
1207     DeadInstNum++;
1208
1209   // Xor-Rule 2:
1210   //  (x | c1) ^ (x & c2)
1211   //   = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1212   //   = (x & ~c1) ^ (x & c2) ^ c1               // Xor-Rule 1
1213   //   = (x & c3) ^ c1, where c3 = ~c1 ^ c2      // Xor-rule 3
1214   //
1215   if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1216     if (Opnd2->isOrExpr())
1217       std::swap(Opnd1, Opnd2);
1218
1219     const APInt &C1 = Opnd1->getConstPart();
1220     const APInt &C2 = Opnd2->getConstPart();
1221     APInt C3((~C1) ^ C2);
1222
1223     // Do not increase code size!
1224     if (C3 != 0 && !C3.isAllOnesValue()) {
1225       int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1226       if (NewInstNum > DeadInstNum)
1227         return false;
1228     }
1229
1230     Res = createAndInstr(I, X, C3);
1231     ConstOpnd ^= C1;
1232
1233   } else if (Opnd1->isOrExpr()) {
1234     // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1235     //
1236     const APInt &C1 = Opnd1->getConstPart();
1237     const APInt &C2 = Opnd2->getConstPart();
1238     APInt C3 = C1 ^ C2;
1239     
1240     // Do not increase code size
1241     if (C3 != 0 && !C3.isAllOnesValue()) {
1242       int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1243       if (NewInstNum > DeadInstNum)
1244         return false;
1245     }
1246
1247     Res = createAndInstr(I, X, C3);
1248     ConstOpnd ^= C3;
1249   } else {
1250     // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1251     //
1252     const APInt &C1 = Opnd1->getConstPart();
1253     const APInt &C2 = Opnd2->getConstPart();
1254     APInt C3 = C1 ^ C2;
1255     Res = createAndInstr(I, X, C3);
1256   }
1257
1258   // Put the original operands in the Redo list; hope they will be deleted
1259   // as dead code.
1260   if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1261     RedoInsts.insert(T);
1262   if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1263     RedoInsts.insert(T);
1264
1265   return true;
1266 }
1267
1268 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1269 /// to a single Value, it is returned, otherwise the Ops list is mutated as
1270 /// necessary.
1271 Value *ReassociatePass::OptimizeXor(Instruction *I,
1272                                     SmallVectorImpl<ValueEntry> &Ops) {
1273   if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1274     return V;
1275       
1276   if (Ops.size() == 1)
1277     return nullptr;
1278
1279   SmallVector<XorOpnd, 8> Opnds;
1280   SmallVector<XorOpnd*, 8> OpndPtrs;
1281   Type *Ty = Ops[0].Op->getType();
1282   APInt ConstOpnd(Ty->getIntegerBitWidth(), 0);
1283
1284   // Step 1: Convert ValueEntry to XorOpnd
1285   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1286     Value *V = Ops[i].Op;
1287     if (!isa<ConstantInt>(V)) {
1288       XorOpnd O(V);
1289       O.setSymbolicRank(getRank(O.getSymbolicPart()));
1290       Opnds.push_back(O);
1291     } else
1292       ConstOpnd ^= cast<ConstantInt>(V)->getValue();
1293   }
1294
1295   // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1296   //  It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1297   //  the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1298   //  with the previous loop --- the iterator of the "Opnds" may be invalidated
1299   //  when new elements are added to the vector.
1300   for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1301     OpndPtrs.push_back(&Opnds[i]);
1302
1303   // Step 2: Sort the Xor-Operands in a way such that the operands containing
1304   //  the same symbolic value cluster together. For instance, the input operand
1305   //  sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1306   //  ("x | 123", "x & 789", "y & 456").
1307   //
1308   //  The purpose is twofold:
1309   //  1) Cluster together the operands sharing the same symbolic-value.
1310   //  2) Operand having smaller symbolic-value-rank is permuted earlier, which
1311   //     could potentially shorten crital path, and expose more loop-invariants.
1312   //     Note that values' rank are basically defined in RPO order (FIXME).
1313   //     So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
1314   //     than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
1315   //     "z" in the order of X-Y-Z is better than any other orders.
