]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/Scalar/Reassociate.cpp
MFV: r313101
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / Scalar / Reassociate.cpp
1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass reassociates commutative expressions in an order that is designed
11 // to promote better constant propagation, GCSE, LICM, PRE, etc.
12 //
13 // For example: 4 + (x + 5) -> x + (4 + 5)
14 //
15 // In the implementation of this algorithm, constants are assigned rank = 0,
16 // function arguments are rank = 1, and other values are assigned ranks
17 // corresponding to the reverse post order traversal of current function
18 // (starting at 2), which effectively gives values in deep loops higher rank
19 // than values not in loops.
20 //
21 //===----------------------------------------------------------------------===//
22
23 #include "llvm/Transforms/Scalar/Reassociate.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/PostOrderIterator.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SetVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/Analysis/GlobalsModRef.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/CFG.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/IR/IRBuilder.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/IntrinsicInst.h"
38 #include "llvm/IR/ValueHandle.h"
39 #include "llvm/Pass.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Transforms/Scalar.h"
43 #include "llvm/Transforms/Utils/Local.h"
44 #include <algorithm>
45 using namespace llvm;
46 using namespace reassociate;
47
48 #define DEBUG_TYPE "reassociate"
49
50 STATISTIC(NumChanged, "Number of insts reassociated");
51 STATISTIC(NumAnnihil, "Number of expr tree annihilated");
52 STATISTIC(NumFactor , "Number of multiplies factored");
53
54 #ifndef NDEBUG
55 /// Print out the expression identified in the Ops list.
56 ///
57 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
58   Module *M = I->getModule();
59   dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
60        << *Ops[0].Op->getType() << '\t';
61   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
62     dbgs() << "[ ";
63     Ops[i].Op->printAsOperand(dbgs(), false, M);
64     dbgs() << ", #" << Ops[i].Rank << "] ";
65   }
66 }
67 #endif
68
69 /// Utility class representing a non-constant Xor-operand. We classify
70 /// non-constant Xor-Operands into two categories:
71 ///  C1) The operand is in the form "X & C", where C is a constant and C != ~0
72 ///  C2)
73 ///    C2.1) The operand is in the form of "X | C", where C is a non-zero
74 ///          constant.
75 ///    C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
76 ///          operand as "E | 0"
77 class llvm::reassociate::XorOpnd {
78 public:
79   XorOpnd(Value *V);
80
81   bool isInvalid() const { return SymbolicPart == nullptr; }
82   bool isOrExpr() const { return isOr; }
83   Value *getValue() const { return OrigVal; }
84   Value *getSymbolicPart() const { return SymbolicPart; }
85   unsigned getSymbolicRank() const { return SymbolicRank; }
86   const APInt &getConstPart() const { return ConstPart; }
87
88   void Invalidate() { SymbolicPart = OrigVal = nullptr; }
89   void setSymbolicRank(unsigned R) { SymbolicRank = R; }
90
91 private:
92   Value *OrigVal;
93   Value *SymbolicPart;
94   APInt ConstPart;
95   unsigned SymbolicRank;
96   bool isOr;
97 };
98
99 XorOpnd::XorOpnd(Value *V) {
100   assert(!isa<ConstantInt>(V) && "No ConstantInt");
101   OrigVal = V;
102   Instruction *I = dyn_cast<Instruction>(V);
103   SymbolicRank = 0;
104
105   if (I && (I->getOpcode() == Instruction::Or ||
106             I->getOpcode() == Instruction::And)) {
107     Value *V0 = I->getOperand(0);
108     Value *V1 = I->getOperand(1);
109     if (isa<ConstantInt>(V0))
110       std::swap(V0, V1);
111
112     if (ConstantInt *C = dyn_cast<ConstantInt>(V1)) {
113       ConstPart = C->getValue();
114       SymbolicPart = V0;
115       isOr = (I->getOpcode() == Instruction::Or);
116       return;
117     }
118   }
119
120   // view the operand as "V | 0"
121   SymbolicPart = V;
122   ConstPart = APInt::getNullValue(V->getType()->getIntegerBitWidth());
123   isOr = true;
124 }
125
126 /// Return true if V is an instruction of the specified opcode and if it
127 /// only has one use.
128 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
129   if (V->hasOneUse() && isa<Instruction>(V) &&
130       cast<Instruction>(V)->getOpcode() == Opcode &&
131       (!isa<FPMathOperator>(V) ||
132        cast<Instruction>(V)->hasUnsafeAlgebra()))
133     return cast<BinaryOperator>(V);
134   return nullptr;
135 }
136
137 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
138                                         unsigned Opcode2) {
139   if (V->hasOneUse() && isa<Instruction>(V) &&
140       (cast<Instruction>(V)->getOpcode() == Opcode1 ||
141        cast<Instruction>(V)->getOpcode() == Opcode2) &&
142       (!isa<FPMathOperator>(V) ||
143        cast<Instruction>(V)->hasUnsafeAlgebra()))
144     return cast<BinaryOperator>(V);
145   return nullptr;
146 }
147
148 void ReassociatePass::BuildRankMap(Function &F) {
149   unsigned i = 2;
150
151   // Assign distinct ranks to function arguments.
152   for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
153     ValueRankMap[&*I] = ++i;
154     DEBUG(dbgs() << "Calculated Rank[" << I->getName() << "] = " << i << "\n");
155   }
156
157   ReversePostOrderTraversal<Function *> RPOT(&F);
158   for (BasicBlock *BB : RPOT) {
159     unsigned BBRank = RankMap[BB] = ++i << 16;
160
161     // Walk the basic block, adding precomputed ranks for any instructions that
162     // we cannot move.  This ensures that the ranks for these instructions are
163     // all different in the block.
164     for (Instruction &I : *BB)
165       if (mayBeMemoryDependent(I))
166         ValueRankMap[&I] = ++BBRank;
167   }
168 }
169
170 unsigned ReassociatePass::getRank(Value *V) {
171   Instruction *I = dyn_cast<Instruction>(V);
172   if (!I) {
173     if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
174     return 0;  // Otherwise it's a global or constant, rank 0.
175   }
176
177   if (unsigned Rank = ValueRankMap[I])
178     return Rank;    // Rank already known?
179
180   // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
181   // we can reassociate expressions for code motion!  Since we do not recurse
182   // for PHI nodes, we cannot have infinite recursion here, because there
183   // cannot be loops in the value graph that do not go through PHI nodes.
184   unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
185   for (unsigned i = 0, e = I->getNumOperands();
186        i != e && Rank != MaxRank; ++i)
187     Rank = std::max(Rank, getRank(I->getOperand(i)));
188
189   // If this is a not or neg instruction, do not count it for rank.  This
190   // assures us that X and ~X will have the same rank.
191   if  (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) &&
192        !BinaryOperator::isFNeg(I))
193     ++Rank;
194
195   DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank << "\n");
196
197   return ValueRankMap[I] = Rank;
198 }
199
200 // Canonicalize constants to RHS.  Otherwise, sort the operands by rank.
201 void ReassociatePass::canonicalizeOperands(Instruction *I) {
202   assert(isa<BinaryOperator>(I) && "Expected binary operator.");
203   assert(I->isCommutative() && "Expected commutative operator.");
204
205   Value *LHS = I->getOperand(0);
206   Value *RHS = I->getOperand(1);
207   unsigned LHSRank = getRank(LHS);
208   unsigned RHSRank = getRank(RHS);
209
210   if (isa<Constant>(RHS))
211     return;
212
213   if (isa<Constant>(LHS) || RHSRank < LHSRank)
214     cast<BinaryOperator>(I)->swapOperands();
215 }
216
217 static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
218                                  Instruction *InsertBefore, Value *FlagsOp) {
219   if (S1->getType()->isIntOrIntVectorTy())
220     return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
221   else {
222     BinaryOperator *Res =
223         BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
224     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
225     return Res;
226   }
227 }
228
229 static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
230                                  Instruction *InsertBefore, Value *FlagsOp) {
231   if (S1->getType()->isIntOrIntVectorTy())
232     return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
233   else {
234     BinaryOperator *Res =
235       BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
236     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
237     return Res;
238   }
239 }
240
241 static BinaryOperator *CreateNeg(Value *S1, const Twine &Name,
242                                  Instruction *InsertBefore, Value *FlagsOp) {
243   if (S1->getType()->isIntOrIntVectorTy())
244     return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
245   else {
246     BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore);
247     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
248     return Res;
249   }
250 }
251
252 /// Replace 0-X with X*-1.
253 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
254   Type *Ty = Neg->getType();
255   Constant *NegOne = Ty->isIntOrIntVectorTy() ?
256     ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0);
257
258   BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg);
259   Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op.
260   Res->takeName(Neg);
261   Neg->replaceAllUsesWith(Res);
262   Res->setDebugLoc(Neg->getDebugLoc());
263   return Res;
264 }
265
266 /// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael
267 /// function. This means that x^(2^k) === 1 mod 2^Bitwidth for
268 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
269 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
270 /// even x in Bitwidth-bit arithmetic.
271 static unsigned CarmichaelShift(unsigned Bitwidth) {
272   if (Bitwidth < 3)
273     return Bitwidth - 1;
274   return Bitwidth - 2;
275 }
276
277 /// Add the extra weight 'RHS' to the existing weight 'LHS',
278 /// reducing the combined weight using any special properties of the operation.
279 /// The existing weight LHS represents the computation X op X op ... op X where
280 /// X occurs LHS times.  The combined weight represents  X op X op ... op X with
281 /// X occurring LHS + RHS times.  If op is "Xor" for example then the combined
282 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
283 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
284 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
285   // If we were working with infinite precision arithmetic then the combined
286   // weight would be LHS + RHS.  But we are using finite precision arithmetic,
287   // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
288   // for nilpotent operations and addition, but not for idempotent operations
289   // and multiplication), so it is important to correctly reduce the combined
290   // weight back into range if wrapping would be wrong.
291
292   // If RHS is zero then the weight didn't change.
293   if (RHS.isMinValue())
294     return;
295   // If LHS is zero then the combined weight is RHS.
296   if (LHS.isMinValue()) {
297     LHS = RHS;
298     return;
299   }
300   // From this point on we know that neither LHS nor RHS is zero.
301
302   if (Instruction::isIdempotent(Opcode)) {
303     // Idempotent means X op X === X, so any non-zero weight is equivalent to a
304     // weight of 1.  Keeping weights at zero or one also means that wrapping is
305     // not a problem.
