]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp
Merge content currently under test from ^/vendor/NetBSD/tests/dist/@r312123
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / Scalar / RewriteStatepointsForGC.cpp
1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Rewrite an existing set of gc.statepoints such that they make potential
11 // relocations performed by the garbage collector explicit in the IR.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Pass.h"
16 #include "llvm/Analysis/CFG.h"
17 #include "llvm/Analysis/TargetTransformInfo.h"
18 #include "llvm/ADT/SetOperations.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/DenseSet.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/MapVector.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/InstIterator.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/MDBuilder.h"
35 #include "llvm/IR/Statepoint.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/IR/Verifier.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Transforms/Scalar.h"
41 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
42 #include "llvm/Transforms/Utils/Cloning.h"
43 #include "llvm/Transforms/Utils/Local.h"
44 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
45
46 #define DEBUG_TYPE "rewrite-statepoints-for-gc"
47
48 using namespace llvm;
49
50 // Print the liveset found at the insert location
51 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
52                                   cl::init(false));
53 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
54                                       cl::init(false));
55 // Print out the base pointers for debugging
56 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
57                                        cl::init(false));
58
59 // Cost threshold measuring when it is profitable to rematerialize value instead
60 // of relocating it
61 static cl::opt<unsigned>
62 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
63                            cl::init(6));
64
65 #ifdef EXPENSIVE_CHECKS
66 static bool ClobberNonLive = true;
67 #else
68 static bool ClobberNonLive = false;
69 #endif
70 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
71                                                   cl::location(ClobberNonLive),
72                                                   cl::Hidden);
73
74 static cl::opt<bool>
75     AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
76                                    cl::Hidden, cl::init(true));
77
78 namespace {
79 struct RewriteStatepointsForGC : public ModulePass {
80   static char ID; // Pass identification, replacement for typeid
81
82   RewriteStatepointsForGC() : ModulePass(ID) {
83     initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry());
84   }
85   bool runOnFunction(Function &F);
86   bool runOnModule(Module &M) override {
87     bool Changed = false;
88     for (Function &F : M)
89       Changed |= runOnFunction(F);
90
91     if (Changed) {
92       // stripNonValidAttributes asserts that shouldRewriteStatepointsIn
93       // returns true for at least one function in the module.  Since at least
94       // one function changed, we know that the precondition is satisfied.
95       stripNonValidAttributes(M);
96     }
97
98     return Changed;
99   }
100
101   void getAnalysisUsage(AnalysisUsage &AU) const override {
102     // We add and rewrite a bunch of instructions, but don't really do much
103     // else.  We could in theory preserve a lot more analyses here.
104     AU.addRequired<DominatorTreeWrapperPass>();
105     AU.addRequired<TargetTransformInfoWrapperPass>();
106   }
107
108   /// The IR fed into RewriteStatepointsForGC may have had attributes implying
109   /// dereferenceability that are no longer valid/correct after
110   /// RewriteStatepointsForGC has run.  This is because semantically, after
111   /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
112   /// heap.  stripNonValidAttributes (conservatively) restores correctness
113   /// by erasing all attributes in the module that externally imply
114   /// dereferenceability.
115   /// Similar reasoning also applies to the noalias attributes. gc.statepoint
116   /// can touch the entire heap including noalias objects.
117   void stripNonValidAttributes(Module &M);
118
119   // Helpers for stripNonValidAttributes
120   void stripNonValidAttributesFromBody(Function &F);
121   void stripNonValidAttributesFromPrototype(Function &F);
122 };
123 } // namespace
124
125 char RewriteStatepointsForGC::ID = 0;
126
127 ModulePass *llvm::createRewriteStatepointsForGCPass() {
128   return new RewriteStatepointsForGC();
129 }
130
131 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
132                       "Make relocations explicit at statepoints", false, false)
133 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
134 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
135 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
136                     "Make relocations explicit at statepoints", false, false)
137
138 namespace {
139 struct GCPtrLivenessData {
140   /// Values defined in this block.
141   MapVector<BasicBlock *, SetVector<Value *>> KillSet;
142   /// Values used in this block (and thus live); does not included values
143   /// killed within this block.
144   MapVector<BasicBlock *, SetVector<Value *>> LiveSet;
145
146   /// Values live into this basic block (i.e. used by any
147   /// instruction in this basic block or ones reachable from here)
148   MapVector<BasicBlock *, SetVector<Value *>> LiveIn;
149
150   /// Values live out of this basic block (i.e. live into
151   /// any successor block)
152   MapVector<BasicBlock *, SetVector<Value *>> LiveOut;
153 };
154
155 // The type of the internal cache used inside the findBasePointers family
156 // of functions.  From the callers perspective, this is an opaque type and
157 // should not be inspected.
158 //
159 // In the actual implementation this caches two relations:
160 // - The base relation itself (i.e. this pointer is based on that one)
161 // - The base defining value relation (i.e. before base_phi insertion)
162 // Generally, after the execution of a full findBasePointer call, only the
163 // base relation will remain.  Internally, we add a mixture of the two
164 // types, then update all the second type to the first type
165 typedef MapVector<Value *, Value *> DefiningValueMapTy;
166 typedef SetVector<Value *> StatepointLiveSetTy;
167 typedef MapVector<AssertingVH<Instruction>, AssertingVH<Value>>
168   RematerializedValueMapTy;
169
170 struct PartiallyConstructedSafepointRecord {
171   /// The set of values known to be live across this safepoint
172   StatepointLiveSetTy LiveSet;
173
174   /// Mapping from live pointers to a base-defining-value
175   MapVector<Value *, Value *> PointerToBase;
176
177   /// The *new* gc.statepoint instruction itself.  This produces the token
178   /// that normal path gc.relocates and the gc.result are tied to.
179   Instruction *StatepointToken;
180
181   /// Instruction to which exceptional gc relocates are attached
182   /// Makes it easier to iterate through them during relocationViaAlloca.
183   Instruction *UnwindToken;
184
185   /// Record live values we are rematerialized instead of relocating.
186   /// They are not included into 'LiveSet' field.
187   /// Maps rematerialized copy to it's original value.
188   RematerializedValueMapTy RematerializedValues;
189 };
190 }
191
192 static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) {
193   Optional<OperandBundleUse> DeoptBundle =
194       CS.getOperandBundle(LLVMContext::OB_deopt);
195
196   if (!DeoptBundle.hasValue()) {
197     assert(AllowStatepointWithNoDeoptInfo &&
198            "Found non-leaf call without deopt info!");
199     return None;
200   }
201
202   return DeoptBundle.getValue().Inputs;
203 }
204
205 /// Compute the live-in set for every basic block in the function
206 static void computeLiveInValues(DominatorTree &DT, Function &F,
207                                 GCPtrLivenessData &Data);
208
209 /// Given results from the dataflow liveness computation, find the set of live
210 /// Values at a particular instruction.
211 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
212                               StatepointLiveSetTy &out);
213
214 // TODO: Once we can get to the GCStrategy, this becomes
215 // Optional<bool> isGCManagedPointer(const Type *Ty) const override {
216
217 static bool isGCPointerType(Type *T) {
218   if (auto *PT = dyn_cast<PointerType>(T))
219     // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
220     // GC managed heap.  We know that a pointer into this heap needs to be
221     // updated and that no other pointer does.
222     return PT->getAddressSpace() == 1;
223   return false;
224 }
225
226 // Return true if this type is one which a) is a gc pointer or contains a GC
227 // pointer and b) is of a type this code expects to encounter as a live value.
228 // (The insertion code will assert that a type which matches (a) and not (b)
229 // is not encountered.)
230 static bool isHandledGCPointerType(Type *T) {
231   // We fully support gc pointers
232   if (isGCPointerType(T))
233     return true;
234   // We partially support vectors of gc pointers. The code will assert if it
235   // can't handle something.
236   if (auto VT = dyn_cast<VectorType>(T))
237     if (isGCPointerType(VT->getElementType()))
238       return true;
239   return false;
240 }
241
242 #ifndef NDEBUG
243 /// Returns true if this type contains a gc pointer whether we know how to
244 /// handle that type or not.
245 static bool containsGCPtrType(Type *Ty) {
246   if (isGCPointerType(Ty))
247     return true;
248   if (VectorType *VT = dyn_cast<VectorType>(Ty))
249     return isGCPointerType(VT->getScalarType());
250   if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
251     return containsGCPtrType(AT->getElementType());
252   if (StructType *ST = dyn_cast<StructType>(Ty))
253     return any_of(ST->subtypes(), containsGCPtrType);
254   return false;
255 }
256
257 // Returns true if this is a type which a) is a gc pointer or contains a GC
258 // pointer and b) is of a type which the code doesn't expect (i.e. first class
259 // aggregates).  Used to trip assertions.
260 static bool isUnhandledGCPointerType(Type *Ty) {
261   return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
262 }
263 #endif
264
265 // Return the name of the value suffixed with the provided value, or if the
266 // value didn't have a name, the default value specified.
267 static std::string suffixed_name_or(Value *V, StringRef Suffix,
268                                     StringRef DefaultName) {
269   return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
270 }
271
272 // Conservatively identifies any definitions which might be live at the
273 // given instruction. The  analysis is performed immediately before the
274 // given instruction. Values defined by that instruction are not considered
275 // live.  Values used by that instruction are considered live.
276 static void
277 analyzeParsePointLiveness(DominatorTree &DT,
278                           GCPtrLivenessData &OriginalLivenessData, CallSite CS,
279                           PartiallyConstructedSafepointRecord &Result) {
280   Instruction *Inst = CS.getInstruction();
281
282   StatepointLiveSetTy LiveSet;
283   findLiveSetAtInst(Inst, OriginalLivenessData, LiveSet);
284
285   if (PrintLiveSet) {
286     dbgs() << "Live Variables:\n";
287     for (Value *V : LiveSet)
288       dbgs() << " " << V->getName() << " " << *V << "\n";
289   }
290   if (PrintLiveSetSize) {
291     dbgs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n";
292     dbgs() << "Number live values: " << LiveSet.size() << "\n";
293   }
294   Result.LiveSet = LiveSet;
295 }
296
297 static bool isKnownBaseResult(Value *V);
298 namespace {
299 /// A single base defining value - An immediate base defining value for an
300 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'.
301 /// For instructions which have multiple pointer [vector] inputs or that
302 /// transition between vector and scalar types, there is no immediate base
303 /// defining value.  The 'base defining value' for 'Def' is the transitive
304 /// closure of this relation stopping at the first instruction which has no
305 /// immediate base defining value.  The b.d.v. might itself be a base pointer,
306 /// but it can also be an arbitrary derived pointer. 
307 struct BaseDefiningValueResult {
308   /// Contains the value which is the base defining value.
309   Value * const BDV;
310   /// True if the base defining value is also known to be an actual base
311   /// pointer.
312   const bool IsKnownBase;
313   BaseDefiningValueResult(Value *BDV, bool IsKnownBase)
314     : BDV(BDV), IsKnownBase(IsKnownBase) {
315 #ifndef NDEBUG
316     // Check consistency between new and old means of checking whether a BDV is
317     // a base.
318     bool MustBeBase = isKnownBaseResult(BDV);
319     assert(!MustBeBase || MustBeBase == IsKnownBase);
320 #endif
321   }
322 };
323 }
324
325 static BaseDefiningValueResult findBaseDefiningValue(Value *I);
326
327 /// Return a base defining value for the 'Index' element of the given vector
328 /// instruction 'I'.  If Index is null, returns a BDV for the entire vector
329 /// 'I'.  As an optimization, this method will try to determine when the 
330 /// element is known to already be a base pointer.  If this can be established,
331 /// the second value in the returned pair will be true.  Note that either a
332 /// vector or a pointer typed value can be returned.  For the former, the
333 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
334 /// If the later, the return pointer is a BDV (or possibly a base) for the
335 /// particular element in 'I'.  
336 static BaseDefiningValueResult
337 findBaseDefiningValueOfVector(Value *I) {
338   // Each case parallels findBaseDefiningValue below, see that code for
339   // detailed motivation.
340
341   if (isa<Argument>(I))
342     // An incoming argument to the function is a base pointer
343     return BaseDefiningValueResult(I, true);
344
345   if (isa<Constant>(I))
346     // Base of constant vector consists only of constant null pointers. 
347     // For reasoning see similar case inside 'findBaseDefiningValue' function.
348     return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()),
349                                    true);
350
351   if (isa<LoadInst>(I))
352     return BaseDefiningValueResult(I, true);
353
354   if (isa<InsertElementInst>(I))
355     // We don't know whether this vector contains entirely base pointers or
356     // not.  To be conservatively correct, we treat it as a BDV and will
357     // duplicate code as needed to construct a parallel vector of bases.