1316   std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(),
1317                    [](XorOpnd *LHS, XorOpnd *RHS) {
1318     return LHS->getSymbolicRank() < RHS->getSymbolicRank();
1319   });
1320
1321   // Step 3: Combine adjacent operands
1322   XorOpnd *PrevOpnd = nullptr;
1323   bool Changed = false;
1324   for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
1325     XorOpnd *CurrOpnd = OpndPtrs[i];
1326     // The combined value
1327     Value *CV;
1328
1329     // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
1330     if (ConstOpnd != 0 && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
1331       Changed = true;
1332       if (CV)
1333         *CurrOpnd = XorOpnd(CV);
1334       else {
1335         CurrOpnd->Invalidate();
1336         continue;
1337       }
1338     }
1339
1340     if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1341       PrevOpnd = CurrOpnd;
1342       continue;
1343     }
1344
1345     // step 3.2: When previous and current operands share the same symbolic
1346     //  value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd" 
1347     //    
1348     if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1349       // Remove previous operand
1350       PrevOpnd->Invalidate();
1351       if (CV) {
1352         *CurrOpnd = XorOpnd(CV);
1353         PrevOpnd = CurrOpnd;
1354       } else {
1355         CurrOpnd->Invalidate();
1356         PrevOpnd = nullptr;
1357       }
1358       Changed = true;
1359     }
1360   }
1361
1362   // Step 4: Reassemble the Ops
1363   if (Changed) {
1364     Ops.clear();
1365     for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
1366       XorOpnd &O = Opnds[i];
1367       if (O.isInvalid())
1368         continue;
1369       ValueEntry VE(getRank(O.getValue()), O.getValue());
1370       Ops.push_back(VE);
1371     }
1372     if (ConstOpnd != 0) {
1373       Value *C = ConstantInt::get(Ty->getContext(), ConstOpnd);
1374       ValueEntry VE(getRank(C), C);
1375       Ops.push_back(VE);
1376     }
1377     int Sz = Ops.size();
1378     if (Sz == 1)
1379       return Ops.back().Op;
1380     else if (Sz == 0) {
1381       assert(ConstOpnd == 0);
1382       return ConstantInt::get(Ty->getContext(), ConstOpnd);
1383     }
1384   }
1385
1386   return nullptr;
1387 }
1388
1389 /// Optimize a series of operands to an 'add' instruction.  This
1390 /// optimizes based on identities.  If it can be reduced to a single Value, it
1391 /// is returned, otherwise the Ops list is mutated as necessary.
1392 Value *ReassociatePass::OptimizeAdd(Instruction *I,
1393                                     SmallVectorImpl<ValueEntry> &Ops) {
1394   // Scan the operand lists looking for X and -X pairs.  If we find any, we
1395   // can simplify expressions like X+-X == 0 and X+~X ==-1.  While we're at it,
1396   // scan for any
1397   // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
1398
1399   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1400     Value *TheOp = Ops[i].Op;
1401     // Check to see if we've seen this operand before.  If so, we factor all
1402     // instances of the operand together.  Due to our sorting criteria, we know
1403     // that these need to be next to each other in the vector.
1404     if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1405       // Rescan the list, remove all instances of this operand from the expr.
1406       unsigned NumFound = 0;
1407       do {
1408         Ops.erase(Ops.begin()+i);
1409         ++NumFound;
1410       } while (i != Ops.size() && Ops[i].Op == TheOp);
1411
1412       DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
1413       ++NumFactor;
1414
1415       // Insert a new multiply.
1416       Type *Ty = TheOp->getType();
1417       Constant *C = Ty->isIntOrIntVectorTy() ?
1418         ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound);
1419       Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
1420
1421       // Now that we have inserted a multiply, optimize it. This allows us to
1422       // handle cases that require multiple factoring steps, such as this:
1423       // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
1424       RedoInsts.insert(Mul);
1425
1426       // If every add operand was a duplicate, return the multiply.
1427       if (Ops.empty())
1428         return Mul;
1429
1430       // Otherwise, we had some input that didn't have the dupe, such as
1431       // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
1432       // things being added by this operation.
1433       Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
1434
1435       --i;
1436       e = Ops.size();
1437       continue;
1438     }
1439
1440     // Check for X and -X or X and ~X in the operand list.
1441     if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isFNeg(TheOp) &&
1442         !BinaryOperator::isNot(TheOp))
1443       continue;
1444
1445     Value *X = nullptr;
1446     if (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp))
1447       X = BinaryOperator::getNegArgument(TheOp);
1448     else if (BinaryOperator::isNot(TheOp))
1449       X = BinaryOperator::getNotArgument(TheOp);
1450
1451     unsigned FoundX = FindInOperandList(Ops, i, X);
1452     if (FoundX == i)
1453       continue;
1454
1455     // Remove X and -X from the operand list.
1456     if (Ops.size() == 2 &&
1457         (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp)))
1458       return Constant::getNullValue(X->getType());
1459
1460     // Remove X and ~X from the operand list.
1461     if (Ops.size() == 2 && BinaryOperator::isNot(TheOp))
1462       return Constant::getAllOnesValue(X->getType());
1463
1464     Ops.erase(Ops.begin()+i);
1465     if (i < FoundX)
1466       --FoundX;
1467     else
1468       --i;   // Need to back up an extra one.
1469     Ops.erase(Ops.begin()+FoundX);
1470     ++NumAnnihil;
1471     --i;     // Revisit element.
1472     e -= 2;  // Removed two elements.
1473
1474     // if X and ~X we append -1 to the operand list.
1475     if (BinaryOperator::isNot(TheOp)) {
1476       Value *V = Constant::getAllOnesValue(X->getType());
1477       Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
1478       e += 1;
1479     }
1480   }
1481
1482   // Scan the operand list, checking to see if there are any common factors
1483   // between operands.  Consider something like A*A+A*B*C+D.  We would like to
1484   // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1485   // To efficiently find this, we count the number of times a factor occurs
1486   // for any ADD operands that are MULs.