306     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
307     return; // Return a weight of 1.
308   }
309   if (Instruction::isNilpotent(Opcode)) {
310     // Nilpotent means X op X === 0, so reduce weights modulo 2.
311     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
312     LHS = 0; // 1 + 1 === 0 modulo 2.
313     return;
314   }
315   if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
316     // TODO: Reduce the weight by exploiting nsw/nuw?
317     LHS += RHS;
318     return;
319   }
320
321   assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
322          "Unknown associative operation!");
323   unsigned Bitwidth = LHS.getBitWidth();
324   // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
325   // can be replaced with W-CM.  That's because x^W=x^(W-CM) for every Bitwidth
326   // bit number x, since either x is odd in which case x^CM = 1, or x is even in
327   // which case both x^W and x^(W - CM) are zero.  By subtracting off multiples
328   // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
329   // which by a happy accident means that they can always be represented using
330   // Bitwidth bits.
331   // TODO: Reduce the weight by exploiting nsw/nuw?  (Could do much better than
332   // the Carmichael number).
333   if (Bitwidth > 3) {
334     /// CM - The value of Carmichael's lambda function.
335     APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
336     // Any weight W >= Threshold can be replaced with W - CM.
337     APInt Threshold = CM + Bitwidth;
338     assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
339     // For Bitwidth 4 or more the following sum does not overflow.
340     LHS += RHS;
341     while (LHS.uge(Threshold))
342       LHS -= CM;
343   } else {
344     // To avoid problems with overflow do everything the same as above but using
345     // a larger type.
346     unsigned CM = 1U << CarmichaelShift(Bitwidth);
347     unsigned Threshold = CM + Bitwidth;
348     assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
349            "Weights not reduced!");
350     unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
351     while (Total >= Threshold)
352       Total -= CM;
353     LHS = Total;
354   }
355 }
356
357 typedef std::pair<Value*, APInt> RepeatedValue;
358
359 /// Given an associative binary expression, return the leaf
360 /// nodes in Ops along with their weights (how many times the leaf occurs).  The
361 /// original expression is the same as
362 ///   (Ops[0].first op Ops[0].first op ... Ops[0].first)  <- Ops[0].second times
363 /// op
364 ///   (Ops[1].first op Ops[1].first op ... Ops[1].first)  <- Ops[1].second times
365 /// op
366 ///   ...
367 /// op
368 ///   (Ops[N].first op Ops[N].first op ... Ops[N].first)  <- Ops[N].second times
369 ///
370 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
371 ///
372 /// This routine may modify the function, in which case it returns 'true'.  The
373 /// changes it makes may well be destructive, changing the value computed by 'I'
374 /// to something completely different.  Thus if the routine returns 'true' then
375 /// you MUST either replace I with a new expression computed from the Ops array,
376 /// or use RewriteExprTree to put the values back in.
377 ///
378 /// A leaf node is either not a binary operation of the same kind as the root
379 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different
380 /// opcode), or is the same kind of binary operator but has a use which either
381 /// does not belong to the expression, or does belong to the expression but is
382 /// a leaf node.  Every leaf node has at least one use that is a non-leaf node
383 /// of the expression, while for non-leaf nodes (except for the root 'I') every
384 /// use is a non-leaf node of the expression.
385 ///
386 /// For example:
387 ///           expression graph        node names
388 ///
389 ///                     +        |        I
390 ///                    / \       |
391 ///                   +   +      |      A,  B
392 ///                  / \ / \     |
393 ///                 *   +   *    |    C,  D,  E
394 ///                / \ / \ / \   |
395 ///                   +   *      |      F,  G
396 ///
397 /// The leaf nodes are C, E, F and G.  The Ops array will contain (maybe not in
398 /// that order) (C, 1), (E, 1), (F, 2), (G, 2).
399 ///
400 /// The expression is maximal: if some instruction is a binary operator of the
401 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
402 /// then the instruction also belongs to the expression, is not a leaf node of
403 /// it, and its operands also belong to the expression (but may be leaf nodes).
404 ///
405 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
406 /// order to ensure that every non-root node in the expression has *exactly one*
407 /// use by a non-leaf node of the expression.  This destruction means that the
408 /// caller MUST either replace 'I' with a new expression or use something like
409 /// RewriteExprTree to put the values back in if the routine indicates that it
410 /// made a change by returning 'true'.
411 ///
412 /// In the above example either the right operand of A or the left operand of B
413 /// will be replaced by undef.  If it is B's operand then this gives:
414 ///
415 ///                     +        |        I
416 ///                    / \       |
417 ///                   +   +      |      A,  B - operand of B replaced with undef
418 ///                  / \   \     |
419 ///                 *   +   *    |    C,  D,  E
420 ///                / \ / \ / \   |
421 ///                   +   *      |      F,  G
422 ///
423 /// Note that such undef operands can only be reached by passing through 'I'.
424 /// For example, if you visit operands recursively starting from a leaf node
425 /// then you will never see such an undef operand unless you get back to 'I',
426 /// which requires passing through a phi node.
427 ///
428 /// Note that this routine may also mutate binary operators of the wrong type
429 /// that have all uses inside the expression (i.e. only used by non-leaf nodes
430 /// of the expression) if it can turn them into binary operators of the right
431 /// type and thus make the expression bigger.
432
433 static bool LinearizeExprTree(BinaryOperator *I,
434                               SmallVectorImpl<RepeatedValue> &Ops) {
435   DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
436   unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
437   unsigned Opcode = I->getOpcode();
438   assert(I->isAssociative() && I->isCommutative() &&
439          "Expected an associative and commutative operation!");
440
441   // Visit all operands of the expression, keeping track of their weight (the
442   // number of paths from the expression root to the operand, or if you like
443   // the number of times that operand occurs in the linearized expression).
444   // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
445   // while A has weight two.
446
447   // Worklist of non-leaf nodes (their operands are in the expression too) along
448   // with their weights, representing a certain number of paths to the operator.
449   // If an operator occurs in the worklist multiple times then we found multiple
450   // ways to get to it.
451   SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
452   Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
453   bool Changed = false;
454
455   // Leaves of the expression are values that either aren't the right kind of
456   // operation (eg: a constant, or a multiply in an add tree), or are, but have
457   // some uses that are not inside the expression.  For example, in I = X + X,
458   // X = A + B, the value X has two uses (by I) that are in the expression.  If
459   // X has any other uses, for example in a return instruction, then we consider
460   // X to be a leaf, and won't analyze it further.  When we first visit a value,
461   // if it has more than one use then at first we conservatively consider it to
462   // be a leaf.  Later, as the expression is explored, we may discover some more
463   // uses of the value from inside the expression.  If all uses turn out to be
464   // from within the expression (and the value is a binary operator of the right
465   // kind) then the value is no longer considered to be a leaf, and its operands
466   // are explored.
467
468   // Leaves - Keeps track of the set of putative leaves as well as the number of
469   // paths to each leaf seen so far.
470   typedef DenseMap<Value*, APInt> LeafMap;
471   LeafMap Leaves; // Leaf -> Total weight so far.
472   SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.
473
474 #ifndef NDEBUG
475   SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
476 #endif
477   while (!Worklist.empty()) {
478     std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
479     I = P.first; // We examine the operands of this binary operator.
480
481     for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
482       Value *Op = I->getOperand(OpIdx);
483       APInt Weight = P.second; // Number of paths to this operand.
484       DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
485       assert(!Op->use_empty() && "No uses, so how did we get to it?!");
486
487       // If this is a binary operation of the right kind with only one use then
488       // add its operands to the expression.
489       if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
490         assert(Visited.insert(Op).second && "Not first visit!");
491         DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
492         Worklist.push_back(std::make_pair(BO, Weight));
493         continue;
494       }
495
496       // Appears to be a leaf.  Is the operand already in the set of leaves?
497       LeafMap::iterator It = Leaves.find(Op);
498       if (It == Leaves.end()) {
499         // Not in the leaf map.  Must be the first time we saw this operand.
500         assert(Visited.insert(Op).second && "Not first visit!");
501         if (!Op->hasOneUse()) {
502           // This value has uses not accounted for by the expression, so it is
503           // not safe to modify.  Mark it as being a leaf.
504           DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
505           LeafOrder.push_back(Op);
506           Leaves[Op] = Weight;
507           continue;
508         }
509         // No uses outside the expression, try morphing it.
510       } else if (It != Leaves.end()) {
511         // Already in the leaf map.
512         assert(Visited.count(Op) && "In leaf map but not visited!");
513
514         // Update the number of paths to the leaf.
515         IncorporateWeight(It->second, Weight, Opcode);
516
517 #if 0   // TODO: Re-enable once PR13021 is fixed.
518         // The leaf already has one use from inside the expression.  As we want
519         // exactly one such use, drop this new use of the leaf.
520         assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
521         I->setOperand(OpIdx, UndefValue::get(I->getType()));
522         Changed = true;
523
524         // If the leaf is a binary operation of the right kind and we now see
525         // that its multiple original uses were in fact all by nodes belonging
526         // to the expression, then no longer consider it to be a leaf and add
527         // its operands to the expression.
528         if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
529           DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
530           Worklist.push_back(std::make_pair(BO, It->second));
531           Leaves.erase(It);
532           continue;
533         }
534 #endif
535
536         // If we still have uses that are not accounted for by the expression
537         // then it is not safe to modify the value.
538         if (!Op->hasOneUse())
539           continue;
540
541         // No uses outside the expression, try morphing it.
542         Weight = It->second;
543         Leaves.erase(It); // Since the value may be morphed below.
544       }
545
546       // At this point we have a value which, first of all, is not a binary
547       // expression of the right kind, and secondly, is only used inside the
548       // expression.  This means that it can safely be modified.  See if we
549       // can usefully morph it into an expression of the right kind.
550       assert((!isa<Instruction>(Op) ||
551               cast<Instruction>(Op)->getOpcode() != Opcode
552               || (isa<FPMathOperator>(Op) &&
553                   !cast<Instruction>(Op)->hasUnsafeAlgebra())) &&
554              "Should have been handled above!");
555       assert(Op->hasOneUse() && "Has uses outside the expression tree!");
556
557       // If this is a multiply expression, turn any internal negations into
558       // multiplies by -1 so they can be reassociated.