358     return BaseDefiningValueResult(I, false);
359
360   if (isa<ShuffleVectorInst>(I))
361     // We don't know whether this vector contains entirely base pointers or
362     // not.  To be conservatively correct, we treat it as a BDV and will
363     // duplicate code as needed to construct a parallel vector of bases.
364     // TODO: There a number of local optimizations which could be applied here
365     // for particular sufflevector patterns.
366     return BaseDefiningValueResult(I, false);
367
368   // A PHI or Select is a base defining value.  The outer findBasePointer
369   // algorithm is responsible for constructing a base value for this BDV.
370   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
371          "unknown vector instruction - no base found for vector element");
372   return BaseDefiningValueResult(I, false);
373 }
374
375 /// Helper function for findBasePointer - Will return a value which either a)
376 /// defines the base pointer for the input, b) blocks the simple search
377 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change
378 /// from pointer to vector type or back.
379 static BaseDefiningValueResult findBaseDefiningValue(Value *I) {
380   assert(I->getType()->isPtrOrPtrVectorTy() &&
381          "Illegal to ask for the base pointer of a non-pointer type");
382
383   if (I->getType()->isVectorTy())
384     return findBaseDefiningValueOfVector(I);
385
386   if (isa<Argument>(I))
387     // An incoming argument to the function is a base pointer
388     // We should have never reached here if this argument isn't an gc value
389     return BaseDefiningValueResult(I, true);
390
391   if (isa<Constant>(I)) {
392     // We assume that objects with a constant base (e.g. a global) can't move
393     // and don't need to be reported to the collector because they are always
394     // live. Besides global references, all kinds of constants (e.g. undef, 
395     // constant expressions, null pointers) can be introduced by the inliner or
396     // the optimizer, especially on dynamically dead paths.
397     // Here we treat all of them as having single null base. By doing this we
398     // trying to avoid problems reporting various conflicts in a form of 
399     // "phi (const1, const2)" or "phi (const, regular gc ptr)".
400     // See constant.ll file for relevant test cases.
401
402     return BaseDefiningValueResult(
403         ConstantPointerNull::get(cast<PointerType>(I->getType())), true);
404   }
405
406   if (CastInst *CI = dyn_cast<CastInst>(I)) {
407     Value *Def = CI->stripPointerCasts();
408     // If stripping pointer casts changes the address space there is an
409     // addrspacecast in between.
410     assert(cast<PointerType>(Def->getType())->getAddressSpace() ==
411                cast<PointerType>(CI->getType())->getAddressSpace() &&
412            "unsupported addrspacecast");
413     // If we find a cast instruction here, it means we've found a cast which is
414     // not simply a pointer cast (i.e. an inttoptr).  We don't know how to
415     // handle int->ptr conversion.
416     assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
417     return findBaseDefiningValue(Def);
418   }
419
420   if (isa<LoadInst>(I))
421     // The value loaded is an gc base itself
422     return BaseDefiningValueResult(I, true);
423   
424
425   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
426     // The base of this GEP is the base
427     return findBaseDefiningValue(GEP->getPointerOperand());
428
429   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
430     switch (II->getIntrinsicID()) {
431     default:
432       // fall through to general call handling
433       break;
434     case Intrinsic::experimental_gc_statepoint:
435       llvm_unreachable("statepoints don't produce pointers");
436     case Intrinsic::experimental_gc_relocate: {
437       // Rerunning safepoint insertion after safepoints are already
438       // inserted is not supported.  It could probably be made to work,
439       // but why are you doing this?  There's no good reason.
440       llvm_unreachable("repeat safepoint insertion is not supported");
441     }
442     case Intrinsic::gcroot:
443       // Currently, this mechanism hasn't been extended to work with gcroot.
444       // There's no reason it couldn't be, but I haven't thought about the
445       // implications much.
446       llvm_unreachable(
447           "interaction with the gcroot mechanism is not supported");
448     }
449   }
450   // We assume that functions in the source language only return base
451   // pointers.  This should probably be generalized via attributes to support
452   // both source language and internal functions.
453   if (isa<CallInst>(I) || isa<InvokeInst>(I))
454     return BaseDefiningValueResult(I, true);
455
456   // I have absolutely no idea how to implement this part yet.  It's not
457   // necessarily hard, I just haven't really looked at it yet.
458   assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
459
460   if (isa<AtomicCmpXchgInst>(I))
461     // A CAS is effectively a atomic store and load combined under a
462     // predicate.  From the perspective of base pointers, we just treat it
463     // like a load.
464     return BaseDefiningValueResult(I, true);
465
466   assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
467                                    "binary ops which don't apply to pointers");
468
469   // The aggregate ops.  Aggregates can either be in the heap or on the
470   // stack, but in either case, this is simply a field load.  As a result,
471   // this is a defining definition of the base just like a load is.
472   if (isa<ExtractValueInst>(I))
473     return BaseDefiningValueResult(I, true);
474
475   // We should never see an insert vector since that would require we be
476   // tracing back a struct value not a pointer value.
477   assert(!isa<InsertValueInst>(I) &&
478          "Base pointer for a struct is meaningless");
479
480   // An extractelement produces a base result exactly when it's input does.
481   // We may need to insert a parallel instruction to extract the appropriate
482   // element out of the base vector corresponding to the input. Given this,
483   // it's analogous to the phi and select case even though it's not a merge.
484   if (isa<ExtractElementInst>(I))
485     // Note: There a lot of obvious peephole cases here.  This are deliberately
486     // handled after the main base pointer inference algorithm to make writing
487     // test cases to exercise that code easier.
488     return BaseDefiningValueResult(I, false);
489
490   // The last two cases here don't return a base pointer.  Instead, they
491   // return a value which dynamically selects from among several base
492   // derived pointers (each with it's own base potentially).  It's the job of
493   // the caller to resolve these.
494   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
495          "missing instruction case in findBaseDefiningValing");
496   return BaseDefiningValueResult(I, false);
497 }
498
499 /// Returns the base defining value for this value.
500 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
501   Value *&Cached = Cache[I];
502   if (!Cached) {
503     Cached = findBaseDefiningValue(I).BDV;
504     DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
505                  << Cached->getName() << "\n");
506   }
507   assert(Cache[I] != nullptr);
508   return Cached;
509 }
510
511 /// Return a base pointer for this value if known.  Otherwise, return it's
512 /// base defining value.
513 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
514   Value *Def = findBaseDefiningValueCached(I, Cache);
515   auto Found = Cache.find(Def);
516   if (Found != Cache.end()) {
517     // Either a base-of relation, or a self reference.  Caller must check.
518     return Found->second;
519   }
520   // Only a BDV available
521   return Def;
522 }
523
524 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
525 /// is it known to be a base pointer?  Or do we need to continue searching.
526 static bool isKnownBaseResult(Value *V) {
527   if (!isa<PHINode>(V) && !isa<SelectInst>(V) &&
528       !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
529       !isa<ShuffleVectorInst>(V)) {
530     // no recursion possible
531     return true;
532   }
533   if (isa<Instruction>(V) &&
534       cast<Instruction>(V)->getMetadata("is_base_value")) {
535     // This is a previously inserted base phi or select.  We know
536     // that this is a base value.
537     return true;
538   }
539
540   // We need to keep searching
541   return false;
542 }
543
544 namespace {
545 /// Models the state of a single base defining value in the findBasePointer
546 /// algorithm for determining where a new instruction is needed to propagate
547 /// the base of this BDV.
548 class BDVState {
549 public:
550   enum Status { Unknown, Base, Conflict };
551
552   BDVState() : Status(Unknown), BaseValue(nullptr) {}
553
554   explicit BDVState(Status Status, Value *BaseValue = nullptr)
555       : Status(Status), BaseValue(BaseValue) {
556     assert(Status != Base || BaseValue);
557   }
558
559   explicit BDVState(Value *BaseValue) : Status(Base), BaseValue(BaseValue) {}
560
561   Status getStatus() const { return Status; }
562   Value *getBaseValue() const { return BaseValue; }
563
564   bool isBase() const { return getStatus() == Base; }
565   bool isUnknown() const { return getStatus() == Unknown; }
566   bool isConflict() const { return getStatus() == Conflict; }
567
568   bool operator==(const BDVState &Other) const {
569     return BaseValue == Other.BaseValue && Status == Other.Status;
570   }
571
572   bool operator!=(const BDVState &other) const { return !(*this == other); }
573
574   LLVM_DUMP_METHOD
575   void dump() const {
576     print(dbgs());
577     dbgs() << '\n';
578   }
579
580   void print(raw_ostream &OS) const {
581     switch (getStatus()) {
582     case Unknown:
583       OS << "U";
584       break;
585     case Base:
586       OS << "B";
587       break;
588     case Conflict:
589       OS << "C";
590       break;
591     };
592     OS << " (" << getBaseValue() << " - "
593        << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << "): ";
594   }
595
596 private:
597   Status Status;
598   AssertingVH<Value> BaseValue; // Non-null only if Status == Base.
599 };
600 }
601
602 #ifndef NDEBUG
603 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
604   State.print(OS);
605   return OS;
606 }
607 #endif
608
609 static BDVState meetBDVStateImpl(const BDVState &LHS, const BDVState &RHS) {
610   switch (LHS.getStatus()) {
611   case BDVState::Unknown:
612     return RHS;
613
614   case BDVState::Base:
615     assert(LHS.getBaseValue() && "can't be null");
616     if (RHS.isUnknown())
617       return LHS;
618
619     if (RHS.isBase()) {
620       if (LHS.getBaseValue() == RHS.getBaseValue()) {
621         assert(LHS == RHS && "equality broken!");
622         return LHS;
623       }
624       return BDVState(BDVState::Conflict);
625     }
626     assert(RHS.isConflict() && "only three states!");
627     return BDVState(BDVState::Conflict);
628
629   case BDVState::Conflict:
630     return LHS;
631   }
632   llvm_unreachable("only three states!");
633 }
634
635 // Values of type BDVState form a lattice, and this function implements the meet
636 // operation.
637 static BDVState meetBDVState(BDVState LHS, BDVState RHS) {
638   BDVState Result = meetBDVStateImpl(LHS, RHS);
639   assert(Result == meetBDVStateImpl(RHS, LHS) &&
640          "Math is wrong: meet does not commute!");
641   return Result;
642 }
643
644 /// For a given value or instruction, figure out what base ptr its derived from.
645 /// For gc objects, this is simply itself.  On success, returns a value which is
646 /// the base pointer.  (This is reliable and can be used for relocation.)  On
647 /// failure, returns nullptr.
648 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) {
649   Value *Def = findBaseOrBDV(I, Cache);
650
651   if (isKnownBaseResult(Def))
652     return Def;
653
654   // Here's the rough algorithm:
655   // - For every SSA value, construct a mapping to either an actual base
656   //   pointer or a PHI which obscures the base pointer.
657   // - Construct a mapping from PHI to unknown TOP state.  Use an
658   //   optimistic algorithm to propagate base pointer information.  Lattice
659   //   looks like:
660   //   UNKNOWN
661   //   b1 b2 b3 b4
662   //   CONFLICT
663   //   When algorithm terminates, all PHIs will either have a single concrete
664   //   base or be in a conflict state.
665   // - For every conflict, insert a dummy PHI node without arguments.  Add
666   //   these to the base[Instruction] = BasePtr mapping.  For every
667   //   non-conflict, add the actual base.
668   //  - For every conflict, add arguments for the base[a] of each input
669   //   arguments.
670   //
671   // Note: A simpler form of this would be to add the conflict form of all
672   // PHIs without running the optimistic algorithm.  This would be
673   // analogous to pessimistic data flow and would likely lead to an
674   // overall worse solution.
675
676 #ifndef NDEBUG
677   auto isExpectedBDVType = [](Value *BDV) {
678     return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
679            isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV);
680   };
681 #endif
682
683   // Once populated, will contain a mapping from each potentially non-base BDV
684   // to a lattice value (described above) which corresponds to that BDV.
685   // We use the order of insertion (DFS over the def/use graph) to provide a
686   // stable deterministic ordering for visiting DenseMaps (which are unordered)
687   // below.  This is important for deterministic compilation.