1487   DenseMap<Value*, unsigned> FactorOccurrences;
1488
1489   // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1490   // where they are actually the same multiply.
1491   unsigned MaxOcc = 0;
1492   Value *MaxOccVal = nullptr;
1493   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1494     BinaryOperator *BOp =
1495         isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1496     if (!BOp)
1497       continue;
1498
1499     // Compute all of the factors of this added value.
1500     SmallVector<Value*, 8> Factors;
1501     FindSingleUseMultiplyFactors(BOp, Factors);
1502     assert(Factors.size() > 1 && "Bad linearize!");
1503
1504     // Add one to FactorOccurrences for each unique factor in this op.
1505     SmallPtrSet<Value*, 8> Duplicates;
1506     for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1507       Value *Factor = Factors[i];
1508       if (!Duplicates.insert(Factor).second)
1509         continue;
1510
1511       unsigned Occ = ++FactorOccurrences[Factor];
1512       if (Occ > MaxOcc) {
1513         MaxOcc = Occ;
1514         MaxOccVal = Factor;
1515       }
1516
1517       // If Factor is a negative constant, add the negated value as a factor
1518       // because we can percolate the negate out.  Watch for minint, which
1519       // cannot be positivified.
1520       if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
1521         if (CI->isNegative() && !CI->isMinValue(true)) {
1522           Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1523           if (!Duplicates.insert(Factor).second)
1524             continue;
1525           unsigned Occ = ++FactorOccurrences[Factor];
1526           if (Occ > MaxOcc) {
1527             MaxOcc = Occ;
1528             MaxOccVal = Factor;
1529           }
1530         }
1531       } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
1532         if (CF->isNegative()) {
1533           APFloat F(CF->getValueAPF());
1534           F.changeSign();
1535           Factor = ConstantFP::get(CF->getContext(), F);
1536           if (!Duplicates.insert(Factor).second)
1537             continue;
1538           unsigned Occ = ++FactorOccurrences[Factor];
1539           if (Occ > MaxOcc) {
1540             MaxOcc = Occ;
1541             MaxOccVal = Factor;
1542           }
1543         }
1544       }
1545     }
1546   }
1547
1548   // If any factor occurred more than one time, we can pull it out.
1549   if (MaxOcc > 1) {
1550     DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
1551     ++NumFactor;
1552
1553     // Create a new instruction that uses the MaxOccVal twice.  If we don't do
1554     // this, we could otherwise run into situations where removing a factor
1555     // from an expression will drop a use of maxocc, and this can cause
1556     // RemoveFactorFromExpression on successive values to behave differently.
1557     Instruction *DummyInst =
1558         I->getType()->isIntOrIntVectorTy()
1559             ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
1560             : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
1561
1562     SmallVector<WeakTrackingVH, 4> NewMulOps;
1563     for (unsigned i = 0; i != Ops.size(); ++i) {
1564       // Only try to remove factors from expressions we're allowed to.
1565       BinaryOperator *BOp =
1566           isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1567       if (!BOp)
1568         continue;
1569
1570       if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
1571         // The factorized operand may occur several times.  Convert them all in
1572         // one fell swoop.
1573         for (unsigned j = Ops.size(); j != i;) {
1574           --j;
1575           if (Ops[j].Op == Ops[i].Op) {
1576             NewMulOps.push_back(V);
1577             Ops.erase(Ops.begin()+j);
1578           }
1579         }
1580         --i;
1581       }
1582     }
1583
1584     // No need for extra uses anymore.
1585     delete DummyInst;
1586
1587     unsigned NumAddedValues = NewMulOps.size();
1588     Value *V = EmitAddTreeOfValues(I, NewMulOps);
1589
1590     // Now that we have inserted the add tree, optimize it. This allows us to
1591     // handle cases that require multiple factoring steps, such as this:
1592     // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
1593     assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
1594     (void)NumAddedValues;
1595     if (Instruction *VI = dyn_cast<Instruction>(V))
1596       RedoInsts.insert(VI);
1597
1598     // Create the multiply.
1599     Instruction *V2 = CreateMul(V, MaxOccVal, "tmp", I, I);
1600
1601     // Rerun associate on the multiply in case the inner expression turned into
1602     // a multiply.  We want to make sure that we keep things in canonical form.
1603     RedoInsts.insert(V2);
1604
1605     // If every add operand included the factor (e.g. "A*B + A*C"), then the
1606     // entire result expression is just the multiply "A*(B+C)".
1607     if (Ops.empty())
1608       return V2;
1609
1610     // Otherwise, we had some input that didn't have the factor, such as
1611     // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
1612     // things being added by this operation.
1613     Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1614   }
1615
1616   return nullptr;
1617 }
1618
1619 /// \brief Build up a vector of value/power pairs factoring a product.
1620 ///
1621 /// Given a series of multiplication operands, build a vector of factors and
1622 /// the powers each is raised to when forming the final product. Sort them in
1623 /// the order of descending power.