559       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op))
560         if ((Opcode == Instruction::Mul && BinaryOperator::isNeg(BO)) ||
561             (Opcode == Instruction::FMul && BinaryOperator::isFNeg(BO))) {
562           DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
563           BO = LowerNegateToMultiply(BO);
564           DEBUG(dbgs() << *BO << '\n');
565           Worklist.push_back(std::make_pair(BO, Weight));
566           Changed = true;
567           continue;
568         }
569
570       // Failed to morph into an expression of the right type.  This really is
571       // a leaf.
572       DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
573       assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
574       LeafOrder.push_back(Op);
575       Leaves[Op] = Weight;
576     }
577   }
578
579   // The leaves, repeated according to their weights, represent the linearized
580   // form of the expression.
581   for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
582     Value *V = LeafOrder[i];
583     LeafMap::iterator It = Leaves.find(V);
584     if (It == Leaves.end())
585       // Node initially thought to be a leaf wasn't.
586       continue;
587     assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
588     APInt Weight = It->second;
589     if (Weight.isMinValue())
590       // Leaf already output or weight reduction eliminated it.
591       continue;
592     // Ensure the leaf is only output once.
593     It->second = 0;
594     Ops.push_back(std::make_pair(V, Weight));
595   }
596
597   // For nilpotent operations or addition there may be no operands, for example
598   // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
599   // in both cases the weight reduces to 0 causing the value to be skipped.
600   if (Ops.empty()) {
601     Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
602     assert(Identity && "Associative operation without identity!");
603     Ops.emplace_back(Identity, APInt(Bitwidth, 1));
604   }
605
606   return Changed;
607 }
608
609 /// Now that the operands for this expression tree are
610 /// linearized and optimized, emit them in-order.
611 void ReassociatePass::RewriteExprTree(BinaryOperator *I,
612                                       SmallVectorImpl<ValueEntry> &Ops) {
613   assert(Ops.size() > 1 && "Single values should be used directly!");
614
615   // Since our optimizations should never increase the number of operations, the
616   // new expression can usually be written reusing the existing binary operators
617   // from the original expression tree, without creating any new instructions,
618   // though the rewritten expression may have a completely different topology.
619   // We take care to not change anything if the new expression will be the same
620   // as the original.  If more than trivial changes (like commuting operands)
621   // were made then we are obliged to clear out any optional subclass data like
622   // nsw flags.
623
624   /// NodesToRewrite - Nodes from the original expression available for writing
625   /// the new expression into.
626   SmallVector<BinaryOperator*, 8> NodesToRewrite;
627   unsigned Opcode = I->getOpcode();
628   BinaryOperator *Op = I;
629
630   /// NotRewritable - The operands being written will be the leaves of the new
631   /// expression and must not be used as inner nodes (via NodesToRewrite) by
632   /// mistake.  Inner nodes are always reassociable, and usually leaves are not
633   /// (if they were they would have been incorporated into the expression and so
634   /// would not be leaves), so most of the time there is no danger of this.  But
635   /// in rare cases a leaf may become reassociable if an optimization kills uses
636   /// of it, or it may momentarily become reassociable during rewriting (below)
637   /// due it being removed as an operand of one of its uses.  Ensure that misuse
638   /// of leaf nodes as inner nodes cannot occur by remembering all of the future
639   /// leaves and refusing to reuse any of them as inner nodes.
640   SmallPtrSet<Value*, 8> NotRewritable;
641   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
642     NotRewritable.insert(Ops[i].Op);
643
644   // ExpressionChanged - Non-null if the rewritten expression differs from the
645   // original in some non-trivial way, requiring the clearing of optional flags.
646   // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
647   BinaryOperator *ExpressionChanged = nullptr;
648   for (unsigned i = 0; ; ++i) {
649     // The last operation (which comes earliest in the IR) is special as both
650     // operands will come from Ops, rather than just one with the other being
651     // a subexpression.
652     if (i+2 == Ops.size()) {
653       Value *NewLHS = Ops[i].Op;
654       Value *NewRHS = Ops[i+1].Op;
655       Value *OldLHS = Op->getOperand(0);
656       Value *OldRHS = Op->getOperand(1);
657
658       if (NewLHS == OldLHS && NewRHS == OldRHS)
659         // Nothing changed, leave it alone.
660         break;
661
662       if (NewLHS == OldRHS && NewRHS == OldLHS) {
663         // The order of the operands was reversed.  Swap them.
664         DEBUG(dbgs() << "RA: " << *Op << '\n');
665         Op->swapOperands();
666         DEBUG(dbgs() << "TO: " << *Op << '\n');
667         MadeChange = true;
668         ++NumChanged;
669         break;
670       }
671
672       // The new operation differs non-trivially from the original. Overwrite
673       // the old operands with the new ones.
674       DEBUG(dbgs() << "RA: " << *Op << '\n');
675       if (NewLHS != OldLHS) {
676         BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
677         if (BO && !NotRewritable.count(BO))
678           NodesToRewrite.push_back(BO);
679         Op->setOperand(0, NewLHS);
680       }
681       if (NewRHS != OldRHS) {
682         BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
683         if (BO && !NotRewritable.count(BO))
684           NodesToRewrite.push_back(BO);
685         Op->setOperand(1, NewRHS);
686       }
687       DEBUG(dbgs() << "TO: " << *Op << '\n');
688
689       ExpressionChanged = Op;
690       MadeChange = true;
691       ++NumChanged;
692
693       break;
694     }
695
696     // Not the last operation.  The left-hand side will be a sub-expression
697     // while the right-hand side will be the current element of Ops.
698     Value *NewRHS = Ops[i].Op;
699     if (NewRHS != Op->getOperand(1)) {
700       DEBUG(dbgs() << "RA: " << *Op << '\n');
701       if (NewRHS == Op->getOperand(0)) {
702         // The new right-hand side was already present as the left operand.  If
703         // we are lucky then swapping the operands will sort out both of them.
704         Op->swapOperands();
705       } else {
706         // Overwrite with the new right-hand side.
707         BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
708         if (BO && !NotRewritable.count(BO))
709           NodesToRewrite.push_back(BO);
710         Op->setOperand(1, NewRHS);
711         ExpressionChanged = Op;
712       }
713       DEBUG(dbgs() << "TO: " << *Op << '\n');
714       MadeChange = true;
715       ++NumChanged;
716     }
717
718     // Now deal with the left-hand side.  If this is already an operation node
719     // from the original expression then just rewrite the rest of the expression
720     // into it.
721     BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
722     if (BO && !NotRewritable.count(BO)) {
723       Op = BO;
724       continue;
725     }
726
727     // Otherwise, grab a spare node from the original expression and use that as
728     // the left-hand side.  If there are no nodes left then the optimizers made
729     // an expression with more nodes than the original!  This usually means that
730     // they did something stupid but it might mean that the problem was just too
731     // hard (finding the mimimal number of multiplications needed to realize a
732     // multiplication expression is NP-complete).  Whatever the reason, smart or
733     // stupid, create a new node if there are none left.
734     BinaryOperator *NewOp;
735     if (NodesToRewrite.empty()) {
736       Constant *Undef = UndefValue::get(I->getType());
737       NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
738                                      Undef, Undef, "", I);
739       if (NewOp->getType()->isFPOrFPVectorTy())
740         NewOp->setFastMathFlags(I->getFastMathFlags());
741     } else {
742       NewOp = NodesToRewrite.pop_back_val();
743     }
744
745     DEBUG(dbgs() << "RA: " << *Op << '\n');
746     Op->setOperand(0, NewOp);
747     DEBUG(dbgs() << "TO: " << *Op << '\n');
748     ExpressionChanged = Op;
749     MadeChange = true;
750     ++NumChanged;
751     Op = NewOp;
752   }
753
754   // If the expression changed non-trivially then clear out all subclass data
755   // starting from the operator specified in ExpressionChanged, and compactify
756   // the operators to just before the expression root to guarantee that the
757   // expression tree is dominated by all of Ops.
758   if (ExpressionChanged)
759     do {
760       // Preserve FastMathFlags.
761       if (isa<FPMathOperator>(I)) {
762         FastMathFlags Flags = I->getFastMathFlags();
763         ExpressionChanged->clearSubclassOptionalData();
764         ExpressionChanged->setFastMathFlags(Flags);
765       } else
766         ExpressionChanged->clearSubclassOptionalData();
767
768       if (ExpressionChanged == I)
769         break;
770       ExpressionChanged->moveBefore(I);
771       ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
772     } while (1);
773
774   // Throw away any left over nodes from the original expression.
775   for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
776     RedoInsts.insert(NodesToRewrite[i]);
777 }
778
779 /// Insert instructions before the instruction pointed to by BI,
780 /// that computes the negative version of the value specified.  The negative
781 /// version of the value is returned, and BI is left pointing at the instruction
782 /// that should be processed next by the reassociation pass.
783 /// Also add intermediate instructions to the redo list that are modified while
784 /// pushing the negates through adds.  These will be revisited to see if
785 /// additional opportunities have been exposed.
786 static Value *NegateValue(Value *V, Instruction *BI,
787                           SetVector<AssertingVH<Instruction>> &ToRedo) {
788   if (Constant *C = dyn_cast<Constant>(V)) {
789     if (C->getType()->isFPOrFPVectorTy()) {
790       return ConstantExpr::getFNeg(C);
791     }
792     return ConstantExpr::getNeg(C);
793   }
794
795
796   // We are trying to expose opportunity for reassociation.  One of the things
797   // that we want to do to achieve this is to push a negation as deep into an
798   // expression chain as possible, to expose the add instructions.  In practice,
799   // this means that we turn this:
800   //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
801   // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
802   // the constants.  We assume that instcombine will clean up the mess later if
803   // we introduce tons of unnecessary negation instructions.
804   //
805   if (BinaryOperator *I =
806           isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
807     // Push the negates through the add.
808     I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo));
809     I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo));
810     if (I->getOpcode() == Instruction::Add) {
811       I->setHasNoUnsignedWrap(false);
812       I->setHasNoSignedWrap(false);
813     }
814
815     // We must move the add instruction here, because the neg instructions do
816     // not dominate the old add instruction in general.  By moving it, we are
817     // assured that the neg instructions we just inserted dominate the
818     // instruction we are about to insert after them.
819     //
820     I->moveBefore(BI);
821     I->setName(I->getName()+".neg");
822
823     // Add the intermediate negates to the redo list as processing them later
824     // could expose more reassociating opportunities.
825     ToRedo.insert(I);
826     return I;
827   }
828
829   // Okay, we need to materialize a negated version of V with an instruction.