688   MapVector<Value *, BDVState> States;
689
690   // Recursively fill in all base defining values reachable from the initial
691   // one for which we don't already know a definite base value for
692   /* scope */ {
693     SmallVector<Value*, 16> Worklist;
694     Worklist.push_back(Def);
695     States.insert({Def, BDVState()});
696     while (!Worklist.empty()) {
697       Value *Current = Worklist.pop_back_val();
698       assert(!isKnownBaseResult(Current) && "why did it get added?");
699
700       auto visitIncomingValue = [&](Value *InVal) {
701         Value *Base = findBaseOrBDV(InVal, Cache);
702         if (isKnownBaseResult(Base))
703           // Known bases won't need new instructions introduced and can be
704           // ignored safely
705           return;
706         assert(isExpectedBDVType(Base) && "the only non-base values "
707                "we see should be base defining values");
708         if (States.insert(std::make_pair(Base, BDVState())).second)
709           Worklist.push_back(Base);
710       };
711       if (PHINode *PN = dyn_cast<PHINode>(Current)) {
712         for (Value *InVal : PN->incoming_values())
713           visitIncomingValue(InVal);
714       } else if (SelectInst *SI = dyn_cast<SelectInst>(Current)) {
715         visitIncomingValue(SI->getTrueValue());
716         visitIncomingValue(SI->getFalseValue());
717       } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) {
718         visitIncomingValue(EE->getVectorOperand());
719       } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) {
720         visitIncomingValue(IE->getOperand(0)); // vector operand
721         visitIncomingValue(IE->getOperand(1)); // scalar operand
722       } else {
723         // There is one known class of instructions we know we don't handle.
724         assert(isa<ShuffleVectorInst>(Current));
725         llvm_unreachable("Unimplemented instruction case");
726       }
727     }
728   }
729
730 #ifndef NDEBUG
731   DEBUG(dbgs() << "States after initialization:\n");
732   for (auto Pair : States) {
733     DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
734   }
735 #endif
736
737   // Return a phi state for a base defining value.  We'll generate a new
738   // base state for known bases and expect to find a cached state otherwise.
739   auto getStateForBDV = [&](Value *baseValue) {
740     if (isKnownBaseResult(baseValue))
741       return BDVState(baseValue);
742     auto I = States.find(baseValue);
743     assert(I != States.end() && "lookup failed!");
744     return I->second;
745   };
746
747   bool Progress = true;
748   while (Progress) {
749 #ifndef NDEBUG
750     const size_t OldSize = States.size();
751 #endif
752     Progress = false;
753     // We're only changing values in this loop, thus safe to keep iterators.
754     // Since this is computing a fixed point, the order of visit does not
755     // effect the result.  TODO: We could use a worklist here and make this run
756     // much faster.
757     for (auto Pair : States) {
758       Value *BDV = Pair.first;
759       assert(!isKnownBaseResult(BDV) && "why did it get added?");
760
761       // Given an input value for the current instruction, return a BDVState
762       // instance which represents the BDV of that value.
763       auto getStateForInput = [&](Value *V) mutable {
764         Value *BDV = findBaseOrBDV(V, Cache);
765         return getStateForBDV(BDV);
766       };
767
768       BDVState NewState;
769       if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) {
770         NewState = meetBDVState(NewState, getStateForInput(SI->getTrueValue()));
771         NewState =
772             meetBDVState(NewState, getStateForInput(SI->getFalseValue()));
773       } else if (PHINode *PN = dyn_cast<PHINode>(BDV)) {
774         for (Value *Val : PN->incoming_values())
775           NewState = meetBDVState(NewState, getStateForInput(Val));
776       } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
777         // The 'meet' for an extractelement is slightly trivial, but it's still
778         // useful in that it drives us to conflict if our input is.
779         NewState =
780             meetBDVState(NewState, getStateForInput(EE->getVectorOperand()));
781       } else {
782         // Given there's a inherent type mismatch between the operands, will
783         // *always* produce Conflict.
784         auto *IE = cast<InsertElementInst>(BDV);
785         NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(0)));
786         NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(1)));
787       }
788
789       BDVState OldState = States[BDV];
790       if (OldState != NewState) {
791         Progress = true;
792         States[BDV] = NewState;
793       }
794     }
795
796     assert(OldSize == States.size() &&
797            "fixed point shouldn't be adding any new nodes to state");
798   }
799
800 #ifndef NDEBUG
801   DEBUG(dbgs() << "States after meet iteration:\n");
802   for (auto Pair : States) {
803     DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
804   }
805 #endif
806
807   // Insert Phis for all conflicts
808   // TODO: adjust naming patterns to avoid this order of iteration dependency
809   for (auto Pair : States) {
810     Instruction *I = cast<Instruction>(Pair.first);
811     BDVState State = Pair.second;
812     assert(!isKnownBaseResult(I) && "why did it get added?");
813     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
814
815     // extractelement instructions are a bit special in that we may need to
816     // insert an extract even when we know an exact base for the instruction.
817     // The problem is that we need to convert from a vector base to a scalar
818     // base for the particular indice we're interested in.
819     if (State.isBase() && isa<ExtractElementInst>(I) &&
820         isa<VectorType>(State.getBaseValue()->getType())) {
821       auto *EE = cast<ExtractElementInst>(I);
822       // TODO: In many cases, the new instruction is just EE itself.  We should
823       // exploit this, but can't do it here since it would break the invariant
824       // about the BDV not being known to be a base.
825       auto *BaseInst = ExtractElementInst::Create(
826           State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE);
827       BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
828       States[I] = BDVState(BDVState::Base, BaseInst);
829     }
830
831     // Since we're joining a vector and scalar base, they can never be the
832     // same.  As a result, we should always see insert element having reached
833     // the conflict state.
834     assert(!isa<InsertElementInst>(I) || State.isConflict());
835
836     if (!State.isConflict())
837       continue;
838
839     /// Create and insert a new instruction which will represent the base of
840     /// the given instruction 'I'.
841     auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* {
842       if (isa<PHINode>(I)) {
843         BasicBlock *BB = I->getParent();
844         int NumPreds = std::distance(pred_begin(BB), pred_end(BB));
845         assert(NumPreds > 0 && "how did we reach here");
846         std::string Name = suffixed_name_or(I, ".base", "base_phi");
847         return PHINode::Create(I->getType(), NumPreds, Name, I);
848       } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
849         // The undef will be replaced later
850         UndefValue *Undef = UndefValue::get(SI->getType());
851         std::string Name = suffixed_name_or(I, ".base", "base_select");
852         return SelectInst::Create(SI->getCondition(), Undef, Undef, Name, SI);
853       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
854         UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType());
855         std::string Name = suffixed_name_or(I, ".base", "base_ee");
856         return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name,
857                                           EE);
858       } else {
859         auto *IE = cast<InsertElementInst>(I);
860         UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType());
861         UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType());
862         std::string Name = suffixed_name_or(I, ".base", "base_ie");
863         return InsertElementInst::Create(VecUndef, ScalarUndef,
864                                          IE->getOperand(2), Name, IE);
865       }
866     };
867     Instruction *BaseInst = MakeBaseInstPlaceholder(I);
868     // Add metadata marking this as a base value
869     BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
870     States[I] = BDVState(BDVState::Conflict, BaseInst);
871   }
872
873   // Returns a instruction which produces the base pointer for a given
874   // instruction.  The instruction is assumed to be an input to one of the BDVs
875   // seen in the inference algorithm above.  As such, we must either already
876   // know it's base defining value is a base, or have inserted a new
877   // instruction to propagate the base of it's BDV and have entered that newly
878   // introduced instruction into the state table.  In either case, we are
879   // assured to be able to determine an instruction which produces it's base
880   // pointer.
881   auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
882     Value *BDV = findBaseOrBDV(Input, Cache);
883     Value *Base = nullptr;
884     if (isKnownBaseResult(BDV)) {
885       Base = BDV;
886     } else {
887       // Either conflict or base.
888       assert(States.count(BDV));
889       Base = States[BDV].getBaseValue();
890     }
891     assert(Base && "Can't be null");
892     // The cast is needed since base traversal may strip away bitcasts
893     if (Base->getType() != Input->getType() && InsertPt)
894       Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt);
895     return Base;
896   };
897
898   // Fixup all the inputs of the new PHIs.  Visit order needs to be
899   // deterministic and predictable because we're naming newly created
900   // instructions.
901   for (auto Pair : States) {
902     Instruction *BDV = cast<Instruction>(Pair.first);
903     BDVState State = Pair.second;
904
905     assert(!isKnownBaseResult(BDV) && "why did it get added?");
906     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
907     if (!State.isConflict())
908       continue;
909
910     if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) {
911       PHINode *PN = cast<PHINode>(BDV);
912       unsigned NumPHIValues = PN->getNumIncomingValues();
913       for (unsigned i = 0; i < NumPHIValues; i++) {
914         Value *InVal = PN->getIncomingValue(i);
915         BasicBlock *InBB = PN->getIncomingBlock(i);
916
917         // If we've already seen InBB, add the same incoming value
918         // we added for it earlier.  The IR verifier requires phi
919         // nodes with multiple entries from the same basic block
920         // to have the same incoming value for each of those
921         // entries.  If we don't do this check here and basephi
922         // has a different type than base, we'll end up adding two
923         // bitcasts (and hence two distinct values) as incoming
924         // values for the same basic block.
925
926         int BlockIndex = BasePHI->getBasicBlockIndex(InBB);
927         if (BlockIndex != -1) {
928           Value *OldBase = BasePHI->getIncomingValue(BlockIndex);
929           BasePHI->addIncoming(OldBase, InBB);
930
931 #ifndef NDEBUG
932           Value *Base = getBaseForInput(InVal, nullptr);
933           // In essence this assert states: the only way two values
934           // incoming from the same basic block may be different is by
935           // being different bitcasts of the same value.  A cleanup
936           // that remains TODO is changing findBaseOrBDV to return an
937           // llvm::Value of the correct type (and still remain pure).
938           // This will remove the need to add bitcasts.
939           assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() &&
940                  "Sanity -- findBaseOrBDV should be pure!");
941 #endif
942           continue;
943         }
944
945         // Find the instruction which produces the base for each input.  We may
946         // need to insert a bitcast in the incoming block.
947         // TODO: Need to split critical edges if insertion is needed
948         Value *Base = getBaseForInput(InVal, InBB->getTerminator());
949         BasePHI->addIncoming(Base, InBB);
950       }
951       assert(BasePHI->getNumIncomingValues() == NumPHIValues);
952     } else if (SelectInst *BaseSI =
953                    dyn_cast<SelectInst>(State.getBaseValue())) {
954       SelectInst *SI = cast<SelectInst>(BDV);
955
956       // Find the instruction which produces the base for each input.
957       // We may need to insert a bitcast.
958       BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI));
959       BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI));
960     } else if (auto *BaseEE =
961                    dyn_cast<ExtractElementInst>(State.getBaseValue())) {
962       Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
963       // Find the instruction which produces the base for each input.  We may
964       // need to insert a bitcast.
965       BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE));
966     } else {
967       auto *BaseIE = cast<InsertElementInst>(State.getBaseValue());
968       auto *BdvIE = cast<InsertElementInst>(BDV);
969       auto UpdateOperand = [&](int OperandIdx) {
970         Value *InVal = BdvIE->getOperand(OperandIdx);
971         Value *Base = getBaseForInput(InVal, BaseIE);
972         BaseIE->setOperand(OperandIdx, Base);
973       };
974       UpdateOperand(0); // vector operand
975       UpdateOperand(1); // scalar operand
976     }
977   }
978
979   // Cache all of our results so we can cheaply reuse them
980   // NOTE: This is actually two caches: one of the base defining value
981   // relation and one of the base pointer relation!  FIXME
982   for (auto Pair : States) {
983     auto *BDV = Pair.first;
984     Value *Base = Pair.second.getBaseValue();
985     assert(BDV && Base);
986     assert(!isKnownBaseResult(BDV) && "why did it get added?");
987
988     DEBUG(dbgs() << "Updating base value cache"
989                  << " for: " << BDV->getName() << " from: "
990                  << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none")
991                  << " to: " << Base->getName() << "\n");
992
993     if (Cache.count(BDV)) {
994       assert(isKnownBaseResult(Base) &&
995              "must be something we 'know' is a base pointer");
996       // Once we transition from the BDV relation being store in the Cache to
997       // the base relation being stored, it must be stable
998       assert((!isKnownBaseResult(Cache[BDV]) || Cache[BDV] == Base) &&
999              "base relation should be stable");
1000     }
1001     Cache[BDV] = Base;
1002   }
1003   assert(Cache.count(Def));
1004   return Cache[Def];
1005 }
1006
1007 // For a set of live pointers (base and/or derived), identify the base
1008 // pointer of the object which they are derived from.  This routine will
1009 // mutate the IR graph as needed to make the 'base' pointer live at the
1010 // definition site of 'derived'.  This ensures that any use of 'derived' can
1011 // also use 'base'.  This may involve the insertion of a number of
1012 // additional PHI nodes.