1624 ///
1625 ///      (x*x)          -> [(x, 2)]
1626 ///     ((x*x)*x)       -> [(x, 3)]
1627 ///   ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1628 ///
1629 /// \returns Whether any factors have a power greater than one.
1630 bool ReassociatePass::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1631                                              SmallVectorImpl<Factor> &Factors) {
1632   // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1633   // Compute the sum of powers of simplifiable factors.
1634   unsigned FactorPowerSum = 0;
1635   for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1636     Value *Op = Ops[Idx-1].Op;
1637
1638     // Count the number of occurrences of this value.
1639     unsigned Count = 1;
1640     for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1641       ++Count;
1642     // Track for simplification all factors which occur 2 or more times.
1643     if (Count > 1)
1644       FactorPowerSum += Count;
1645   }
1646
1647   // We can only simplify factors if the sum of the powers of our simplifiable
1648   // factors is 4 or higher. When that is the case, we will *always* have
1649   // a simplification. This is an important invariant to prevent cyclicly
1650   // trying to simplify already minimal formations.
1651   if (FactorPowerSum < 4)
1652     return false;
1653
1654   // Now gather the simplifiable factors, removing them from Ops.
1655   FactorPowerSum = 0;
1656   for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1657     Value *Op = Ops[Idx-1].Op;
1658
1659     // Count the number of occurrences of this value.
1660     unsigned Count = 1;
1661     for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1662       ++Count;
1663     if (Count == 1)
1664       continue;
1665     // Move an even number of occurrences to Factors.
1666     Count &= ~1U;
1667     Idx -= Count;
1668     FactorPowerSum += Count;
1669     Factors.push_back(Factor(Op, Count));
1670     Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
1671   }
1672
1673   // None of the adjustments above should have reduced the sum of factor powers
1674   // below our mininum of '4'.
1675   assert(FactorPowerSum >= 4);
1676
1677   std::stable_sort(Factors.begin(), Factors.end(),
1678                    [](const Factor &LHS, const Factor &RHS) {
1679     return LHS.Power > RHS.Power;
1680   });
1681   return true;
1682 }
1683
1684 /// \brief Build a tree of multiplies, computing the product of Ops.
1685 static Value *buildMultiplyTree(IRBuilder<> &Builder,
1686                                 SmallVectorImpl<Value*> &Ops) {
1687   if (Ops.size() == 1)
1688     return Ops.back();
1689
1690   Value *LHS = Ops.pop_back_val();
1691   do {
1692     if (LHS->getType()->isIntOrIntVectorTy())
1693       LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1694     else
1695       LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
1696   } while (!Ops.empty());
1697
1698   return LHS;
1699 }
1700
1701 /// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1702 ///
1703 /// Given a vector of values raised to various powers, where no two values are
1704 /// equal and the powers are sorted in decreasing order, compute the minimal
1705 /// DAG of multiplies to compute the final product, and return that product
1706 /// value.
1707 Value *
1708 ReassociatePass::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1709                                          SmallVectorImpl<Factor> &Factors) {
1710   assert(Factors[0].Power);
1711   SmallVector<Value *, 4> OuterProduct;
1712   for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1713        Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1714     if (Factors[Idx].Power != Factors[LastIdx].Power) {
1715       LastIdx = Idx;
1716       continue;
1717     }
1718
1719     // We want to multiply across all the factors with the same power so that
1720     // we can raise them to that power as a single entity. Build a mini tree
1721     // for that.
1722     SmallVector<Value *, 4> InnerProduct;
1723     InnerProduct.push_back(Factors[LastIdx].Base);
1724     do {
1725       InnerProduct.push_back(Factors[Idx].Base);
1726       ++Idx;
1727     } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1728
1729     // Reset the base value of the first factor to the new expression tree.
1730     // We'll remove all the factors with the same power in a second pass.
1731     Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1732     if (Instruction *MI = dyn_cast<Instruction>(M))
1733       RedoInsts.insert(MI);
1734
1735     LastIdx = Idx;
1736   }
1737   // Unique factors with equal powers -- we've folded them into the first one's
1738   // base.
1739   Factors.erase(std::unique(Factors.begin(), Factors.end(),
1740                             [](const Factor &LHS, const Factor &RHS) {
1741                               return LHS.Power == RHS.Power;
1742                             }),
1743                 Factors.end());
1744
1745   // Iteratively collect the base of each factor with an add power into the
1746   // outer product, and halve each power in preparation for squaring the
1747   // expression.
1748   for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1749     if (Factors[Idx].Power & 1)
1750       OuterProduct.push_back(Factors[Idx].Base);
1751     Factors[Idx].Power >>= 1;
1752   }
1753   if (Factors[0].Power) {
1754     Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1755     OuterProduct.push_back(SquareRoot);
1756     OuterProduct.push_back(SquareRoot);
1757   }
1758   if (OuterProduct.size() == 1)
1759     return OuterProduct.front();
1760
1761   Value *V = buildMultiplyTree(Builder, OuterProduct);
1762   return V;
1763 }
1764
1765 Value *ReassociatePass::OptimizeMul(BinaryOperator *I,
1766                                     SmallVectorImpl<ValueEntry> &Ops) {
1767   // We can only optimize the multiplies when there is a chain of more than
1768   // three, such that a balanced tree might require fewer total multiplies.