830   // Scan the use lists of V to see if we have one already.
831   for (User *U : V->users()) {
832     if (!BinaryOperator::isNeg(U) && !BinaryOperator::isFNeg(U))
833       continue;
834
835     // We found one!  Now we have to make sure that the definition dominates
836     // this use.  We do this by moving it to the entry block (if it is a
837     // non-instruction value) or right after the definition.  These negates will
838     // be zapped by reassociate later, so we don't need much finesse here.
839     BinaryOperator *TheNeg = cast<BinaryOperator>(U);
840
841     // Verify that the negate is in this function, V might be a constant expr.
842     if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
843       continue;
844
845     BasicBlock::iterator InsertPt;
846     if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
847       if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
848         InsertPt = II->getNormalDest()->begin();
849       } else {
850         InsertPt = ++InstInput->getIterator();
851       }
852       while (isa<PHINode>(InsertPt)) ++InsertPt;
853     } else {
854       InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
855     }
856     TheNeg->moveBefore(&*InsertPt);
857     if (TheNeg->getOpcode() == Instruction::Sub) {
858       TheNeg->setHasNoUnsignedWrap(false);
859       TheNeg->setHasNoSignedWrap(false);
860     } else {
861       TheNeg->andIRFlags(BI);
862     }
863     ToRedo.insert(TheNeg);
864     return TheNeg;
865   }
866
867   // Insert a 'neg' instruction that subtracts the value from zero to get the
868   // negation.
869   BinaryOperator *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI);
870   ToRedo.insert(NewNeg);
871   return NewNeg;
872 }
873
874 /// Return true if we should break up this subtract of X-Y into (X + -Y).
875 static bool ShouldBreakUpSubtract(Instruction *Sub) {
876   // If this is a negation, we can't split it up!
877   if (BinaryOperator::isNeg(Sub) || BinaryOperator::isFNeg(Sub))
878     return false;
879
880   // Don't breakup X - undef.
881   if (isa<UndefValue>(Sub->getOperand(1)))
882     return false;
883
884   // Don't bother to break this up unless either the LHS is an associable add or
885   // subtract or if this is only used by one.
886   Value *V0 = Sub->getOperand(0);
887   if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
888       isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
889     return true;
890   Value *V1 = Sub->getOperand(1);
891   if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
892       isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
893     return true;
894   Value *VB = Sub->user_back();
895   if (Sub->hasOneUse() &&
896       (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
897        isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
898     return true;
899
900   return false;
901 }
902
903 /// If we have (X-Y), and if either X is an add, or if this is only used by an
904 /// add, transform this into (X+(0-Y)) to promote better reassociation.
905 static BinaryOperator *
906 BreakUpSubtract(Instruction *Sub, SetVector<AssertingVH<Instruction>> &ToRedo) {
907   // Convert a subtract into an add and a neg instruction. This allows sub
908   // instructions to be commuted with other add instructions.
909   //
910   // Calculate the negative value of Operand 1 of the sub instruction,
911   // and set it as the RHS of the add instruction we just made.
912   //
913   Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo);
914   BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
915   Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
916   Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
917   New->takeName(Sub);
918
919   // Everyone now refers to the add instruction.
920   Sub->replaceAllUsesWith(New);
921   New->setDebugLoc(Sub->getDebugLoc());
922
923   DEBUG(dbgs() << "Negated: " << *New << '\n');
924   return New;
925 }
926
927 /// If this is a shift of a reassociable multiply or is used by one, change
928 /// this into a multiply by a constant to assist with further reassociation.
929 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
930   Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
931   MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
932
933   BinaryOperator *Mul =
934     BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
935   Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
936   Mul->takeName(Shl);
937
938   // Everyone now refers to the mul instruction.
939   Shl->replaceAllUsesWith(Mul);
940   Mul->setDebugLoc(Shl->getDebugLoc());
941
942   // We can safely preserve the nuw flag in all cases.  It's also safe to turn a
943   // nuw nsw shl into a nuw nsw mul.  However, nsw in isolation requires special
944   // handling.
945   bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
946   bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
947   if (NSW && NUW)
948     Mul->setHasNoSignedWrap(true);
949   Mul->setHasNoUnsignedWrap(NUW);
950   return Mul;
951 }
952
953 /// Scan backwards and forwards among values with the same rank as element i
954 /// to see if X exists.  If X does not exist, return i.  This is useful when
955 /// scanning for 'x' when we see '-x' because they both get the same rank.
956 static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
957                                   Value *X) {
958   unsigned XRank = Ops[i].Rank;
959   unsigned e = Ops.size();
960   for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
961     if (Ops[j].Op == X)
962       return j;
963     if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
964       if (Instruction *I2 = dyn_cast<Instruction>(X))
965         if (I1->isIdenticalTo(I2))
966           return j;
967   }
968   // Scan backwards.
969   for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
970     if (Ops[j].Op == X)
971       return j;
972     if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
973       if (Instruction *I2 = dyn_cast<Instruction>(X))
974         if (I1->isIdenticalTo(I2))
975           return j;
976   }
977   return i;
978 }
979
980 /// Emit a tree of add instructions, summing Ops together
981 /// and returning the result.  Insert the tree before I.
982 static Value *EmitAddTreeOfValues(Instruction *I,
983                                   SmallVectorImpl<WeakVH> &Ops){
984   if (Ops.size() == 1) return Ops.back();
985
986   Value *V1 = Ops.back();
987   Ops.pop_back();
988   Value *V2 = EmitAddTreeOfValues(I, Ops);
989   return CreateAdd(V2, V1, "tmp", I, I);
990 }
991
992 /// If V is an expression tree that is a multiplication sequence,
993 /// and if this sequence contains a multiply by Factor,
994 /// remove Factor from the tree and return the new tree.
995 Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) {
996   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
997   if (!BO)
998     return nullptr;
999
1000   SmallVector<RepeatedValue, 8> Tree;
1001   MadeChange |= LinearizeExprTree(BO, Tree);
1002   SmallVector<ValueEntry, 8> Factors;
1003   Factors.reserve(Tree.size());
1004   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1005     RepeatedValue E = Tree[i];
1006     Factors.append(E.second.getZExtValue(),
1007                    ValueEntry(getRank(E.first), E.first));
1008   }
1009
1010   bool FoundFactor = false;
1011   bool NeedsNegate = false;
1012   for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1013     if (Factors[i].Op == Factor) {
1014       FoundFactor = true;
1015       Factors.erase(Factors.begin()+i);
1016       break;
1017     }
1018
1019     // If this is a negative version of this factor, remove it.
1020     if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
1021       if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1022         if (FC1->getValue() == -FC2->getValue()) {
1023           FoundFactor = NeedsNegate = true;
1024           Factors.erase(Factors.begin()+i);
1025           break;
1026         }
1027     } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
1028       if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
1029         const APFloat &F1 = FC1->getValueAPF();
1030         APFloat F2(FC2->getValueAPF());
1031         F2.changeSign();
1032         if (F1.compare(F2) == APFloat::cmpEqual) {
1033           FoundFactor = NeedsNegate = true;
1034           Factors.erase(Factors.begin() + i);
1035           break;
1036         }
1037       }
1038     }
1039   }
1040
1041   if (!FoundFactor) {
1042     // Make sure to restore the operands to the expression tree.
1043     RewriteExprTree(BO, Factors);
1044     return nullptr;
1045   }
1046
1047   BasicBlock::iterator InsertPt = ++BO->getIterator();
1048
1049   // If this was just a single multiply, remove the multiply and return the only
1050   // remaining operand.
1051   if (Factors.size() == 1) {
1052     RedoInsts.insert(BO);
1053     V = Factors[0].Op;
1054   } else {
1055     RewriteExprTree(BO, Factors);
1056     V = BO;
1057   }
1058
1059   if (NeedsNegate)
1060     V = CreateNeg(V, "neg", &*InsertPt, BO);
1061
1062   return V;
1063 }
1064
1065 /// If V is a single-use multiply, recursively add its operands as factors,
1066 /// otherwise add V to the list of factors.
1067 ///
1068 /// Ops is the top-level list of add operands we're trying to factor.
1069 static void FindSingleUseMultiplyFactors(Value *V,
1070                                          SmallVectorImpl<Value*> &Factors,
1071                                        const SmallVectorImpl<ValueEntry> &Ops) {
1072   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1073   if (!BO) {
1074     Factors.push_back(V);
1075     return;
1076   }
1077
1078   // Otherwise, add the LHS and RHS to the list of factors.
1079   FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops);
1080   FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops);
1081 }
1082
1083 /// Optimize a series of operands to an 'and', 'or', or 'xor' instruction.
1084 /// This optimizes based on identities.  If it can be reduced to a single Value,
1085 /// it is returned, otherwise the Ops list is mutated as necessary.
1086 static Value *OptimizeAndOrXor(unsigned Opcode,
1087                                SmallVectorImpl<ValueEntry> &Ops) {
1088   // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1089   // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1090   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1091     // First, check for X and ~X in the operand list.
1092     assert(i < Ops.size());
1093     if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
1094       Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
1095       unsigned FoundX = FindInOperandList(Ops, i, X);
1096       if (FoundX != i) {
1097         if (Opcode == Instruction::And)   // ...&X&~X = 0
1098           return Constant::getNullValue(X->getType());
1099
1100         if (Opcode == Instruction::Or)    // ...|X|~X = -1
1101           return Constant::getAllOnesValue(X->getType());
1102       }
1103     }
1104
1105     // Next, check for duplicate pairs of values, which we assume are next to
1106     // each other, due to our sorting criteria.
1107     assert(i < Ops.size());
1108     if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1109       if (Opcode == Instruction::And || Opcode == Instruction::Or) {
1110         // Drop duplicate values for And and Or.
1111         Ops.erase(Ops.begin()+i);
1112         --i; --e;
1113         ++NumAnnihil;
1114         continue;
1115       }
1116
1117       // Drop pairs of values for Xor.
1118       assert(Opcode == Instruction::Xor);
1119       if (e == 2)
1120         return Constant::getNullValue(Ops[0].Op->getType());
1121
1122       // Y ^ X^X -> Y
1123       Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1124       i -= 1; e -= 2;
1125       ++NumAnnihil;
1126     }
1127   }
1128   return nullptr;
1129 }
1130
1131 /// Helper function of CombineXorOpnd(). It creates a bitwise-and
1132 /// instruction with the given two operands, and return the resulting
1133 /// instruction. There are two special cases: 1) if the constant operand is 0,
1134 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1135 /// be returned.