1013 //
1014 // preconditions: live is a set of pointer type Values
1015 //
1016 // side effects: may insert PHI nodes into the existing CFG, will preserve
1017 // CFG, will not remove or mutate any existing nodes
1018 //
1019 // post condition: PointerToBase contains one (derived, base) pair for every
1020 // pointer in live.  Note that derived can be equal to base if the original
1021 // pointer was a base pointer.
1022 static void
1023 findBasePointers(const StatepointLiveSetTy &live,
1024                  MapVector<Value *, Value *> &PointerToBase,
1025                  DominatorTree *DT, DefiningValueMapTy &DVCache) {
1026   for (Value *ptr : live) {
1027     Value *base = findBasePointer(ptr, DVCache);
1028     assert(base && "failed to find base pointer");
1029     PointerToBase[ptr] = base;
1030     assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
1031             DT->dominates(cast<Instruction>(base)->getParent(),
1032                           cast<Instruction>(ptr)->getParent())) &&
1033            "The base we found better dominate the derived pointer");
1034   }
1035 }
1036
1037 /// Find the required based pointers (and adjust the live set) for the given
1038 /// parse point.
1039 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
1040                              CallSite CS,
1041                              PartiallyConstructedSafepointRecord &result) {
1042   MapVector<Value *, Value *> PointerToBase;
1043   findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache);
1044
1045   if (PrintBasePointers) {
1046     errs() << "Base Pairs (w/o Relocation):\n";
1047     for (auto &Pair : PointerToBase) {
1048       errs() << " derived ";
1049       Pair.first->printAsOperand(errs(), false);
1050       errs() << " base ";
1051       Pair.second->printAsOperand(errs(), false);
1052       errs() << "\n";;
1053     }
1054   }
1055
1056   result.PointerToBase = PointerToBase;
1057 }
1058
1059 /// Given an updated version of the dataflow liveness results, update the
1060 /// liveset and base pointer maps for the call site CS.
1061 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
1062                                   CallSite CS,
1063                                   PartiallyConstructedSafepointRecord &result);
1064
1065 static void recomputeLiveInValues(
1066     Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
1067     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1068   // TODO-PERF: reuse the original liveness, then simply run the dataflow
1069   // again.  The old values are still live and will help it stabilize quickly.
1070   GCPtrLivenessData RevisedLivenessData;
1071   computeLiveInValues(DT, F, RevisedLivenessData);
1072   for (size_t i = 0; i < records.size(); i++) {
1073     struct PartiallyConstructedSafepointRecord &info = records[i];
1074     recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info);
1075   }
1076 }
1077
1078 // When inserting gc.relocate and gc.result calls, we need to ensure there are
1079 // no uses of the original value / return value between the gc.statepoint and
1080 // the gc.relocate / gc.result call.  One case which can arise is a phi node
1081 // starting one of the successor blocks.  We also need to be able to insert the
1082 // gc.relocates only on the path which goes through the statepoint.  We might
1083 // need to split an edge to make this possible.
1084 static BasicBlock *
1085 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
1086                             DominatorTree &DT) {
1087   BasicBlock *Ret = BB;
1088   if (!BB->getUniquePredecessor())
1089     Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
1090
1091   // Now that 'Ret' has unique predecessor we can safely remove all phi nodes
1092   // from it
1093   FoldSingleEntryPHINodes(Ret);
1094   assert(!isa<PHINode>(Ret->begin()) &&
1095          "All PHI nodes should have been removed!");
1096
1097   // At this point, we can safely insert a gc.relocate or gc.result as the first
1098   // instruction in Ret if needed.
1099   return Ret;
1100 }
1101
1102 // Create new attribute set containing only attributes which can be transferred
1103 // from original call to the safepoint.
1104 static AttributeSet legalizeCallAttributes(AttributeSet AS) {
1105   AttributeSet Ret;
1106
1107   for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) {
1108     unsigned Index = AS.getSlotIndex(Slot);
1109
1110     if (Index == AttributeSet::ReturnIndex ||
1111         Index == AttributeSet::FunctionIndex) {
1112
1113       for (Attribute Attr : make_range(AS.begin(Slot), AS.end(Slot))) {
1114
1115         // Do not allow certain attributes - just skip them
1116         // Safepoint can not be read only or read none.
1117         if (Attr.hasAttribute(Attribute::ReadNone) ||
1118             Attr.hasAttribute(Attribute::ReadOnly))
1119           continue;
1120
1121         // These attributes control the generation of the gc.statepoint call /
1122         // invoke itself; and once the gc.statepoint is in place, they're of no
1123         // use.
1124         if (isStatepointDirectiveAttr(Attr))
1125           continue;
1126
1127         Ret = Ret.addAttributes(
1128             AS.getContext(), Index,
1129             AttributeSet::get(AS.getContext(), Index, AttrBuilder(Attr)));
1130       }
1131     }
1132
1133     // Just skip parameter attributes for now
1134   }
1135
1136   return Ret;
1137 }
1138
1139 /// Helper function to place all gc relocates necessary for the given
1140 /// statepoint.
1141 /// Inputs:
1142 ///   liveVariables - list of variables to be relocated.
1143 ///   liveStart - index of the first live variable.
1144 ///   basePtrs - base pointers.
1145 ///   statepointToken - statepoint instruction to which relocates should be
1146 ///   bound.
1147 ///   Builder - Llvm IR builder to be used to construct new calls.
1148 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
1149                               const int LiveStart,
1150                               ArrayRef<Value *> BasePtrs,
1151                               Instruction *StatepointToken,
1152                               IRBuilder<> Builder) {
1153   if (LiveVariables.empty())
1154     return;
1155
1156   auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
1157     auto ValIt = std::find(LiveVec.begin(), LiveVec.end(), Val);
1158     assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
1159     size_t Index = std::distance(LiveVec.begin(), ValIt);
1160     assert(Index < LiveVec.size() && "Bug in std::find?");
1161     return Index;
1162   };
1163   Module *M = StatepointToken->getModule();
1164   
1165   // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose
1166   // element type is i8 addrspace(1)*). We originally generated unique
1167   // declarations for each pointer type, but this proved problematic because
1168   // the intrinsic mangling code is incomplete and fragile.  Since we're moving
1169   // towards a single unified pointer type anyways, we can just cast everything
1170   // to an i8* of the right address space.  A bitcast is added later to convert
1171   // gc_relocate to the actual value's type.  
1172   auto getGCRelocateDecl = [&] (Type *Ty) {
1173     assert(isHandledGCPointerType(Ty));
1174     auto AS = Ty->getScalarType()->getPointerAddressSpace();
1175     Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS);
1176     if (auto *VT = dyn_cast<VectorType>(Ty))
1177       NewTy = VectorType::get(NewTy, VT->getNumElements());
1178     return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate,
1179                                      {NewTy});
1180   };
1181
1182   // Lazily populated map from input types to the canonicalized form mentioned
1183   // in the comment above.  This should probably be cached somewhere more
1184   // broadly.
1185   DenseMap<Type*, Value*> TypeToDeclMap;
1186
1187   for (unsigned i = 0; i < LiveVariables.size(); i++) {
1188     // Generate the gc.relocate call and save the result
1189     Value *BaseIdx =
1190       Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i]));
1191     Value *LiveIdx = Builder.getInt32(LiveStart + i);
1192
1193     Type *Ty = LiveVariables[i]->getType();
1194     if (!TypeToDeclMap.count(Ty))
1195       TypeToDeclMap[Ty] = getGCRelocateDecl(Ty);
1196     Value *GCRelocateDecl = TypeToDeclMap[Ty];
1197
1198     // only specify a debug name if we can give a useful one
1199     CallInst *Reloc = Builder.CreateCall(
1200         GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
1201         suffixed_name_or(LiveVariables[i], ".relocated", ""));
1202     // Trick CodeGen into thinking there are lots of free registers at this
1203     // fake call.
1204     Reloc->setCallingConv(CallingConv::Cold);
1205   }
1206 }
1207
1208 namespace {
1209
1210 /// This struct is used to defer RAUWs and `eraseFromParent` s.  Using this
1211 /// avoids having to worry about keeping around dangling pointers to Values.
1212 class DeferredReplacement {
1213   AssertingVH<Instruction> Old;
1214   AssertingVH<Instruction> New;
1215   bool IsDeoptimize = false;
1216
1217   DeferredReplacement() {}
1218
1219 public:
1220   static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) {
1221     assert(Old != New && Old && New &&
1222            "Cannot RAUW equal values or to / from null!");
1223
1224     DeferredReplacement D;
1225     D.Old = Old;
1226     D.New = New;
1227     return D;
1228   }
1229
1230   static DeferredReplacement createDelete(Instruction *ToErase) {
1231     DeferredReplacement D;
1232     D.Old = ToErase;
1233     return D;
1234   }
1235
1236   static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) {
1237 #ifndef NDEBUG
1238     auto *F = cast<CallInst>(Old)->getCalledFunction();
1239     assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize &&
1240            "Only way to construct a deoptimize deferred replacement");
1241 #endif
1242     DeferredReplacement D;
1243     D.Old = Old;
1244     D.IsDeoptimize = true;
1245     return D;
1246   }
1247
1248   /// Does the task represented by this instance.
1249   void doReplacement() {
1250     Instruction *OldI = Old;
1251     Instruction *NewI = New;
1252
1253     assert(OldI != NewI && "Disallowed at construction?!");
1254     assert((!IsDeoptimize || !New) &&
1255            "Deoptimize instrinsics are not replaced!");
1256
1257     Old = nullptr;
1258     New = nullptr;
1259
1260     if (NewI)
1261       OldI->replaceAllUsesWith(NewI);
1262
1263     if (IsDeoptimize) {
1264       // Note: we've inserted instructions, so the call to llvm.deoptimize may
1265       // not necessarilly be followed by the matching return.
1266       auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator());
1267       new UnreachableInst(RI->getContext(), RI);
1268       RI->eraseFromParent();
1269     }
1270
1271     OldI->eraseFromParent();
1272   }
1273 };
1274 }
1275
1276 static void
1277 makeStatepointExplicitImpl(const CallSite CS, /* to replace */
1278                            const SmallVectorImpl<Value *> &BasePtrs,
1279                            const SmallVectorImpl<Value *> &LiveVariables,
1280                            PartiallyConstructedSafepointRecord &Result,
1281                            std::vector<DeferredReplacement> &Replacements) {
1282   assert(BasePtrs.size() == LiveVariables.size());
1283
1284   // Then go ahead and use the builder do actually do the inserts.  We insert
1285   // immediately before the previous instruction under the assumption that all
1286   // arguments will be available here.  We can't insert afterwards since we may
1287   // be replacing a terminator.
1288   Instruction *InsertBefore = CS.getInstruction();
1289   IRBuilder<> Builder(InsertBefore);
1290
1291   ArrayRef<Value *> GCArgs(LiveVariables);
1292   uint64_t StatepointID = StatepointDirectives::DefaultStatepointID;
1293   uint32_t NumPatchBytes = 0;
1294   uint32_t Flags = uint32_t(StatepointFlags::None);
1295
1296   ArrayRef<Use> CallArgs(CS.arg_begin(), CS.arg_end());
1297   ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(CS);
1298   ArrayRef<Use> TransitionArgs;
1299   if (auto TransitionBundle =
1300       CS.getOperandBundle(LLVMContext::OB_gc_transition)) {
1301     Flags |= uint32_t(StatepointFlags::GCTransition);
1302     TransitionArgs = TransitionBundle->Inputs;
1303   }
1304
1305   // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls
1306   // with a return value, we lower then as never returning calls to
1307   // __llvm_deoptimize that are followed by unreachable to get better codegen.
1308   bool IsDeoptimize = false;
1309
1310   StatepointDirectives SD =
1311       parseStatepointDirectivesFromAttrs(CS.getAttributes());
1312   if (SD.NumPatchBytes)
1313     NumPatchBytes = *SD.NumPatchBytes;
1314   if (SD.StatepointID)
1315     StatepointID = *SD.StatepointID;
1316
1317   Value *CallTarget = CS.getCalledValue();
1318   if (Function *F = dyn_cast<Function>(CallTarget)) {
1319     if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) {
1320       // Calls to llvm.experimental.deoptimize are lowered to calls to the
1321       // __llvm_deoptimize symbol.  We want to resolve this now, since the
1322       // verifier does not allow taking the address of an intrinsic function.
1323
1324       SmallVector<Type *, 8> DomainTy;
1325       for (Value *Arg : CallArgs)
1326         DomainTy.push_back(Arg->getType());
1327       auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
1328                                     /* isVarArg = */ false);
1329
1330       // Note: CallTarget can be a bitcast instruction of a symbol if there are
1331       // calls to @llvm.experimental.deoptimize with different argument types in
1332       // the same module.  This is fine -- we assume the frontend knew what it
1333       // was doing when generating this kind of IR.