1769   if (Ops.size() < 4)
1770     return nullptr;
1771
1772   // Try to turn linear trees of multiplies without other uses of the
1773   // intermediate stages into minimal multiply DAGs with perfect sub-expression
1774   // re-use.
1775   SmallVector<Factor, 4> Factors;
1776   if (!collectMultiplyFactors(Ops, Factors))
1777     return nullptr; // All distinct factors, so nothing left for us to do.
1778
1779   IRBuilder<> Builder(I);
1780   // The reassociate transformation for FP operations is performed only
1781   // if unsafe algebra is permitted by FastMathFlags. Propagate those flags
1782   // to the newly generated operations.
1783   if (auto FPI = dyn_cast<FPMathOperator>(I))
1784     Builder.setFastMathFlags(FPI->getFastMathFlags());
1785
1786   Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1787   if (Ops.empty())
1788     return V;
1789
1790   ValueEntry NewEntry = ValueEntry(getRank(V), V);
1791   Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
1792   return nullptr;
1793 }
1794
1795 Value *ReassociatePass::OptimizeExpression(BinaryOperator *I,
1796                                            SmallVectorImpl<ValueEntry> &Ops) {
1797   // Now that we have the linearized expression tree, try to optimize it.
1798   // Start by folding any constants that we found.
1799   Constant *Cst = nullptr;
1800   unsigned Opcode = I->getOpcode();
1801   while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
1802     Constant *C = cast<Constant>(Ops.pop_back_val().Op);
1803     Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
1804   }
1805   // If there was nothing but constants then we are done.
1806   if (Ops.empty())
1807     return Cst;
1808
1809   // Put the combined constant back at the end of the operand list, except if
1810   // there is no point.  For example, an add of 0 gets dropped here, while a
1811   // multiplication by zero turns the whole expression into zero.
1812   if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1813     if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1814       return Cst;
1815     Ops.push_back(ValueEntry(0, Cst));
1816   }
1817
1818   if (Ops.size() == 1) return Ops[0].Op;
1819
1820   // Handle destructive annihilation due to identities between elements in the
1821   // argument list here.
1822   unsigned NumOps = Ops.size();
1823   switch (Opcode) {
1824   default: break;
1825   case Instruction::And:
1826   case Instruction::Or:
1827     if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1828       return Result;
1829     break;
1830
1831   case Instruction::Xor:
1832     if (Value *Result = OptimizeXor(I, Ops))
1833       return Result;
1834     break;
1835
1836   case Instruction::Add:
1837   case Instruction::FAdd:
1838     if (Value *Result = OptimizeAdd(I, Ops))
1839       return Result;
1840     break;
1841
1842   case Instruction::Mul:
1843   case Instruction::FMul:
1844     if (Value *Result = OptimizeMul(I, Ops))
1845       return Result;
1846     break;
1847   }
1848
1849   if (Ops.size() != NumOps)
1850     return OptimizeExpression(I, Ops);
1851   return nullptr;
1852 }
1853
1854 // Remove dead instructions and if any operands are trivially dead add them to
1855 // Insts so they will be removed as well.
1856 void ReassociatePass::RecursivelyEraseDeadInsts(
1857     Instruction *I, SetVector<AssertingVH<Instruction>> &Insts) {
1858   assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1859   SmallVector<Value *, 4> Ops(I->op_begin(), I->op_end());
1860   ValueRankMap.erase(I);
1861   Insts.remove(I);
1862   RedoInsts.remove(I);
1863   I->eraseFromParent();
1864   for (auto Op : Ops)
1865     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1866       if (OpInst->use_empty())
1867         Insts.insert(OpInst);
1868 }
1869
1870 /// Zap the given instruction, adding interesting operands to the work list.
1871 void ReassociatePass::EraseInst(Instruction *I) {
1872   assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1873   DEBUG(dbgs() << "Erasing dead inst: "; I->dump());
1874
1875   SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1876   // Erase the dead instruction.
1877   ValueRankMap.erase(I);
1878   RedoInsts.remove(I);
1879   I->eraseFromParent();
1880   // Optimize its operands.
1881   SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
1882   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1883     if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1884       // If this is a node in an expression tree, climb to the expression root
1885       // and add that since that's where optimization actually happens.
1886       unsigned Opcode = Op->getOpcode();
1887       while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
1888              Visited.insert(Op).second)
1889         Op = Op->user_back();
1890       RedoInsts.insert(Op);
1891     }
1892 }
1893
1894 // Canonicalize expressions of the following form:
1895 //  x + (-Constant * y) -> x - (Constant * y)
1896 //  x - (-Constant * y) -> x + (Constant * y)
1897 Instruction *ReassociatePass::canonicalizeNegConstExpr(Instruction *I) {
1898   if (!I->hasOneUse() || I->getType()->isVectorTy())
1899     return nullptr;
1900
1901   // Must be a fmul or fdiv instruction.