1136 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd, 
1137                              const APInt &ConstOpnd) {
1138   if (ConstOpnd != 0) {
1139     if (!ConstOpnd.isAllOnesValue()) {
1140       LLVMContext &Ctx = Opnd->getType()->getContext();
1141       Instruction *I;
1142       I = BinaryOperator::CreateAnd(Opnd, ConstantInt::get(Ctx, ConstOpnd),
1143                                     "and.ra", InsertBefore);
1144       I->setDebugLoc(InsertBefore->getDebugLoc());
1145       return I;
1146     }
1147     return Opnd;
1148   }
1149   return nullptr;
1150 }
1151
1152 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1153 // into "R ^ C", where C would be 0, and R is a symbolic value.
1154 //
1155 // If it was successful, true is returned, and the "R" and "C" is returned
1156 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1157 // and both "Res" and "ConstOpnd" remain unchanged.
1158 //
1159 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1160                                      APInt &ConstOpnd, Value *&Res) {
1161   // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2 
1162   //                       = ((x | c1) ^ c1) ^ (c1 ^ c2)
1163   //                       = (x & ~c1) ^ (c1 ^ c2)
1164   // It is useful only when c1 == c2.
1165   if (Opnd1->isOrExpr() && Opnd1->getConstPart() != 0) {
1166     if (!Opnd1->getValue()->hasOneUse())
1167       return false;
1168
1169     const APInt &C1 = Opnd1->getConstPart();
1170     if (C1 != ConstOpnd)
1171       return false;
1172
1173     Value *X = Opnd1->getSymbolicPart();
1174     Res = createAndInstr(I, X, ~C1);
1175     // ConstOpnd was C2, now C1 ^ C2.
1176     ConstOpnd ^= C1;
1177
1178     if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1179       RedoInsts.insert(T);
1180     return true;
1181   }
1182   return false;
1183 }
1184
1185                            
1186 // Helper function of OptimizeXor(). It tries to simplify
1187 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1188 // symbolic value. 
1189 // 
1190 // If it was successful, true is returned, and the "R" and "C" is returned 
1191 // via "Res" and "ConstOpnd", respectively (If the entire expression is
1192 // evaluated to a constant, the Res is set to NULL); otherwise, false is
1193 // returned, and both "Res" and "ConstOpnd" remain unchanged.
1194 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1195                                      XorOpnd *Opnd2, APInt &ConstOpnd,
1196                                      Value *&Res) {
1197   Value *X = Opnd1->getSymbolicPart();
1198   if (X != Opnd2->getSymbolicPart())
1199     return false;
1200
1201   // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1202   int DeadInstNum = 1;
1203   if (Opnd1->getValue()->hasOneUse())
1204     DeadInstNum++;
1205   if (Opnd2->getValue()->hasOneUse())
1206     DeadInstNum++;
1207
1208   // Xor-Rule 2:
1209   //  (x | c1) ^ (x & c2)
1210   //   = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1211   //   = (x & ~c1) ^ (x & c2) ^ c1               // Xor-Rule 1
1212   //   = (x & c3) ^ c1, where c3 = ~c1 ^ c2      // Xor-rule 3
1213   //
1214   if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1215     if (Opnd2->isOrExpr())
1216       std::swap(Opnd1, Opnd2);
1217
1218     const APInt &C1 = Opnd1->getConstPart();
1219     const APInt &C2 = Opnd2->getConstPart();
1220     APInt C3((~C1) ^ C2);
1221
1222     // Do not increase code size!
1223     if (C3 != 0 && !C3.isAllOnesValue()) {
1224       int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1225       if (NewInstNum > DeadInstNum)
1226         return false;
1227     }
1228
1229     Res = createAndInstr(I, X, C3);
1230     ConstOpnd ^= C1;
1231
1232   } else if (Opnd1->isOrExpr()) {
1233     // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1234     //
1235     const APInt &C1 = Opnd1->getConstPart();
1236     const APInt &C2 = Opnd2->getConstPart();
1237     APInt C3 = C1 ^ C2;
1238     
1239     // Do not increase code size
1240     if (C3 != 0 && !C3.isAllOnesValue()) {
1241       int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1242       if (NewInstNum > DeadInstNum)
1243         return false;
1244     }
1245
1246     Res = createAndInstr(I, X, C3);
1247     ConstOpnd ^= C3;
1248   } else {
1249     // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1250     //
1251     const APInt &C1 = Opnd1->getConstPart();
1252     const APInt &C2 = Opnd2->getConstPart();
1253     APInt C3 = C1 ^ C2;
1254     Res = createAndInstr(I, X, C3);
1255   }
1256
1257   // Put the original operands in the Redo list; hope they will be deleted
1258   // as dead code.
1259   if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1260     RedoInsts.insert(T);
1261   if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1262     RedoInsts.insert(T);
1263
1264   return true;
1265 }
1266
1267 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1268 /// to a single Value, it is returned, otherwise the Ops list is mutated as
1269 /// necessary.
1270 Value *ReassociatePass::OptimizeXor(Instruction *I,
1271                                     SmallVectorImpl<ValueEntry> &Ops) {
1272   if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1273     return V;
1274       
1275   if (Ops.size() == 1)
1276     return nullptr;
1277
1278   SmallVector<XorOpnd, 8> Opnds;
1279   SmallVector<XorOpnd*, 8> OpndPtrs;
1280   Type *Ty = Ops[0].Op->getType();
1281   APInt ConstOpnd(Ty->getIntegerBitWidth(), 0);
1282
1283   // Step 1: Convert ValueEntry to XorOpnd
1284   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1285     Value *V = Ops[i].Op;
1286     if (!isa<ConstantInt>(V)) {
1287       XorOpnd O(V);
1288       O.setSymbolicRank(getRank(O.getSymbolicPart()));
1289       Opnds.push_back(O);
1290     } else
1291       ConstOpnd ^= cast<ConstantInt>(V)->getValue();
1292   }
1293
1294   // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1295   //  It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1296   //  the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1297   //  with the previous loop --- the iterator of the "Opnds" may be invalidated
1298   //  when new elements are added to the vector.
1299   for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1300     OpndPtrs.push_back(&Opnds[i]);
1301
1302   // Step 2: Sort the Xor-Operands in a way such that the operands containing
1303   //  the same symbolic value cluster together. For instance, the input operand
1304   //  sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1305   //  ("x | 123", "x & 789", "y & 456").
1306   //
1307   //  The purpose is twofold:
1308   //  1) Cluster together the operands sharing the same symbolic-value.
1309   //  2) Operand having smaller symbolic-value-rank is permuted earlier, which
1310   //     could potentially shorten crital path, and expose more loop-invariants.
1311   //     Note that values' rank are basically defined in RPO order (FIXME).
1312   //     So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
1313   //     than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
1314   //     "z" in the order of X-Y-Z is better than any other orders.
1315   std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(),
1316                    [](XorOpnd *LHS, XorOpnd *RHS) {
1317     return LHS->getSymbolicRank() < RHS->getSymbolicRank();
1318   });
1319
1320   // Step 3: Combine adjacent operands
1321   XorOpnd *PrevOpnd = nullptr;
1322   bool Changed = false;
1323   for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
1324     XorOpnd *CurrOpnd = OpndPtrs[i];
1325     // The combined value
1326     Value *CV;
1327
1328     // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
1329     if (ConstOpnd != 0 && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
1330       Changed = true;
1331       if (CV)
1332         *CurrOpnd = XorOpnd(CV);
1333       else {
1334         CurrOpnd->Invalidate();
1335         continue;
1336       }
1337     }
1338
1339     if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1340       PrevOpnd = CurrOpnd;
1341       continue;
1342     }
1343
1344     // step 3.2: When previous and current operands share the same symbolic
1345     //  value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd" 
1346     //    
1347     if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1348       // Remove previous operand
1349       PrevOpnd->Invalidate();
1350       if (CV) {
1351         *CurrOpnd = XorOpnd(CV);
1352         PrevOpnd = CurrOpnd;
1353       } else {
1354         CurrOpnd->Invalidate();
1355         PrevOpnd = nullptr;
1356       }
1357       Changed = true;
1358     }
1359   }
1360
1361   // Step 4: Reassemble the Ops
1362   if (Changed) {
1363     Ops.clear();
1364     for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
1365       XorOpnd &O = Opnds[i];
1366       if (O.isInvalid())
1367         continue;
1368       ValueEntry VE(getRank(O.getValue()), O.getValue());
1369       Ops.push_back(VE);
1370     }
1371     if (ConstOpnd != 0) {
1372       Value *C = ConstantInt::get(Ty->getContext(), ConstOpnd);
1373       ValueEntry VE(getRank(C), C);
1374       Ops.push_back(VE);
1375     }
1376     int Sz = Ops.size();
1377     if (Sz == 1)
1378       return Ops.back().Op;
1379     else if (Sz == 0) {
1380       assert(ConstOpnd == 0);
1381       return ConstantInt::get(Ty->getContext(), ConstOpnd);
1382     }
1383   }
1384
1385   return nullptr;
1386 }
1387
1388 /// Optimize a series of operands to an 'add' instruction.  This
1389 /// optimizes based on identities.  If it can be reduced to a single Value, it
1390 /// is returned, otherwise the Ops list is mutated as necessary.
1391 Value *ReassociatePass::OptimizeAdd(Instruction *I,
1392                                     SmallVectorImpl<ValueEntry> &Ops) {
1393   // Scan the operand lists looking for X and -X pairs.  If we find any, we
1394   // can simplify expressions like X+-X == 0 and X+~X ==-1.  While we're at it,
1395   // scan for any
1396   // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
1397
1398   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1399     Value *TheOp = Ops[i].Op;
1400     // Check to see if we've seen this operand before.  If so, we factor all
1401     // instances of the operand together.  Due to our sorting criteria, we know
1402     // that these need to be next to each other in the vector.
1403     if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1404       // Rescan the list, remove all instances of this operand from the expr.
1405       unsigned NumFound = 0;
1406       do {
1407         Ops.erase(Ops.begin()+i);
1408         ++NumFound;
1409       } while (i != Ops.size() && Ops[i].Op == TheOp);
1410
1411       DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
1412       ++NumFactor;
1413
1414       // Insert a new multiply.