1334       CallTarget =
1335           F->getParent()->getOrInsertFunction("__llvm_deoptimize", FTy);
1336
1337       IsDeoptimize = true;
1338     }
1339   }
1340
1341   // Create the statepoint given all the arguments
1342   Instruction *Token = nullptr;
1343   AttributeSet ReturnAttrs;
1344   if (CS.isCall()) {
1345     CallInst *ToReplace = cast<CallInst>(CS.getInstruction());
1346     CallInst *Call = Builder.CreateGCStatepointCall(
1347         StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
1348         TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
1349
1350     Call->setTailCall(ToReplace->isTailCall());
1351     Call->setCallingConv(ToReplace->getCallingConv());
1352
1353     // Currently we will fail on parameter attributes and on certain
1354     // function attributes.
1355     AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes());
1356     // In case if we can handle this set of attributes - set up function attrs
1357     // directly on statepoint and return attrs later for gc_result intrinsic.
1358     Call->setAttributes(NewAttrs.getFnAttributes());
1359     ReturnAttrs = NewAttrs.getRetAttributes();
1360
1361     Token = Call;
1362
1363     // Put the following gc_result and gc_relocate calls immediately after the
1364     // the old call (which we're about to delete)
1365     assert(ToReplace->getNextNode() && "Not a terminator, must have next!");
1366     Builder.SetInsertPoint(ToReplace->getNextNode());
1367     Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc());
1368   } else {
1369     InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction());
1370
1371     // Insert the new invoke into the old block.  We'll remove the old one in a
1372     // moment at which point this will become the new terminator for the
1373     // original block.
1374     InvokeInst *Invoke = Builder.CreateGCStatepointInvoke(
1375         StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(),
1376         ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs,
1377         GCArgs, "statepoint_token");
1378
1379     Invoke->setCallingConv(ToReplace->getCallingConv());
1380
1381     // Currently we will fail on parameter attributes and on certain
1382     // function attributes.
1383     AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes());
1384     // In case if we can handle this set of attributes - set up function attrs
1385     // directly on statepoint and return attrs later for gc_result intrinsic.
1386     Invoke->setAttributes(NewAttrs.getFnAttributes());
1387     ReturnAttrs = NewAttrs.getRetAttributes();
1388
1389     Token = Invoke;
1390
1391     // Generate gc relocates in exceptional path
1392     BasicBlock *UnwindBlock = ToReplace->getUnwindDest();
1393     assert(!isa<PHINode>(UnwindBlock->begin()) &&
1394            UnwindBlock->getUniquePredecessor() &&
1395            "can't safely insert in this block!");
1396
1397     Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
1398     Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
1399
1400     // Attach exceptional gc relocates to the landingpad.
1401     Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst();
1402     Result.UnwindToken = ExceptionalToken;
1403
1404     const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
1405     CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken,
1406                       Builder);
1407
1408     // Generate gc relocates and returns for normal block
1409     BasicBlock *NormalDest = ToReplace->getNormalDest();
1410     assert(!isa<PHINode>(NormalDest->begin()) &&
1411            NormalDest->getUniquePredecessor() &&
1412            "can't safely insert in this block!");
1413
1414     Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());
1415
1416     // gc relocates will be generated later as if it were regular call
1417     // statepoint
1418   }
1419   assert(Token && "Should be set in one of the above branches!");
1420
1421   if (IsDeoptimize) {
1422     // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we
1423     // transform the tail-call like structure to a call to a void function
1424     // followed by unreachable to get better codegen.
1425     Replacements.push_back(
1426         DeferredReplacement::createDeoptimizeReplacement(CS.getInstruction()));
1427   } else {
1428     Token->setName("statepoint_token");
1429     if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) {
1430       StringRef Name =
1431           CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : "";
1432       CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name);
1433       GCResult->setAttributes(CS.getAttributes().getRetAttributes());
1434
1435       // We cannot RAUW or delete CS.getInstruction() because it could be in the
1436       // live set of some other safepoint, in which case that safepoint's
1437       // PartiallyConstructedSafepointRecord will hold a raw pointer to this
1438       // llvm::Instruction.  Instead, we defer the replacement and deletion to
1439       // after the live sets have been made explicit in the IR, and we no longer
1440       // have raw pointers to worry about.
1441       Replacements.emplace_back(
1442           DeferredReplacement::createRAUW(CS.getInstruction(), GCResult));
1443     } else {
1444       Replacements.emplace_back(
1445           DeferredReplacement::createDelete(CS.getInstruction()));
1446     }
1447   }
1448
1449   Result.StatepointToken = Token;
1450
1451   // Second, create a gc.relocate for every live variable
1452   const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
1453   CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder);
1454 }
1455
1456 // Replace an existing gc.statepoint with a new one and a set of gc.relocates
1457 // which make the relocations happening at this safepoint explicit.
1458 //
1459 // WARNING: Does not do any fixup to adjust users of the original live
1460 // values.  That's the callers responsibility.
1461 static void
1462 makeStatepointExplicit(DominatorTree &DT, CallSite CS,
1463                        PartiallyConstructedSafepointRecord &Result,
1464                        std::vector<DeferredReplacement> &Replacements) {
1465   const auto &LiveSet = Result.LiveSet;
1466   const auto &PointerToBase = Result.PointerToBase;
1467
1468   // Convert to vector for efficient cross referencing.
1469   SmallVector<Value *, 64> BaseVec, LiveVec;
1470   LiveVec.reserve(LiveSet.size());
1471   BaseVec.reserve(LiveSet.size());
1472   for (Value *L : LiveSet) {
1473     LiveVec.push_back(L);
1474     assert(PointerToBase.count(L));
1475     Value *Base = PointerToBase.find(L)->second;
1476     BaseVec.push_back(Base);
1477   }
1478   assert(LiveVec.size() == BaseVec.size());
1479
1480   // Do the actual rewriting and delete the old statepoint
1481   makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements);
1482 }
1483
1484 // Helper function for the relocationViaAlloca.
1485 //
1486 // It receives iterator to the statepoint gc relocates and emits a store to the
1487 // assigned location (via allocaMap) for the each one of them.  It adds the
1488 // visited values into the visitedLiveValues set, which we will later use them
1489 // for sanity checking.
1490 static void
1491 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
1492                        DenseMap<Value *, Value *> &AllocaMap,
1493                        DenseSet<Value *> &VisitedLiveValues) {
1494
1495   for (User *U : GCRelocs) {
1496     GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U);
1497     if (!Relocate)
1498       continue;
1499
1500     Value *OriginalValue = Relocate->getDerivedPtr();
1501     assert(AllocaMap.count(OriginalValue));
1502     Value *Alloca = AllocaMap[OriginalValue];
1503
1504     // Emit store into the related alloca
1505     // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
1506     // the correct type according to alloca.
1507     assert(Relocate->getNextNode() &&
1508            "Should always have one since it's not a terminator");
1509     IRBuilder<> Builder(Relocate->getNextNode());
1510     Value *CastedRelocatedValue =
1511       Builder.CreateBitCast(Relocate,
1512                             cast<AllocaInst>(Alloca)->getAllocatedType(),
1513                             suffixed_name_or(Relocate, ".casted", ""));
1514
1515     StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca);
1516     Store->insertAfter(cast<Instruction>(CastedRelocatedValue));
1517
1518 #ifndef NDEBUG
1519     VisitedLiveValues.insert(OriginalValue);
1520 #endif
1521   }
1522 }
1523
1524 // Helper function for the "relocationViaAlloca". Similar to the
1525 // "insertRelocationStores" but works for rematerialized values.
1526 static void insertRematerializationStores(
1527     const RematerializedValueMapTy &RematerializedValues,
1528     DenseMap<Value *, Value *> &AllocaMap,
1529     DenseSet<Value *> &VisitedLiveValues) {
1530
1531   for (auto RematerializedValuePair: RematerializedValues) {
1532     Instruction *RematerializedValue = RematerializedValuePair.first;
1533     Value *OriginalValue = RematerializedValuePair.second;
1534
1535     assert(AllocaMap.count(OriginalValue) &&
1536            "Can not find alloca for rematerialized value");
1537     Value *Alloca = AllocaMap[OriginalValue];
1538
1539     StoreInst *Store = new StoreInst(RematerializedValue, Alloca);
1540     Store->insertAfter(RematerializedValue);
1541
1542 #ifndef NDEBUG
1543     VisitedLiveValues.insert(OriginalValue);
1544 #endif
1545   }
1546 }
1547
1548 /// Do all the relocation update via allocas and mem2reg
1549 static void relocationViaAlloca(
1550     Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
1551     ArrayRef<PartiallyConstructedSafepointRecord> Records) {
1552 #ifndef NDEBUG
1553   // record initial number of (static) allocas; we'll check we have the same
1554   // number when we get done.
1555   int InitialAllocaNum = 0;
1556   for (Instruction &I : F.getEntryBlock())
1557     if (isa<AllocaInst>(I))
1558       InitialAllocaNum++;
1559 #endif
1560
1561   // TODO-PERF: change data structures, reserve
1562   DenseMap<Value *, Value *> AllocaMap;
1563   SmallVector<AllocaInst *, 200> PromotableAllocas;
1564   // Used later to chack that we have enough allocas to store all values
1565   std::size_t NumRematerializedValues = 0;
1566   PromotableAllocas.reserve(Live.size());
1567
1568   // Emit alloca for "LiveValue" and record it in "allocaMap" and
1569   // "PromotableAllocas"
1570   auto emitAllocaFor = [&](Value *LiveValue) {
1571     AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "",
1572                                         F.getEntryBlock().getFirstNonPHI());
1573     AllocaMap[LiveValue] = Alloca;
1574     PromotableAllocas.push_back(Alloca);
1575   };
1576
1577   // Emit alloca for each live gc pointer
1578   for (Value *V : Live)
1579     emitAllocaFor(V);
1580
1581   // Emit allocas for rematerialized values
1582   for (const auto &Info : Records)
1583     for (auto RematerializedValuePair : Info.RematerializedValues) {
1584       Value *OriginalValue = RematerializedValuePair.second;
1585       if (AllocaMap.count(OriginalValue) != 0)
1586         continue;
1587
1588       emitAllocaFor(OriginalValue);
1589       ++NumRematerializedValues;
1590     }
1591
1592   // The next two loops are part of the same conceptual operation.  We need to
1593   // insert a store to the alloca after the original def and at each
1594   // redefinition.  We need to insert a load before each use.  These are split
1595   // into distinct loops for performance reasons.
1596
1597   // Update gc pointer after each statepoint: either store a relocated value or
1598   // null (if no relocated value was found for this gc pointer and it is not a
1599   // gc_result).  This must happen before we update the statepoint with load of
1600   // alloca otherwise we lose the link between statepoint and old def.
1601   for (const auto &Info : Records) {
1602     Value *Statepoint = Info.StatepointToken;
1603
1604     // This will be used for consistency check
1605     DenseSet<Value *> VisitedLiveValues;
1606
1607     // Insert stores for normal statepoint gc relocates
1608     insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
1609
1610     // In case if it was invoke statepoint
1611     // we will insert stores for exceptional path gc relocates.
1612     if (isa<InvokeInst>(Statepoint)) {
1613       insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
1614                              VisitedLiveValues);
1615     }
1616
1617     // Do similar thing with rematerialized values
1618     insertRematerializationStores(Info.RematerializedValues, AllocaMap,
1619                                   VisitedLiveValues);
1620
1621     if (ClobberNonLive) {
1622       // As a debugging aid, pretend that an unrelocated pointer becomes null at
1623       // the gc.statepoint.  This will turn some subtle GC problems into
1624       // slightly easier to debug SEGVs.  Note that on large IR files with
1625       // lots of gc.statepoints this is extremely costly both memory and time
1626       // wise.
1627       SmallVector<AllocaInst *, 64> ToClobber;
1628       for (auto Pair : AllocaMap) {
1629         Value *Def = Pair.first;
1630         AllocaInst *Alloca = cast<AllocaInst>(Pair.second);
1631
1632         // This value was relocated
1633         if (VisitedLiveValues.count(Def)) {
1634           continue;
1635         }
1636         ToClobber.push_back(Alloca);
1637       }
1638
1639       auto InsertClobbersAt = [&](Instruction *IP) {
1640         for (auto *AI : ToClobber) {
1641           auto PT = cast<PointerType>(AI->getAllocatedType());
1642           Constant *CPN = ConstantPointerNull::get(PT);
1643           StoreInst *Store = new StoreInst(CPN, AI);
1644           Store->insertBefore(IP);
1645         }
1646       };
1647
1648       // Insert the clobbering stores.  These may get intermixed with the
1649       // gc.results and gc.relocates, but that's fine.