1902   unsigned Opcode = I->getOpcode();
1903   if (Opcode != Instruction::FMul && Opcode != Instruction::FDiv)
1904     return nullptr;
1905
1906   auto *C0 = dyn_cast<ConstantFP>(I->getOperand(0));
1907   auto *C1 = dyn_cast<ConstantFP>(I->getOperand(1));
1908
1909   // Both operands are constant, let it get constant folded away.
1910   if (C0 && C1)
1911     return nullptr;
1912
1913   ConstantFP *CF = C0 ? C0 : C1;
1914
1915   // Must have one constant operand.
1916   if (!CF)
1917     return nullptr;
1918
1919   // Must be a negative ConstantFP.
1920   if (!CF->isNegative())
1921     return nullptr;
1922
1923   // User must be a binary operator with one or more uses.
1924   Instruction *User = I->user_back();
1925   if (!isa<BinaryOperator>(User) || User->use_empty())
1926     return nullptr;
1927
1928   unsigned UserOpcode = User->getOpcode();
1929   if (UserOpcode != Instruction::FAdd && UserOpcode != Instruction::FSub)
1930     return nullptr;
1931
1932   // Subtraction is not commutative. Explicitly, the following transform is
1933   // not valid: (-Constant * y) - x  -> x + (Constant * y)
1934   if (!User->isCommutative() && User->getOperand(1) != I)
1935     return nullptr;
1936
1937   // Change the sign of the constant.
1938   APFloat Val = CF->getValueAPF();
1939   Val.changeSign();
1940   I->setOperand(C0 ? 0 : 1, ConstantFP::get(CF->getContext(), Val));
1941
1942   // Canonicalize I to RHS to simplify the next bit of logic. E.g.,
1943   // ((-Const*y) + x) -> (x + (-Const*y)).
1944   if (User->getOperand(0) == I && User->isCommutative())
1945     cast<BinaryOperator>(User)->swapOperands();
1946
1947   Value *Op0 = User->getOperand(0);
1948   Value *Op1 = User->getOperand(1);
1949   BinaryOperator *NI;
1950   switch (UserOpcode) {
1951   default:
1952     llvm_unreachable("Unexpected Opcode!");
1953   case Instruction::FAdd:
1954     NI = BinaryOperator::CreateFSub(Op0, Op1);
1955     NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
1956     break;
1957   case Instruction::FSub:
1958     NI = BinaryOperator::CreateFAdd(Op0, Op1);
1959     NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
1960     break;
1961   }
1962
1963   NI->insertBefore(User);
1964   NI->setName(User->getName());
1965   User->replaceAllUsesWith(NI);
1966   NI->setDebugLoc(I->getDebugLoc());
1967   RedoInsts.insert(I);
1968   MadeChange = true;
1969   return NI;
1970 }
1971
1972 /// Inspect and optimize the given instruction. Note that erasing
1973 /// instructions is not allowed.
1974 void ReassociatePass::OptimizeInst(Instruction *I) {
1975   // Only consider operations that we understand.
1976   if (!isa<BinaryOperator>(I))
1977     return;
1978
1979   if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
1980     // If an operand of this shift is a reassociable multiply, or if the shift
1981     // is used by a reassociable multiply or add, turn into a multiply.
1982     if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
1983         (I->hasOneUse() &&
1984          (isReassociableOp(I->user_back(), Instruction::Mul) ||
1985           isReassociableOp(I->user_back(), Instruction::Add)))) {
1986       Instruction *NI = ConvertShiftToMul(I);
1987       RedoInsts.insert(I);
1988       MadeChange = true;
1989       I = NI;
1990     }
1991
1992   // Canonicalize negative constants out of expressions.
1993   if (Instruction *Res = canonicalizeNegConstExpr(I))
1994     I = Res;
1995
1996   // Commute binary operators, to canonicalize the order of their operands.
1997   // This can potentially expose more CSE opportunities, and makes writing other
1998   // transformations simpler.
1999   if (I->isCommutative())
2000     canonicalizeOperands(I);
2001
2002   // TODO: We should optimize vector Xor instructions, but they are
2003   // currently unsupported.
2004   if (I->getType()->isVectorTy() && I->getOpcode() == Instruction::Xor)
2005     return;
2006
2007   // Don't optimize floating point instructions that don't have unsafe algebra.
2008   if (I->getType()->isFPOrFPVectorTy() && !I->hasUnsafeAlgebra())
2009     return;
2010
2011   // Do not reassociate boolean (i1) expressions.  We want to preserve the
2012   // original order of evaluation for short-circuited comparisons that
2013   // SimplifyCFG has folded to AND/OR expressions.  If the expression
2014   // is not further optimized, it is likely to be transformed back to a
2015   // short-circuited form for code gen, and the source order may have been
2016   // optimized for the most likely conditions.
2017   if (I->getType()->isIntegerTy(1))
2018     return;
2019
2020   // If this is a subtract instruction which is not already in negate form,
2021   // see if we can convert it to X+-Y.