1415       Type *Ty = TheOp->getType();
1416       Constant *C = Ty->isIntOrIntVectorTy() ?
1417         ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound);
1418       Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
1419
1420       // Now that we have inserted a multiply, optimize it. This allows us to
1421       // handle cases that require multiple factoring steps, such as this:
1422       // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
1423       RedoInsts.insert(Mul);
1424
1425       // If every add operand was a duplicate, return the multiply.
1426       if (Ops.empty())
1427         return Mul;
1428
1429       // Otherwise, we had some input that didn't have the dupe, such as
1430       // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
1431       // things being added by this operation.
1432       Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
1433
1434       --i;
1435       e = Ops.size();
1436       continue;
1437     }
1438
1439     // Check for X and -X or X and ~X in the operand list.
1440     if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isFNeg(TheOp) &&
1441         !BinaryOperator::isNot(TheOp))
1442       continue;
1443
1444     Value *X = nullptr;
1445     if (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp))
1446       X = BinaryOperator::getNegArgument(TheOp);
1447     else if (BinaryOperator::isNot(TheOp))
1448       X = BinaryOperator::getNotArgument(TheOp);
1449
1450     unsigned FoundX = FindInOperandList(Ops, i, X);
1451     if (FoundX == i)
1452       continue;
1453
1454     // Remove X and -X from the operand list.
1455     if (Ops.size() == 2 &&
1456         (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp)))
1457       return Constant::getNullValue(X->getType());
1458
1459     // Remove X and ~X from the operand list.
1460     if (Ops.size() == 2 && BinaryOperator::isNot(TheOp))
1461       return Constant::getAllOnesValue(X->getType());
1462
1463     Ops.erase(Ops.begin()+i);
1464     if (i < FoundX)
1465       --FoundX;
1466     else
1467       --i;   // Need to back up an extra one.
1468     Ops.erase(Ops.begin()+FoundX);
1469     ++NumAnnihil;
1470     --i;     // Revisit element.
1471     e -= 2;  // Removed two elements.
1472
1473     // if X and ~X we append -1 to the operand list.
1474     if (BinaryOperator::isNot(TheOp)) {
1475       Value *V = Constant::getAllOnesValue(X->getType());
1476       Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
1477       e += 1;
1478     }
1479   }
1480
1481   // Scan the operand list, checking to see if there are any common factors
1482   // between operands.  Consider something like A*A+A*B*C+D.  We would like to
1483   // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1484   // To efficiently find this, we count the number of times a factor occurs
1485   // for any ADD operands that are MULs.
1486   DenseMap<Value*, unsigned> FactorOccurrences;
1487
1488   // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1489   // where they are actually the same multiply.
1490   unsigned MaxOcc = 0;
1491   Value *MaxOccVal = nullptr;
1492   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1493     BinaryOperator *BOp =
1494         isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1495     if (!BOp)
1496       continue;
1497
1498     // Compute all of the factors of this added value.
1499     SmallVector<Value*, 8> Factors;
1500     FindSingleUseMultiplyFactors(BOp, Factors, Ops);
1501     assert(Factors.size() > 1 && "Bad linearize!");
1502
1503     // Add one to FactorOccurrences for each unique factor in this op.
1504     SmallPtrSet<Value*, 8> Duplicates;
1505     for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1506       Value *Factor = Factors[i];
1507       if (!Duplicates.insert(Factor).second)
1508         continue;
1509
1510       unsigned Occ = ++FactorOccurrences[Factor];
1511       if (Occ > MaxOcc) {
1512         MaxOcc = Occ;
1513         MaxOccVal = Factor;
1514       }
1515
1516       // If Factor is a negative constant, add the negated value as a factor
1517       // because we can percolate the negate out.  Watch for minint, which
1518       // cannot be positivified.
1519       if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
1520         if (CI->isNegative() && !CI->isMinValue(true)) {
1521           Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1522           assert(!Duplicates.count(Factor) &&
1523                  "Shouldn't have two constant factors, missed a canonicalize");
1524           unsigned Occ = ++FactorOccurrences[Factor];
1525           if (Occ > MaxOcc) {
1526             MaxOcc = Occ;
1527             MaxOccVal = Factor;
1528           }
1529         }
1530       } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
1531         if (CF->isNegative()) {
1532           APFloat F(CF->getValueAPF());
1533           F.changeSign();
1534           Factor = ConstantFP::get(CF->getContext(), F);
1535           assert(!Duplicates.count(Factor) &&
1536                  "Shouldn't have two constant factors, missed a canonicalize");
1537           unsigned Occ = ++FactorOccurrences[Factor];
1538           if (Occ > MaxOcc) {
1539             MaxOcc = Occ;
1540             MaxOccVal = Factor;
1541           }
1542         }
1543       }
1544     }
1545   }
1546
1547   // If any factor occurred more than one time, we can pull it out.
1548   if (MaxOcc > 1) {
1549     DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
1550     ++NumFactor;
1551
1552     // Create a new instruction that uses the MaxOccVal twice.  If we don't do
1553     // this, we could otherwise run into situations where removing a factor
1554     // from an expression will drop a use of maxocc, and this can cause
1555     // RemoveFactorFromExpression on successive values to behave differently.
1556     Instruction *DummyInst =
1557         I->getType()->isIntOrIntVectorTy()
1558             ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
1559             : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
1560
1561     SmallVector<WeakVH, 4> NewMulOps;
1562     for (unsigned i = 0; i != Ops.size(); ++i) {
1563       // Only try to remove factors from expressions we're allowed to.
1564       BinaryOperator *BOp =
1565           isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1566       if (!BOp)
1567         continue;
1568
1569       if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
1570         // The factorized operand may occur several times.  Convert them all in
1571         // one fell swoop.
1572         for (unsigned j = Ops.size(); j != i;) {
1573           --j;
1574           if (Ops[j].Op == Ops[i].Op) {
1575             NewMulOps.push_back(V);
1576             Ops.erase(Ops.begin()+j);
1577           }
1578         }
1579         --i;
1580       }
1581     }
1582
1583     // No need for extra uses anymore.
1584     delete DummyInst;
1585
1586     unsigned NumAddedValues = NewMulOps.size();
1587     Value *V = EmitAddTreeOfValues(I, NewMulOps);
1588
1589     // Now that we have inserted the add tree, optimize it. This allows us to
1590     // handle cases that require multiple factoring steps, such as this:
1591     // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
1592     assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
1593     (void)NumAddedValues;
1594     if (Instruction *VI = dyn_cast<Instruction>(V))
1595       RedoInsts.insert(VI);
1596
1597     // Create the multiply.
1598     Instruction *V2 = CreateMul(V, MaxOccVal, "tmp", I, I);
1599
1600     // Rerun associate on the multiply in case the inner expression turned into
1601     // a multiply.  We want to make sure that we keep things in canonical form.
1602     RedoInsts.insert(V2);
1603
1604     // If every add operand included the factor (e.g. "A*B + A*C"), then the
1605     // entire result expression is just the multiply "A*(B+C)".
1606     if (Ops.empty())
1607       return V2;
1608
1609     // Otherwise, we had some input that didn't have the factor, such as
1610     // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
1611     // things being added by this operation.
1612     Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1613   }
1614
1615   return nullptr;
1616 }
1617
1618 /// \brief Build up a vector of value/power pairs factoring a product.
1619 ///
1620 /// Given a series of multiplication operands, build a vector of factors and
1621 /// the powers each is raised to when forming the final product. Sort them in
1622 /// the order of descending power.
1623 ///
1624 ///      (x*x)          -> [(x, 2)]
1625 ///     ((x*x)*x)       -> [(x, 3)]
1626 ///   ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1627 ///
1628 /// \returns Whether any factors have a power greater than one.
1629 bool ReassociatePass::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1630                                              SmallVectorImpl<Factor> &Factors) {
1631   // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1632   // Compute the sum of powers of simplifiable factors.
1633   unsigned FactorPowerSum = 0;
1634   for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1635     Value *Op = Ops[Idx-1].Op;
1636
1637     // Count the number of occurrences of this value.
1638     unsigned Count = 1;
1639     for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1640       ++Count;
1641     // Track for simplification all factors which occur 2 or more times.
1642     if (Count > 1)
1643       FactorPowerSum += Count;
1644   }
1645
1646   // We can only simplify factors if the sum of the powers of our simplifiable
1647   // factors is 4 or higher. When that is the case, we will *always* have
1648   // a simplification. This is an important invariant to prevent cyclicly
1649   // trying to simplify already minimal formations.
1650   if (FactorPowerSum < 4)
1651     return false;
1652
1653   // Now gather the simplifiable factors, removing them from Ops.
1654   FactorPowerSum = 0;
1655   for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1656     Value *Op = Ops[Idx-1].Op;
1657
1658     // Count the number of occurrences of this value.
1659     unsigned Count = 1;
1660     for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1661       ++Count;
1662     if (Count == 1)
1663       continue;
1664     // Move an even number of occurrences to Factors.
1665     Count &= ~1U;
1666     Idx -= Count;
1667     FactorPowerSum += Count;
1668     Factors.push_back(Factor(Op, Count));
1669     Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
1670   }
1671
1672   // None of the adjustments above should have reduced the sum of factor powers
1673   // below our mininum of '4'.
1674   assert(FactorPowerSum >= 4);
1675
1676   std::stable_sort(Factors.begin(), Factors.end(),
1677                    [](const Factor &LHS, const Factor &RHS) {
1678     return LHS.Power > RHS.Power;
1679   });
1680   return true;
1681 }
1682
1683 /// \brief Build a tree of multiplies, computing the product of Ops.
1684 static Value *buildMultiplyTree(IRBuilder<> &Builder,
1685                                 SmallVectorImpl<Value*> &Ops) {
1686   if (Ops.size() == 1)
1687     return Ops.back();
1688
1689   Value *LHS = Ops.pop_back_val();
1690   do {
1691     if (LHS->getType()->isIntOrIntVectorTy())
1692       LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1693     else
1694       LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
1695   } while (!Ops.empty());
1696
1697   return LHS;
1698 }
1699
1700 /// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1701 ///
1702 /// Given a vector of values raised to various powers, where no two values are
1703 /// equal and the powers are sorted in decreasing order, compute the minimal
1704 /// DAG of multiplies to compute the final product, and return that product
1705 /// value.