1650       if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
1651         InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
1652         InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
1653       } else {
1654         InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
1655       }
1656     }
1657   }
1658
1659   // Update use with load allocas and add store for gc_relocated.
1660   for (auto Pair : AllocaMap) {
1661     Value *Def = Pair.first;
1662     Value *Alloca = Pair.second;
1663
1664     // We pre-record the uses of allocas so that we dont have to worry about
1665     // later update that changes the user information..
1666
1667     SmallVector<Instruction *, 20> Uses;
1668     // PERF: trade a linear scan for repeated reallocation
1669     Uses.reserve(std::distance(Def->user_begin(), Def->user_end()));
1670     for (User *U : Def->users()) {
1671       if (!isa<ConstantExpr>(U)) {
1672         // If the def has a ConstantExpr use, then the def is either a
1673         // ConstantExpr use itself or null.  In either case
1674         // (recursively in the first, directly in the second), the oop
1675         // it is ultimately dependent on is null and this particular
1676         // use does not need to be fixed up.
1677         Uses.push_back(cast<Instruction>(U));
1678       }
1679     }
1680
1681     std::sort(Uses.begin(), Uses.end());
1682     auto Last = std::unique(Uses.begin(), Uses.end());
1683     Uses.erase(Last, Uses.end());
1684
1685     for (Instruction *Use : Uses) {
1686       if (isa<PHINode>(Use)) {
1687         PHINode *Phi = cast<PHINode>(Use);
1688         for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
1689           if (Def == Phi->getIncomingValue(i)) {
1690             LoadInst *Load = new LoadInst(
1691                 Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
1692             Phi->setIncomingValue(i, Load);
1693           }
1694         }
1695       } else {
1696         LoadInst *Load = new LoadInst(Alloca, "", Use);
1697         Use->replaceUsesOfWith(Def, Load);
1698       }
1699     }
1700
1701     // Emit store for the initial gc value.  Store must be inserted after load,
1702     // otherwise store will be in alloca's use list and an extra load will be
1703     // inserted before it.
1704     StoreInst *Store = new StoreInst(Def, Alloca);
1705     if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
1706       if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
1707         // InvokeInst is a TerminatorInst so the store need to be inserted
1708         // into its normal destination block.
1709         BasicBlock *NormalDest = Invoke->getNormalDest();
1710         Store->insertBefore(NormalDest->getFirstNonPHI());
1711       } else {
1712         assert(!Inst->isTerminator() &&
1713                "The only TerminatorInst that can produce a value is "
1714                "InvokeInst which is handled above.");
1715         Store->insertAfter(Inst);
1716       }
1717     } else {
1718       assert(isa<Argument>(Def));
1719       Store->insertAfter(cast<Instruction>(Alloca));
1720     }
1721   }
1722
1723   assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
1724          "we must have the same allocas with lives");
1725   if (!PromotableAllocas.empty()) {
1726     // Apply mem2reg to promote alloca to SSA
1727     PromoteMemToReg(PromotableAllocas, DT);
1728   }
1729
1730 #ifndef NDEBUG
1731   for (auto &I : F.getEntryBlock())
1732     if (isa<AllocaInst>(I))
1733       InitialAllocaNum--;
1734   assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
1735 #endif
1736 }
1737
1738 /// Implement a unique function which doesn't require we sort the input
1739 /// vector.  Doing so has the effect of changing the output of a couple of
1740 /// tests in ways which make them less useful in testing fused safepoints.
1741 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
1742   SmallSet<T, 8> Seen;
1743   Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) {
1744               return !Seen.insert(V).second;
1745             }), Vec.end());
1746 }
1747
1748 /// Insert holders so that each Value is obviously live through the entire
1749 /// lifetime of the call.
1750 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values,
1751                                  SmallVectorImpl<CallInst *> &Holders) {
1752   if (Values.empty())
1753     // No values to hold live, might as well not insert the empty holder
1754     return;
1755
1756   Module *M = CS.getInstruction()->getModule();
1757   // Use a dummy vararg function to actually hold the values live
1758   Function *Func = cast<Function>(M->getOrInsertFunction(
1759       "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)));
1760   if (CS.isCall()) {
1761     // For call safepoints insert dummy calls right after safepoint
1762     Holders.push_back(CallInst::Create(Func, Values, "",
1763                                        &*++CS.getInstruction()->getIterator()));
1764     return;
1765   }
1766   // For invoke safepooints insert dummy calls both in normal and
1767   // exceptional destination blocks
1768   auto *II = cast<InvokeInst>(CS.getInstruction());
1769   Holders.push_back(CallInst::Create(
1770       Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
1771   Holders.push_back(CallInst::Create(
1772       Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
1773 }
1774
1775 static void findLiveReferences(
1776     Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
1777     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1778   GCPtrLivenessData OriginalLivenessData;
1779   computeLiveInValues(DT, F, OriginalLivenessData);
1780   for (size_t i = 0; i < records.size(); i++) {
1781     struct PartiallyConstructedSafepointRecord &info = records[i];
1782     analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info);
1783   }
1784 }
1785
1786 // Helper function for the "rematerializeLiveValues". It walks use chain
1787 // starting from the "CurrentValue" until it meets "BaseValue". Only "simple"
1788 // values are visited (currently it is GEP's and casts). Returns true if it
1789 // successfully reached "BaseValue" and false otherwise.
1790 // Fills "ChainToBase" array with all visited values. "BaseValue" is not
1791 // recorded.
1792 static bool findRematerializableChainToBasePointer(
1793   SmallVectorImpl<Instruction*> &ChainToBase,
1794   Value *CurrentValue, Value *BaseValue) {
1795
1796   // We have found a base value
1797   if (CurrentValue == BaseValue) {
1798     return true;
1799   }
1800
1801   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
1802     ChainToBase.push_back(GEP);
1803     return findRematerializableChainToBasePointer(ChainToBase,
1804                                                   GEP->getPointerOperand(),
1805                                                   BaseValue);
1806   }
1807
1808   if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
1809     if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
1810       return false;
1811
1812     ChainToBase.push_back(CI);
1813     return findRematerializableChainToBasePointer(ChainToBase,
1814                                                   CI->getOperand(0), BaseValue);
1815   }
1816
1817   // Not supported instruction in the chain
1818   return false;
1819 }
1820
1821 // Helper function for the "rematerializeLiveValues". Compute cost of the use
1822 // chain we are going to rematerialize.
1823 static unsigned
1824 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain,
1825                        TargetTransformInfo &TTI) {
1826   unsigned Cost = 0;
1827
1828   for (Instruction *Instr : Chain) {
1829     if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
1830       assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
1831              "non noop cast is found during rematerialization");
1832
1833       Type *SrcTy = CI->getOperand(0)->getType();
1834       Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy);
1835
1836     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
1837       // Cost of the address calculation
1838       Type *ValTy = GEP->getSourceElementType();
1839       Cost += TTI.getAddressComputationCost(ValTy);
1840
1841       // And cost of the GEP itself
1842       // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
1843       //       allowed for the external usage)
1844       if (!GEP->hasAllConstantIndices())
1845         Cost += 2;
1846
1847     } else {
1848       llvm_unreachable("unsupported instruciton type during rematerialization");
1849     }
1850   }
1851
1852   return Cost;
1853 }
1854
1855 // From the statepoint live set pick values that are cheaper to recompute then
1856 // to relocate. Remove this values from the live set, rematerialize them after
1857 // statepoint and record them in "Info" structure. Note that similar to
1858 // relocated values we don't do any user adjustments here.
1859 static void rematerializeLiveValues(CallSite CS,
1860                                     PartiallyConstructedSafepointRecord &Info,
1861                                     TargetTransformInfo &TTI) {
1862   const unsigned int ChainLengthThreshold = 10;
1863
1864   // Record values we are going to delete from this statepoint live set.
1865   // We can not di this in following loop due to iterator invalidation.
1866   SmallVector<Value *, 32> LiveValuesToBeDeleted;
1867
1868   for (Value *LiveValue: Info.LiveSet) {
1869     // For each live pointer find it's defining chain
1870     SmallVector<Instruction *, 3> ChainToBase;
1871     assert(Info.PointerToBase.count(LiveValue));
1872     bool FoundChain =
1873       findRematerializableChainToBasePointer(ChainToBase,
1874                                              LiveValue,
1875                                              Info.PointerToBase[LiveValue]);
1876     // Nothing to do, or chain is too long
1877     if (!FoundChain ||
1878         ChainToBase.size() == 0 ||
1879         ChainToBase.size() > ChainLengthThreshold)
1880       continue;
1881
1882     // Compute cost of this chain
1883     unsigned Cost = chainToBasePointerCost(ChainToBase, TTI);
1884     // TODO: We can also account for cases when we will be able to remove some
1885     //       of the rematerialized values by later optimization passes. I.e if
1886     //       we rematerialized several intersecting chains. Or if original values
1887     //       don't have any uses besides this statepoint.
1888
1889     // For invokes we need to rematerialize each chain twice - for normal and
1890     // for unwind basic blocks. Model this by multiplying cost by two.
1891     if (CS.isInvoke()) {
1892       Cost *= 2;
1893     }
1894     // If it's too expensive - skip it
1895     if (Cost >= RematerializationThreshold)
1896       continue;
1897
1898     // Remove value from the live set
1899     LiveValuesToBeDeleted.push_back(LiveValue);
1900
1901     // Clone instructions and record them inside "Info" structure
1902
1903     // Walk backwards to visit top-most instructions first
1904     std::reverse(ChainToBase.begin(), ChainToBase.end());
1905
1906     // Utility function which clones all instructions from "ChainToBase"
1907     // and inserts them before "InsertBefore". Returns rematerialized value
1908     // which should be used after statepoint.
1909     auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) {
1910       Instruction *LastClonedValue = nullptr;
1911       Instruction *LastValue = nullptr;
1912       for (Instruction *Instr: ChainToBase) {
1913         // Only GEP's and casts are suported as we need to be careful to not
1914         // introduce any new uses of pointers not in the liveset.
1915         // Note that it's fine to introduce new uses of pointers which were
1916         // otherwise not used after this statepoint.
1917         assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
1918
1919         Instruction *ClonedValue = Instr->clone();
1920         ClonedValue->insertBefore(InsertBefore);
1921         ClonedValue->setName(Instr->getName() + ".remat");
1922
1923         // If it is not first instruction in the chain then it uses previously
1924         // cloned value. We should update it to use cloned value.
1925         if (LastClonedValue) {
1926           assert(LastValue);
1927           ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
1928 #ifndef NDEBUG
1929           // Assert that cloned instruction does not use any instructions from
1930           // this chain other than LastClonedValue
1931           for (auto OpValue : ClonedValue->operand_values()) {
1932             assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) ==
1933                        ChainToBase.end() &&
1934                    "incorrect use in rematerialization chain");
1935           }
1936 #endif
1937         }
1938
1939         LastClonedValue = ClonedValue;
1940         LastValue = Instr;
1941       }
1942       assert(LastClonedValue);
1943       return LastClonedValue;
1944     };
1945
1946     // Different cases for calls and invokes. For invokes we need to clone
1947     // instructions both on normal and unwind path.
1948     if (CS.isCall()) {
1949       Instruction *InsertBefore = CS.getInstruction()->getNextNode();
1950       assert(InsertBefore);
1951       Instruction *RematerializedValue = rematerializeChain(InsertBefore);
1952       Info.RematerializedValues[RematerializedValue] = LiveValue;
1953     } else {
1954       InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction());
1955
1956       Instruction *NormalInsertBefore =
1957           &*Invoke->getNormalDest()->getFirstInsertionPt();
1958       Instruction *UnwindInsertBefore =
1959           &*Invoke->getUnwindDest()->getFirstInsertionPt();
1960
1961       Instruction *NormalRematerializedValue =
1962           rematerializeChain(NormalInsertBefore);
1963       Instruction *UnwindRematerializedValue =
1964           rematerializeChain(UnwindInsertBefore);
1965
1966       Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
1967       Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
1968     }
1969   }
1970
1971   // Remove rematerializaed values from the live set
1972   for (auto LiveValue: LiveValuesToBeDeleted) {
1973     Info.LiveSet.remove(LiveValue);
1974   }
1975 }
1976
1977 static bool insertParsePoints(Function &F, DominatorTree &DT,
1978                               TargetTransformInfo &TTI,
1979                               SmallVectorImpl<CallSite> &ToUpdate) {
1980 #ifndef NDEBUG
1981   // sanity check the input
1982   std::set<CallSite> Uniqued;
1983   Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
1984   assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
1985
1986   for (CallSite CS : ToUpdate)
1987     assert(CS.getInstruction()->getFunction() == &F);
1988 #endif
1989
1990   // When inserting gc.relocates for invokes, we need to be able to insert at
1991   // the top of the successor blocks.  See the comment on
1992   // normalForInvokeSafepoint on exactly what is needed.  Note that this step
1993   // may restructure the CFG.