2022   if (I->getOpcode() == Instruction::Sub) {
2023     if (ShouldBreakUpSubtract(I)) {
2024       Instruction *NI = BreakUpSubtract(I, RedoInsts);
2025       RedoInsts.insert(I);
2026       MadeChange = true;
2027       I = NI;
2028     } else if (BinaryOperator::isNeg(I)) {
2029       // Otherwise, this is a negation.  See if the operand is a multiply tree
2030       // and if this is not an inner node of a multiply tree.
2031       if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
2032           (!I->hasOneUse() ||
2033            !isReassociableOp(I->user_back(), Instruction::Mul))) {
2034         Instruction *NI = LowerNegateToMultiply(I);
2035         // If the negate was simplified, revisit the users to see if we can
2036         // reassociate further.
2037         for (User *U : NI->users()) {
2038           if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2039             RedoInsts.insert(Tmp);
2040         }
2041         RedoInsts.insert(I);
2042         MadeChange = true;
2043         I = NI;
2044       }
2045     }
2046   } else if (I->getOpcode() == Instruction::FSub) {
2047     if (ShouldBreakUpSubtract(I)) {
2048       Instruction *NI = BreakUpSubtract(I, RedoInsts);
2049       RedoInsts.insert(I);
2050       MadeChange = true;
2051       I = NI;
2052     } else if (BinaryOperator::isFNeg(I)) {
2053       // Otherwise, this is a negation.  See if the operand is a multiply tree
2054       // and if this is not an inner node of a multiply tree.
2055       if (isReassociableOp(I->getOperand(1), Instruction::FMul) &&
2056           (!I->hasOneUse() ||
2057            !isReassociableOp(I->user_back(), Instruction::FMul))) {
2058         // If the negate was simplified, revisit the users to see if we can
2059         // reassociate further.
2060         Instruction *NI = LowerNegateToMultiply(I);
2061         for (User *U : NI->users()) {
2062           if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2063             RedoInsts.insert(Tmp);
2064         }
2065         RedoInsts.insert(I);
2066         MadeChange = true;
2067         I = NI;
2068       }
2069     }
2070   }
2071
2072   // If this instruction is an associative binary operator, process it.
2073   if (!I->isAssociative()) return;
2074   BinaryOperator *BO = cast<BinaryOperator>(I);
2075
2076   // If this is an interior node of a reassociable tree, ignore it until we
2077   // get to the root of the tree, to avoid N^2 analysis.
2078   unsigned Opcode = BO->getOpcode();
2079   if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) {
2080     // During the initial run we will get to the root of the tree.
2081     // But if we get here while we are redoing instructions, there is no
2082     // guarantee that the root will be visited. So Redo later
2083     if (BO->user_back() != BO &&
2084         BO->getParent() == BO->user_back()->getParent())
2085       RedoInsts.insert(BO->user_back());
2086     return;
2087   }
2088
2089   // If this is an add tree that is used by a sub instruction, ignore it
2090   // until we process the subtract.
2091   if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
2092       cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
2093     return;
2094   if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
2095       cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
2096     return;
2097
2098   ReassociateExpression(BO);
2099 }
2100
2101 void ReassociatePass::ReassociateExpression(BinaryOperator *I) {
2102   // First, walk the expression tree, linearizing the tree, collecting the
2103   // operand information.
2104   SmallVector<RepeatedValue, 8> Tree;
2105   MadeChange |= LinearizeExprTree(I, Tree);
2106   SmallVector<ValueEntry, 8> Ops;
2107   Ops.reserve(Tree.size());
2108   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
2109     RepeatedValue E = Tree[i];
2110     Ops.append(E.second.getZExtValue(),
2111                ValueEntry(getRank(E.first), E.first));
2112   }
2113
2114   DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
2115
2116   // Now that we have linearized the tree to a list and have gathered all of
2117   // the operands and their ranks, sort the operands by their rank.  Use a
2118   // stable_sort so that values with equal ranks will have their relative
2119   // positions maintained (and so the compiler is deterministic).  Note that
2120   // this sorts so that the highest ranking values end up at the beginning of
2121   // the vector.
2122   std::stable_sort(Ops.begin(), Ops.end());
2123
2124   // Now that we have the expression tree in a convenient
2125   // sorted form, optimize it globally if possible.
2126   if (Value *V = OptimizeExpression(I, Ops)) {
2127     if (V == I)
2128       // Self-referential expression in unreachable code.
2129       return;
2130     // This expression tree simplified to something that isn't a tree,
2131     // eliminate it.
2132     DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
2133     I->replaceAllUsesWith(V);
2134     if (Instruction *VI = dyn_cast<Instruction>(V))
2135       VI->setDebugLoc(I->getDebugLoc());
2136     RedoInsts.insert(I);
2137     ++NumAnnihil;
2138     return;
2139   }
2140
2141   // We want to sink immediates as deeply as possible except in the case where
2142   // this is a multiply tree used only by an add, and the immediate is a -1.