1706 Value *
1707 ReassociatePass::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1708                                          SmallVectorImpl<Factor> &Factors) {
1709   assert(Factors[0].Power);
1710   SmallVector<Value *, 4> OuterProduct;
1711   for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1712        Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1713     if (Factors[Idx].Power != Factors[LastIdx].Power) {
1714       LastIdx = Idx;
1715       continue;
1716     }
1717
1718     // We want to multiply across all the factors with the same power so that
1719     // we can raise them to that power as a single entity. Build a mini tree
1720     // for that.
1721     SmallVector<Value *, 4> InnerProduct;
1722     InnerProduct.push_back(Factors[LastIdx].Base);
1723     do {
1724       InnerProduct.push_back(Factors[Idx].Base);
1725       ++Idx;
1726     } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1727
1728     // Reset the base value of the first factor to the new expression tree.
1729     // We'll remove all the factors with the same power in a second pass.
1730     Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1731     if (Instruction *MI = dyn_cast<Instruction>(M))
1732       RedoInsts.insert(MI);
1733
1734     LastIdx = Idx;
1735   }
1736   // Unique factors with equal powers -- we've folded them into the first one's
1737   // base.
1738   Factors.erase(std::unique(Factors.begin(), Factors.end(),
1739                             [](const Factor &LHS, const Factor &RHS) {
1740                               return LHS.Power == RHS.Power;
1741                             }),
1742                 Factors.end());
1743
1744   // Iteratively collect the base of each factor with an add power into the
1745   // outer product, and halve each power in preparation for squaring the
1746   // expression.
1747   for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1748     if (Factors[Idx].Power & 1)
1749       OuterProduct.push_back(Factors[Idx].Base);
1750     Factors[Idx].Power >>= 1;
1751   }
1752   if (Factors[0].Power) {
1753     Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1754     OuterProduct.push_back(SquareRoot);
1755     OuterProduct.push_back(SquareRoot);
1756   }
1757   if (OuterProduct.size() == 1)
1758     return OuterProduct.front();
1759
1760   Value *V = buildMultiplyTree(Builder, OuterProduct);
1761   return V;
1762 }
1763
1764 Value *ReassociatePass::OptimizeMul(BinaryOperator *I,
1765                                     SmallVectorImpl<ValueEntry> &Ops) {
1766   // We can only optimize the multiplies when there is a chain of more than
1767   // three, such that a balanced tree might require fewer total multiplies.
1768   if (Ops.size() < 4)
1769     return nullptr;
1770
1771   // Try to turn linear trees of multiplies without other uses of the
1772   // intermediate stages into minimal multiply DAGs with perfect sub-expression
1773   // re-use.
1774   SmallVector<Factor, 4> Factors;
1775   if (!collectMultiplyFactors(Ops, Factors))
1776     return nullptr; // All distinct factors, so nothing left for us to do.
1777
1778   IRBuilder<> Builder(I);
1779   Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1780   if (Ops.empty())
1781     return V;
1782
1783   ValueEntry NewEntry = ValueEntry(getRank(V), V);
1784   Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
1785   return nullptr;
1786 }
1787
1788 Value *ReassociatePass::OptimizeExpression(BinaryOperator *I,
1789                                            SmallVectorImpl<ValueEntry> &Ops) {
1790   // Now that we have the linearized expression tree, try to optimize it.
1791   // Start by folding any constants that we found.
1792   Constant *Cst = nullptr;
1793   unsigned Opcode = I->getOpcode();
1794   while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
1795     Constant *C = cast<Constant>(Ops.pop_back_val().Op);
1796     Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
1797   }
1798   // If there was nothing but constants then we are done.
1799   if (Ops.empty())
1800     return Cst;
1801
1802   // Put the combined constant back at the end of the operand list, except if
1803   // there is no point.  For example, an add of 0 gets dropped here, while a
1804   // multiplication by zero turns the whole expression into zero.
1805   if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1806     if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1807       return Cst;
1808     Ops.push_back(ValueEntry(0, Cst));
1809   }
1810
1811   if (Ops.size() == 1) return Ops[0].Op;
1812
1813   // Handle destructive annihilation due to identities between elements in the
1814   // argument list here.
1815   unsigned NumOps = Ops.size();
1816   switch (Opcode) {
1817   default: break;
1818   case Instruction::And:
1819   case Instruction::Or:
1820     if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1821       return Result;
1822     break;
1823
1824   case Instruction::Xor:
1825     if (Value *Result = OptimizeXor(I, Ops))
1826       return Result;
1827     break;
1828
1829   case Instruction::Add:
1830   case Instruction::FAdd:
1831     if (Value *Result = OptimizeAdd(I, Ops))
1832       return Result;
1833     break;
1834
1835   case Instruction::Mul:
1836   case Instruction::FMul:
1837     if (Value *Result = OptimizeMul(I, Ops))
1838       return Result;
1839     break;
1840   }
1841
1842   if (Ops.size() != NumOps)
1843     return OptimizeExpression(I, Ops);
1844   return nullptr;
1845 }
1846
1847 // Remove dead instructions and if any operands are trivially dead add them to
1848 // Insts so they will be removed as well.
1849 void ReassociatePass::RecursivelyEraseDeadInsts(
1850     Instruction *I, SetVector<AssertingVH<Instruction>> &Insts) {
1851   assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1852   SmallVector<Value *, 4> Ops(I->op_begin(), I->op_end());
1853   ValueRankMap.erase(I);
1854   Insts.remove(I);
1855   RedoInsts.remove(I);
1856   I->eraseFromParent();
1857   for (auto Op : Ops)
1858     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1859       if (OpInst->use_empty())
1860         Insts.insert(OpInst);
1861 }
1862
1863 /// Zap the given instruction, adding interesting operands to the work list.
1864 void ReassociatePass::EraseInst(Instruction *I) {
1865   assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1866   SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1867   // Erase the dead instruction.
1868   ValueRankMap.erase(I);
1869   RedoInsts.remove(I);
1870   I->eraseFromParent();
1871   // Optimize its operands.
1872   SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
1873   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1874     if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1875       // If this is a node in an expression tree, climb to the expression root
1876       // and add that since that's where optimization actually happens.
1877       unsigned Opcode = Op->getOpcode();
1878       while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
1879              Visited.insert(Op).second)
1880         Op = Op->user_back();
1881       RedoInsts.insert(Op);
1882     }
1883 }
1884
1885 // Canonicalize expressions of the following form:
1886 //  x + (-Constant * y) -> x - (Constant * y)
1887 //  x - (-Constant * y) -> x + (Constant * y)
1888 Instruction *ReassociatePass::canonicalizeNegConstExpr(Instruction *I) {
1889   if (!I->hasOneUse() || I->getType()->isVectorTy())
1890     return nullptr;
1891
1892   // Must be a fmul or fdiv instruction.
1893   unsigned Opcode = I->getOpcode();
1894   if (Opcode != Instruction::FMul && Opcode != Instruction::FDiv)
1895     return nullptr;
1896
1897   auto *C0 = dyn_cast<ConstantFP>(I->getOperand(0));
1898   auto *C1 = dyn_cast<ConstantFP>(I->getOperand(1));
1899
1900   // Both operands are constant, let it get constant folded away.
1901   if (C0 && C1)
1902     return nullptr;
1903
1904   ConstantFP *CF = C0 ? C0 : C1;
1905
1906   // Must have one constant operand.
1907   if (!CF)
1908     return nullptr;
1909
1910   // Must be a negative ConstantFP.
1911   if (!CF->isNegative())
1912     return nullptr;
1913
1914   // User must be a binary operator with one or more uses.
1915   Instruction *User = I->user_back();
1916   if (!isa<BinaryOperator>(User) || !User->hasNUsesOrMore(1))
1917     return nullptr;
1918
1919   unsigned UserOpcode = User->getOpcode();
1920   if (UserOpcode != Instruction::FAdd && UserOpcode != Instruction::FSub)
1921     return nullptr;
1922
1923   // Subtraction is not commutative. Explicitly, the following transform is
1924   // not valid: (-Constant * y) - x  -> x + (Constant * y)
1925   if (!User->isCommutative() && User->getOperand(1) != I)
1926     return nullptr;
1927
1928   // Change the sign of the constant.
1929   APFloat Val = CF->getValueAPF();
1930   Val.changeSign();
1931   I->setOperand(C0 ? 0 : 1, ConstantFP::get(CF->getContext(), Val));
1932
1933   // Canonicalize I to RHS to simplify the next bit of logic. E.g.,
1934   // ((-Const*y) + x) -> (x + (-Const*y)).
1935   if (User->getOperand(0) == I && User->isCommutative())
1936     cast<BinaryOperator>(User)->swapOperands();
1937
1938   Value *Op0 = User->getOperand(0);
1939   Value *Op1 = User->getOperand(1);
1940   BinaryOperator *NI;
1941   switch (UserOpcode) {
1942   default:
1943     llvm_unreachable("Unexpected Opcode!");
1944   case Instruction::FAdd:
1945     NI = BinaryOperator::CreateFSub(Op0, Op1);
1946     NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
1947     break;
1948   case Instruction::FSub:
1949     NI = BinaryOperator::CreateFAdd(Op0, Op1);
1950     NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
1951     break;
1952   }
1953
1954   NI->insertBefore(User);
1955   NI->setName(User->getName());
1956   User->replaceAllUsesWith(NI);
1957   NI->setDebugLoc(I->getDebugLoc());
1958   RedoInsts.insert(I);
1959   MadeChange = true;
1960   return NI;
1961 }
1962
1963 /// Inspect and optimize the given instruction. Note that erasing
1964 /// instructions is not allowed.
1965 void ReassociatePass::OptimizeInst(Instruction *I) {
1966   // Only consider operations that we understand.
1967   if (!isa<BinaryOperator>(I))
1968     return;
1969
1970   if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
1971     // If an operand of this shift is a reassociable multiply, or if the shift
1972     // is used by a reassociable multiply or add, turn into a multiply.
1973     if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
1974         (I->hasOneUse() &&
1975          (isReassociableOp(I->user_back(), Instruction::Mul) ||
1976           isReassociableOp(I->user_back(), Instruction::Add)))) {
1977       Instruction *NI = ConvertShiftToMul(I);
1978       RedoInsts.insert(I);
1979       MadeChange = true;
1980       I = NI;
1981     }
1982
1983   // Canonicalize negative constants out of expressions.
1984   if (Instruction *Res = canonicalizeNegConstExpr(I))
1985     I = Res;
1986
1987   // Commute binary operators, to canonicalize the order of their operands.
1988   // This can potentially expose more CSE opportunities, and makes writing other
1989   // transformations simpler.