1994   for (CallSite CS : ToUpdate) {
1995     if (!CS.isInvoke())
1996       continue;
1997     auto *II = cast<InvokeInst>(CS.getInstruction());
1998     normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
1999     normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
2000   }
2001
2002   // A list of dummy calls added to the IR to keep various values obviously
2003   // live in the IR.  We'll remove all of these when done.
2004   SmallVector<CallInst *, 64> Holders;
2005
2006   // Insert a dummy call with all of the arguments to the vm_state we'll need
2007   // for the actual safepoint insertion.  This ensures reference arguments in
2008   // the deopt argument list are considered live through the safepoint (and
2009   // thus makes sure they get relocated.)
2010   for (CallSite CS : ToUpdate) {
2011     SmallVector<Value *, 64> DeoptValues;
2012
2013     for (Value *Arg : GetDeoptBundleOperands(CS)) {
2014       assert(!isUnhandledGCPointerType(Arg->getType()) &&
2015              "support for FCA unimplemented");
2016       if (isHandledGCPointerType(Arg->getType()))
2017         DeoptValues.push_back(Arg);
2018     }
2019
2020     insertUseHolderAfter(CS, DeoptValues, Holders);
2021   }
2022
2023   SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
2024
2025   // A) Identify all gc pointers which are statically live at the given call
2026   // site.
2027   findLiveReferences(F, DT, ToUpdate, Records);
2028
2029   // B) Find the base pointers for each live pointer
2030   /* scope for caching */ {
2031     // Cache the 'defining value' relation used in the computation and
2032     // insertion of base phis and selects.  This ensures that we don't insert
2033     // large numbers of duplicate base_phis.
2034     DefiningValueMapTy DVCache;
2035
2036     for (size_t i = 0; i < Records.size(); i++) {
2037       PartiallyConstructedSafepointRecord &info = Records[i];
2038       findBasePointers(DT, DVCache, ToUpdate[i], info);
2039     }
2040   } // end of cache scope
2041
2042   // The base phi insertion logic (for any safepoint) may have inserted new
2043   // instructions which are now live at some safepoint.  The simplest such
2044   // example is:
2045   // loop:
2046   //   phi a  <-- will be a new base_phi here
2047   //   safepoint 1 <-- that needs to be live here
2048   //   gep a + 1
2049   //   safepoint 2
2050   //   br loop
2051   // We insert some dummy calls after each safepoint to definitely hold live
2052   // the base pointers which were identified for that safepoint.  We'll then
2053   // ask liveness for _every_ base inserted to see what is now live.  Then we
2054   // remove the dummy calls.
2055   Holders.reserve(Holders.size() + Records.size());
2056   for (size_t i = 0; i < Records.size(); i++) {
2057     PartiallyConstructedSafepointRecord &Info = Records[i];
2058
2059     SmallVector<Value *, 128> Bases;
2060     for (auto Pair : Info.PointerToBase)
2061       Bases.push_back(Pair.second);
2062
2063     insertUseHolderAfter(ToUpdate[i], Bases, Holders);
2064   }
2065
2066   // By selecting base pointers, we've effectively inserted new uses. Thus, we
2067   // need to rerun liveness.  We may *also* have inserted new defs, but that's
2068   // not the key issue.
2069   recomputeLiveInValues(F, DT, ToUpdate, Records);
2070
2071   if (PrintBasePointers) {
2072     for (auto &Info : Records) {
2073       errs() << "Base Pairs: (w/Relocation)\n";
2074       for (auto Pair : Info.PointerToBase) {
2075         errs() << " derived ";
2076         Pair.first->printAsOperand(errs(), false);
2077         errs() << " base ";
2078         Pair.second->printAsOperand(errs(), false);
2079         errs() << "\n";
2080       }
2081     }
2082   }
2083
2084   // It is possible that non-constant live variables have a constant base.  For
2085   // example, a GEP with a variable offset from a global.  In this case we can
2086   // remove it from the liveset.  We already don't add constants to the liveset
2087   // because we assume they won't move at runtime and the GC doesn't need to be
2088   // informed about them.  The same reasoning applies if the base is constant.
2089   // Note that the relocation placement code relies on this filtering for
2090   // correctness as it expects the base to be in the liveset, which isn't true
2091   // if the base is constant.
2092   for (auto &Info : Records)
2093     for (auto &BasePair : Info.PointerToBase)
2094       if (isa<Constant>(BasePair.second))
2095         Info.LiveSet.remove(BasePair.first);
2096
2097   for (CallInst *CI : Holders)
2098     CI->eraseFromParent();
2099
2100   Holders.clear();
2101
2102   // In order to reduce live set of statepoint we might choose to rematerialize
2103   // some values instead of relocating them. This is purely an optimization and
2104   // does not influence correctness.
2105   for (size_t i = 0; i < Records.size(); i++)
2106     rematerializeLiveValues(ToUpdate[i], Records[i], TTI);
2107
2108   // We need this to safely RAUW and delete call or invoke return values that
2109   // may themselves be live over a statepoint.  For details, please see usage in
2110   // makeStatepointExplicitImpl.
2111   std::vector<DeferredReplacement> Replacements;
2112
2113   // Now run through and replace the existing statepoints with new ones with
2114   // the live variables listed.  We do not yet update uses of the values being
2115   // relocated. We have references to live variables that need to
2116   // survive to the last iteration of this loop.  (By construction, the
2117   // previous statepoint can not be a live variable, thus we can and remove
2118   // the old statepoint calls as we go.)
2119   for (size_t i = 0; i < Records.size(); i++)
2120     makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements);
2121
2122   ToUpdate.clear(); // prevent accident use of invalid CallSites
2123
2124   for (auto &PR : Replacements)
2125     PR.doReplacement();
2126
2127   Replacements.clear();
2128
2129   for (auto &Info : Records) {
2130     // These live sets may contain state Value pointers, since we replaced calls
2131     // with operand bundles with calls wrapped in gc.statepoint, and some of
2132     // those calls may have been def'ing live gc pointers.  Clear these out to
2133     // avoid accidentally using them.
2134     //
2135     // TODO: We should create a separate data structure that does not contain
2136     // these live sets, and migrate to using that data structure from this point
2137     // onward.
2138     Info.LiveSet.clear();
2139     Info.PointerToBase.clear();
2140   }
2141
2142   // Do all the fixups of the original live variables to their relocated selves
2143   SmallVector<Value *, 128> Live;
2144   for (size_t i = 0; i < Records.size(); i++) {
2145     PartiallyConstructedSafepointRecord &Info = Records[i];
2146
2147     // We can't simply save the live set from the original insertion.  One of
2148     // the live values might be the result of a call which needs a safepoint.
2149     // That Value* no longer exists and we need to use the new gc_result.
2150     // Thankfully, the live set is embedded in the statepoint (and updated), so
2151     // we just grab that.
2152     Statepoint Statepoint(Info.StatepointToken);
2153     Live.insert(Live.end(), Statepoint.gc_args_begin(),
2154                 Statepoint.gc_args_end());
2155 #ifndef NDEBUG
2156     // Do some basic sanity checks on our liveness results before performing
2157     // relocation.  Relocation can and will turn mistakes in liveness results
2158     // into non-sensical code which is must harder to debug.
2159     // TODO: It would be nice to test consistency as well
2160     assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
2161            "statepoint must be reachable or liveness is meaningless");
2162     for (Value *V : Statepoint.gc_args()) {
2163       if (!isa<Instruction>(V))
2164         // Non-instruction values trivial dominate all possible uses
2165         continue;
2166       auto *LiveInst = cast<Instruction>(V);
2167       assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
2168              "unreachable values should never be live");
2169       assert(DT.dominates(LiveInst, Info.StatepointToken) &&
2170              "basic SSA liveness expectation violated by liveness analysis");
2171     }
2172 #endif
2173   }
2174   unique_unsorted(Live);
2175
2176 #ifndef NDEBUG
2177   // sanity check
2178   for (auto *Ptr : Live)
2179     assert(isHandledGCPointerType(Ptr->getType()) &&
2180            "must be a gc pointer type");
2181 #endif
2182
2183   relocationViaAlloca(F, DT, Live, Records);
2184   return !Records.empty();
2185 }
2186
2187 // Handles both return values and arguments for Functions and CallSites.
2188 template <typename AttrHolder>
2189 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH,
2190                                       unsigned Index) {
2191   AttrBuilder R;
2192   if (AH.getDereferenceableBytes(Index))
2193     R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable,
2194                                   AH.getDereferenceableBytes(Index)));
2195   if (AH.getDereferenceableOrNullBytes(Index))
2196     R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull,
2197                                   AH.getDereferenceableOrNullBytes(Index)));
2198   if (AH.doesNotAlias(Index))
2199     R.addAttribute(Attribute::NoAlias);
2200
2201   if (!R.empty())
2202     AH.setAttributes(AH.getAttributes().removeAttributes(
2203         Ctx, Index, AttributeSet::get(Ctx, Index, R)));
2204 }
2205
2206 void
2207 RewriteStatepointsForGC::stripNonValidAttributesFromPrototype(Function &F) {
2208   LLVMContext &Ctx = F.getContext();
2209
2210   for (Argument &A : F.args())
2211     if (isa<PointerType>(A.getType()))
2212       RemoveNonValidAttrAtIndex(Ctx, F, A.getArgNo() + 1);
2213
2214   if (isa<PointerType>(F.getReturnType()))
2215     RemoveNonValidAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex);
2216 }
2217
2218 void RewriteStatepointsForGC::stripNonValidAttributesFromBody(Function &F) {
2219   if (F.empty())
2220     return;
2221
2222   LLVMContext &Ctx = F.getContext();
2223   MDBuilder Builder(Ctx);
2224
2225   for (Instruction &I : instructions(F)) {
2226     if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) {
2227       assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!");
2228       bool IsImmutableTBAA =
2229           MD->getNumOperands() == 4 &&
2230           mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1;
2231
2232       if (!IsImmutableTBAA)
2233         continue; // no work to do, MD_tbaa is already marked mutable
2234
2235       MDNode *Base = cast<MDNode>(MD->getOperand(0));
2236       MDNode *Access = cast<MDNode>(MD->getOperand(1));
2237       uint64_t Offset =
2238           mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue();
2239
2240       MDNode *MutableTBAA =
2241           Builder.createTBAAStructTagNode(Base, Access, Offset);
2242       I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
2243     }
2244
2245     if (CallSite CS = CallSite(&I)) {
2246       for (int i = 0, e = CS.arg_size(); i != e; i++)
2247         if (isa<PointerType>(CS.getArgument(i)->getType()))
2248           RemoveNonValidAttrAtIndex(Ctx, CS, i + 1);
2249       if (isa<PointerType>(CS.getType()))
2250         RemoveNonValidAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex);
2251     }
2252   }
2253 }
2254
2255 /// Returns true if this function should be rewritten by this pass.  The main
2256 /// point of this function is as an extension point for custom logic.
2257 static bool shouldRewriteStatepointsIn(Function &F) {
2258   // TODO: This should check the GCStrategy
2259   if (F.hasGC()) {
2260     const auto &FunctionGCName = F.getGC();
2261     const StringRef StatepointExampleName("statepoint-example");
2262     const StringRef CoreCLRName("coreclr");
2263     return (StatepointExampleName == FunctionGCName) ||
2264            (CoreCLRName == FunctionGCName);
2265   } else
2266     return false;
2267 }
2268
2269 void RewriteStatepointsForGC::stripNonValidAttributes(Module &M) {
2270 #ifndef NDEBUG
2271   assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) &&
2272          "precondition!");
2273 #endif
2274
2275   for (Function &F : M)
2276     stripNonValidAttributesFromPrototype(F);
2277
2278   for (Function &F : M)
2279     stripNonValidAttributesFromBody(F);
2280 }
2281
2282 bool RewriteStatepointsForGC::runOnFunction(Function &F) {
2283   // Nothing to do for declarations.
2284   if (F.isDeclaration() || F.empty())
2285     return false;
2286
2287   // Policy choice says not to rewrite - the most common reason is that we're
2288   // compiling code without a GCStrategy.