2143   // In this case we reassociate to put the negation on the outside so that we
2144   // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
2145   if (I->hasOneUse()) {
2146     if (I->getOpcode() == Instruction::Mul &&
2147         cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
2148         isa<ConstantInt>(Ops.back().Op) &&
2149         cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
2150       ValueEntry Tmp = Ops.pop_back_val();
2151       Ops.insert(Ops.begin(), Tmp);
2152     } else if (I->getOpcode() == Instruction::FMul &&
2153                cast<Instruction>(I->user_back())->getOpcode() ==
2154                    Instruction::FAdd &&
2155                isa<ConstantFP>(Ops.back().Op) &&
2156                cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
2157       ValueEntry Tmp = Ops.pop_back_val();
2158       Ops.insert(Ops.begin(), Tmp);
2159     }
2160   }
2161
2162   DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
2163
2164   if (Ops.size() == 1) {
2165     if (Ops[0].Op == I)
2166       // Self-referential expression in unreachable code.
2167       return;
2168
2169     // This expression tree simplified to something that isn't a tree,
2170     // eliminate it.
2171     I->replaceAllUsesWith(Ops[0].Op);
2172     if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
2173       OI->setDebugLoc(I->getDebugLoc());
2174     RedoInsts.insert(I);
2175     return;
2176   }
2177
2178   // Now that we ordered and optimized the expressions, splat them back into
2179   // the expression tree, removing any unneeded nodes.
2180   RewriteExprTree(I, Ops);
2181 }
2182
2183 PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) {
2184   // Get the functions basic blocks in Reverse Post Order. This order is used by
2185   // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic
2186   // blocks (it has been seen that the analysis in this pass could hang when
2187   // analysing dead basic blocks).
2188   ReversePostOrderTraversal<Function *> RPOT(&F);
2189
2190   // Calculate the rank map for F.
2191   BuildRankMap(F, RPOT);
2192
2193   MadeChange = false;
2194   // Traverse the same blocks that was analysed by BuildRankMap.
2195   for (BasicBlock *BI : RPOT) {
2196     assert(RankMap.count(&*BI) && "BB should be ranked.");
2197     // Optimize every instruction in the basic block.
2198     for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;)
2199       if (isInstructionTriviallyDead(&*II)) {
2200         EraseInst(&*II++);
2201       } else {
2202         OptimizeInst(&*II);
2203         assert(II->getParent() == &*BI && "Moved to a different block!");
2204         ++II;
2205       }
2206
2207     // Make a copy of all the instructions to be redone so we can remove dead
2208     // instructions.
2209     SetVector<AssertingVH<Instruction>> ToRedo(RedoInsts);
2210     // Iterate over all instructions to be reevaluated and remove trivially dead
2211     // instructions. If any operand of the trivially dead instruction becomes
2212     // dead mark it for deletion as well. Continue this process until all
2213     // trivially dead instructions have been removed.
2214     while (!ToRedo.empty()) {
2215       Instruction *I = ToRedo.pop_back_val();
2216       if (isInstructionTriviallyDead(I)) {
2217         RecursivelyEraseDeadInsts(I, ToRedo);
2218         MadeChange = true;
2219       }
2220     }
2221
2222     // Now that we have removed dead instructions, we can reoptimize the
2223     // remaining instructions.
2224     while (!RedoInsts.empty()) {
2225       Instruction *I = RedoInsts.pop_back_val();
2226       if (isInstructionTriviallyDead(I))
2227         EraseInst(I);
2228       else
2229         OptimizeInst(I);
2230     }
2231   }
2232
2233   // We are done with the rank map.
2234   RankMap.clear();
2235   ValueRankMap.clear();
2236
2237   if (MadeChange) {
2238     PreservedAnalyses PA;
2239     PA.preserveSet<CFGAnalyses>();
2240     PA.preserve<GlobalsAA>();
2241     return PA;
2242   }
2243
2244   return PreservedAnalyses::all();
2245 }
2246
2247 namespace {
2248   class ReassociateLegacyPass : public FunctionPass {
2249     ReassociatePass Impl;
2250   public:
2251     static char ID; // Pass identification, replacement for typeid
2252     ReassociateLegacyPass() : FunctionPass(ID) {
2253       initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
2254     }
2255
2256     bool runOnFunction(Function &F) override {
2257       if (skipFunction(F))
2258         return false;
2259
2260       FunctionAnalysisManager DummyFAM;
2261       auto PA = Impl.run(F, DummyFAM);
2262       return !PA.areAllPreserved();
2263     }
2264
2265     void getAnalysisUsage(AnalysisUsage &AU) const override {
2266       AU.setPreservesCFG();
2267       AU.addPreserved<GlobalsAAWrapperPass>();
2268     }
2269   };
2270 }
2271
2272 char ReassociateLegacyPass::ID = 0;
2273 INITIALIZE_PASS(ReassociateLegacyPass, "reassociate",
2274                 "Reassociate expressions", false, false)
2275
2276 // Public interface to the Reassociate pass
2277 FunctionPass *llvm::createReassociatePass() {
2278   return new ReassociateLegacyPass();
2279 }