1990   if (I->isCommutative())
1991     canonicalizeOperands(I);
1992
1993   // TODO: We should optimize vector Xor instructions, but they are
1994   // currently unsupported.
1995   if (I->getType()->isVectorTy() && I->getOpcode() == Instruction::Xor)
1996     return;
1997
1998   // Don't optimize floating point instructions that don't have unsafe algebra.
1999   if (I->getType()->isFPOrFPVectorTy() && !I->hasUnsafeAlgebra())
2000     return;
2001
2002   // Do not reassociate boolean (i1) expressions.  We want to preserve the
2003   // original order of evaluation for short-circuited comparisons that
2004   // SimplifyCFG has folded to AND/OR expressions.  If the expression
2005   // is not further optimized, it is likely to be transformed back to a
2006   // short-circuited form for code gen, and the source order may have been
2007   // optimized for the most likely conditions.
2008   if (I->getType()->isIntegerTy(1))
2009     return;
2010
2011   // If this is a subtract instruction which is not already in negate form,
2012   // see if we can convert it to X+-Y.
2013   if (I->getOpcode() == Instruction::Sub) {
2014     if (ShouldBreakUpSubtract(I)) {
2015       Instruction *NI = BreakUpSubtract(I, RedoInsts);
2016       RedoInsts.insert(I);
2017       MadeChange = true;
2018       I = NI;
2019     } else if (BinaryOperator::isNeg(I)) {
2020       // Otherwise, this is a negation.  See if the operand is a multiply tree
2021       // and if this is not an inner node of a multiply tree.
2022       if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
2023           (!I->hasOneUse() ||
2024            !isReassociableOp(I->user_back(), Instruction::Mul))) {
2025         Instruction *NI = LowerNegateToMultiply(I);
2026         // If the negate was simplified, revisit the users to see if we can
2027         // reassociate further.
2028         for (User *U : NI->users()) {
2029           if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2030             RedoInsts.insert(Tmp);
2031         }
2032         RedoInsts.insert(I);
2033         MadeChange = true;
2034         I = NI;
2035       }
2036     }
2037   } else if (I->getOpcode() == Instruction::FSub) {
2038     if (ShouldBreakUpSubtract(I)) {
2039       Instruction *NI = BreakUpSubtract(I, RedoInsts);
2040       RedoInsts.insert(I);
2041       MadeChange = true;
2042       I = NI;
2043     } else if (BinaryOperator::isFNeg(I)) {
2044       // Otherwise, this is a negation.  See if the operand is a multiply tree
2045       // and if this is not an inner node of a multiply tree.
2046       if (isReassociableOp(I->getOperand(1), Instruction::FMul) &&
2047           (!I->hasOneUse() ||
2048            !isReassociableOp(I->user_back(), Instruction::FMul))) {
2049         // If the negate was simplified, revisit the users to see if we can
2050         // reassociate further.
2051         Instruction *NI = LowerNegateToMultiply(I);
2052         for (User *U : NI->users()) {
2053           if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2054             RedoInsts.insert(Tmp);
2055         }
2056         RedoInsts.insert(I);
2057         MadeChange = true;
2058         I = NI;
2059       }
2060     }
2061   }
2062
2063   // If this instruction is an associative binary operator, process it.
2064   if (!I->isAssociative()) return;
2065   BinaryOperator *BO = cast<BinaryOperator>(I);
2066
2067   // If this is an interior node of a reassociable tree, ignore it until we
2068   // get to the root of the tree, to avoid N^2 analysis.
2069   unsigned Opcode = BO->getOpcode();
2070   if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) {
2071     // During the initial run we will get to the root of the tree.
2072     // But if we get here while we are redoing instructions, there is no
2073     // guarantee that the root will be visited. So Redo later
2074     if (BO->user_back() != BO &&
2075         BO->getParent() == BO->user_back()->getParent())
2076       RedoInsts.insert(BO->user_back());
2077     return;
2078   }
2079
2080   // If this is an add tree that is used by a sub instruction, ignore it
2081   // until we process the subtract.
2082   if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
2083       cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
2084     return;
2085   if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
2086       cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
2087     return;
2088
2089   ReassociateExpression(BO);
2090 }
2091
2092 void ReassociatePass::ReassociateExpression(BinaryOperator *I) {
2093   // First, walk the expression tree, linearizing the tree, collecting the
2094   // operand information.
2095   SmallVector<RepeatedValue, 8> Tree;
2096   MadeChange |= LinearizeExprTree(I, Tree);
2097   SmallVector<ValueEntry, 8> Ops;
2098   Ops.reserve(Tree.size());
2099   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
2100     RepeatedValue E = Tree[i];
2101     Ops.append(E.second.getZExtValue(),
2102                ValueEntry(getRank(E.first), E.first));
2103   }
2104
2105   DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
2106
2107   // Now that we have linearized the tree to a list and have gathered all of
2108   // the operands and their ranks, sort the operands by their rank.  Use a
2109   // stable_sort so that values with equal ranks will have their relative
2110   // positions maintained (and so the compiler is deterministic).  Note that
2111   // this sorts so that the highest ranking values end up at the beginning of
2112   // the vector.
2113   std::stable_sort(Ops.begin(), Ops.end());
2114
2115   // Now that we have the expression tree in a convenient
2116   // sorted form, optimize it globally if possible.
2117   if (Value *V = OptimizeExpression(I, Ops)) {
2118     if (V == I)
2119       // Self-referential expression in unreachable code.
2120       return;
2121     // This expression tree simplified to something that isn't a tree,
2122     // eliminate it.
2123     DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
2124     I->replaceAllUsesWith(V);
2125     if (Instruction *VI = dyn_cast<Instruction>(V))
2126       VI->setDebugLoc(I->getDebugLoc());
2127     RedoInsts.insert(I);
2128     ++NumAnnihil;
2129     return;
2130   }
2131
2132   // We want to sink immediates as deeply as possible except in the case where
2133   // this is a multiply tree used only by an add, and the immediate is a -1.
2134   // In this case we reassociate to put the negation on the outside so that we
2135   // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
2136   if (I->hasOneUse()) {
2137     if (I->getOpcode() == Instruction::Mul &&
2138         cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
2139         isa<ConstantInt>(Ops.back().Op) &&
2140         cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
2141       ValueEntry Tmp = Ops.pop_back_val();
2142       Ops.insert(Ops.begin(), Tmp);
2143     } else if (I->getOpcode() == Instruction::FMul &&
2144                cast<Instruction>(I->user_back())->getOpcode() ==
2145                    Instruction::FAdd &&
2146                isa<ConstantFP>(Ops.back().Op) &&
2147                cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
2148       ValueEntry Tmp = Ops.pop_back_val();
2149       Ops.insert(Ops.begin(), Tmp);
2150     }
2151   }
2152
2153   DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
2154
2155   if (Ops.size() == 1) {
2156     if (Ops[0].Op == I)
2157       // Self-referential expression in unreachable code.
2158       return;
2159
2160     // This expression tree simplified to something that isn't a tree,
2161     // eliminate it.
2162     I->replaceAllUsesWith(Ops[0].Op);
2163     if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
2164       OI->setDebugLoc(I->getDebugLoc());
2165     RedoInsts.insert(I);
2166     return;
2167   }
2168
2169   // Now that we ordered and optimized the expressions, splat them back into
2170   // the expression tree, removing any unneeded nodes.
2171   RewriteExprTree(I, Ops);
2172 }
2173
2174 PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) {
2175   // Calculate the rank map for F.
2176   BuildRankMap(F);
2177
2178   MadeChange = false;
2179   for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
2180     // Optimize every instruction in the basic block.
2181     for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;)
2182       if (isInstructionTriviallyDead(&*II)) {
2183         EraseInst(&*II++);
2184       } else {
2185         OptimizeInst(&*II);
2186         assert(II->getParent() == &*BI && "Moved to a different block!");
2187         ++II;
2188       }
2189
2190     // Make a copy of all the instructions to be redone so we can remove dead
2191     // instructions.
2192     SetVector<AssertingVH<Instruction>> ToRedo(RedoInsts);
2193     // Iterate over all instructions to be reevaluated and remove trivially dead
2194     // instructions. If any operand of the trivially dead instruction becomes
2195     // dead mark it for deletion as well. Continue this process until all
2196     // trivially dead instructions have been removed.
2197     while (!ToRedo.empty()) {
2198       Instruction *I = ToRedo.pop_back_val();
2199       if (isInstructionTriviallyDead(I))
2200         RecursivelyEraseDeadInsts(I, ToRedo);
2201     }
2202
2203     // Now that we have removed dead instructions, we can reoptimize the
2204     // remaining instructions.
2205     while (!RedoInsts.empty()) {
2206       Instruction *I = RedoInsts.pop_back_val();
2207       if (isInstructionTriviallyDead(I))
2208         EraseInst(I);
2209       else
2210         OptimizeInst(I);
2211     }
2212   }
2213
2214   // We are done with the rank map.
2215   RankMap.clear();
2216   ValueRankMap.clear();
2217
2218   if (MadeChange) {
2219     // FIXME: This should also 'preserve the CFG'.
2220     auto PA = PreservedAnalyses();
2221     PA.preserve<GlobalsAA>();
2222     return PA;
2223   }
2224
2225   return PreservedAnalyses::all();
2226 }
2227
2228 namespace {
2229   class ReassociateLegacyPass : public FunctionPass {
2230     ReassociatePass Impl;
2231   public:
2232     static char ID; // Pass identification, replacement for typeid
2233     ReassociateLegacyPass() : FunctionPass(ID) {
2234       initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
2235     }
2236
2237     bool runOnFunction(Function &F) override {
2238       if (skipFunction(F))
2239         return false;
2240
2241       FunctionAnalysisManager DummyFAM;
2242       auto PA = Impl.run(F, DummyFAM);
2243       return !PA.areAllPreserved();
2244     }
2245
2246     void getAnalysisUsage(AnalysisUsage &AU) const override {
2247       AU.setPreservesCFG();
2248       AU.addPreserved<GlobalsAAWrapperPass>();
2249     }
2250   };
2251 }
2252
2253 char ReassociateLegacyPass::ID = 0;
2254 INITIALIZE_PASS(ReassociateLegacyPass, "reassociate",
2255                 "Reassociate expressions", false, false)
2256
2257 // Public interface to the Reassociate pass
2258 FunctionPass *llvm::createReassociatePass() {
2259   return new ReassociateLegacyPass();
2260 }