2289   if (!shouldRewriteStatepointsIn(F))
2290     return false;
2291
2292   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
2293   TargetTransformInfo &TTI =
2294       getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2295
2296   auto NeedsRewrite = [](Instruction &I) {
2297     if (ImmutableCallSite CS = ImmutableCallSite(&I))
2298       return !callsGCLeafFunction(CS) && !isStatepoint(CS);
2299     return false;
2300   };
2301
2302   // Gather all the statepoints which need rewritten.  Be careful to only
2303   // consider those in reachable code since we need to ask dominance queries
2304   // when rewriting.  We'll delete the unreachable ones in a moment.
2305   SmallVector<CallSite, 64> ParsePointNeeded;
2306   bool HasUnreachableStatepoint = false;
2307   for (Instruction &I : instructions(F)) {
2308     // TODO: only the ones with the flag set!
2309     if (NeedsRewrite(I)) {
2310       if (DT.isReachableFromEntry(I.getParent()))
2311         ParsePointNeeded.push_back(CallSite(&I));
2312       else
2313         HasUnreachableStatepoint = true;
2314     }
2315   }
2316
2317   bool MadeChange = false;
2318
2319   // Delete any unreachable statepoints so that we don't have unrewritten
2320   // statepoints surviving this pass.  This makes testing easier and the
2321   // resulting IR less confusing to human readers.  Rather than be fancy, we
2322   // just reuse a utility function which removes the unreachable blocks.
2323   if (HasUnreachableStatepoint)
2324     MadeChange |= removeUnreachableBlocks(F);
2325
2326   // Return early if no work to do.
2327   if (ParsePointNeeded.empty())
2328     return MadeChange;
2329
2330   // As a prepass, go ahead and aggressively destroy single entry phi nodes.
2331   // These are created by LCSSA.  They have the effect of increasing the size
2332   // of liveness sets for no good reason.  It may be harder to do this post
2333   // insertion since relocations and base phis can confuse things.
2334   for (BasicBlock &BB : F)
2335     if (BB.getUniquePredecessor()) {
2336       MadeChange = true;
2337       FoldSingleEntryPHINodes(&BB);
2338     }
2339
2340   // Before we start introducing relocations, we want to tweak the IR a bit to
2341   // avoid unfortunate code generation effects.  The main example is that we 
2342   // want to try to make sure the comparison feeding a branch is after any
2343   // safepoints.  Otherwise, we end up with a comparison of pre-relocation
2344   // values feeding a branch after relocation.  This is semantically correct,
2345   // but results in extra register pressure since both the pre-relocation and
2346   // post-relocation copies must be available in registers.  For code without
2347   // relocations this is handled elsewhere, but teaching the scheduler to
2348   // reverse the transform we're about to do would be slightly complex.
2349   // Note: This may extend the live range of the inputs to the icmp and thus
2350   // increase the liveset of any statepoint we move over.  This is profitable
2351   // as long as all statepoints are in rare blocks.  If we had in-register
2352   // lowering for live values this would be a much safer transform.
2353   auto getConditionInst = [](TerminatorInst *TI) -> Instruction* {
2354     if (auto *BI = dyn_cast<BranchInst>(TI))
2355       if (BI->isConditional())
2356         return dyn_cast<Instruction>(BI->getCondition());
2357     // TODO: Extend this to handle switches
2358     return nullptr;
2359   };
2360   for (BasicBlock &BB : F) {
2361     TerminatorInst *TI = BB.getTerminator();
2362     if (auto *Cond = getConditionInst(TI))
2363       // TODO: Handle more than just ICmps here.  We should be able to move
2364       // most instructions without side effects or memory access.  
2365       if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
2366         MadeChange = true;
2367         Cond->moveBefore(TI);
2368       }
2369   }
2370
2371   MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded);
2372   return MadeChange;
2373 }
2374
2375 // liveness computation via standard dataflow
2376 // -------------------------------------------------------------------
2377
2378 // TODO: Consider using bitvectors for liveness, the set of potentially
2379 // interesting values should be small and easy to pre-compute.
2380
2381 /// Compute the live-in set for the location rbegin starting from
2382 /// the live-out set of the basic block
2383 static void computeLiveInValues(BasicBlock::reverse_iterator Begin,
2384                                 BasicBlock::reverse_iterator End,
2385                                 SetVector<Value *> &LiveTmp) {
2386   for (auto &I : make_range(Begin, End)) {
2387     // KILL/Def - Remove this definition from LiveIn
2388     LiveTmp.remove(&I);
2389
2390     // Don't consider *uses* in PHI nodes, we handle their contribution to
2391     // predecessor blocks when we seed the LiveOut sets
2392     if (isa<PHINode>(I))
2393       continue;
2394
2395     // USE - Add to the LiveIn set for this instruction
2396     for (Value *V : I.operands()) {
2397       assert(!isUnhandledGCPointerType(V->getType()) &&
2398              "support for FCA unimplemented");
2399       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
2400         // The choice to exclude all things constant here is slightly subtle.
2401         // There are two independent reasons:
2402         // - We assume that things which are constant (from LLVM's definition)
2403         // do not move at runtime.  For example, the address of a global
2404         // variable is fixed, even though it's contents may not be.
2405         // - Second, we can't disallow arbitrary inttoptr constants even
2406         // if the language frontend does.  Optimization passes are free to
2407         // locally exploit facts without respect to global reachability.  This
2408         // can create sections of code which are dynamically unreachable and
2409         // contain just about anything.  (see constants.ll in tests)
2410         LiveTmp.insert(V);
2411       }
2412     }
2413   }
2414 }
2415
2416 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) {
2417   for (BasicBlock *Succ : successors(BB)) {
2418     for (auto &I : *Succ) {
2419       PHINode *PN = dyn_cast<PHINode>(&I);
2420       if (!PN)
2421         break;
2422
2423       Value *V = PN->getIncomingValueForBlock(BB);
2424       assert(!isUnhandledGCPointerType(V->getType()) &&
2425              "support for FCA unimplemented");
2426       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V))
2427         LiveTmp.insert(V);
2428     }
2429   }
2430 }
2431
2432 static SetVector<Value *> computeKillSet(BasicBlock *BB) {
2433   SetVector<Value *> KillSet;
2434   for (Instruction &I : *BB)
2435     if (isHandledGCPointerType(I.getType()))
2436       KillSet.insert(&I);
2437   return KillSet;
2438 }
2439
2440 #ifndef NDEBUG
2441 /// Check that the items in 'Live' dominate 'TI'.  This is used as a basic
2442 /// sanity check for the liveness computation.
2443 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live,
2444                           TerminatorInst *TI, bool TermOkay = false) {
2445   for (Value *V : Live) {
2446     if (auto *I = dyn_cast<Instruction>(V)) {
2447       // The terminator can be a member of the LiveOut set.  LLVM's definition
2448       // of instruction dominance states that V does not dominate itself.  As
2449       // such, we need to special case this to allow it.
2450       if (TermOkay && TI == I)
2451         continue;
2452       assert(DT.dominates(I, TI) &&
2453              "basic SSA liveness expectation violated by liveness analysis");
2454     }
2455   }
2456 }
2457
2458 /// Check that all the liveness sets used during the computation of liveness
2459 /// obey basic SSA properties.  This is useful for finding cases where we miss
2460 /// a def.
2461 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
2462                           BasicBlock &BB) {
2463   checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
2464   checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
2465   checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
2466 }
2467 #endif
2468
2469 static void computeLiveInValues(DominatorTree &DT, Function &F,
2470                                 GCPtrLivenessData &Data) {
2471   SmallSetVector<BasicBlock *, 32> Worklist;
2472
2473   // Seed the liveness for each individual block
2474   for (BasicBlock &BB : F) {
2475     Data.KillSet[&BB] = computeKillSet(&BB);
2476     Data.LiveSet[&BB].clear();
2477     computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
2478
2479 #ifndef NDEBUG
2480     for (Value *Kill : Data.KillSet[&BB])
2481       assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
2482 #endif
2483
2484     Data.LiveOut[&BB] = SetVector<Value *>();
2485     computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
2486     Data.LiveIn[&BB] = Data.LiveSet[&BB];
2487     Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]);
2488     Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]);
2489     if (!Data.LiveIn[&BB].empty())
2490       Worklist.insert(pred_begin(&BB), pred_end(&BB));
2491   }
2492
2493   // Propagate that liveness until stable
2494   while (!Worklist.empty()) {
2495     BasicBlock *BB = Worklist.pop_back_val();
2496
2497     // Compute our new liveout set, then exit early if it hasn't changed despite
2498     // the contribution of our successor.
2499     SetVector<Value *> LiveOut = Data.LiveOut[BB];
2500     const auto OldLiveOutSize = LiveOut.size();
2501     for (BasicBlock *Succ : successors(BB)) {
2502       assert(Data.LiveIn.count(Succ));
2503       LiveOut.set_union(Data.LiveIn[Succ]);
2504     }
2505     // assert OutLiveOut is a subset of LiveOut
2506     if (OldLiveOutSize == LiveOut.size()) {
2507       // If the sets are the same size, then we didn't actually add anything
2508       // when unioning our successors LiveIn.  Thus, the LiveIn of this block
2509       // hasn't changed.
2510       continue;
2511     }
2512     Data.LiveOut[BB] = LiveOut;
2513
2514     // Apply the effects of this basic block
2515     SetVector<Value *> LiveTmp = LiveOut;
2516     LiveTmp.set_union(Data.LiveSet[BB]);
2517     LiveTmp.set_subtract(Data.KillSet[BB]);
2518
2519     assert(Data.LiveIn.count(BB));
2520     const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB];
2521     // assert: OldLiveIn is a subset of LiveTmp
2522     if (OldLiveIn.size() != LiveTmp.size()) {
2523       Data.LiveIn[BB] = LiveTmp;
2524       Worklist.insert(pred_begin(BB), pred_end(BB));
2525     }
2526   } // while (!Worklist.empty())
2527
2528 #ifndef NDEBUG
2529   // Sanity check our output against SSA properties.  This helps catch any
2530   // missing kills during the above iteration.
2531   for (BasicBlock &BB : F)
2532     checkBasicSSA(DT, Data, BB);
2533 #endif
2534 }
2535
2536 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
2537                               StatepointLiveSetTy &Out) {
2538
2539   BasicBlock *BB = Inst->getParent();
2540
2541   // Note: The copy is intentional and required
2542   assert(Data.LiveOut.count(BB));
2543   SetVector<Value *> LiveOut = Data.LiveOut[BB];
2544
2545   // We want to handle the statepoint itself oddly.  It's
2546   // call result is not live (normal), nor are it's arguments
2547   // (unless they're used again later).  This adjustment is
2548   // specifically what we need to relocate
2549   BasicBlock::reverse_iterator rend(Inst->getIterator());
2550   computeLiveInValues(BB->rbegin(), rend, LiveOut);
2551   LiveOut.remove(Inst);
2552   Out.insert(LiveOut.begin(), LiveOut.end());
2553 }
2554
2555 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
2556                                   CallSite CS,
2557                                   PartiallyConstructedSafepointRecord &Info) {
2558   Instruction *Inst = CS.getInstruction();
2559   StatepointLiveSetTy Updated;
2560   findLiveSetAtInst(Inst, RevisedLivenessData, Updated);
2561
2562 #ifndef NDEBUG
2563   DenseSet<Value *> Bases;
2564   for (auto KVPair : Info.PointerToBase)
2565     Bases.insert(KVPair.second);
2566 #endif
2567
2568   // We may have base pointers which are now live that weren't before.  We need
2569   // to update the PointerToBase structure to reflect this.
2570   for (auto V : Updated)
2571     if (Info.PointerToBase.insert({V, V}).second) {
2572       assert(Bases.count(V) && "Can't find base for unexpected live value!");
2573       continue;
2574     }
2575
2576 #ifndef NDEBUG
2577   for (auto V : Updated)
2578     assert(Info.PointerToBase.count(V) &&
2579            "Must be able to find base for live value!");
2580 #endif
2581
2582   // Remove any stale base mappings - this can happen since our liveness is
2583   // more precise then the one inherent in the base pointer analysis.
2584   DenseSet<Value *> ToErase;
2585   for (auto KVPair : Info.PointerToBase)
2586     if (!Updated.count(KVPair.first))
2587       ToErase.insert(KVPair.first);
2588
2589   for (auto *V : ToErase)
2590     Info.PointerToBase.erase(V);
2591
2592 #ifndef NDEBUG
2593   for (auto KVPair : Info.PointerToBase)
2594     assert(Updated.count(KVPair.first) && "record for non-live value");
2595 #endif
2596
2597   Info.LiveSet = Updated;
2598 }